mirror of
https://github.com/zkonduit/ezkl.git
synced 2026-01-13 16:27:59 -05:00
Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ddbcc1d2d8 | ||
|
|
feccc5feed |
4
.github/workflows/rust.yml
vendored
4
.github/workflows/rust.yml
vendored
@@ -643,10 +643,10 @@ jobs:
|
||||
# # now dump the contents of the file into a file called kaggle.json
|
||||
# echo $KAGGLE_API_KEY > /home/ubuntu/.kaggle/kaggle.json
|
||||
# chmod 600 /home/ubuntu/.kaggle/kaggle.json
|
||||
- name: NBEATS tutorial
|
||||
run: source .env/bin/activate; cargo nextest run py_tests::tests::nbeats_
|
||||
- name: Voice tutorial
|
||||
run: source .env/bin/activate; cargo nextest run py_tests::tests::voice_
|
||||
- name: NBEATS tutorial
|
||||
run: source .env/bin/activate; cargo nextest run py_tests::tests::nbeats_
|
||||
- name: All notebooks
|
||||
run: source .env/bin/activate; cargo nextest run py_tests::tests::run_notebook_ --test-threads 1
|
||||
- name: Tictactoe tutorials
|
||||
|
||||
@@ -271,7 +271,7 @@
|
||||
"The graph input for on chain data sources is formatted completely differently compared to file based data sources.\n",
|
||||
"\n",
|
||||
"- For file data sources, the raw floating point values that eventually get quantized, converted into field elements and stored in `witness.json` to be consumed by the circuit are stored. The output data contains the expected floating point values returned as outputs from running your vanilla pytorch model on the given inputs.\n",
|
||||
"- For on chain data sources, the input_data field contains all the data necessary to read and format the on chain data into something digestable by EZKL (aka field elemenets :-D). \n",
|
||||
"- For on chain data sources, the input_data field contains all the data necessary to read and format the on chain data into something digestable by EZKL (aka field elements :-D). \n",
|
||||
"Here is what the schema for an on-chain data source graph input file should look like:\n",
|
||||
" \n",
|
||||
"```json\n",
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
"source": [
|
||||
"# kzg-ezkl\n",
|
||||
"\n",
|
||||
"Here's an example leveraging EZKL whereby the inputs to the model, and the model params themselves, are commited to using kzg-commitments inside a circuit.\n",
|
||||
"Here's an example leveraging EZKL whereby the inputs to the model, and the model params themselves, are committed to using kzg-commitments inside a circuit.\n",
|
||||
"\n",
|
||||
"In this setup:\n",
|
||||
"- the commitments are publicly known to the prover and verifier\n",
|
||||
@@ -166,7 +166,7 @@
|
||||
"Shoutouts: \n",
|
||||
"\n",
|
||||
"- [summa-solvency](https://github.com/summa-dev/summa-solvency) for their help with the poseidon hashing chip. \n",
|
||||
"- [timeofey](https://github.com/timoftime) for providing inspiration in our developement of the el-gamal encryption circuit in Halo2. "
|
||||
"- [timeofey](https://github.com/timoftime) for providing inspiration in our development of the el-gamal encryption circuit in Halo2. "
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
"source": [
|
||||
"## EZKL Jupyter Notebook Demo \n",
|
||||
"\n",
|
||||
"Here we demonstrate how to use the EZKL package to run a publicly known / committted to network on some private data, producing a public output.\n"
|
||||
"Here we demonstrate how to use the EZKL package to run a publicly known / committed to network on some private data, producing a public output.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -154,7 +154,7 @@
|
||||
"source": [
|
||||
"## Create a neural net to verify the execution of the tic tac toe model\n",
|
||||
"\n",
|
||||
"1. Given the data generated above classify whether the tic tac toe games are valid. This approach uses a binary classification as the tic tac toe state space is fairly small. For larger state spaces we will want to use anomaly detection based approachs"
|
||||
"1. Given the data generated above classify whether the tic tac toe games are valid. This approach uses a binary classification as the tic tac toe state space is fairly small. For larger state spaces, we will want to use anomaly detection based approaches."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -49,7 +49,7 @@
|
||||
"import torch\n",
|
||||
"import math\n",
|
||||
"\n",
|
||||
"# these are constatns for the rotation\n",
|
||||
"# these are constants for the rotation\n",
|
||||
"phi = torch.tensor(5 * math.pi / 180)\n",
|
||||
"s = torch.sin(phi)\n",
|
||||
"c = torch.cos(phi)\n",
|
||||
|
||||
@@ -834,7 +834,6 @@ pub(crate) fn calibrate(
|
||||
Ok(r) => Some(r),
|
||||
Err(_) => None,
|
||||
};
|
||||
|
||||
let key = (input_scale, param_scale, scale_rebase_multiplier);
|
||||
forward_pass_res.insert(key, vec![]);
|
||||
|
||||
@@ -847,7 +846,15 @@ pub(crate) fn calibrate(
|
||||
|
||||
let mut circuit = match GraphCircuit::from_run_args(&local_run_args, &model_path) {
|
||||
Ok(c) => c,
|
||||
Err(_) => return Err(format!("failed to create circuit from run args").into()),
|
||||
Err(e) => {
|
||||
// drop the gag
|
||||
#[cfg(unix)]
|
||||
std::mem::drop(_r);
|
||||
#[cfg(unix)]
|
||||
std::mem::drop(_q);
|
||||
debug!("circuit creation from run args failed: {:?}", e);
|
||||
continue;
|
||||
}
|
||||
};
|
||||
|
||||
chunks
|
||||
@@ -874,16 +881,18 @@ pub(crate) fn calibrate(
|
||||
.collect::<Result<Vec<()>, String>>()?;
|
||||
|
||||
let min_lookup_range = forward_pass_res
|
||||
.get(&key)
|
||||
.unwrap()
|
||||
.iter()
|
||||
.map(|x| x.1.iter().map(|x| x.min_lookup_inputs))
|
||||
.flatten()
|
||||
.map(|x| x.min_lookup_inputs)
|
||||
.min()
|
||||
.unwrap_or(0);
|
||||
|
||||
let max_lookup_range = forward_pass_res
|
||||
.get(&key)
|
||||
.unwrap()
|
||||
.iter()
|
||||
.map(|x| x.1.iter().map(|x| x.max_lookup_inputs))
|
||||
.flatten()
|
||||
.map(|x| x.max_lookup_inputs)
|
||||
.max()
|
||||
.unwrap_or(0);
|
||||
|
||||
@@ -930,7 +939,7 @@ pub(crate) fn calibrate(
|
||||
found_settings.as_json()?.to_colored_json_auto()?
|
||||
);
|
||||
} else {
|
||||
debug!("calibration failed");
|
||||
debug!("calibration failed {}", res.err().unwrap());
|
||||
}
|
||||
|
||||
pb.inc(1);
|
||||
|
||||
Reference in New Issue
Block a user