Compare commits

..

6 Commits

Author SHA1 Message Date
dante
5cb303b149 Merge branch 'main' into example-reorg 2024-02-05 14:43:01 +00:00
dante
2a1ee1102c refactor: range check recip (#703) 2024-02-05 14:42:26 +00:00
Sofia Wawrzyniak
9fb78c36e0 readding examples 2024-02-05 09:41:01 -05:00
Sofia Wawrzyniak
074db5d229 preliminary bucketing of examples 2024-02-05 09:09:41 -05:00
dante
95d4fd4a70 feat: power of 2 div using type system (#702) 2024-02-04 02:43:38 +00:00
dante
e0d3f4f145 fix: uncomparable values in acc table (#701) 2024-02-02 15:13:29 +00:00
81 changed files with 615 additions and 2431 deletions

File diff suppressed because it is too large Load Diff

View File

Before

Width:  |  Height:  |  Size: 109 KiB

After

Width:  |  Height:  |  Size: 109 KiB

View File

@@ -0,0 +1,39 @@
from torch import nn
import torch
import json
class Circuit(nn.Module):
def __init__(self, inplace=False):
super(Circuit, self).__init__()
def forward(self, x):
return x/ 10000
circuit = Circuit()
x = torch.empty(1, 8).random_(0, 2)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0]]}

Binary file not shown.

View File

@@ -1,7 +1,8 @@
use super::*;
use crate::{
circuit::{self, layouts, utils, Tolerance},
circuit::{layouts, utils, Tolerance},
fieldutils::{felt_to_i128, i128_to_felt},
graph::multiplier_to_scale,
tensor::{self, Tensor, TensorError, TensorType, ValTensor},
};
use halo2curves::ff::PrimeField;
@@ -13,6 +14,15 @@ use serde::{Deserialize, Serialize};
/// An enum representing the operations that consist of both lookups and arithmetic operations.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum HybridOp {
Recip {
input_scale: utils::F32,
output_scale: utils::F32,
use_range_check_for_int: bool,
},
Div {
denom: utils::F32,
use_range_check_for_int: bool,
},
ReduceMax {
axes: Vec<usize>,
},
@@ -75,6 +85,7 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for HybridOp {
match self {
HybridOp::Greater | HybridOp::Less | HybridOp::Equals => vec![0, 1],
HybridOp::ScatterElements { .. } => vec![0, 2],
HybridOp::GreaterEqual | HybridOp::LessEqual => vec![0, 1],
_ => vec![],
}
}
@@ -113,6 +124,40 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for HybridOp {
- tensor::ops::sum(&tensor::ops::nonlinearities::leakyrelu(&inter_1, 0.0))?)?;
(res.clone(), vec![inter_1, inter_2])
}
HybridOp::Div {
denom,
use_range_check_for_int,
..
} => {
let res = crate::tensor::ops::nonlinearities::const_div(&x, denom.0 as f64);
// if denom is a round number and use_range_check_for_int is true, use range check check
if denom.0.fract() == 0.0 && *use_range_check_for_int {
let divisor = Tensor::from(vec![denom.0 as i128 / 2].into_iter());
(res, vec![-divisor.clone(), divisor])
} else {
(res, vec![x])
}
}
HybridOp::Recip {
input_scale,
output_scale,
use_range_check_for_int,
} => {
let res = crate::tensor::ops::nonlinearities::recip(
&x,
input_scale.0 as f64,
output_scale.0 as f64,
);
// if scale is a round number and use_range_check_for_int is true, use range check check
if input_scale.0.fract() == 0.0 && *use_range_check_for_int {
let err_tol = Tensor::from(
vec![(output_scale.0 * input_scale.0) as i128 / 2].into_iter(),
);
(res, vec![-err_tol.clone(), err_tol])
} else {
(res, vec![x])
}
}
HybridOp::ReduceArgMax { dim } => {
let res = tensor::ops::argmax_axes(&x, *dim)?;
let indices = Tensor::from(0..x.dims()[*dim] as i128);
@@ -272,6 +317,21 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for HybridOp {
fn as_string(&self) -> String {
match self {
HybridOp::Recip {
input_scale,
output_scale,
use_range_check_for_int,
} => format!(
"RECIP (input_scale={}, output_scale={}, use_range_check_for_int={})",
input_scale, output_scale, use_range_check_for_int
),
HybridOp::Div {
denom,
use_range_check_for_int,
} => format!(
"DIV (denom={}, use_range_check_for_int={})",
denom, use_range_check_for_int
),
HybridOp::SumPool {
padding,
stride,
@@ -335,6 +395,57 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for HybridOp {
*kernel_shape,
*normalized,
)?,
HybridOp::Recip {
input_scale,
output_scale,
use_range_check_for_int,
} => {
if input_scale.0.fract() == 0.0
&& output_scale.0.fract() == 0.0
&& *use_range_check_for_int
{
layouts::recip(
config,
region,
values[..].try_into()?,
i128_to_felt(input_scale.0 as i128),
i128_to_felt(output_scale.0 as i128),
)?
} else {
layouts::nonlinearity(
config,
region,
values.try_into()?,
&LookupOp::Recip {
input_scale: *input_scale,
output_scale: *output_scale,
},
)?
}
}
HybridOp::Div {
denom,
use_range_check_for_int,
..
} => {
if denom.0.fract() == 0.0 && *use_range_check_for_int {
layouts::div(
config,
region,
values[..].try_into()?,
i128_to_felt(denom.0 as i128),
)?
} else {
layouts::nonlinearity(
config,
region,
values.try_into()?,
&LookupOp::Div {
denom: denom.clone(),
},
)?
}
}
HybridOp::Gather { dim, constant_idx } => {
if let Some(idx) = constant_idx {
tensor::ops::gather(values[0].get_inner_tensor()?, idx, *dim)?.into()
@@ -422,86 +533,12 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for HybridOp {
| HybridOp::OneHot { .. }
| HybridOp::ReduceArgMin { .. } => 0,
HybridOp::Softmax { .. } => 2 * in_scales[0],
HybridOp::Recip { output_scale, .. } => multiplier_to_scale(output_scale.0 as f64),
_ => in_scales[0],
};
Ok(scale)
}
fn required_lookups(&self) -> Vec<LookupOp> {
match self {
HybridOp::ReduceMax { .. }
| HybridOp::ReduceMin { .. }
| HybridOp::MaxPool2d { .. } => Op::<F>::required_lookups(&LookupOp::ReLU),
HybridOp::Softmax { scale, .. } => {
vec![
LookupOp::Exp { scale: *scale },
LookupOp::Recip {
scale: scale.0.powf(2.0).into(),
},
]
}
HybridOp::RangeCheck(tol) => {
let mut lookups = vec![];
if tol.val > 0.0 {
let scale_squared = tol.scale.0.powf(2.0);
lookups.extend([
LookupOp::Recip {
scale: scale_squared.into(),
},
LookupOp::GreaterThan {
a: circuit::utils::F32((tol.val * scale_squared) / 100.0),
},
]);
}
lookups
}
HybridOp::Greater { .. } | HybridOp::Less { .. } => {
vec![LookupOp::GreaterThan {
a: circuit::utils::F32(0.),
}]
}
HybridOp::GreaterEqual { .. } | HybridOp::LessEqual { .. } => {
vec![LookupOp::GreaterThanEqual {
a: circuit::utils::F32(0.),
}]
}
HybridOp::TopK { .. } => {
vec![
LookupOp::GreaterThan {
a: circuit::utils::F32(0.),
},
LookupOp::KroneckerDelta,
]
}
HybridOp::Gather {
constant_idx: None, ..
}
| HybridOp::OneHot { .. }
| HybridOp::GatherElements {
constant_idx: None, ..
}
| HybridOp::ScatterElements {
constant_idx: None, ..
}
| HybridOp::Equals { .. } => {
vec![LookupOp::KroneckerDelta]
}
HybridOp::ReduceArgMax { .. } | HybridOp::ReduceArgMin { .. } => {
vec![LookupOp::ReLU, LookupOp::KroneckerDelta]
}
HybridOp::SumPool {
kernel_shape,
normalized: true,
..
} => {
vec![LookupOp::Div {
denom: utils::F32((kernel_shape.0 * kernel_shape.1) as f32),
}]
}
_ => vec![],
}
}
fn clone_dyn(&self) -> Box<dyn Op<F>> {
Box::new(self.clone()) // Forward to the derive(Clone) impl
}

View File

@@ -18,7 +18,10 @@ use super::{
region::RegionCtx,
};
use crate::{
circuit::{ops::base::BaseOp, utils},
circuit::{
ops::base::BaseOp,
utils::{self},
},
fieldutils::{felt_to_i128, i128_to_felt},
tensor::{
get_broadcasted_shape,
@@ -61,7 +64,7 @@ pub fn div<F: PrimeField + TensorType + PartialOrd>(
let input = value[0].clone();
let input_dims = input.dims();
let range_check_bracket = felt_to_i128(div) - 1;
let range_check_bracket = felt_to_i128(div) / 2;
let mut divisor = Tensor::from(vec![ValType::Constant(div)].into_iter());
divisor.set_visibility(&crate::graph::Visibility::Fixed);
@@ -72,8 +75,7 @@ pub fn div<F: PrimeField + TensorType + PartialOrd>(
let mut claimed_output: ValTensor<F> = if is_assigned {
let input_evals = input.get_int_evals()?;
let divisor_evals = divisor.get_int_evals()?;
tensor::ops::div(&[input_evals.clone(), divisor_evals.clone()])?
tensor::ops::nonlinearities::const_div(&input_evals.clone(), felt_to_i128(div) as f64)
.iter()
.map(|x| Ok(Value::known(i128_to_felt(*x))))
.collect::<Result<Tensor<Value<F>>, Box<dyn Error>>>()?
@@ -94,6 +96,8 @@ pub fn div<F: PrimeField + TensorType + PartialOrd>(
BaseOp::Mult,
)?;
log::debug!("product: {:?}", product.get_int_evals()?);
let diff_with_input = pairwise(
config,
region,
@@ -111,6 +115,83 @@ pub fn div<F: PrimeField + TensorType + PartialOrd>(
Ok(claimed_output)
}
/// recip accumulated layout
pub fn recip<F: PrimeField + TensorType + PartialOrd>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
value: &[ValTensor<F>; 1],
input_scale: F,
output_scale: F,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let input = value[0].clone();
let input_dims = input.dims();
let range_check_bracket = felt_to_i128(output_scale * input_scale) / 2;
let mut scaled_unit =
Tensor::from(vec![ValType::Constant(output_scale * input_scale)].into_iter());
scaled_unit.set_visibility(&crate::graph::Visibility::Fixed);
let scaled_unit = region.assign(&config.inputs[1], &scaled_unit.into())?;
region.increment(scaled_unit.len());
let is_assigned = !input.any_unknowns()? && !scaled_unit.any_unknowns()?;
let mut claimed_output: ValTensor<F> = if is_assigned {
let input_evals = input.get_int_evals()?;
tensor::ops::nonlinearities::recip(
&input_evals,
felt_to_i128(input_scale) as f64,
felt_to_i128(output_scale) as f64,
)
.iter()
.map(|x| Ok(Value::known(i128_to_felt(*x))))
.collect::<Result<Tensor<Value<F>>, Box<dyn Error>>>()?
.into()
} else {
Tensor::new(
Some(&vec![Value::<F>::unknown(); input.len()]),
&[input.len()],
)?
.into()
};
claimed_output.reshape(input_dims)?;
// this is now of scale 2 * scale
let product = pairwise(
config,
region,
&[claimed_output.clone(), input.clone()],
BaseOp::Mult,
)?;
log::debug!("product: {:?}", product.get_int_evals()?);
// this is now of scale 2 * scale hence why we rescaled the unit scale
let diff_with_input = pairwise(
config,
region,
&[product.clone(), scaled_unit.clone()],
BaseOp::Sub,
)?;
log::debug!("scaled_unit: {:?}", scaled_unit.get_int_evals()?);
// debug print the diff
log::debug!("diff_with_input: {:?}", diff_with_input.get_int_evals()?);
log::debug!("range_check_bracket: {:?}", range_check_bracket);
// at most the error should be in the original unit scale's range
range_check(
config,
region,
&[diff_with_input],
&(-range_check_bracket, range_check_bracket),
)?;
Ok(claimed_output)
}
/// Dot product accumulated layout
pub fn dot<F: PrimeField + TensorType + PartialOrd>(
config: &BaseConfig<F>,
@@ -2371,6 +2452,8 @@ pub fn range_check<F: PrimeField + TensorType + PartialOrd>(
values: &[ValTensor<F>; 1],
range: &crate::circuit::table::Range,
) -> Result<ValTensor<F>, Box<dyn Error>> {
region.add_used_range_check(*range);
// time the entire operation
let timer = instant::Instant::now();
@@ -2415,6 +2498,8 @@ pub fn nonlinearity<F: PrimeField + TensorType + PartialOrd>(
values: &[ValTensor<F>; 1],
nl: &LookupOp,
) -> Result<ValTensor<F>, Box<dyn Error>> {
region.add_used_lookup(nl.clone());
// time the entire operation
let timer = instant::Instant::now();
@@ -2884,7 +2969,8 @@ pub fn softmax<F: PrimeField + TensorType + PartialOrd>(
&[denom],
// we set to input scale + output_scale so the output scale is output)scale
&LookupOp::Recip {
scale: scale.0.powf(2.0).into(),
input_scale: scale,
output_scale: scale,
},
)?;
@@ -2912,19 +2998,22 @@ pub fn range_check_percent<F: PrimeField + TensorType + PartialOrd>(
// Calculate the difference between the expected output and actual output
let diff = pairwise(config, region, values, BaseOp::Sub)?;
let scale_squared = scale.0.powf(2.0);
// Calculate the reciprocal of the expected output tensor, scaling by double the scaling factor
let recip = nonlinearity(
config,
region,
&[values[0].clone()],
&LookupOp::Recip {
scale: scale_squared.into(),
input_scale: scale,
output_scale: scale,
},
)?;
// Multiply the difference by the recip
let product = pairwise(config, region, &[diff, recip], BaseOp::Mult)?;
let scale_squared = scale.0 * scale.0;
// Use the greater than look up table to check if the percent error is within the tolerance for upper bound
let tol = tol / 100.0;
let upper_bound = nonlinearity(

View File

@@ -5,7 +5,7 @@ use std::error::Error;
use crate::{
circuit::{layouts, table::Range, utils},
fieldutils::{felt_to_i128, i128_to_felt},
graph::{multiplier_to_scale, scale_to_multiplier},
graph::multiplier_to_scale,
tensor::{self, Tensor, TensorError, TensorType},
};
@@ -17,42 +17,112 @@ use halo2curves::ff::PrimeField;
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Deserialize, Serialize)]
pub enum LookupOp {
Abs,
Div { denom: utils::F32 },
Cast { scale: utils::F32 },
Div {
denom: utils::F32,
},
Cast {
scale: utils::F32,
},
ReLU,
Max { scale: utils::F32, a: utils::F32 },
Min { scale: utils::F32, a: utils::F32 },
Ceil { scale: utils::F32 },
Floor { scale: utils::F32 },
Round { scale: utils::F32 },
RoundHalfToEven { scale: utils::F32 },
Sqrt { scale: utils::F32 },
Rsqrt { scale: utils::F32 },
Recip { scale: utils::F32 },
LeakyReLU { slope: utils::F32 },
Sigmoid { scale: utils::F32 },
Ln { scale: utils::F32 },
Exp { scale: utils::F32 },
Cos { scale: utils::F32 },
ACos { scale: utils::F32 },
Cosh { scale: utils::F32 },
ACosh { scale: utils::F32 },
Sin { scale: utils::F32 },
ASin { scale: utils::F32 },
Sinh { scale: utils::F32 },
ASinh { scale: utils::F32 },
Tan { scale: utils::F32 },
ATan { scale: utils::F32 },
Tanh { scale: utils::F32 },
ATanh { scale: utils::F32 },
Erf { scale: utils::F32 },
GreaterThan { a: utils::F32 },
LessThan { a: utils::F32 },
GreaterThanEqual { a: utils::F32 },
LessThanEqual { a: utils::F32 },
Max {
scale: utils::F32,
a: utils::F32,
},
Min {
scale: utils::F32,
a: utils::F32,
},
Ceil {
scale: utils::F32,
},
Floor {
scale: utils::F32,
},
Round {
scale: utils::F32,
},
RoundHalfToEven {
scale: utils::F32,
},
Sqrt {
scale: utils::F32,
},
Rsqrt {
scale: utils::F32,
},
Recip {
input_scale: utils::F32,
output_scale: utils::F32,
},
LeakyReLU {
slope: utils::F32,
},
Sigmoid {
scale: utils::F32,
},
Ln {
scale: utils::F32,
},
Exp {
scale: utils::F32,
},
Cos {
scale: utils::F32,
},
ACos {
scale: utils::F32,
},
Cosh {
scale: utils::F32,
},
ACosh {
scale: utils::F32,
},
Sin {
scale: utils::F32,
},
ASin {
scale: utils::F32,
},
Sinh {
scale: utils::F32,
},
ASinh {
scale: utils::F32,
},
Tan {
scale: utils::F32,
},
ATan {
scale: utils::F32,
},
Tanh {
scale: utils::F32,
},
ATanh {
scale: utils::F32,
},
Erf {
scale: utils::F32,
},
GreaterThan {
a: utils::F32,
},
LessThan {
a: utils::F32,
},
GreaterThanEqual {
a: utils::F32,
},
LessThanEqual {
a: utils::F32,
},
Sign,
KroneckerDelta,
Pow { scale: utils::F32, a: utils::F32 },
Pow {
scale: utils::F32,
a: utils::F32,
},
}
impl LookupOp {
@@ -120,7 +190,14 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for LookupOp {
&x,
f32::from(*scale).into(),
)),
LookupOp::Recip { scale } => Ok(tensor::ops::nonlinearities::recip(&x, scale.into())),
LookupOp::Recip {
input_scale,
output_scale,
} => Ok(tensor::ops::nonlinearities::recip(
&x,
input_scale.into(),
output_scale.into(),
)),
LookupOp::ReLU => Ok(tensor::ops::nonlinearities::leakyrelu(&x, 0_f64)),
LookupOp::LeakyReLU { slope: a } => {
@@ -173,7 +250,13 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for LookupOp {
LookupOp::GreaterThanEqual { .. } => "GREATER_THAN_EQUAL".into(),
LookupOp::LessThan { .. } => "LESS_THAN".into(),
LookupOp::LessThanEqual { .. } => "LESS_THAN_EQUAL".into(),
LookupOp::Recip { scale, .. } => format!("RECIP(scale={})", scale),
LookupOp::Recip {
input_scale,
output_scale,
} => format!(
"RECIP(input_scale={}, output_scale={})",
input_scale, output_scale
),
LookupOp::Div { denom, .. } => format!("DIV(denom={})", denom),
LookupOp::Cast { scale } => format!("CAST(scale={})", scale),
LookupOp::Ln { scale } => format!("LN(scale={})", scale),
@@ -220,12 +303,7 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for LookupOp {
let in_scale = inputs_scale[0];
in_scale + multiplier_to_scale(1. / scale.0 as f64)
}
LookupOp::Recip { scale } => {
let mut out_scale = inputs_scale[0];
out_scale +=
multiplier_to_scale(scale.0 as f64 / scale_to_multiplier(out_scale).powf(2.0));
out_scale
}
LookupOp::Recip { output_scale, .. } => multiplier_to_scale(output_scale.into()),
LookupOp::Sign
| LookupOp::GreaterThan { .. }
| LookupOp::LessThan { .. }
@@ -237,10 +315,6 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for LookupOp {
Ok(scale)
}
fn required_lookups(&self) -> Vec<LookupOp> {
vec![self.clone()]
}
fn clone_dyn(&self) -> Box<dyn Op<F>> {
Box::new(self.clone()) // Forward to the derive(Clone) impl
}

View File

@@ -10,8 +10,6 @@ use halo2curves::ff::PrimeField;
use self::{lookup::LookupOp, region::RegionCtx};
use super::table::Range;
///
pub mod base;
///
@@ -57,16 +55,6 @@ pub trait Op<F: PrimeField + TensorType + PartialOrd>: std::fmt::Debug + Send +
vec![]
}
/// Returns the lookups required by the operation.
fn required_lookups(&self) -> Vec<LookupOp> {
vec![]
}
/// Returns the range checks required by the operation.
fn required_range_checks(&self) -> Vec<Range> {
vec![]
}
/// Returns true if the operation is an input.
fn is_input(&self) -> bool {
false

View File

@@ -33,7 +33,9 @@ pub enum PolyOp {
Sub,
Neg,
Mult,
Identity,
Identity {
out_scale: Option<crate::Scale>,
},
Reshape(Vec<usize>),
MoveAxis {
source: usize,
@@ -85,7 +87,9 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
PolyOp::Resize { .. } => "RESIZE".into(),
PolyOp::Iff => "IFF".into(),
PolyOp::Einsum { equation, .. } => format!("EINSUM {}", equation),
PolyOp::Identity => "IDENTITY".into(),
PolyOp::Identity { out_scale } => {
format!("IDENTITY (out_scale={:?})", out_scale)
}
PolyOp::Reshape(shape) => format!("RESHAPE (shape={:?})", shape),
PolyOp::Flatten(_) => "FLATTEN".into(),
PolyOp::Pad(_) => "PAD".into(),
@@ -135,7 +139,7 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
PolyOp::Resize { scale_factor } => tensor::ops::resize(&inputs[0], scale_factor),
PolyOp::Iff => tensor::ops::iff(&inputs[0], &inputs[1], &inputs[2]),
PolyOp::Einsum { equation } => tensor::ops::einsum(equation, &inputs),
PolyOp::Identity => Ok(inputs[0].clone()),
PolyOp::Identity { .. } => Ok(inputs[0].clone()),
PolyOp::Reshape(new_dims) => {
let mut t = inputs[0].clone();
t.reshape(new_dims)?;
@@ -264,7 +268,7 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
PolyOp::Mult => {
layouts::pairwise(config, region, values[..].try_into()?, BaseOp::Mult)?
}
PolyOp::Identity => layouts::identity(config, region, values[..].try_into()?)?,
PolyOp::Identity { .. } => layouts::identity(config, region, values[..].try_into()?)?,
PolyOp::Reshape(d) | PolyOp::Flatten(d) => layouts::reshape(values[..].try_into()?, d)?,
PolyOp::Pad(p) => {
if values.len() != 1 {
@@ -322,9 +326,8 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
output_scale
}
PolyOp::Add => {
let mut scale_a = 0;
let scale_b = in_scales[0];
scale_a += in_scales[1];
let scale_a = in_scales[0];
let scale_b = in_scales[1];
assert_eq!(scale_a, scale_b);
scale_a
}
@@ -336,19 +339,19 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
}
PolyOp::Reshape(_) | PolyOp::Flatten(_) => in_scales[0],
PolyOp::Pow(pow) => in_scales[0] * (*pow as crate::Scale),
PolyOp::Identity { out_scale } => out_scale.unwrap_or(in_scales[0]),
_ => in_scales[0],
};
Ok(scale)
}
fn requires_homogenous_input_scales(&self) -> Vec<usize> {
if matches!(
self,
PolyOp::Add { .. } | PolyOp::Sub | PolyOp::Concat { .. }
) {
if matches!(self, PolyOp::Add { .. } | PolyOp::Sub) {
vec![0, 1]
} else if matches!(self, PolyOp::Iff) {
vec![1, 2]
} else if matches!(self, PolyOp::Concat { .. }) {
(0..100).collect()
} else {
vec![]
}

View File

@@ -1,4 +1,7 @@
use crate::tensor::{Tensor, TensorError, TensorType, ValTensor, ValType, VarTensor};
use crate::{
circuit::table::Range,
tensor::{Tensor, TensorError, TensorType, ValTensor, ValType, VarTensor},
};
use halo2_proofs::{
circuit::Region,
plonk::{Error, Selector},
@@ -7,9 +10,14 @@ use halo2curves::ff::PrimeField;
use std::{
cell::RefCell,
collections::HashSet,
sync::atomic::{AtomicUsize, Ordering},
sync::{
atomic::{AtomicUsize, Ordering},
Arc, Mutex,
},
};
use super::lookup::LookupOp;
/// Region error
#[derive(Debug, thiserror::Error)]
pub enum RegionError {
@@ -56,6 +64,8 @@ pub struct RegionCtx<'a, F: PrimeField + TensorType + PartialOrd> {
linear_coord: usize,
num_inner_cols: usize,
total_constants: usize,
used_lookups: HashSet<LookupOp>,
used_range_checks: HashSet<Range>,
}
impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
@@ -75,6 +85,8 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
row,
linear_coord,
total_constants: 0,
used_lookups: HashSet::new(),
used_range_checks: HashSet::new(),
}
}
/// Create a new region context from a wrapped region
@@ -90,6 +102,8 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
linear_coord,
row,
total_constants: 0,
used_lookups: HashSet::new(),
used_range_checks: HashSet::new(),
}
}
@@ -104,6 +118,8 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
linear_coord,
row,
total_constants: 0,
used_lookups: HashSet::new(),
used_range_checks: HashSet::new(),
}
}
@@ -111,8 +127,10 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
pub fn new_dummy_with_constants(
row: usize,
linear_coord: usize,
constants: usize,
total_constants: usize,
num_inner_cols: usize,
used_lookups: HashSet<LookupOp>,
used_range_checks: HashSet<Range>,
) -> RegionCtx<'a, F> {
let region = None;
RegionCtx {
@@ -120,7 +138,9 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
num_inner_cols,
linear_coord,
row,
total_constants: constants,
total_constants,
used_lookups,
used_range_checks,
}
}
@@ -170,6 +190,8 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
let row = AtomicUsize::new(self.row());
let linear_coord = AtomicUsize::new(self.linear_coord());
let constants = AtomicUsize::new(self.total_constants());
let lookups = Arc::new(Mutex::new(self.used_lookups.clone()));
let range_checks = Arc::new(Mutex::new(self.used_range_checks.clone()));
*output = output
.par_enum_map(|idx, _| {
@@ -177,12 +199,16 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
let starting_offset = row.load(Ordering::SeqCst);
let starting_linear_coord = linear_coord.load(Ordering::SeqCst);
let starting_constants = constants.load(Ordering::SeqCst);
// get inner value of the locked lookups
// we need to make sure that the region is not shared between threads
let mut local_reg = Self::new_dummy_with_constants(
starting_offset,
starting_linear_coord,
starting_constants,
self.num_inner_cols,
HashSet::new(),
HashSet::new(),
);
let res = inner_loop_function(idx, &mut local_reg);
// we update the offset and constants
@@ -195,6 +221,11 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
local_reg.total_constants() - starting_constants,
Ordering::SeqCst,
);
// update the lookups
let mut lookups = lookups.lock().unwrap();
lookups.extend(local_reg.used_lookups());
let mut range_checks = range_checks.lock().unwrap();
range_checks.extend(local_reg.used_range_checks());
res
})
.map_err(|e| {
@@ -204,6 +235,21 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
self.total_constants = constants.into_inner();
self.linear_coord = linear_coord.into_inner();
self.row = row.into_inner();
self.used_lookups = Arc::try_unwrap(lookups)
.map_err(|e| RegionError::from(format!("dummy_loop: failed to get lookups: {:?}", e)))?
.into_inner()
.map_err(|e| {
RegionError::from(format!("dummy_loop: failed to get lookups: {:?}", e))
})?;
self.used_range_checks = Arc::try_unwrap(range_checks)
.map_err(|e| {
RegionError::from(format!("dummy_loop: failed to get range checks: {:?}", e))
})?
.into_inner()
.map_err(|e| {
RegionError::from(format!("dummy_loop: failed to get range checks: {:?}", e))
})?;
Ok(())
}
@@ -212,15 +258,14 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
self.region.is_none()
}
/// duplicate_dummy
pub fn duplicate_dummy(&self) -> Self {
Self {
region: None,
linear_coord: self.linear_coord,
num_inner_cols: self.num_inner_cols,
row: self.row,
total_constants: self.total_constants,
}
/// add used lookup
pub fn add_used_lookup(&mut self, lookup: LookupOp) {
self.used_lookups.insert(lookup);
}
/// add used range check
pub fn add_used_range_check(&mut self, range: Range) {
self.used_range_checks.insert(range);
}
/// Get the offset
@@ -238,6 +283,16 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
self.total_constants
}
/// get used lookups
pub fn used_lookups(&self) -> HashSet<LookupOp> {
self.used_lookups.clone()
}
/// get used range checks
pub fn used_range_checks(&self) -> HashSet<Range> {
self.used_range_checks.clone()
}
/// Assign a constant value
pub fn assign_constant(&mut self, var: &VarTensor, value: F) -> Result<ValType<F>, Error> {
self.total_constants += 1;

View File

@@ -2154,7 +2154,7 @@ mod rangecheckpercent {
}
fn configure(cs: &mut ConstraintSystem<F>) -> Self::Config {
let scale = utils::F32(SCALE.pow(2) as f32);
let scale = utils::F32(SCALE as f32);
let a = VarTensor::new_advice(cs, K, 1, LEN);
let b = VarTensor::new_advice(cs, K, 1, LEN);
let output = VarTensor::new_advice(cs, K, 1, LEN);
@@ -2162,11 +2162,12 @@ mod rangecheckpercent {
Self::Config::configure(cs, &[a.clone(), b.clone()], &output, CheckMode::SAFE);
// set up a new GreaterThan and Recip tables
let nl = &LookupOp::GreaterThan {
a: circuit::utils::F32((RANGE * scale.0) / 100.0),
a: circuit::utils::F32((RANGE * SCALE.pow(2) as f32) / 100.0),
};
config
.configure_lookup(cs, &b, &output, &a, (-32768, 32768), K, nl)
.unwrap();
config
.configure_lookup(
cs,
@@ -2175,7 +2176,10 @@ mod rangecheckpercent {
&a,
(-32768, 32768),
K,
&LookupOp::Recip { scale },
&LookupOp::Recip {
input_scale: scale,
output_scale: scale,
},
)
.unwrap();
config
@@ -2511,7 +2515,8 @@ mod softmax {
(-32768, 32768),
K,
&LookupOp::Recip {
scale: SCALE.powf(2.0).into(),
input_scale: SCALE.into(),
output_scale: SCALE.into(),
},
)
.unwrap();

View File

@@ -630,6 +630,10 @@ pub(crate) async fn gen_witness(
if let Some(output_path) = output {
serde_json::to_writer(&File::create(output_path)?, &witness)?;
}
// print the witness in debug
debug!("witness: \n {}", witness.as_json()?.to_colored_json_auto()?);
Ok(witness)
}
@@ -737,22 +741,22 @@ impl AccuracyResults {
let median_error = errors[errors.len() / 2];
let max_error = *errors
.iter()
.max_by(|a, b| a.partial_cmp(b).unwrap())
.max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
.unwrap();
let min_error = *errors
.iter()
.min_by(|a, b| a.partial_cmp(b).unwrap())
.min_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
.unwrap();
let mean_abs_error = abs_errors.iter().sum::<f32>() / abs_errors.len() as f32;
let median_abs_error = abs_errors[abs_errors.len() / 2];
let max_abs_error = *abs_errors
.iter()
.max_by(|a, b| a.partial_cmp(b).unwrap())
.max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
.unwrap();
let min_abs_error = *abs_errors
.iter()
.min_by(|a, b| a.partial_cmp(b).unwrap())
.min_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
.unwrap();
let mean_squared_error = squared_errors.iter().sum::<f32>() / squared_errors.len() as f32;

View File

@@ -968,8 +968,8 @@ impl GraphCircuit {
lookup_safety_margin * max_lookup_inputs,
);
if lookup_safety_margin == 1 {
margin.0 += 1;
margin.1 += 1;
margin.0 += 4;
margin.1 += 4;
}
margin

View File

@@ -80,6 +80,21 @@ pub struct ModelConfig {
/// Representation of execution graph
pub type NodeGraph = BTreeMap<usize, NodeType>;
/// A struct for loading from an Onnx file and converting a computational graph to a circuit.
#[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq)]
pub struct DummyPassRes {
/// number of rows use
pub num_rows: usize,
/// linear coordinate
pub linear_coord: usize,
/// total const size
pub total_const_size: usize,
/// lookup ops
pub lookup_ops: HashSet<LookupOp>,
/// range checks
pub range_checks: HashSet<Range>,
}
/// A struct for loading from an Onnx file and converting a computational graph to a circuit.
#[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq)]
pub struct Model {
@@ -234,20 +249,7 @@ impl NodeType {
NodeType::SubGraph { out_dims, .. } => out_dims.clone(),
}
}
/// Returns the lookups required by a graph
pub fn required_lookups(&self) -> Vec<LookupOp> {
match self {
NodeType::Node(n) => n.opkind.required_lookups(),
NodeType::SubGraph { model, .. } => model.required_lookups(),
}
}
/// Returns the lookups required by a graph
pub fn required_range_checks(&self) -> Vec<Range> {
match self {
NodeType::Node(n) => n.opkind.required_range_checks(),
NodeType::SubGraph { model, .. } => model.required_range_checks(),
}
}
/// Returns the scales of the node's output.
pub fn out_scales(&self) -> Vec<crate::Scale> {
match self {
@@ -432,23 +434,6 @@ impl ParsedNodes {
}
impl Model {
fn required_lookups(&self) -> Vec<LookupOp> {
self.graph
.nodes
.values()
.flat_map(|n| n.required_lookups())
.collect_vec()
}
///
fn required_range_checks(&self) -> Vec<Range> {
self.graph
.nodes
.values()
.flat_map(|n| n.required_range_checks())
.collect_vec()
}
/// Creates a `Model` from a specified path to an Onnx file.
/// # Arguments
/// * `reader` - A reader for an Onnx file.
@@ -501,42 +486,21 @@ impl Model {
);
// this is the total number of variables we will need to allocate
// for the circuit
let (num_rows, linear_coord, total_const_size) =
self.dummy_layout(run_args, &self.graph.input_shapes()?)?;
// extract the requisite lookup ops from the model
let mut lookup_ops: Vec<LookupOp> = self.required_lookups();
// extract the requisite lookup ops from the model
let mut range_checks: Vec<Range> = self.required_range_checks();
let res = self.dummy_layout(run_args, &self.graph.input_shapes()?)?;
// if we're using percentage tolerance, we need to add the necessary range check ops for it.
if run_args.tolerance.val > 0.0 {
for scale in self.graph.get_output_scales()? {
let mut tolerance = run_args.tolerance;
tolerance.scale = scale_to_multiplier(scale).into();
let opkind: Box<dyn Op<Fp>> = Box::new(HybridOp::RangeCheck(tolerance));
lookup_ops.extend(opkind.required_lookups());
}
}
let set: HashSet<_> = lookup_ops.drain(..).collect(); // dedup
lookup_ops.extend(set.into_iter().sorted());
let set: HashSet<_> = range_checks.drain(..).collect(); // dedup
range_checks.extend(set.into_iter().sorted());
Ok(GraphSettings {
run_args: run_args.clone(),
model_instance_shapes: instance_shapes,
module_sizes: crate::graph::modules::ModuleSizes::default(),
num_rows,
total_assignments: linear_coord,
required_lookups: lookup_ops,
required_range_checks: range_checks,
num_rows: res.num_rows,
total_assignments: res.linear_coord,
required_lookups: res.lookup_ops.into_iter().collect(),
required_range_checks: res.range_checks.into_iter().collect(),
model_output_scales: self.graph.get_output_scales()?,
model_input_scales: self.graph.get_input_scales(),
total_const_size,
total_const_size: res.total_const_size,
check_mode,
version: env!("CARGO_PKG_VERSION").to_string(),
num_blinding_factors: None,
@@ -591,6 +555,8 @@ impl Model {
inputs.iter().map(|x| x.dims()).collect::<Vec<_>>()
);
debug!("input nodes: {:?}", n.inputs());
if n.is_lookup() {
let (mut min, mut max) = (0, 0);
for i in &inputs {
@@ -1066,6 +1032,7 @@ impl Model {
i,
symbol_values,
run_args.div_rebasing,
run_args.rebase_frac_zero_constants,
)?;
if let Some(ref scales) = override_input_scales {
if let Some(inp) = n.opkind.get_input() {
@@ -1523,7 +1490,7 @@ impl Model {
&self,
run_args: &RunArgs,
input_shapes: &[Vec<usize>],
) -> Result<(usize, usize, usize), Box<dyn Error>> {
) -> Result<DummyPassRes, Box<dyn Error>> {
info!("calculating num of constraints using dummy model layout...");
let start_time = instant::Instant::now();
@@ -1608,11 +1575,15 @@ impl Model {
region.total_constants().to_string().red()
);
Ok((
region.row(),
region.linear_coord(),
region.total_constants(),
))
let res = DummyPassRes {
num_rows: region.row(),
linear_coord: region.linear_coord(),
total_const_size: region.total_constants(),
lookup_ops: region.used_lookups(),
range_checks: region.used_range_checks(),
};
Ok(res)
}
/// Retrieves all constants from the model.

View File

@@ -12,16 +12,12 @@ use crate::circuit::Constant;
use crate::circuit::Input;
use crate::circuit::Op;
use crate::circuit::Unknown;
use crate::fieldutils::felt_to_i128;
use crate::fieldutils::i128_to_felt;
#[cfg(not(target_arch = "wasm32"))]
use crate::graph::new_op_from_onnx;
use crate::tensor::Tensor;
use crate::tensor::TensorError;
use halo2curves::bn256::Fr as Fp;
#[cfg(not(target_arch = "wasm32"))]
use itertools::Itertools;
#[cfg(not(target_arch = "wasm32"))]
use log::trace;
use serde::Deserialize;
use serde::Serialize;
@@ -94,10 +90,6 @@ impl Op<Fp> for Rescaled {
Op::<Fp>::out_scale(&*self.inner, in_scales)
}
fn required_lookups(&self) -> Vec<LookupOp> {
self.inner.required_lookups()
}
fn layout(
&self,
config: &mut crate::circuit::BaseConfig<Fp>,
@@ -126,14 +118,14 @@ impl Op<Fp> for Rescaled {
pub struct RebaseScale {
/// The operation that has to be rescaled.
pub inner: Box<SupportedOp>,
/// the multiplier applied to the node output
pub multiplier: f64,
/// rebase op
pub rebase_op: HybridOp,
/// scale being rebased to
pub target_scale: i32,
/// The original scale of the operation's inputs.
pub original_scale: i32,
/// if true then the operation is a multiplicative division
pub div_rebasing: bool,
/// multiplier
pub multiplier: f64,
}
impl RebaseScale {
@@ -152,20 +144,27 @@ impl RebaseScale {
let multiplier =
scale_to_multiplier(op_out_scale - global_scale * scale_rebase_multiplier as i32);
if let Some(op) = inner.get_rebased() {
let multiplier = op.multiplier * multiplier;
SupportedOp::RebaseScale(RebaseScale {
inner: op.inner.clone(),
target_scale: op.target_scale,
multiplier: op.multiplier * multiplier,
multiplier: multiplier,
rebase_op: HybridOp::Div {
denom: crate::circuit::utils::F32((multiplier) as f32),
use_range_check_for_int: !div_rebasing,
},
original_scale: op.original_scale,
div_rebasing,
})
} else {
SupportedOp::RebaseScale(RebaseScale {
inner: Box::new(inner),
target_scale: global_scale * scale_rebase_multiplier as i32,
multiplier,
rebase_op: HybridOp::Div {
denom: crate::circuit::utils::F32(multiplier as f32),
use_range_check_for_int: !div_rebasing,
},
original_scale: op_out_scale,
div_rebasing,
})
}
} else {
@@ -183,12 +182,16 @@ impl RebaseScale {
if (op_out_scale < (target_scale)) && !inner.is_constant() && !inner.is_input() {
let multiplier = scale_to_multiplier(op_out_scale - target_scale);
if let Some(op) = inner.get_rebased() {
let multiplier = op.multiplier * multiplier;
SupportedOp::RebaseScale(RebaseScale {
inner: op.inner.clone(),
target_scale: op.target_scale,
multiplier: op.multiplier * multiplier,
multiplier,
original_scale: op.original_scale,
div_rebasing,
rebase_op: HybridOp::Div {
denom: crate::circuit::utils::F32((multiplier) as f32),
use_range_check_for_int: !div_rebasing,
},
})
} else {
SupportedOp::RebaseScale(RebaseScale {
@@ -196,22 +199,16 @@ impl RebaseScale {
target_scale,
multiplier,
original_scale: op_out_scale,
div_rebasing,
rebase_op: HybridOp::Div {
denom: crate::circuit::utils::F32(multiplier as f32),
use_range_check_for_int: !div_rebasing,
},
})
}
} else {
inner
}
}
/// Calculate the require range bracket for the operation
fn range_bracket(&self) -> i128 {
if self.div_rebasing {
0
} else {
self.multiplier as i128 - 1
}
}
}
impl Op<Fp> for RebaseScale {
@@ -220,28 +217,19 @@ impl Op<Fp> for RebaseScale {
}
fn f(&self, x: &[Tensor<Fp>]) -> Result<crate::circuit::ForwardResult<Fp>, TensorError> {
let mut res = Op::<Fp>::f(&*self.inner, x)?;
if self.div_rebasing {
let ri = res.output.map(felt_to_i128);
let rescaled = crate::tensor::ops::nonlinearities::const_div(&ri, self.multiplier);
res.output = rescaled.map(i128_to_felt);
res.intermediate_lookups.push(ri);
} else {
let ri = res.output.map(felt_to_i128);
let divisor = Tensor::from(vec![self.multiplier as i128].into_iter());
let rescaled = crate::tensor::ops::div(&[ri, divisor.clone()])?;
res.output = rescaled.map(i128_to_felt);
res.intermediate_lookups.extend([-divisor.clone(), divisor]);
}
let rebase_res = Op::<Fp>::f(&self.rebase_op, &[res.output])?;
res.output = rebase_res.output;
res.intermediate_lookups
.extend(rebase_res.intermediate_lookups);
Ok(res)
}
fn as_string(&self) -> String {
format!(
"REBASED (div={:?}, div_r={}) ({})",
"REBASED (div={:?}, rebasing_op={}) ({})",
self.multiplier,
self.div_rebasing,
<HybridOp as Op<Fp>>::as_string(&self.rebase_op),
self.inner.as_string()
)
}
@@ -250,25 +238,6 @@ impl Op<Fp> for RebaseScale {
Ok(self.target_scale)
}
fn required_lookups(&self) -> Vec<LookupOp> {
let mut lookups: Vec<LookupOp> = self.inner.required_lookups();
if self.div_rebasing {
lookups.push(LookupOp::Div {
denom: crate::circuit::utils::F32(self.multiplier as f32),
});
}
lookups
}
fn required_range_checks(&self) -> Vec<crate::circuit::table::Range> {
let mut range_checks = self.inner.required_range_checks();
if !self.div_rebasing {
let bracket = self.range_bracket();
range_checks.push((-bracket, bracket));
}
range_checks
}
fn layout(
&self,
config: &mut crate::circuit::BaseConfig<Fp>,
@@ -278,25 +247,8 @@ impl Op<Fp> for RebaseScale {
let original_res = self
.inner
.layout(config, region, values)?
.ok_or("no layout")?;
if !self.div_rebasing {
Ok(Some(crate::circuit::layouts::div(
config,
region,
&[original_res],
Fp::from(self.multiplier as u64),
)?))
} else {
Ok(Some(crate::circuit::layouts::nonlinearity(
config,
region,
&[original_res],
&LookupOp::Div {
denom: crate::circuit::utils::F32(self.multiplier as f32),
},
)?))
}
.ok_or("no inner layout")?;
self.rebase_op.layout(config, region, &[original_res])
}
fn clone_dyn(&self) -> Box<dyn Op<Fp>> {
@@ -479,14 +431,6 @@ impl Op<Fp> for SupportedOp {
self
}
fn required_lookups(&self) -> Vec<LookupOp> {
self.as_op().required_lookups()
}
fn required_range_checks(&self) -> Vec<crate::circuit::table::Range> {
self.as_op().required_range_checks()
}
fn out_scale(&self, in_scales: Vec<crate::Scale>) -> Result<crate::Scale, Box<dyn Error>> {
self.as_op().out_scale(in_scales)
}
@@ -520,15 +464,7 @@ impl Tabled for Node {
fn headers() -> Vec<std::borrow::Cow<'static, str>> {
let mut headers = Vec::with_capacity(Self::LENGTH);
for i in [
"idx",
"opkind",
"out_scale",
"inputs",
"out_dims",
"required_lookups",
"required_range_checks",
] {
for i in ["idx", "opkind", "out_scale", "inputs", "out_dims"] {
headers.push(std::borrow::Cow::Borrowed(i));
}
headers
@@ -541,18 +477,6 @@ impl Tabled for Node {
fields.push(std::borrow::Cow::Owned(self.out_scale.to_string()));
fields.push(std::borrow::Cow::Owned(display_vector(&self.inputs)));
fields.push(std::borrow::Cow::Owned(display_vector(&self.out_dims)));
fields.push(std::borrow::Cow::Owned(format!(
"{:?}",
self.opkind
.required_lookups()
.iter()
.map(<LookupOp as Op<Fp>>::as_string)
.collect_vec()
)));
fields.push(std::borrow::Cow::Owned(format!(
"{:?}",
self.opkind.required_range_checks()
)));
fields
}
}
@@ -583,9 +507,8 @@ impl Node {
idx: usize,
symbol_values: &SymbolValues,
div_rebasing: bool,
rebase_frac_zero_constants: bool,
) -> Result<Self, Box<dyn Error>> {
use log::warn;
trace!("Create {:?}", node);
trace!("Create op {:?}", node.op);
@@ -623,6 +546,7 @@ impl Node {
node.clone(),
&mut inputs,
symbol_values,
rebase_frac_zero_constants,
)?; // parses the op name
// we can only take the inputs as mutable once -- so we need to collect them first
@@ -678,8 +602,6 @@ impl Node {
input_node.bump_scale(out_scale);
in_scales[input] = out_scale;
}
} else {
warn!("input {} not found for rescaling, skipping ...", input);
}
}

View File

@@ -243,6 +243,7 @@ pub fn new_op_from_onnx(
node: OnnxNode<TypedFact, Box<dyn TypedOp>>,
inputs: &mut [super::NodeType],
symbol_values: &SymbolValues,
rebase_frac_zero_constants: bool,
) -> Result<(SupportedOp, Vec<usize>), Box<dyn std::error::Error>> {
use crate::circuit::InputType;
@@ -261,7 +262,9 @@ pub fn new_op_from_onnx(
inputs[index].bump_scale(scale);
c.rebase_scale(scale)?;
inputs[index].replace_opkind(SupportedOp::Constant(c.clone()));
Ok(SupportedOp::Linear(PolyOp::Identity))
Ok(SupportedOp::Linear(PolyOp::Identity {
out_scale: Some(scale),
}))
} else {
Ok(default_op)
}
@@ -282,8 +285,8 @@ pub fn new_op_from_onnx(
"shift left".to_string(),
)));
}
SupportedOp::Nonlinear(LookupOp::Div {
denom: crate::circuit::utils::F32(1.0 / 2.0f32.powf(raw_values[0])),
SupportedOp::Linear(PolyOp::Identity {
out_scale: Some(input_scales[0] - raw_values[0] as i32),
})
} else {
return Err(Box::new(GraphError::OpMismatch(
@@ -304,8 +307,8 @@ pub fn new_op_from_onnx(
"shift right".to_string(),
)));
}
SupportedOp::Nonlinear(LookupOp::Div {
denom: crate::circuit::utils::F32(2.0f32.powf(raw_values[0])),
SupportedOp::Linear(PolyOp::Identity {
out_scale: Some(input_scales[0] + raw_values[0] as i32),
})
} else {
return Err(Box::new(GraphError::OpMismatch(
@@ -544,7 +547,7 @@ pub fn new_op_from_onnx(
// Raw values are always f32
let raw_value = extract_tensor_value(op.0)?;
// If bool or a tensor dimension then don't scale
let constant_scale = match dt {
let mut constant_scale = match dt {
DatumType::Bool
| DatumType::TDim
| DatumType::I64
@@ -559,6 +562,12 @@ pub fn new_op_from_onnx(
_ => return Err(Box::new(GraphError::UnsupportedDataType)),
};
// if all raw_values are round then set scale to 0
let all_round = raw_value.iter().all(|x| (x).fract() == 0.0);
if all_round && rebase_frac_zero_constants {
constant_scale = 0;
}
// Quantize the raw value
let quantized_value =
quantize_tensor(raw_value.clone(), constant_scale, param_visibility)?;
@@ -665,8 +674,10 @@ pub fn new_op_from_onnx(
if unit == 0. {
SupportedOp::Nonlinear(LookupOp::ReLU)
} else {
// get the non-constant index
let non_const_idx = if const_idx == 0 { 1 } else { 0 };
SupportedOp::Nonlinear(LookupOp::Max {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(inputs[non_const_idx].out_scales()[0]).into(),
a: crate::circuit::utils::F32(unit),
})
}
@@ -707,8 +718,11 @@ pub fn new_op_from_onnx(
deleted_indices.push(const_idx);
}
// get the non-constant index
let non_const_idx = if const_idx == 0 { 1 } else { 0 };
SupportedOp::Nonlinear(LookupOp::Min {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
scale: scale_to_multiplier(inputs[non_const_idx].out_scales()[0]).into(),
a: crate::circuit::utils::F32(unit),
})
} else {
@@ -717,16 +731,12 @@ pub fn new_op_from_onnx(
}
"Recip" => {
let in_scale = inputs[0].out_scales()[0];
let max_scale = std::cmp::max(scales.get_max(), in_scale);
// If the input scale is larger than the params scale
let scale_diff = std::cmp::max(scales.input, scales.params) - inputs[0].out_scales()[0];
let additional_scale = if scale_diff > 0 {
scale_to_multiplier(scale_diff)
} else {
1.0
};
SupportedOp::Nonlinear(LookupOp::Recip {
scale: (scale_to_multiplier(in_scale).powf(2.0) * additional_scale).into(),
SupportedOp::Hybrid(HybridOp::Recip {
input_scale: (scale_to_multiplier(in_scale) as f32).into(),
output_scale: (scale_to_multiplier(max_scale) as f32).into(),
use_range_check_for_int: false,
})
}
@@ -751,7 +761,9 @@ pub fn new_op_from_onnx(
"Scan" => {
return Err("scan should never be analyzed explicitly".into());
}
"QuantizeLinearU8" | "DequantizeLinearF32" => SupportedOp::Linear(PolyOp::Identity),
"QuantizeLinearU8" | "DequantizeLinearF32" => {
SupportedOp::Linear(PolyOp::Identity { out_scale: None })
}
"Abs" => SupportedOp::Nonlinear(LookupOp::Abs),
"Neg" => SupportedOp::Linear(PolyOp::Neg),
"Sigmoid" => SupportedOp::Nonlinear(LookupOp::Sigmoid {
@@ -856,11 +868,11 @@ pub fn new_op_from_onnx(
}),
)?
} else {
SupportedOp::Linear(PolyOp::Identity)
SupportedOp::Linear(PolyOp::Identity { out_scale: None })
}
}
DatumType::F16 | DatumType::F32 | DatumType::F64 => {
SupportedOp::Linear(PolyOp::Identity)
SupportedOp::Linear(PolyOp::Identity { out_scale: None })
}
_ => return Err(Box::new(GraphError::UnsupportedDataType)),
}
@@ -885,12 +897,15 @@ pub fn new_op_from_onnx(
let const_idx = const_idx[0];
if let Some(c) = inputs[const_idx].opkind().get_mutable_constant() {
if c.raw_values.len() == 1 && c.raw_values[0] < 1. {
inputs[const_idx].decrement_use();
deleted_indices.push(const_idx);
op = SupportedOp::Nonlinear(LookupOp::Div {
// we invert the constant for division
denom: crate::circuit::utils::F32(1. / c.raw_values[0]),
})
// if not divisible by 2 then we need to add a range check
let raw_values = 1.0 / c.raw_values[0];
if raw_values.log2().fract() == 0.0 {
inputs[const_idx].decrement_use();
deleted_indices.push(const_idx);
op = SupportedOp::Linear(PolyOp::Identity {
out_scale: Some(input_scales[0] + raw_values.log2() as i32),
});
}
}
}
}

View File

@@ -237,6 +237,11 @@ impl VarScales {
std::cmp::max(self.input, self.params)
}
///
pub fn get_min(&self) -> crate::Scale {
std::cmp::min(self.input, self.params)
}
/// Place in [VarScales] struct.
pub fn from_args(args: &RunArgs) -> Result<Self, Box<dyn Error>> {
Ok(Self {

View File

@@ -111,8 +111,11 @@ pub struct RunArgs {
#[arg(long, default_value = "private")]
pub param_visibility: Visibility,
#[arg(long, default_value = "false")]
/// Multiplicative division
/// Rebase the scale using lookup table for division instead of using a range check
pub div_rebasing: bool,
/// Should constants with 0.0 fraction be rebased to scale 0
#[arg(long, default_value = "false")]
pub rebase_frac_zero_constants: bool,
/// check mode (safe, unsafe, etc)
#[arg(long, default_value = "unsafe")]
pub check_mode: CheckMode,
@@ -133,6 +136,7 @@ impl Default for RunArgs {
output_visibility: Visibility::Public,
param_visibility: Visibility::Private,
div_rebasing: false,
rebase_frac_zero_constants: false,
check_mode: CheckMode::UNSAFE,
}
}

View File

@@ -162,6 +162,8 @@ struct PyRunArgs {
#[pyo3(get, set)]
pub div_rebasing: bool,
#[pyo3(get, set)]
pub rebase_frac_zero_constants: bool,
#[pyo3(get, set)]
pub check_mode: CheckMode,
}
@@ -190,6 +192,7 @@ impl From<PyRunArgs> for RunArgs {
param_visibility: py_run_args.param_visibility,
variables: py_run_args.variables,
div_rebasing: py_run_args.div_rebasing,
rebase_frac_zero_constants: py_run_args.rebase_frac_zero_constants,
check_mode: py_run_args.check_mode,
}
}
@@ -210,6 +213,7 @@ impl Into<PyRunArgs> for RunArgs {
param_visibility: self.param_visibility,
variables: self.variables,
div_rebasing: self.div_rebasing,
rebase_frac_zero_constants: self.rebase_frac_zero_constants,
check_mode: self.check_mode,
}
}

View File

@@ -992,45 +992,6 @@ pub fn mult<T: TensorType + Mul<Output = T> + std::marker::Send + std::marker::S
Ok(output)
}
/// Divides multiple tensors.
/// # Arguments
/// * `t` - Tensors
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::tensor::ops::div;
/// let x = Tensor::<i128>::new(
/// Some(&[2, 1, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = Tensor::<i128>::new(
/// Some(&[2, 3, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let result = div(&[x, k]).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[1, 0, 1, 1, 1, 1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn div<
T: TensorType
+ Div<Output = T>
+ Mul<Output = T>
+ From<u64>
+ std::marker::Send
+ std::marker::Sync,
>(
t: &[Tensor<T>],
) -> Result<Tensor<T>, TensorError> {
// calculate value of output
let mut output: Tensor<T> = t[0].clone();
for e in t[1..].iter() {
output = (output / e.clone())?;
}
Ok(output)
}
/// Rescale a tensor with a const integer (similar to const_mult).
/// # Arguments
///
@@ -3164,7 +3125,7 @@ pub mod nonlinearities {
let sum = sum(&exp).unwrap();
intermediate_values.push(sum.clone());
let inv_denom = recip(&sum, scale.powf(2.0));
let inv_denom = recip(&sum, scale, scale);
((exp * inv_denom).unwrap(), intermediate_values)
}
@@ -3201,7 +3162,7 @@ pub mod nonlinearities {
// the more accurate calculation is commented out and we implement as below so it matches the steps in layout
let scale = input_scale * output_scale;
let diff: Tensor<i128> = sub(t).unwrap();
let recip = recip(&t[0], scale as f64);
let recip = recip(&t[0], input_scale as f64, output_scale as f64);
let product = mult(&[diff, recip]).unwrap();
let _tol = ((tol / 100.0) * scale as f32).round() as f64;
let upper_bound = greater_than(&product, _tol);
@@ -3812,14 +3773,15 @@ pub mod nonlinearities {
/// &[2, 3],
/// ).unwrap();
/// let k = 2_f64;
/// let result = recip(&x, k);
/// let result = recip(&x, 1.0, k);
/// let expected = Tensor::<i128>::new(Some(&[1, 2, 1, 0, 2, 2]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn recip(a: &Tensor<i128>, scale: f64) -> Tensor<i128> {
pub fn recip(a: &Tensor<i128>, input_scale: f64, out_scale: f64) -> Tensor<i128> {
a.par_enum_map(|_, a_i| {
let denom = (1_f64) / (a_i as f64 + f64::EPSILON);
let d_inv_x = scale * denom;
let rescaled = (a_i as f64) / input_scale;
let denom = (1_f64) / (rescaled + f64::EPSILON);
let d_inv_x = out_scale * denom;
Ok::<_, TensorError>(d_inv_x.round() as i128)
})
.unwrap()

View File

@@ -182,12 +182,13 @@ mod native_tests {
"mnist_gan",
];
const ACCURACY_CAL_TESTS: [&str; 5] = [
const ACCURACY_CAL_TESTS: [&str; 6] = [
"accuracy",
"1l_mlp",
"4l_relu_conv_fc",
"1l_elu",
"1l_prelu",
"1l_tiny_div",
];
const TESTS: [&str; 77] = [
@@ -489,7 +490,7 @@ mod native_tests {
test_dir.close().unwrap();
}
seq!(N in 0..=4 {
seq!(N in 0..=5 {
#(#[test_case(ACCURACY_CAL_TESTS[N])])*
fn mock_accuracy_cal_tests(test: &str) {
crate::native_tests::init_binary();
@@ -2032,7 +2033,7 @@ mod native_tests {
1,
"resources",
// we need the accuracy
Some(vec![7, 8]),
Some(vec![4]),
1,
false,
);

View File

@@ -78,14 +78,20 @@ def compare_outputs(zk_output, onnx_output):
zip_object = zip(np.array(zk_output).flatten(),
np.array(onnx_output).flatten())
for list1_i, list2_i in zip_object:
for (i, (list1_i, list2_i)) in enumerate(zip_object):
if list1_i == 0.0 and list2_i == 0.0:
res.append(0)
else:
diff = list1_i - list2_i
res.append(100 * (diff) / (list2_i))
# iterate and print the diffs if they are greater than 0.0
if abs(diff) > 0.0:
print("------- index: ", i)
print("------- diff: ", diff)
print("------- zk_output: ", list1_i)
print("------- onnx_output: ", list2_i)
print("res: ", res)
return np.mean(np.abs(res))

Binary file not shown.

View File

@@ -23,6 +23,7 @@
"output_visibility": "Public",
"param_visibility": "Private",
"div_rebasing": false,
"rebase_frac_zero_constants": false,
"check_mode": "UNSAFE"
},
"num_rows": 16,