Compare commits

...

20 Commits

Author SHA1 Message Date
github-actions[bot]
1151c15e59 ci: update version string in docs 2024-04-05 17:33:23 +00:00
Jseam
0943e534ee docs: automated sphinx documentation for python bindings (#714)
---------

Co-authored-by: dante <45801863+alexander-camuto@users.noreply.github.com>
Co-authored-by: Ethan Cemer <tylercemer@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-04-05 18:33:06 +01:00
dante
316a9a3b40 chore: update tract (#766) 2024-04-04 18:07:08 +01:00
dante
5389012b68 fix: patch large batch ex (#763) 2024-04-03 02:33:57 +01:00
dante
48223cca11 fix: make commitment optional for backwards compat (#762) 2024-04-03 02:26:50 +01:00
dante
32c3a5e159 fix: hold stacked outputs in a separate map 2024-04-02 21:37:20 +01:00
dante
ff563e93a7 fix: bump python version (#761) 2024-04-02 17:08:26 +01:00
dante
5639d36097 chore: verify aggr wasm unit test (#760) 2024-04-01 20:54:20 +01:00
dante
4ec8d13082 chore: verify aggr in wasm (#758) 2024-03-29 23:28:20 +00:00
dante
12735aefd4 chore: reduce softmax recip DR (#756) 2024-03-27 01:14:29 +00:00
dante
7fe179b8d4 feat: dictionary of reusable constants (#754) 2024-03-26 13:12:09 +00:00
Ethan Cemer
3be988a6a0 fix: use pnpm in build script for in-browser-evm-verifier (#752) 2024-03-25 23:23:02 +00:00
dante
3abb3aff56 feat: make selector polynomials optional (#753) 2024-03-22 09:28:28 +00:00
dante
338788cb8f fix: lookup safety = 1 during calibration falls OOR (#750) 2024-03-21 08:53:43 +00:00
Sung Jun Eun
feb3b1b475 fix: array element encapsulation in ezkl_demo.ipynb (#747) 2024-03-21 08:51:01 +00:00
dante
e134d86756 refactor: apply num-inner cols to constant assignments as well (#749) 2024-03-20 23:51:38 +00:00
dante
6819a3acf6 chore: more complete coverage tests (#748) 2024-03-20 18:53:47 +00:00
dante
2ccf056661 fix: logrows reset after graph creation can cause extended K overflow (#745) 2024-03-20 10:15:11 +00:00
dante
a5bf64b1a2 feat!: ipa commitments (#740)
BREAKING CHANGE: commitment is now an added flag
2024-03-16 16:31:01 +00:00
Ethan Cemer
56e2326be1 *nuke (#742) 2024-03-14 14:11:03 -05:00
129 changed files with 9262 additions and 2945 deletions

View File

@@ -11,7 +11,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- name: nanoGPT Mock

View File

@@ -22,7 +22,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: jetli/wasm-pack-action@v0.4.0
@@ -30,13 +30,13 @@ jobs:
run: rustup target add wasm32-unknown-unknown
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2024-01-04-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2024-02-06-x86_64-unknown-linux-gnu
- name: Install binaryen
run: |
set -e
curl -L https://github.com/WebAssembly/binaryen/releases/download/version_116/binaryen-version_116-x86_64-linux.tar.gz | tar xzf -
export PATH=$PATH:$PWD/binaryen-version_116/bin
wasm-opt --version
set -e
curl -L https://github.com/WebAssembly/binaryen/releases/download/version_116/binaryen-version_116-x86_64-linux.tar.gz | tar xzf -
export PATH=$PATH:$PWD/binaryen-version_116/bin
wasm-opt --version
- name: Build wasm files for both web and nodejs compilation targets
run: |
wasm-pack build --release --target nodejs --out-dir ./pkg/nodejs . -- -Z build-std="panic_abort,std"
@@ -92,7 +92,7 @@ jobs:
const jsonObject = JSONBig.parse(string);
return jsonObject;
}
function serialize(data) { // data is an object // return a Uint8ClampedArray
// Step 1: Stringify the Object with BigInt support
if (typeof data === "object") {
@@ -100,11 +100,11 @@ jobs:
}
// Step 2: Encode the JSON String
const uint8Array = new TextEncoder().encode(data);
// Step 3: Convert to Uint8ClampedArray
return new Uint8ClampedArray(uint8Array.buffer);
}
module.exports = {
deserialize,
serialize
@@ -123,7 +123,7 @@ jobs:
const jsonObject = parse(string);
return jsonObject;
}
export function serialize(data) { // data is an object // return a Uint8ClampedArray
// Step 1: Stringify the Object with BigInt support
if (typeof data === "object") {
@@ -131,7 +131,7 @@ jobs:
}
// Step 2: Encode the JSON String
const uint8Array = new TextEncoder().encode(data);
// Step 3: Convert to Uint8ClampedArray
return new Uint8ClampedArray(uint8Array.buffer);
}

View File

@@ -26,7 +26,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: 3.12
architecture: x64
- name: Set pyproject.toml version to match github tag

View File

@@ -25,7 +25,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: 3.12
architecture: x64
- name: Set Cargo.toml version to match github tag
@@ -70,7 +70,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: 3.12
architecture: ${{ matrix.target }}
- name: Set Cargo.toml version to match github tag
@@ -115,7 +115,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: 3.12
architecture: x64
- name: Set Cargo.toml version to match github tag
@@ -128,6 +128,7 @@ jobs:
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
- name: Install required libraries
shell: bash
run: |
@@ -139,6 +140,20 @@ jobs:
target: ${{ matrix.target }}
manylinux: auto
args: --release --out dist --features python-bindings
before-script-linux: |
# If we're running on rhel centos, install needed packages.
if command -v yum &> /dev/null; then
yum update -y && yum install -y perl-core openssl openssl-devel pkgconfig libatomic
# If we're running on i686 we need to symlink libatomic
# in order to build openssl with -latomic flag.
if [[ ! -d "/usr/lib64" ]]; then
ln -s /usr/lib/libatomic.so.1 /usr/lib/libatomic.so
fi
else
# If we're running on debian-based system.
apt update -y && apt-get install -y libssl-dev openssl pkg-config
fi
- name: Install built wheel
if: matrix.target == 'x86_64'
@@ -162,7 +177,7 @@ jobs:
# - uses: actions/checkout@v4
# - uses: actions/setup-python@v4
# with:
# python-version: 3.7
# python-version: 3.12
# - name: Install cross-compilation tools for aarch64
# if: matrix.target == 'aarch64'
@@ -214,7 +229,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: 3.12
architecture: x64
- name: Set Cargo.toml version to match github tag
@@ -249,7 +264,7 @@ jobs:
apk add py3-pip
pip3 install -U pip
python3 -m venv .venv
source .venv/bin/activate
source .venv/bin/activate
pip3 install ezkl --no-index --find-links /io/dist/ --force-reinstall
python3 -c "import ezkl"
@@ -273,7 +288,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: 3.12
- name: Set Cargo.toml version to match github tag
shell: bash
@@ -345,3 +360,17 @@ jobs:
with:
repository-url: https://test.pypi.org/legacy/
packages-dir: ./
doc-publish:
name: Trigger ReadTheDocs Build
runs-on: ubuntu-latest
needs: pypi-publish
steps:
- uses: actions/checkout@v4
- name: Trigger RTDs build
uses: dfm/rtds-action@v1
with:
webhook_url: ${{ secrets.RTDS_WEBHOOK_URL }}
webhook_token: ${{ secrets.RTDS_WEBHOOK_TOKEN }}
commit_ref: ${{ github.ref_name }}

View File

@@ -32,7 +32,7 @@ jobs:
token: ${{ secrets.RELEASE_TOKEN }}
tag_name: ${{ env.EZKL_VERSION }}
build-release-gpu:
build-release-gpu:
name: build-release-gpu
needs: ["create-release"]
runs-on: GPU
@@ -45,7 +45,7 @@ jobs:
steps:
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- name: Checkout repo
@@ -60,16 +60,15 @@ jobs:
- name: Set Cargo.toml version to match github tag
shell: bash
run: |
mv Cargo.toml Cargo.toml.orig
sed "s/0\\.0\\.0/${EZKL_VERSION//v}/" Cargo.toml.orig >Cargo.toml
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${EZKL_VERSION//v}/" Cargo.lock.orig >Cargo.lock
mv Cargo.toml Cargo.toml.orig
sed "s/0\\.0\\.0/${EZKL_VERSION//v}/" Cargo.toml.orig >Cargo.toml
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${EZKL_VERSION//v}/" Cargo.lock.orig >Cargo.lock
- name: Install dependencies
shell: bash
run: |
sudo apt-get update
sudo apt-get update
- name: Build release binary
run: cargo build --release -Z sparse-registry --features icicle
@@ -91,7 +90,6 @@ jobs:
asset_name: ${{ env.ASSET }}
asset_content_type: application/octet-stream
build-release:
name: build-release
needs: ["create-release"]

View File

@@ -26,7 +26,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- name: Build
@@ -38,7 +38,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- name: Docs
@@ -50,7 +50,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -73,7 +73,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -106,7 +106,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -139,7 +139,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -172,7 +172,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -184,12 +184,12 @@ jobs:
wasm32-tests:
runs-on: ubuntu-latest
# needs: [build, library-tests, docs]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: jetli/wasm-pack-action@v0.4.0
@@ -199,7 +199,7 @@ jobs:
- name: Install wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2024-01-04-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2024-02-06-x86_64-unknown-linux-gnu
- name: Run wasm verifier tests
# on mac:
# AR=/opt/homebrew/opt/llvm/bin/llvm-ar CC=/opt/homebrew/opt/llvm/bin/clang wasm-pack test --firefox --headless -- -Z build-std="panic_abort,std" --features web
@@ -207,12 +207,12 @@ jobs:
tutorial:
runs-on: ubuntu-latest
needs: [build, library-tests, docs]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -224,12 +224,12 @@ jobs:
mock-proving-tests:
runs-on: non-gpu
# needs: [build, library-tests, docs]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -281,12 +281,12 @@ jobs:
prove-and-verify-evm-tests:
runs-on: non-gpu
needs: [build, library-tests]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -303,6 +303,8 @@ jobs:
with:
node-version: "18.12.1"
cache: "pnpm"
- name: "Add rust-src"
run: rustup component add rust-src --toolchain nightly-2024-02-06-x86_64-unknown-linux-gnu
- name: Install dependencies for js tests and in-browser-evm-verifier package
run: |
pnpm install --no-frozen-lockfile
@@ -324,7 +326,7 @@ jobs:
- name: Install solc
run: (hash svm 2>/dev/null || cargo install svm-rs) && svm install 0.8.20 && solc --version
- name: Install Anvil
run: cargo install --git https://github.com/foundry-rs/foundry --rev b320f350156a0fb15c2eb13dc380deb2367c4474 --profile local --locked anvil --force
run: cargo install --git https://github.com/foundry-rs/foundry --rev c2233ec9fe61e0920c61c6d779bc707252852037 --profile local --locked anvil --force
- name: KZG prove and verify tests (EVM + VK rendered seperately)
run: cargo nextest run --release --verbose tests_evm::kzg_evm_prove_and_verify_render_seperately_ --test-threads 1
- name: KZG prove and verify tests (EVM + kzg all)
@@ -352,12 +354,12 @@ jobs:
prove-and-verify-tests:
runs-on: non-gpu
needs: [build, library-tests]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: jetli/wasm-pack-action@v0.4.0
@@ -365,7 +367,7 @@ jobs:
run: rustup target add wasm32-unknown-unknown
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2024-01-04-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2024-02-06-x86_64-unknown-linux-gnu
- uses: actions/checkout@v3
- name: Use pnpm 8
uses: pnpm/action-setup@v2
@@ -392,6 +394,12 @@ jobs:
- name: Replace memory definition in nodejs
run: |
sed -i "3s|.*|imports['env'] = {memory: new WebAssembly.Memory({initial:20,maximum:65536,shared:true})}|" tests/wasm/nodejs/ezkl.js
- name: KZG prove and verify tests (public outputs)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_tight_lookup_::t
- name: IPA prove and verify tests
run: cargo nextest run --release --verbose tests::ipa_prove_and_verify_::t --test-threads 1
- name: IPA prove and verify tests (ipa outputs)
run: cargo nextest run --release --verbose tests::ipa_prove_and_verify_ipa_output
- name: KZG prove and verify tests (public outputs + column overflow)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_with_overflow_::w
- name: KZG prove and verify tests single inner col
@@ -408,8 +416,6 @@ jobs:
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_with_overflow_fixed_params_
- name: KZG prove and verify tests (public outputs)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_::t
- name: KZG prove and verify tests (public outputs + column overflow)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_::t
- name: KZG prove and verify tests (public inputs)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_public_input
- name: KZG prove and verify tests (fixed params)
@@ -425,11 +431,11 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2024-01-04-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2024-02-06-x86_64-unknown-linux-gnu
- uses: actions/checkout@v3
- uses: baptiste0928/cargo-install@v1
with:
@@ -452,44 +458,21 @@ jobs:
- name: KZG prove and verify tests (hashed outputs)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_hashed --features icicle --test-threads 1
fuzz-tests:
runs-on: ubuntu-latest-32-cores
needs: [build, library-tests, python-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
with:
crate: cargo-nextest
locked: true
- name: Install solc
run: (hash svm 2>/dev/null || cargo install svm-rs) && svm install 0.8.20 && solc --version
- name: Install Anvil
run: cargo install --git https://github.com/foundry-rs/foundry --rev b320f350156a0fb15c2eb13dc380deb2367c4474 --profile local --locked anvil --force
- name: fuzz tests (EVM)
run: cargo nextest run --release --verbose tests_evm::kzg_evm_fuzz_ --test-threads 2
# - name: fuzz tests
# run: cargo nextest run --release --verbose tests::kzg_fuzz_ --test-threads 6
prove-and-verify-mock-aggr-tests:
runs-on: self-hosted
needs: [build, library-tests]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
with:
crate: cargo-nextest
locked: true
- name: Mock aggr tests
- name: Mock aggr tests (KZG)
run: cargo nextest run --release --verbose tests_aggr::kzg_aggr_mock_prove_and_verify_ --test-threads 8
prove-and-verify-aggr-tests-gpu:
@@ -500,7 +483,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -512,29 +495,29 @@ jobs:
prove-and-verify-aggr-tests:
runs-on: large-self-hosted
needs: [build, library-tests]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
with:
crate: cargo-nextest
locked: true
- name: KZG )tests
- name: KZG tests
run: cargo nextest run --release --verbose tests_aggr::kzg_aggr_prove_and_verify_ --test-threads 4 -- --include-ignored
prove-and-verify-aggr-evm-tests:
runs-on: large-self-hosted
needs: [build, library-tests]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -544,7 +527,7 @@ jobs:
- name: Install solc
run: (hash svm 2>/dev/null || cargo install svm-rs) && svm install 0.8.20 && solc --version
- name: Install Anvil
run: cargo install --git https://github.com/foundry-rs/foundry --rev b320f350156a0fb15c2eb13dc380deb2367c4474 --profile local --locked anvil --force
run: cargo install --git https://github.com/foundry-rs/foundry --rev c2233ec9fe61e0920c61c6d779bc707252852037 --profile local --locked anvil --force
- name: KZG prove and verify aggr tests
run: cargo nextest run --release --verbose tests_evm::kzg_evm_aggr_prove_and_verify_::t --test-threads 4 -- --include-ignored
@@ -555,7 +538,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -574,18 +557,20 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: "3.7"
python-version: "3.12"
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- name: Install cmake
run: sudo apt-get install -y cmake
- name: Install solc
run: (hash svm 2>/dev/null || cargo install svm-rs) && svm install 0.8.20 && solc --version
- name: Setup Virtual Env and Install python dependencies
run: python -m venv .env; source .env/bin/activate; pip install -r requirements.txt;
run: python -m venv .env --clear; source .env/bin/activate; pip install -r requirements.txt;
- name: Install Anvil
run: cargo install --git https://github.com/foundry-rs/foundry --rev b320f350156a0fb15c2eb13dc380deb2367c4474 --profile local --locked anvil --force
run: cargo install --git https://github.com/foundry-rs/foundry --rev c2233ec9fe61e0920c61c6d779bc707252852037 --profile local --locked anvil --force
- name: Build python ezkl
run: source .env/bin/activate; unset CONDA_PREFIX; maturin develop --features python-bindings --release
- name: Run pytest
@@ -593,15 +578,15 @@ jobs:
accuracy-measurement-tests:
runs-on: ubuntu-latest-32-cores
# needs: [build, library-tests, docs]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: "3.7"
python-version: "3.12"
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -609,7 +594,7 @@ jobs:
crate: cargo-nextest
locked: true
- name: Setup Virtual Env and Install python dependencies
run: python -m venv .env; source .env/bin/activate; pip install -r requirements.txt;
run: python -m venv .env --clear; source .env/bin/activate; pip install -r requirements.txt;
- name: Build python ezkl
run: source .env/bin/activate; unset CONDA_PREFIX; maturin develop --features python-bindings --release
- name: Div rebase
@@ -629,10 +614,10 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: "3.9"
python-version: "3.11"
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-01-04
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -642,11 +627,15 @@ jobs:
- name: Install solc
run: (hash svm 2>/dev/null || cargo install svm-rs) && svm install 0.8.20 && solc --version
- name: Install Anvil
run: cargo install --git https://github.com/foundry-rs/foundry --rev b320f350156a0fb15c2eb13dc380deb2367c4474 --profile local --locked anvil --force
run: cargo install --git https://github.com/foundry-rs/foundry --rev c2233ec9fe61e0920c61c6d779bc707252852037 --profile local --locked anvil --force
- name: Install pip
run: python -m ensurepip --upgrade
- name: Setup Virtual Env and Install python dependencies
run: python -m venv .env; source .env/bin/activate; pip install -r requirements.txt;
run: python -m venv .env --clear; source .env/bin/activate; pip install -r requirements.txt; python -m ensurepip --upgrade
- name: Build python ezkl
run: source .env/bin/activate; unset CONDA_PREFIX; maturin develop --features python-bindings --release
- name: Tictactoe tutorials
run: source .env/bin/activate; cargo nextest run py_tests::tests::tictactoe_ --test-threads 1
# - name: authenticate-kaggle-cli
# shell: bash
# env:
@@ -657,12 +646,10 @@ jobs:
# echo $KAGGLE_API_KEY > /home/ubuntu/.kaggle/kaggle.json
# chmod 600 /home/ubuntu/.kaggle/kaggle.json
- name: All notebooks
run: source .env/bin/activate; cargo nextest run py_tests::tests::run_notebook_ --no-capture
run: source .env/bin/activate; cargo nextest run py_tests::tests::run_notebook_ --test-threads 1
- name: Voice tutorial
run: source .env/bin/activate; cargo nextest run py_tests::tests::voice_
- name: NBEATS tutorial
run: source .env/bin/activate; cargo nextest run py_tests::tests::nbeats_
- name: Tictactoe tutorials
run: source .env/bin/activate; cargo nextest run py_tests::tests::tictactoe_ --no-capture
# - name: Postgres tutorials
# run: source .env/bin/activate; cargo nextest run py_tests::tests::postgres_ --test-threads 1

View File

@@ -14,6 +14,40 @@ jobs:
- uses: actions/checkout@v4
- name: Bump version and push tag
id: tag_version
uses: mathieudutour/github-tag-action@v6.1
uses: mathieudutour/github-tag-action@v6.2
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
- name: Set Cargo.toml version to match github tag for docs
shell: bash
env:
RELEASE_TAG: ${{ steps.tag_version.outputs.new_tag }}
run: |
mv docs/python/src/conf.py docs/python/src/conf.py.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" docs/python/src/conf.py.orig >docs/python/src/conf.py
rm docs/python/src/conf.py.orig
mv docs/python/requirements-docs.txt docs/python/requirements-docs.txt.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" docs/python/requirements-docs.txt.orig >docs/python/requirements-docs.txt
rm docs/python/requirements-docs.txt.orig
- name: Commit files and create tag
env:
RELEASE_TAG: ${{ steps.tag_version.outputs.new_tag }}
run: |
git config --local user.email "github-actions[bot]@users.noreply.github.com"
git config --local user.name "github-actions[bot]"
git fetch --tags
git checkout -b release-$RELEASE_TAG
git add .
git commit -m "ci: update version string in docs"
git tag -d $RELEASE_TAG
git tag $RELEASE_TAG
- name: Push changes
uses: ad-m/github-push-action@master
env:
RELEASE_TAG: ${{ steps.tag_version.outputs.new_tag }}
with:
branch: release-${{ steps.tag_version.outputs.new_tag }}
force: true
tags: true

4
.gitignore vendored
View File

@@ -48,4 +48,6 @@ node_modules
/dist
timingData.json
!tests/wasm/pk.key
!tests/wasm/vk.key
!tests/wasm/vk.key
docs/python/build
!tests/wasm/vk_aggr.key

1
.python-version Normal file
View File

@@ -0,0 +1 @@
3.12.1

26
.readthedocs.yaml Normal file
View File

@@ -0,0 +1,26 @@
# .readthedocs.yaml
# Read the Docs configuration file
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
version: 2
build:
os: ubuntu-22.04
tools:
python: "3.12"
# Build documentation in the "docs/" directory with Sphinx
sphinx:
configuration: ./docs/python/src/conf.py
# Optionally build your docs in additional formats such as PDF and ePub
# formats:
# - pdf
# - epub
# Optional but recommended, declare the Python requirements required
# to build your documentation
# See https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html
python:
install:
- requirements: ./docs/python/requirements-docs.txt

1838
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -15,73 +15,96 @@ crate-type = ["cdylib", "rlib"]
[dependencies]
halo2_gadgets = { git = "https://github.com/zkonduit/halo2", branch= "main" }
halo2_proofs = { git = "https://github.com/zkonduit/halo2", branch= "main" }
halo2curves = { git = "https://github.com/privacy-scaling-explorations/halo2curves", rev="9fff22c", features=["derive_serde"] }
halo2_gadgets = { git = "https://github.com/zkonduit/halo2", branch = "ac/optional-selector-poly" }
halo2_proofs = { git = "https://github.com/zkonduit/halo2", branch = "ac/optional-selector-poly" }
halo2curves = { git = "https://github.com/privacy-scaling-explorations/halo2curves", rev = "9fff22c", features = [
"derive_serde",
] }
rand = { version = "0.8", default_features = false }
itertools = { version = "0.10.3", default_features = false }
clap = { version = "4.3.3", features = ["derive"]}
clap = { version = "4.5.3", features = ["derive"] }
serde = { version = "1.0.126", features = ["derive"], optional = true }
serde_json = { version = "1.0.97", default_features = false, features = ["float_roundtrip", "raw_value"], optional = true }
serde_json = { version = "1.0.97", default_features = false, features = [
"float_roundtrip",
"raw_value",
], optional = true }
log = { version = "0.4.17", default_features = false, optional = true }
thiserror = { version = "1.0.38", default_features = false }
hex = { version = "0.4.3", default_features = false }
halo2_wrong_ecc = { git = "https://github.com/zkonduit/halo2wrong", branch = "ac/chunked-mv-lookup", package = "ecc" }
snark-verifier = { git = "https://github.com/zkonduit/snark-verifier", branch = "ac/chunked-mv-lookup", features=["derive_serde"]}
halo2_solidity_verifier = { git = "https://github.com/alexander-camuto/halo2-solidity-verifier", branch= "main" }
maybe-rayon = { version = "0.1.1", default_features = false }
snark-verifier = { git = "https://github.com/zkonduit/snark-verifier", branch = "ac/chunked-mv-lookup", features = [
"derive_serde",
] }
halo2_solidity_verifier = { git = "https://github.com/alexander-camuto/halo2-solidity-verifier", branch = "main" }
maybe-rayon = { version = "0.1.1", default_features = false }
bincode = { version = "1.3.3", default_features = false }
ark-std = { version = "^0.3.0", default-features = false }
unzip-n = "0.1.2"
num = "0.4.1"
portable-atomic = "1.6.0"
tosubcommand = { git = "https://github.com/zkonduit/enum_to_subcommand", package = "tosubcommand" }
tosubcommand = { git = "https://github.com/zkonduit/enum_to_subcommand", package = "tosubcommand" }
# evm related deps
[target.'cfg(not(target_arch = "wasm32"))'.dependencies]
ethers = { version = "2.0.11", default_features = false, features = ["ethers-solc"] }
indicatif = {version = "0.17.5", features = ["rayon"]}
gag = { version = "1.0.0", default_features = false}
ethers = { version = "2.0.11", default_features = false, features = [
"ethers-solc",
] }
indicatif = { version = "0.17.5", features = ["rayon"] }
gag = { version = "1.0.0", default_features = false }
instant = { version = "0.1" }
reqwest = { version = "0.11.14", default-features = false, features = ["default-tls", "multipart", "stream"] }
reqwest = { version = "0.11.14", default-features = false, features = [
"default-tls",
"multipart",
"stream",
] }
openssl = { version = "0.10.55", features = ["vendored"] }
postgres = "0.19.5"
pg_bigdecimal = "0.1.5"
lazy_static = "1.4.0"
colored_json = { version = "3.0.1", default_features = false, optional = true}
colored_json = { version = "3.0.1", default_features = false, optional = true }
plotters = { version = "0.3.0", default_features = false, optional = true }
regex = { version = "1", default_features = false }
tokio = { version = "1.26.0", default_features = false, features = ["macros", "rt"] }
tokio = { version = "1.26.0", default_features = false, features = [
"macros",
"rt",
] }
tokio-util = { version = "0.7.9", features = ["codec"] }
pyo3 = { version = "0.20.2", features = ["extension-module", "abi3-py37", "macros"], default_features = false, optional = true }
pyo3-asyncio = { version = "0.20.0", features = ["attributes", "tokio-runtime"], default_features = false, optional = true }
pyo3 = { version = "0.20.2", features = [
"extension-module",
"abi3-py37",
"macros",
], default_features = false, optional = true }
pyo3-asyncio = { version = "0.20.0", features = [
"attributes",
"tokio-runtime",
], default_features = false, optional = true }
pyo3-log = { version = "0.9.0", default_features = false, optional = true }
tract-onnx = { git = "https://github.com/sonos/tract/", rev= "7b1aa33b2f7d1f19b80e270c83320f0f94daff69", default_features = false, optional = true }
tract-onnx = { git = "https://github.com/sonos/tract/", rev = "681a096f02c9d7d363102d9fb0e446d1710ac2c8", default_features = false, optional = true }
tabled = { version = "0.12.0", optional = true }
[target.'cfg(not(all(target_arch = "wasm32", target_os = "unknown")))'.dependencies]
colored = { version = "2.0.0", default_features = false, optional = true}
env_logger = { version = "0.10.0", default_features = false, optional = true}
colored = { version = "2.0.0", default_features = false, optional = true }
env_logger = { version = "0.10.0", default_features = false, optional = true }
chrono = "0.4.31"
sha256 = "1.4.0"
[target.'cfg(target_arch = "wasm32")'.dependencies]
getrandom = { version = "0.2.8", features = ["js"] }
instant = { version = "0.1", features = [ "wasm-bindgen", "inaccurate" ] }
instant = { version = "0.1", features = ["wasm-bindgen", "inaccurate"] }
[target.'cfg(all(target_arch = "wasm32", target_os = "unknown"))'.dependencies]
wasm-bindgen-rayon = { version = "1.0", optional=true }
wasm-bindgen-test = "0.3.34"
serde-wasm-bindgen = "0.4"
wasm-bindgen = { version = "0.2.81", features = ["serde-serialize"]}
wasm-bindgen-rayon = { version = "1.2.1", optional = true }
wasm-bindgen-test = "0.3.42"
serde-wasm-bindgen = "0.6.5"
wasm-bindgen = { version = "0.2.92", features = ["serde-serialize"] }
console_error_panic_hook = "0.1.7"
wasm-bindgen-console-logger = "0.1.1"
[dev-dependencies]
criterion = {version = "0.3", features = ["html_reports"]}
criterion = { version = "0.3", features = ["html_reports"] }
tempfile = "3.3.0"
lazy_static = "1.4.0"
mnist = "0.5"
@@ -153,11 +176,24 @@ required-features = ["ezkl"]
[features]
web = ["wasm-bindgen-rayon"]
default = ["ezkl", "mv-lookup"]
render = ["halo2_proofs/dev-graph", "plotters"]
onnx = ["dep:tract-onnx"]
python-bindings = ["pyo3", "pyo3-log", "pyo3-asyncio"]
ezkl = ["onnx", "serde", "serde_json", "log", "colored", "env_logger", "tabled/color", "colored_json", "halo2_proofs/circuit-params"]
mv-lookup = ["halo2_proofs/mv-lookup", "snark-verifier/mv-lookup", "halo2_solidity_verifier/mv-lookup"]
ezkl = [
"onnx",
"serde",
"serde_json",
"log",
"colored",
"env_logger",
"tabled/color",
"colored_json",
"halo2_proofs/circuit-params",
]
mv-lookup = [
"halo2_proofs/mv-lookup",
"snark-verifier/mv-lookup",
"halo2_solidity_verifier/mv-lookup",
]
det-prove = []
icicle = ["halo2_proofs/icicle_gpu"]
empty-cmd = []
@@ -165,7 +201,11 @@ no-banner = []
# icicle patch to 0.1.0 if feature icicle is enabled
[patch.'https://github.com/ingonyama-zk/icicle']
icicle = { git = "https://github.com/ingonyama-zk/icicle?rev=45b00fb", package = "icicle", branch = "fix/vhnat/ezkl-build-fix"}
icicle = { git = "https://github.com/ingonyama-zk/icicle?rev=45b00fb", package = "icicle", branch = "fix/vhnat/ezkl-build-fix" }
[patch.'https://github.com/zkonduit/halo2']
halo2_proofs = { git = "https://github.com/zkonduit/halo2?branch=ac/optional-selector-poly#54f54453cf186aa5d89579c4e7663f9a27cfb89a", package = "halo2_proofs", branch = "ac/optional-selector-poly" }
[profile.release]
rustflags = [ "-C", "relocation-model=pic" ]
rustflags = ["-C", "relocation-model=pic"]

View File

@@ -31,9 +31,9 @@ EZKL
[![Notebook](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/zkonduit/ezkl/blob/main/examples/notebooks/simple_demo_all_public.ipynb)
In the backend we use [Halo2](https://github.com/privacy-scaling-explorations/halo2) as a proof system.
In the backend we use the collaboratively-developed [Halo2](https://github.com/privacy-scaling-explorations/halo2) as a proof system.
The generated proofs can then be used on-chain to verify computation, only the Ethereum Virtual Machine (EVM) is supported at the moment.
The generated proofs can then be verified with much less computational resources, including on-chain (with the Ethereum Virtual Machine), in a browser, or on a device.
- If you have any questions, we'd love for you to open up a discussion topic in [Discussions](https://github.com/zkonduit/ezkl/discussions). Alternatively, you can join the ✨[EZKL Community Telegram Group](https://t.me/+QRzaRvTPIthlYWMx)💫.
@@ -45,6 +45,8 @@ The generated proofs can then be used on-chain to verify computation, only the E
### getting started ⚙️
The easiest way to get started is to try out a notebook.
#### Python
Install the python bindings by calling.
@@ -70,7 +72,7 @@ curl https://raw.githubusercontent.com/zkonduit/ezkl/main/install_ezkl_cli.sh |
https://user-images.githubusercontent.com/45801863/236771676-5bbbbfd1-ba6f-418a-902e-20738ce0e9f0.mp4
For more details visit the [docs](https://docs.ezkl.xyz).
For more details visit the [docs](https://docs.ezkl.xyz). The CLI is faster than Python, as it has less overhead. For even more speed and convenience, check out the [remote proving service](https://ei40vx5x6j0.typeform.com/to/sFv1oxvb), which feels like the CLI but is backed by a tuned cluster.
Build the auto-generated rust documentation and open the docs in your browser locally. `cargo doc --open`
@@ -124,17 +126,6 @@ unset ENABLE_ICICLE_GPU
**NOTE:** Even with the above environment variable set, icicle is disabled for circuits where k <= 8. To change the value of `k` where icicle is enabled, you can set the environment variable `ICICLE_SMALL_K`.
### repos
The EZKL project has several libraries and repos.
| Repo | Description |
| --- | --- |
| [@zkonduit/ezkl](https://github.com/zkonduit/ezkl) | the main ezkl repo in rust with wasm and python bindings |
| [@zkonduit/ezkljs](https://github.com/zkonduit/ezkljs) | typescript and javascript tooling to help integrate ezkl into web apps |
----------------------
### contributing 🌎
If you're interested in contributing and are unsure where to start, reach out to one of the maintainers:
@@ -151,7 +142,7 @@ More broadly:
- To report bugs or request new features [create a new issue within Issues](https://github.com/zkonduit/ezkl/issues) to inform the greater community.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you shall be licensed to Zkonduit Inc. under the terms and conditions specified in the [CLA](https://github.com/zkonduit/ezkl/blob/main/cla.md), which you agree to by intentionally submitting a contribution. In particular, you have the right to submit the contribution and we can distribute it under the Apache 2.0 license, among other terms and conditions.
Any contribution intentionally submitted for inclusion in the work by you shall be licensed to Zkonduit Inc. under the terms and conditions specified in the [CLA](https://github.com/zkonduit/ezkl/blob/main/cla.md), which you agree to by intentionally submitting a contribution. In particular, you have the right to submit the contribution and we can distribute it, among other terms and conditions.
### no security guarantees
@@ -159,4 +150,7 @@ Ezkl is unaudited, beta software undergoing rapid development. There may be bugs
> NOTE: Because operations are quantized when they are converted from an onnx file to a zk-circuit, outputs in python and ezkl may differ slightly.
### no warranty
Copyright (c) 2024 Zkonduit Inc. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@@ -2,11 +2,13 @@ use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Through
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::*;
use ezkl::pfsys::create_keys;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::srs::gen_srs;
use ezkl::pfsys::TranscriptType;
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -15,6 +17,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
static mut KERNEL_HEIGHT: usize = 2;
static mut KERNEL_WIDTH: usize = 2;
@@ -121,28 +124,35 @@ fn runcnvrl(c: &mut Criterion) {
group.throughput(Throughput::Elements(*size as u64));
group.bench_with_input(BenchmarkId::new("pk", size), &size, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(
&circuit, &params, true,
)
.unwrap();
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
.unwrap();
let pk = create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
group.throughput(Throughput::Elements(*size as u64));
group.bench_with_input(BenchmarkId::new("prove", size), &size, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
None,
None,
);
prover.unwrap();

View File

@@ -1,11 +1,13 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::*;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -14,6 +16,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
static mut LEN: usize = 4;
@@ -90,25 +93,35 @@ fn rundot(c: &mut Criterion) {
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("pk", len), &len, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk = create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
.unwrap();
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("prove", len), &len, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
None,
None,
);
prover.unwrap();

View File

@@ -1,11 +1,13 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::*;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -14,6 +16,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
static mut LEN: usize = 4;
@@ -94,25 +97,35 @@ fn runmatmul(c: &mut Criterion) {
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("pk", len), &len, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk = create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
.unwrap();
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("prove", len), &len, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
None,
None,
);
prover.unwrap();

View File

@@ -4,17 +4,20 @@ use ezkl::circuit::*;
use ezkl::circuit::lookup::LookupOp;
use ezkl::circuit::poly::PolyOp;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
circuit::{Layouter, SimpleFloorPlanner, Value},
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::{Bn256, Fr};
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
const BITS: Range = (-32768, 32768);
@@ -112,25 +115,35 @@ fn runmatmul(c: &mut Criterion) {
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("pk", len), &len, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk = create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
.unwrap();
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("prove", len), &len, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::SAFE,
None,
None,
);
prover.unwrap();

View File

@@ -4,17 +4,20 @@ use ezkl::circuit::*;
use ezkl::circuit::lookup::LookupOp;
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::table::Range;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
circuit::{Layouter, SimpleFloorPlanner, Value},
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::{Bn256, Fr};
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
const BITS: Range = (-8180, 8180);
@@ -115,25 +118,35 @@ fn runmatmul(c: &mut Criterion) {
group.throughput(Throughput::Elements(k as u64));
group.bench_with_input(BenchmarkId::new("pk", k), &k, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk = create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
.unwrap();
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(k as u64));
group.bench_with_input(BenchmarkId::new("prove", k), &k, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::SAFE,
None,
None,
);
prover.unwrap();

View File

@@ -1,11 +1,13 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::*;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -14,6 +16,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
static mut LEN: usize = 4;
@@ -86,25 +89,35 @@ fn runsum(c: &mut Criterion) {
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("pk", len), &len, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk = create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
.unwrap();
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("prove", len), &len, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
None,
None,
);
prover.unwrap();

View File

@@ -2,11 +2,13 @@ use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Through
use ezkl::circuit::hybrid::HybridOp;
use ezkl::circuit::*;
use ezkl::pfsys::create_keys;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::srs::gen_srs;
use ezkl::pfsys::TranscriptType;
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -15,6 +17,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
static mut IMAGE_HEIGHT: usize = 2;
static mut IMAGE_WIDTH: usize = 2;
@@ -101,28 +104,35 @@ fn runsumpool(c: &mut Criterion) {
group.throughput(Throughput::Elements(*size as u64));
group.bench_with_input(BenchmarkId::new("pk", size), &size, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(
&circuit, &params, true,
)
.unwrap();
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
.unwrap();
let pk = create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
group.throughput(Throughput::Elements(*size as u64));
group.bench_with_input(BenchmarkId::new("prove", size), &size, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
None,
None,
);
prover.unwrap();

View File

@@ -1,11 +1,13 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::*;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -14,6 +16,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
static mut LEN: usize = 4;
@@ -84,25 +87,35 @@ fn runadd(c: &mut Criterion) {
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("pk", len), &len, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk = create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
.unwrap();
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("prove", len), &len, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::SAFE,
None,
None,
);
prover.unwrap();

View File

@@ -2,11 +2,13 @@ use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Through
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::region::RegionCtx;
use ezkl::circuit::*;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -15,6 +17,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
static mut LEN: usize = 4;
@@ -83,25 +86,35 @@ fn runpow(c: &mut Criterion) {
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("pk", len), &len, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk = create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
.unwrap();
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("prove", len), &len, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::SAFE,
None,
None,
);
prover.unwrap();

View File

@@ -1,15 +1,18 @@
use std::collections::HashMap;
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use ezkl::circuit::modules::poseidon::spec::{PoseidonSpec, POSEIDON_RATE, POSEIDON_WIDTH};
use ezkl::circuit::modules::poseidon::{PoseidonChip, PoseidonConfig};
use ezkl::circuit::modules::Module;
use ezkl::circuit::*;
use ezkl::pfsys::create_keys;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::srs::gen_srs;
use ezkl::pfsys::TranscriptType;
use ezkl::tensor::*;
use halo2_proofs::circuit::Value;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::{ProverSHPLONK, VerifierSHPLONK};
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -18,6 +21,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
const L: usize = 10;
@@ -46,7 +50,7 @@ impl Circuit<Fr> for MyCircuit {
) -> Result<(), Error> {
let chip: PoseidonChip<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L> =
PoseidonChip::new(config);
chip.layout(&mut layouter, &[self.image.clone()], 0)?;
chip.layout(&mut layouter, &[self.image.clone()], 0, &mut HashMap::new())?;
Ok(())
}
}
@@ -62,7 +66,7 @@ fn runposeidon(c: &mut Criterion) {
let params = gen_srs::<KZGCommitmentScheme<_>>(k);
let message = (0..*size).map(|_| Fr::random(OsRng)).collect::<Vec<_>>();
let output =
let _output =
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L>::run(message.to_vec())
.unwrap();
@@ -76,25 +80,35 @@ fn runposeidon(c: &mut Criterion) {
group.throughput(Throughput::Elements(*size as u64));
group.bench_with_input(BenchmarkId::new("pk", size), &size, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk = create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params, true)
.unwrap();
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(*size as u64));
group.bench_with_input(BenchmarkId::new("prove", size), &size, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
Some(output[0].clone()),
&pk,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
None,
None,
);
prover.unwrap();

View File

@@ -2,11 +2,12 @@ use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Through
use ezkl::circuit::region::RegionCtx;
use ezkl::circuit::table::Range;
use ezkl::circuit::{ops::lookup::LookupOp, BaseConfig as Config, CheckMode};
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::{ProverSHPLONK, VerifierSHPLONK};
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
circuit::{Layouter, SimpleFloorPlanner, Value},
@@ -14,6 +15,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::Rng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
const BITS: Range = (-32768, 32768);
static mut LEN: usize = 4;
@@ -91,25 +93,35 @@ fn runrelu(c: &mut Criterion) {
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("pk", len), &len, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, NLCircuit>(&circuit, &params, true)
create_keys::<KZGCommitmentScheme<Bn256>, NLCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk = create_keys::<KZGCommitmentScheme<Bn256>, Fr, NLCircuit>(&circuit, &params, true)
.unwrap();
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, NLCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("prove", len), &len, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
NLCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::SAFE,
None,
None,
);
prover.unwrap();

2
docs/python/build.sh Executable file
View File

@@ -0,0 +1,2 @@
#!/bin/sh
sphinx-build ./src build

View File

@@ -0,0 +1,4 @@
ezkl==10.2.9
sphinx
sphinx-rtd-theme
sphinxcontrib-napoleon

29
docs/python/src/conf.py Normal file
View File

@@ -0,0 +1,29 @@
import ezkl
project = 'ezkl'
release = '10.2.9'
version = release
extensions = [
'sphinx.ext.autodoc',
'sphinx.ext.autosummary',
'sphinx.ext.intersphinx',
'sphinx.ext.todo',
'sphinx.ext.inheritance_diagram',
'sphinx.ext.autosectionlabel',
'sphinx.ext.napoleon',
'sphinx_rtd_theme',
]
autosummary_generate = True
autosummary_imported_members = True
templates_path = ['_templates']
exclude_patterns = []
# -- Options for HTML output -------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
html_theme = 'sphinx_rtd_theme'
html_static_path = ['_static']

11
docs/python/src/index.rst Normal file
View File

@@ -0,0 +1,11 @@
.. extension documentation master file, created by
sphinx-quickstart on Mon Jun 19 15:02:05 2023.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
ezkl python bindings
================================================
.. automodule:: ezkl
:members:
:undoc-members:

View File

@@ -696,10 +696,12 @@
"for i, value in enumerate(proof[\"instances\"]):\n",
" for j, field_element in enumerate(value):\n",
" onchain_input_array.append(ezkl.felt_to_big_endian(field_element))\n",
" formatted_output += str(onchain_input_array[-1])\n",
" formatted_output += '\"' + str(onchain_input_array[-1]) + '\"'\n",
" if j != len(value) - 1:\n",
" formatted_output += \", \"\n",
" formatted_output += \"]\"\n",
" if i != len(proof[\"instances\"]) - 1:\n",
" formatted_output += \", \"\n",
"formatted_output += \"]\"\n",
"\n",
"# This will be the values you use onchain\n",
"# copy them over to remix and see if they verify\n",

View File

@@ -10,7 +10,7 @@
"\n",
"## Generalized Inverse\n",
"\n",
"We show how to use EZKL to prove that we know matrices $A$ and its generalized inverse $B$. Since these are large we deal with the KZG commitments, with $a$ the kzgcommit of $A$, $b$ the kzgcommit of $B$, and $ABA = A$.\n"
"We show how to use EZKL to prove that we know matrices $A$ and its generalized inverse $B$. Since these are large we deal with the KZG commitments, with $a$ the polycommit of $A$, $b$ the polycommit of $B$, and $ABA = A$.\n"
]
},
{
@@ -77,7 +77,7 @@
"outputs": [],
"source": [
"gip_run_args = ezkl.PyRunArgs()\n",
"gip_run_args.input_visibility = \"kzgcommit\" # matrix and generalized inverse commitments\n",
"gip_run_args.input_visibility = \"polycommit\" # matrix and generalized inverse commitments\n",
"gip_run_args.output_visibility = \"fixed\" # no parameters used\n",
"gip_run_args.param_visibility = \"fixed\" # should be Tensor(True)"
]
@@ -340,4 +340,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -161,7 +161,7 @@
"- `fixed`: known to the prover and verifier (as a commit), but not modifiable by the prover.\n",
"- `hashed`: the hash pre-image is known to the prover, the prover and verifier know the hash. The prover proves that the they know the pre-image to the hash. \n",
"- `encrypted`: the non-encrypted element and the secret key used for decryption are known to the prover. The prover and the verifier know the encrypted element, the public key used to encrypt, and the hash of the decryption hey. The prover proves that they know the pre-image of the hashed decryption key and that this key can in fact decrypt the encrypted message.\n",
"- `kzgcommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be inserted directly within the proof bytes. \n",
"- `polycommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be inserted directly within the proof bytes. \n",
"\n",
"\n",
"Here we create the following setup:\n",
@@ -510,4 +510,4 @@
},
"nbformat": 4,
"nbformat_minor": 2
}
}

View File

@@ -67,6 +67,7 @@
"model.add(Dense(128, activation='relu'))\n",
"model.add(Dropout(0.5))\n",
"model.add(Dense(10, activation='softmax'))\n",
"model.output_names=['output']\n",
"\n",
"\n",
"# Train the model as you like here (skipped for brevity)\n",

View File

@@ -154,11 +154,11 @@
"- `fixed`: known to the prover and verifier (as a commit), but not modifiable by the prover.\n",
"- `hashed`: the hash pre-image is known to the prover, the prover and verifier know the hash. The prover proves that the they know the pre-image to the hash. \n",
"- `encrypted`: the non-encrypted element and the secret key used for decryption are known to the prover. The prover and the verifier know the encrypted element, the public key used to encrypt, and the hash of the decryption hey. The prover proves that they know the pre-image of the hashed decryption key and that this key can in fact decrypt the encrypted message.\n",
"- `kzgcommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be modified directly within the proof bytes. \n",
"- `polycommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be modified directly within the proof bytes. \n",
"\n",
"Here we create the following setup:\n",
"- `input_visibility`: \"kzgcommit\"\n",
"- `param_visibility`: \"kzgcommit\"\n",
"- `input_visibility`: \"polycommit\"\n",
"- `param_visibility`: \"polycommit\"\n",
"- `output_visibility`: public\n",
"\n",
"We encourage you to play around with other setups :) \n",
@@ -186,8 +186,8 @@
"data_path = os.path.join('input.json')\n",
"\n",
"run_args = ezkl.PyRunArgs()\n",
"run_args.input_visibility = \"kzgcommit\"\n",
"run_args.param_visibility = \"kzgcommit\"\n",
"run_args.input_visibility = \"polycommit\"\n",
"run_args.param_visibility = \"polycommit\"\n",
"run_args.output_visibility = \"public\"\n",
"run_args.variables = [(\"batch_size\", 1)]\n",
"\n",
@@ -512,4 +512,4 @@
},
"nbformat": 4,
"nbformat_minor": 2
}
}

View File

@@ -38,7 +38,7 @@
"import logging\n",
"\n",
"import tensorflow as tf\n",
"from tensorflow.keras.optimizers.legacy import Adam\n",
"from tensorflow.keras.optimizers import Adam\n",
"from tensorflow.keras.layers import *\n",
"from tensorflow.keras.models import Model\n",
"from tensorflow.keras.datasets import mnist\n",
@@ -71,9 +71,11 @@
},
"outputs": [],
"source": [
"opt = Adam()\n",
"ZDIM = 100\n",
"\n",
"opt = Adam()\n",
"\n",
"\n",
"# discriminator\n",
"# 0 if it's fake, 1 if it's real\n",
"x = in1 = Input((28,28))\n",
@@ -114,8 +116,11 @@
"\n",
"gm = Model(in1, x)\n",
"gm.compile('adam', 'mse')\n",
"gm.output_names=['output']\n",
"gm.summary()\n",
"\n",
"opt = Adam()\n",
"\n",
"# GAN\n",
"dm.trainable = False\n",
"x = dm(gm.output)\n",
@@ -415,7 +420,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
"version": "3.12.2"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

View File

@@ -349,6 +349,8 @@
"z_log_var = Dense(ZDIM)(x)\n",
"z = Lambda(lambda x: x[0] + K.exp(0.5 * x[1]) * K.random_normal(shape=K.shape(x[0])))([z_mu, z_log_var])\n",
"dec = get_decoder()\n",
"dec.output_names=['output']\n",
"\n",
"out = dec(z)\n",
"\n",
"mse_loss = mse(Reshape((28*28,))(in1), Reshape((28*28,))(out)) * 28 * 28\n",

View File

@@ -208,7 +208,7 @@
"- `private`: known only to the prover\n",
"- `hashed`: the hash pre-image is known to the prover, the prover and verifier know the hash. The prover proves that the they know the pre-image to the hash. \n",
"- `encrypted`: the non-encrypted element and the secret key used for decryption are known to the prover. The prover and the verifier know the encrypted element, the public key used to encrypt, and the hash of the decryption hey. The prover proves that they know the pre-image of the hashed decryption key and that this key can in fact decrypt the encrypted message.\n",
"- `kzgcommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be modified directly within the proof bytes. \n",
"- `polycommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be modified directly within the proof bytes. \n",
"\n",
"Here we create the following setup:\n",
"- `input_visibility`: \"public\"\n",
@@ -234,7 +234,7 @@
"run_args.input_scale = 2\n",
"run_args.logrows = 8\n",
"\n",
"ezkl.get_srs(logrows=run_args.logrows)"
"ezkl.get_srs(logrows=run_args.logrows, commitment=ezkl.PyCommitments.KZG)"
]
},
{
@@ -385,9 +385,9 @@
"### KZG commitment intermediate calculations\n",
"\n",
"This time the visibility parameters are:\n",
"- `input_visibility`: \"kzgcommit\"\n",
"- `input_visibility`: \"polycommit\"\n",
"- `param_visibility`: \"public\"\n",
"- `output_visibility`: kzgcommit"
"- `output_visibility`: polycommit"
]
},
{
@@ -399,9 +399,9 @@
"import ezkl\n",
"\n",
"run_args = ezkl.PyRunArgs()\n",
"run_args.input_visibility = \"kzgcommit\"\n",
"run_args.input_visibility = \"polycommit\"\n",
"run_args.param_visibility = \"fixed\"\n",
"run_args.output_visibility = \"kzgcommit\"\n",
"run_args.output_visibility = \"polycommit\"\n",
"run_args.variables = [(\"batch_size\", 1)]\n",
"run_args.input_scale = 2\n",
"run_args.logrows = 8\n"

View File

@@ -61,11 +61,10 @@
"from sklearn.datasets import load_iris\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.ensemble import RandomForestClassifier as Rf\n",
"import sk2torch\n",
"import torch\n",
"import ezkl\n",
"import os\n",
"from torch import nn\n",
"from hummingbird.ml import convert\n",
"\n",
"\n",
"\n",
@@ -77,28 +76,12 @@
"clr.fit(X_train, y_train)\n",
"\n",
"\n",
"trees = []\n",
"for tree in clr.estimators_:\n",
" trees.append(sk2torch.wrap(tree))\n",
"\n",
"\n",
"class RandomForest(nn.Module):\n",
" def __init__(self, trees):\n",
" super(RandomForest, self).__init__()\n",
" self.trees = nn.ModuleList(trees)\n",
"\n",
" def forward(self, x):\n",
" out = self.trees[0](x)\n",
" for tree in self.trees[1:]:\n",
" out += tree(x)\n",
" return out / len(self.trees)\n",
"\n",
"\n",
"torch_rf = RandomForest(trees)\n",
"torch_rf = convert(clr, 'torch')\n",
"# assert predictions from torch are = to sklearn \n",
"diffs = []\n",
"for i in range(len(X_test)):\n",
" torch_pred = torch_rf(torch.tensor(X_test[i].reshape(1, -1)))\n",
" torch_pred = torch_rf.predict(torch.tensor(X_test[i].reshape(1, -1)))\n",
" sk_pred = clr.predict(X_test[i].reshape(1, -1))\n",
" diffs.append(torch_pred[0].round() - sk_pred[0])\n",
"\n",
@@ -134,14 +117,12 @@
"\n",
"# export to onnx format\n",
"\n",
"torch_rf.eval()\n",
"\n",
"# Input to the model\n",
"shape = X_train.shape[1:]\n",
"x = torch.rand(1, *shape, requires_grad=False)\n",
"torch_out = torch_rf(x)\n",
"torch_out = torch_rf.predict(x)\n",
"# Export the model\n",
"torch.onnx.export(torch_rf, # model being run\n",
"torch.onnx.export(torch_rf.model, # model being run\n",
" # model input (or a tuple for multiple inputs)\n",
" x,\n",
" # where to save the model (can be a file or file-like object)\n",
@@ -158,7 +139,7 @@
"\n",
"data = dict(input_shapes=[shape],\n",
" input_data=[d],\n",
" output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])\n",
" output_data=[o.reshape([-1]).tolist() for o in torch_out])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n"
@@ -321,7 +302,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
"version": "3.12.2"
}
},
"nbformat": 4,

View File

@@ -275,7 +275,6 @@
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
@@ -291,7 +290,7 @@
"source": [
"# Generate a larger SRS. This is needed for the aggregated proof\n",
"\n",
"res = ezkl.get_srs(settings_path=None, logrows=21)"
"res = ezkl.get_srs(settings_path=None, logrows=21, commitment=ezkl.PyCommitments.KZG)"
]
},
{

View File

@@ -9,7 +9,7 @@
"source": [
"## Solvency demo\n",
"\n",
"Here we create a demo of a solvency calculation in the manner of [summa-solvency](https://github.com/summa-dev/summa-solvency). The aim here is to demonstrate the use of the new kzgcommit method detailed [here](https://blog.ezkl.xyz/post/commits/). \n",
"Here we create a demo of a solvency calculation in the manner of [summa-solvency](https://github.com/summa-dev/summa-solvency). The aim here is to demonstrate the use of the new polycommit method detailed [here](https://blog.ezkl.xyz/post/commits/). \n",
"\n",
"In this setup:\n",
"- the commitments to users, respective balances, and total balance are known are publicly known to the prover and verifier. \n",
@@ -177,10 +177,10 @@
"- `private`: known only to the prover\n",
"- `hashed`: the hash pre-image is known to the prover, the prover and verifier know the hash. The prover proves that the they know the pre-image to the hash. \n",
"- `encrypted`: the non-encrypted element and the secret key used for decryption are known to the prover. The prover and the verifier know the encrypted element, the public key used to encrypt, and the hash of the decryption hey. The prover proves that they know the pre-image of the hashed decryption key and that this key can in fact decrypt the encrypted message.\n",
"- `kzgcommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be modified directly within the proof bytes. \n",
"- `polycommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be modified directly within the proof bytes. \n",
"\n",
"Here we create the following setup:\n",
"- `input_visibility`: \"kzgcommit\"\n",
"- `input_visibility`: \"polycommit\"\n",
"- `param_visibility`: \"public\"\n",
"- `output_visibility`: public\n",
"\n",
@@ -202,8 +202,8 @@
"outputs": [],
"source": [
"run_args = ezkl.PyRunArgs()\n",
"# \"kzgcommit\" means that the output of the hashing is not visible to the verifier and is instead fed into the computational graph\n",
"run_args.input_visibility = \"kzgcommit\"\n",
"# \"polycommit\" means that the output of the hashing is not visible to the verifier and is instead fed into the computational graph\n",
"run_args.input_visibility = \"polycommit\"\n",
"# the parameters are public\n",
"run_args.param_visibility = \"fixed\"\n",
"# the output is public (this is the inequality test)\n",
@@ -515,4 +515,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -13,7 +13,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -57,7 +57,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -119,7 +119,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -163,7 +163,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -217,7 +217,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
@@ -227,6 +227,10 @@
" self.length = self.compute_length(self.file_good)\n",
" self.data = self.load_data(self.file_good)\n",
"\n",
" def __iter__(self):\n",
" for i in range(len(self.data)):\n",
" yield self.data[i]\n",
"\n",
" def parse_json_object(self, line):\n",
" try:\n",
" return json.loads(line)\n",
@@ -749,7 +753,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
"version": "3.12.2"
}
},
"nbformat": 4,

View File

@@ -209,6 +209,11 @@
" self.length = self.compute_length(self.file_good, self.file_bad)\n",
" self.data = self.load_data(self.file_good, self.file_bad)\n",
"\n",
" def __iter__(self):\n",
" for i in range(len(self.data)):\n",
" yield self.data[i]\n",
"\n",
"\n",
" def parse_json_object(self, line):\n",
" try:\n",
" return json.loads(line)\n",
@@ -637,7 +642,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
"version": "3.12.2"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,40 @@
from torch import nn
import torch
import json
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.layer = nn.LPPool2d(2, 1, (1, 1))
def forward(self, x):
return self.layer(x)[0]
circuit = Model()
x = torch.empty(1, 3, 2, 2).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.7549541592597961, 0.990360677242279, 0.9473411440849304, 0.3951031565666199, 0.8500555753707886, 0.9352139830589294, 0.11867779493331909, 0.9493132829666138, 0.6588345766067505, 0.1933223009109497, 0.12139874696731567, 0.8547163605690002]]}

Binary file not shown.

42
examples/onnx/celu/gen.py Normal file
View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.CELU()(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.35387128591537476, 0.030473172664642334, 0.08707714080810547, 0.2429301142692566, 0.45228832960128784, 0.496021032333374, 0.13245105743408203, 0.8497090339660645]]}

Binary file not shown.

41
examples/onnx/clip/gen.py Normal file
View File

@@ -0,0 +1,41 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.clamp(x, min=0.4, max=0.8)
return m
circuit = MyModel()
x = torch.empty(1, 2, 2, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.03297048807144165, 0.46362626552581787, 0.6044231057167053, 0.4949902892112732, 0.48823297023773193, 0.6798646450042725, 0.6824942231178284, 0.03491640090942383, 0.19608813524246216, 0.24129939079284668, 0.9769315123558044, 0.6306831240653992, 0.7690497636795044, 0.252221941947937, 0.9167693853378296, 0.3882681131362915, 0.9307044148445129, 0.33559417724609375, 0.7815426588058472, 0.3435332179069519, 0.7871478796005249, 0.12240773439407349, 0.5295405983924866, 0.4874419569969177, 0.08262640237808228, 0.1124718189239502, 0.5834914445877075, 0.30927878618240356, 0.48899340629577637, 0.9376634955406189, 0.21893149614334106, 0.526070773601532]]}

View File

@@ -0,0 +1,24 @@
pytorch2.2.1:±
?/Constant_output_0 /Constant"Constant*
value*JÍÌÌ> 
C/Constant_1_output_0 /Constant_1"Constant*
value*JÍÌL? 
F
input
/Constant_output_0
/Constant_1_output_0output/Clip"Clip
main_graphZ)
input


batch_size


b*
output


batch_size


B

41
examples/onnx/gru/gen.py Normal file
View File

@@ -0,0 +1,41 @@
import random
import math
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import json
model = nn.GRU(3, 3) # Input dim is 3, output dim is 3
x = torch.randn(1, 3) # make a sequence of length 5
print(x)
# Flips the neural net into inference mode
model.eval()
model.to('cpu')
# Export the model
torch.onnx.export(model, # model being run
# model input (or a tuple for multiple inputs)
x,
# where to save the model (can be a file or file-like object)
"network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=10, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
data_array = ((x).detach().numpy()).reshape([-1]).tolist()
data_json = dict(input_data=[data_array])
print(data_json)
# Serialize data into file:
json.dump(data_json, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.4145222008228302, -0.4043896496295929, 0.7545749545097351]]}

Binary file not shown.

View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.argmax(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.5505883693695068, 0.0766521692276001, 0.12006187438964844, 0.9497959017753601, 0.9100563526153564, 0.968717098236084, 0.5978299379348755, 0.9419963359832764]]}

Binary file not shown.

View File

@@ -9,7 +9,7 @@ class MyModel(nn.Module):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.Logsoftmax()(x)
m = nn.Hardsigmoid()(x)
return m

View File

@@ -1 +1 @@
{"input_data": [[0.2971532940864563, 0.3465197682380676, 0.05381882190704346, 0.058654189109802246, 0.014198064804077148, 0.06088751554489136, 0.1723427176475525, 0.5115123987197876]]}
{"input_data": [[0.8326942324638367, 0.2796096205711365, 0.600328266620636, 0.3701696991920471, 0.17832040786743164, 0.6247223019599915, 0.501872718334198, 0.6961578726768494]]}

View File

@@ -1,4 +1,4 @@
pytorch2.1.0:<3A>
pytorch2.2.1:<3A>
;
inputoutput /HardSigmoid" HardSigmoid*
alpha«ª*> 

View File

@@ -0,0 +1,41 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.Hardswish()(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.6996762752532959, 0.42992985248565674, 0.5102168321609497, 0.5540387630462646, 0.8489438891410828, 0.8533616065979004, 0.36736780405044556, 0.5859147310256958]]}

View File

@@ -0,0 +1,15 @@
pytorch2.2.1:{
&
inputoutput
/HardSwish" HardSwish
main_graphZ!
input


batch_size
b"
output


batch_size
B

View File

@@ -9,7 +9,7 @@ class MyModel(nn.Module):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.Hardsigmoid()(x)
m = nn.LogSoftmax()(x)
return m

View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.logsumexp(x, dim=1)
return m
circuit = MyModel()
x = torch.empty(1, 2, 2, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.7973018884658813, 0.5245689153671265, 0.34149593114852905, 0.1455438733100891, 0.9482707381248474, 0.4221445322036743, 0.001363217830657959, 0.8736765384674072, 0.42954301834106445, 0.7199509739875793, 0.37641745805740356, 0.5920265316963196, 0.42270803451538086, 0.41761744022369385, 0.603948712348938, 0.7250819802284241, 0.047173500061035156, 0.5115441679954529, 0.3743387460708618, 0.16794061660766602, 0.5352339148521423, 0.037976861000061035, 0.65323406457901, 0.5585184097290039, 0.10559147596359253, 0.07827490568161011, 0.6717077493667603, 0.6480781435966492, 0.9780838489532471, 0.8353415131568909, 0.6491701006889343, 0.6573048233985901]]}

Binary file not shown.

View File

@@ -0,0 +1,13 @@
{
"input_data": [
[
0.8894134163856506,
0.8894201517105103
]
],
"output_data": [
[
0.8436377
]
]
}

Binary file not shown.

42
examples/onnx/mish/gen.py Normal file
View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.Mish()(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.18563222885131836, 0.4843214750289917, 0.9991059899330139, 0.02534431219100952, 0.8105666041374207, 0.9658406376838684, 0.681107759475708, 0.5365872979164124]]}

View File

@@ -0,0 +1,19 @@
pytorch2.2.1:ä
0
input/Softplus_output_0 /Softplus"Softplus
1
/Softplus_output_0/Tanh_output_0/Tanh"Tanh
*
input
/Tanh_output_0output/Mul"Mul
main_graphZ!
input


batch_size
b"
output


batch_size
B

View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.norm(x, p=1, dim=1)
return m
circuit = MyModel()
x = torch.empty(1, 2, 2, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.02284395694732666, 0.7941043376922607, 0.07971876859664917, 0.8898420929908752, 0.8233054280281067, 0.11066079139709473, 0.4424799084663391, 0.4355071783065796, 0.6723723411560059, 0.6818525195121765, 0.8726171851158142, 0.17742449045181274, 0.054257750511169434, 0.5775953531265259, 0.7758923172950745, 0.8431423306465149, 0.7602444887161255, 0.29686522483825684, 0.22489851713180542, 0.0675363540649414, 0.981339693069458, 0.15771394968032837, 0.5801441669464111, 0.9044001698493958, 0.49266451597213745, 0.42621421813964844, 0.35345613956451416, 0.042848050594329834, 0.6908614039421082, 0.5422852039337158, 0.01975083351135254, 0.5772860050201416]]}

Binary file not shown.

View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.norm(x, p=2, dim=1)
return m
circuit = MyModel()
x = torch.empty(1, 2, 2, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.8709188103675842, 0.11553549766540527, 0.27376580238342285, 0.7518517971038818, 0.7879393100738525, 0.8765475749969482, 0.14315760135650635, 0.8982420563697815, 0.7274006605148315, 0.39007169008255005, 0.729040801525116, 0.11306107044219971, 0.658822774887085, 0.666404664516449, 0.3001367449760437, 0.45343858003616333, 0.7460223436355591, 0.7423691749572754, 0.7544230818748474, 0.5674425959587097, 0.8728761672973633, 0.27062875032424927, 0.1595977544784546, 0.22975260019302368, 0.6711723208427429, 0.8265992403030396, 0.48679041862487793, 0.689740777015686, 0.330846905708313, 0.5630669593811035, 0.8058932423591614, 0.5802426338195801]]}

Binary file not shown.

42
examples/onnx/tril/gen.py Normal file
View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.triu(x)
return m
circuit = MyModel()
x = torch.empty(1, 3, 3).uniform_(0, 5)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.4870188236236572, 2.275230646133423, 3.126268148422241, 0.6412187218666077, 0.9967470169067383, 1.9814395904541016, 1.6355383396148682, 0.6397527456283569, 0.7825168967247009]]}

Binary file not shown.

42
examples/onnx/triu/gen.py Normal file
View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.tril(x)
return m
circuit = MyModel()
x = torch.empty(1, 3, 3).uniform_(0, 5)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.2898547053337097, 1.8070811033248901, 0.30266255140304565, 3.00581955909729, 0.5379888415336609, 1.7057424783706665, 2.415961265563965, 0.589233934879303, 0.03824889659881592]]}

Binary file not shown.

View File

@@ -17,7 +17,7 @@
"clean": "rm -r dist || true",
"build:commonjs": "tsc --project tsconfig.commonjs.json && resolve-tspaths -p tsconfig.commonjs.json",
"build:esm": "tsc --project tsconfig.esm.json && resolve-tspaths -p tsconfig.esm.json",
"build": "pnpm run clean && pnpm run build:commonjs && pnpm run build:esm"
"build": "npm run clean && npm run build:commonjs && npm run build:esm"
},
"dependencies": {
"@ethereumjs/common": "^4.0.0",

View File

@@ -1,5 +1,5 @@
[build-system]
requires = ["maturin>=0.14,<0.15"]
requires = ["maturin>=1.0,<2.0"]
build-backend = "maturin"
[tool.pytest.ini_options]

View File

@@ -1,14 +1,14 @@
attrs==22.2.0
exceptiongroup==1.1.1
importlib-metadata==6.1.0
attrs==23.2.0
exceptiongroup==1.2.0
importlib-metadata==7.1.0
iniconfig==2.0.0
maturin==1.0.1
packaging==23.0
pluggy==1.0.0
pytest==7.2.2
maturin==1.5.1
packaging==24.0
pluggy==1.4.0
pytest==8.1.1
tomli==2.0.1
typing-extensions==4.5.0
zipp==3.15.0
onnx==1.14.1
onnxruntime==1.14.1
numpy==1.21.6
typing-extensions==4.10.0
zipp==3.18.1
onnx==1.15.0
onnxruntime==1.17.1
numpy==1.26.4

View File

@@ -1,3 +1,3 @@
[toolchain]
channel = "nightly-2023-08-24"
channel = "nightly-2024-02-06"
components = ["rustfmt", "clippy"]

View File

@@ -2,7 +2,7 @@
pub mod poseidon;
///
pub mod kzg;
pub mod polycommit;
///
pub mod planner;
@@ -15,6 +15,8 @@ pub use planner::*;
use crate::tensor::{TensorType, ValTensor};
use super::region::ConstantsMap;
/// Module trait used to extend ezkl functionality
pub trait Module<F: PrimeField + TensorType + PartialOrd> {
/// Config
@@ -39,6 +41,7 @@ pub trait Module<F: PrimeField + TensorType + PartialOrd> {
&self,
layouter: &mut impl Layouter<F>,
input: &[ValTensor<F>],
constants: &mut ConstantsMap<F>,
) -> Result<Self::InputAssignments, Error>;
/// Layout
fn layout(
@@ -46,6 +49,7 @@ pub trait Module<F: PrimeField + TensorType + PartialOrd> {
layouter: &mut impl Layouter<F>,
input: &[ValTensor<F>],
row_offset: usize,
constants: &mut ConstantsMap<F>,
) -> Result<ValTensor<F>, Error>;
/// Number of instance values the module uses every time it is applied
fn instance_increment_input(&self) -> Vec<usize>;

View File

@@ -4,49 +4,49 @@ is already implemented in halo2_gadgets, there is no wrapper chip that makes it
Thanks to https://github.com/summa-dev/summa-solvency/blob/master/src/chips/poseidon/hash.rs for the inspiration (and also helping us understand how to use this).
*/
use std::collections::HashMap;
// This chip adds a set of advice columns to the gadget Chip to store the inputs of the hash
use halo2_proofs::halo2curves::bn256::Fr as Fp;
use halo2_proofs::poly::commitment::{Blind, Params};
use halo2_proofs::poly::kzg::commitment::ParamsKZG;
use halo2_proofs::poly::commitment::{Blind, CommitmentScheme, Params};
use halo2_proofs::{circuit::*, plonk::*};
use halo2curves::bn256::{Bn256, G1Affine};
use halo2curves::bn256::G1Affine;
use halo2curves::group::prime::PrimeCurveAffine;
use halo2curves::group::Curve;
use halo2curves::CurveAffine;
use crate::circuit::region::ConstantsMap;
use crate::tensor::{Tensor, ValTensor, ValType, VarTensor};
use super::Module;
/// The number of instance columns used by the KZG hash function
/// The number of instance columns used by the PolyCommit hash function
pub const NUM_INSTANCE_COLUMNS: usize = 0;
/// The number of advice columns used by the KZG hash function
/// The number of advice columns used by the PolyCommit hash function
pub const NUM_INNER_COLS: usize = 1;
#[derive(Debug, Clone)]
/// WIDTH, RATE and L are const generics for the struct, which represent the width, rate, and number of inputs for the Poseidon hash function, respectively.
/// This means they are values that are known at compile time and can be used to specialize the implementation of the struct.
/// The actual chip provided by halo2_gadgets is added to the parent Chip.
pub struct KZGConfig {
/// Configuration for the PolyCommit chip
pub struct PolyCommitConfig {
///
pub hash_inputs: VarTensor,
pub inputs: VarTensor,
}
type InputAssignments = ();
/// PoseidonChip is a wrapper around the Pow5Chip that adds a set of advice columns to the gadget Chip to store the inputs of the hash
///
#[derive(Debug)]
pub struct KZGChip {
config: KZGConfig,
pub struct PolyCommitChip {
config: PolyCommitConfig,
}
impl KZGChip {
impl PolyCommitChip {
/// Commit to the message using the KZG commitment scheme
pub fn commit(
message: Vec<Fp>,
pub fn commit<Scheme: CommitmentScheme<Scalar = Fp, Curve = G1Affine>>(
message: Vec<Scheme::Scalar>,
degree: u32,
num_unusable_rows: u32,
params: &ParamsKZG<Bn256>,
params: &Scheme::ParamsProver,
) -> Vec<G1Affine> {
let k = params.k();
let domain = halo2_proofs::poly::EvaluationDomain::new(degree, k);
@@ -81,14 +81,14 @@ impl KZGChip {
}
}
impl Module<Fp> for KZGChip {
type Config = KZGConfig;
impl Module<Fp> for PolyCommitChip {
type Config = PolyCommitConfig;
type InputAssignments = InputAssignments;
type RunInputs = Vec<Fp>;
type Params = (usize, usize);
fn name(&self) -> &'static str {
"KZG"
"PolyCommit"
}
fn instance_increment_input(&self) -> Vec<usize> {
@@ -102,14 +102,15 @@ impl Module<Fp> for KZGChip {
/// Configuration of the PoseidonChip
fn configure(meta: &mut ConstraintSystem<Fp>, params: Self::Params) -> Self::Config {
let hash_inputs = VarTensor::new_unblinded_advice(meta, params.0, NUM_INNER_COLS, params.1);
Self::Config { hash_inputs }
let inputs = VarTensor::new_unblinded_advice(meta, params.0, NUM_INNER_COLS, params.1);
Self::Config { inputs }
}
fn layout_inputs(
&self,
_: &mut impl Layouter<Fp>,
_: &[ValTensor<Fp>],
_: &mut ConstantsMap<Fp>,
) -> Result<Self::InputAssignments, Error> {
Ok(())
}
@@ -122,11 +123,24 @@ impl Module<Fp> for KZGChip {
layouter: &mut impl Layouter<Fp>,
input: &[ValTensor<Fp>],
_: usize,
constants: &mut ConstantsMap<Fp>,
) -> Result<ValTensor<Fp>, Error> {
assert_eq!(input.len(), 1);
let local_constants = constants.clone();
layouter.assign_region(
|| "kzg commit",
|mut region| self.config.hash_inputs.assign(&mut region, 0, &input[0]),
|| "PolyCommit",
|mut region| {
let mut local_inner_constants = local_constants.clone();
let res = self.config.inputs.assign(
&mut region,
0,
&input[0],
&mut local_inner_constants,
)?;
*constants = local_inner_constants;
Ok(res)
},
)
}
@@ -163,7 +177,7 @@ mod tests {
}
impl Circuit<Fp> for HashCircuit {
type Config = KZGConfig;
type Config = PolyCommitConfig;
type FloorPlanner = ModulePlanner;
type Params = ();
@@ -178,7 +192,7 @@ mod tests {
fn configure(meta: &mut ConstraintSystem<Fp>) -> Self::Config {
let params = (K, R);
KZGChip::configure(meta, params)
PolyCommitChip::configure(meta, params)
}
fn synthesize(
@@ -186,8 +200,13 @@ mod tests {
config: Self::Config,
mut layouter: impl Layouter<Fp>,
) -> Result<(), Error> {
let kzg_chip = KZGChip::new(config);
kzg_chip.layout(&mut layouter, &[self.message.clone()], 0);
let polycommit_chip = PolyCommitChip::new(config);
polycommit_chip.layout(
&mut layouter,
&[self.message.clone()],
0,
&mut HashMap::new(),
);
Ok(())
}
@@ -195,7 +214,7 @@ mod tests {
#[test]
#[ignore]
fn kzg_for_a_range_of_input_sizes() {
fn polycommit_chip_for_a_range_of_input_sizes() {
let rng = rand::rngs::OsRng;
#[cfg(not(target_arch = "wasm32"))]
@@ -225,7 +244,7 @@ mod tests {
#[test]
#[ignore]
fn kzg_commit_much_longer_input() {
fn polycommit_chip_much_longer_input() {
#[cfg(not(target_arch = "wasm32"))]
env_logger::init();

View File

@@ -18,6 +18,7 @@ use maybe_rayon::slice::ParallelSlice;
use std::marker::PhantomData;
use crate::circuit::region::ConstantsMap;
use crate::tensor::{Tensor, ValTensor, ValType};
use super::Module;
@@ -172,12 +173,15 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
&self,
layouter: &mut impl Layouter<Fp>,
message: &[ValTensor<Fp>],
constants: &mut ConstantsMap<Fp>,
) -> Result<Self::InputAssignments, Error> {
assert_eq!(message.len(), 1);
let message = message[0].clone();
let start_time = instant::Instant::now();
let local_constants = constants.clone();
let res = layouter.assign_region(
|| "load message",
|mut region| {
@@ -199,12 +203,26 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
ValType::PrevAssigned(v) | ValType::AssignedConstant(v, ..) => {
Ok(v.clone())
}
ValType::Constant(f) => region.assign_advice_from_constant(
|| format!("load message_{}", i),
self.config.hash_inputs[x],
y,
*f,
),
ValType::Constant(f) => {
if local_constants.contains_key(f) {
Ok(constants.get(f).unwrap().assigned_cell().ok_or({
log::error!("constant not previously assigned");
Error::Synthesis
})?)
} else {
let res = region.assign_advice_from_constant(
|| format!("load message_{}", i),
self.config.hash_inputs[x],
y,
*f,
)?;
constants
.insert(*f, ValType::AssignedConstant(res.clone(), *f));
Ok(res)
}
}
e => {
log::error!(
"wrong input type {:?}, must be previously assigned",
@@ -270,8 +288,9 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
layouter: &mut impl Layouter<Fp>,
input: &[ValTensor<Fp>],
row_offset: usize,
constants: &mut ConstantsMap<Fp>,
) -> Result<ValTensor<Fp>, Error> {
let (mut input_cells, zero_val) = self.layout_inputs(layouter, input)?;
let (mut input_cells, zero_val) = self.layout_inputs(layouter, input, constants)?;
// extract the values from the input cells
let mut assigned_input: Tensor<ValType<Fp>> =
input_cells.iter().map(|e| ValType::from(e.clone())).into();
@@ -434,7 +453,7 @@ mod tests {
*,
};
use std::marker::PhantomData;
use std::{collections::HashMap, marker::PhantomData};
use halo2_gadgets::poseidon::primitives::Spec;
use halo2_proofs::{
@@ -477,7 +496,12 @@ mod tests {
mut layouter: impl Layouter<Fp>,
) -> Result<(), Error> {
let chip: PoseidonChip<PoseidonSpec, WIDTH, RATE, L> = PoseidonChip::new(config);
chip.layout(&mut layouter, &[self.message.clone()], 0)?;
chip.layout(
&mut layouter,
&[self.message.clone()],
0,
&mut HashMap::new(),
)?;
Ok(())
}

View File

@@ -345,7 +345,7 @@ pub struct BaseConfig<F: PrimeField + TensorType + PartialOrd> {
_marker: PhantomData<F>,
}
impl<F: PrimeField + TensorType + PartialOrd> BaseConfig<F> {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
/// Returns a new [BaseConfig] with no inputs, no selectors, and no tables.
pub fn dummy(col_size: usize, num_inner_cols: usize) -> Self {
Self {

View File

@@ -46,7 +46,8 @@ pub enum HybridOp {
dim: usize,
},
Softmax {
scale: utils::F32,
input_scale: utils::F32,
output_scale: utils::F32,
axes: Vec<usize>,
},
RangeCheck(Tolerance),
@@ -70,7 +71,7 @@ pub enum HybridOp {
},
}
impl<F: PrimeField + TensorType + PartialOrd> Op<F> for HybridOp {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for HybridOp {
///
fn requires_homogenous_input_scales(&self) -> Vec<usize> {
match self {
@@ -130,9 +131,16 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for HybridOp {
kernel_shape,
normalized,
} => tensor::ops::sumpool(&x, *padding, *stride, *kernel_shape, *normalized)?,
HybridOp::Softmax { scale, axes } => {
tensor::ops::nonlinearities::softmax_axes(&x, scale.into(), axes)
}
HybridOp::Softmax {
input_scale,
output_scale,
axes,
} => tensor::ops::nonlinearities::softmax_axes(
&x,
input_scale.into(),
output_scale.into(),
axes,
),
HybridOp::RangeCheck(tol) => {
let y = inputs[1].clone().map(|x| felt_to_i128(x));
tensor::ops::nonlinearities::range_check_percent(&[x, y], 128, 128, tol.val)
@@ -203,8 +211,15 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for HybridOp {
),
HybridOp::ReduceMin { axes } => format!("REDUCEMIN (axes={:?})", axes),
HybridOp::ReduceArgMin { dim } => format!("REDUCEARGMIN (dim={})", dim),
HybridOp::Softmax { scale, axes } => {
format!("SOFTMAX (scale={}, axes={:?})", scale, axes)
HybridOp::Softmax {
input_scale,
output_scale,
axes,
} => {
format!(
"SOFTMAX (input_scale={}, output_scale={}, axes={:?})",
input_scale, output_scale, axes
)
}
HybridOp::RangeCheck(p) => format!("RANGECHECK (tol={:?})", p),
HybridOp::Greater => "GREATER".into(),
@@ -324,9 +339,18 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for HybridOp {
HybridOp::ReduceArgMin { dim } => {
layouts::argmin_axes(config, region, values[..].try_into()?, *dim)?
}
HybridOp::Softmax { scale, axes } => {
layouts::softmax_axes(config, region, values[..].try_into()?, *scale, axes)?
}
HybridOp::Softmax {
input_scale,
output_scale,
axes,
} => layouts::softmax_axes(
config,
region,
values[..].try_into()?,
*input_scale,
*output_scale,
axes,
)?,
HybridOp::RangeCheck(tol) => layouts::range_check_percent(
config,
region,
@@ -359,8 +383,9 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for HybridOp {
| HybridOp::ReduceArgMax { .. }
| HybridOp::OneHot { .. }
| HybridOp::ReduceArgMin { .. } => 0,
HybridOp::Softmax { .. } => 2 * in_scales[0],
HybridOp::Recip { output_scale, .. } => multiplier_to_scale(output_scale.0 as f64),
HybridOp::Softmax { output_scale, .. } | HybridOp::Recip { output_scale, .. } => {
multiplier_to_scale(output_scale.0 as f64)
}
_ => in_scales[0],
};
Ok(scale)

View File

@@ -9,6 +9,7 @@ use halo2curves::ff::PrimeField;
use itertools::Itertools;
use log::{error, trace};
use maybe_rayon::{
iter::IntoParallelRefIterator,
prelude::{IndexedParallelIterator, IntoParallelIterator, ParallelIterator},
slice::ParallelSliceMut,
};
@@ -33,7 +34,7 @@ use super::*;
use crate::circuit::ops::lookup::LookupOp;
/// Same as div but splits the division into N parts
pub(crate) fn loop_div<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn loop_div<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
value: &[ValTensor<F>; 1],
@@ -68,7 +69,7 @@ pub(crate) fn loop_div<F: PrimeField + TensorType + PartialOrd>(
}
/// Div accumulated layout
pub(crate) fn div<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn div<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
value: &[ValTensor<F>; 1],
@@ -93,9 +94,9 @@ pub(crate) fn div<F: PrimeField + TensorType + PartialOrd>(
let mut claimed_output: ValTensor<F> = if is_assigned {
let input_evals = input.get_int_evals()?;
tensor::ops::nonlinearities::const_div(&input_evals.clone(), felt_to_i128(div) as f64)
.iter()
.map(|x| Ok(Value::known(i128_to_felt(*x))))
.collect::<Result<Tensor<Value<F>>, Box<dyn Error>>>()?
.par_iter()
.map(|x| Value::known(i128_to_felt(*x)))
.collect::<Tensor<Value<F>>>()
.into()
} else {
Tensor::new(
@@ -133,7 +134,7 @@ pub(crate) fn div<F: PrimeField + TensorType + PartialOrd>(
}
/// recip accumulated layout
pub(crate) fn recip<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn recip<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
value: &[ValTensor<F>; 1],
@@ -166,9 +167,9 @@ pub(crate) fn recip<F: PrimeField + TensorType + PartialOrd>(
felt_to_i128(input_scale) as f64,
felt_to_i128(output_scale) as f64,
)
.iter()
.map(|x| Ok(Value::known(i128_to_felt(*x))))
.collect::<Result<Tensor<Value<F>>, Box<dyn Error>>>()?
.par_iter()
.map(|x| Value::known(i128_to_felt(*x)))
.collect::<Tensor<Value<F>>>()
.into()
} else {
Tensor::new(
@@ -226,7 +227,7 @@ pub(crate) fn recip<F: PrimeField + TensorType + PartialOrd>(
}
/// Dot product accumulated layout
pub(crate) fn dot<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn dot<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
@@ -337,7 +338,7 @@ pub(crate) fn dot<F: PrimeField + TensorType + PartialOrd>(
}
/// Einsum
pub(crate) fn einsum<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn einsum<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
inputs: &[ValTensor<F>],
@@ -524,14 +525,7 @@ pub(crate) fn einsum<F: PrimeField + TensorType + PartialOrd>(
// Compute the product of all input tensors
for pair in input_pairs {
let product_across_pair = prod(
config,
region,
&[pair.try_into().map_err(|e| {
error!("{}", e);
halo2_proofs::plonk::Error::Synthesis
})?],
)?;
let product_across_pair = prod(config, region, &[pair.into()])?;
if let Some(product) = prod_res {
prod_res = Some(
@@ -563,7 +557,7 @@ pub(crate) fn einsum<F: PrimeField + TensorType + PartialOrd>(
Ok(output)
}
fn _sort_ascending<F: PrimeField + TensorType + PartialOrd>(
fn _sort_ascending<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -574,12 +568,12 @@ fn _sort_ascending<F: PrimeField + TensorType + PartialOrd>(
let is_assigned = !input.any_unknowns()?;
let sorted = if is_assigned {
input
.get_int_evals()?
.iter()
.sorted_by(|a, b| a.cmp(b))
.map(|x| Ok(Value::known(i128_to_felt(*x))))
.collect::<Result<Tensor<Value<F>>, Box<dyn Error>>>()?
let mut int_evals = input.get_int_evals()?;
int_evals.par_sort_unstable_by(|a, b| a.cmp(b));
int_evals
.par_iter()
.map(|x| Value::known(i128_to_felt(*x)))
.collect::<Tensor<Value<F>>>()
} else {
Tensor::new(
Some(&vec![Value::<F>::unknown(); input.len()]),
@@ -607,7 +601,7 @@ fn _sort_ascending<F: PrimeField + TensorType + PartialOrd>(
}
///
fn _select_topk<F: PrimeField + TensorType + PartialOrd>(
fn _select_topk<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -622,7 +616,7 @@ fn _select_topk<F: PrimeField + TensorType + PartialOrd>(
}
/// Select top k elements
pub(crate) fn topk_axes<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn topk_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -642,11 +636,12 @@ pub(crate) fn topk_axes<F: PrimeField + TensorType + PartialOrd>(
Ok(output)
}
fn select<F: PrimeField + TensorType + PartialOrd>(
fn select<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let start = instant::Instant::now();
let (mut input, index) = (values[0].clone(), values[1].clone());
input.flatten();
@@ -656,12 +651,13 @@ fn select<F: PrimeField + TensorType + PartialOrd>(
let is_assigned = !input.any_unknowns()? && !index.any_unknowns()?;
let output: ValTensor<F> = if is_assigned {
let output: ValTensor<F> = if is_assigned && region.witness_gen() {
let felt_evals = input.get_felt_evals()?;
index
.get_int_evals()?
.iter()
.map(|x| Ok(Value::known(input.get_felt_evals()?.get(&[*x as usize]))))
.collect::<Result<Tensor<Value<F>>, Box<dyn Error>>>()?
.par_iter()
.map(|x| Value::known(felt_evals.get(&[*x as usize])))
.collect::<Tensor<Value<F>>>()
} else {
Tensor::new(
Some(&vec![Value::<F>::unknown(); index.len()]),
@@ -673,10 +669,13 @@ fn select<F: PrimeField + TensorType + PartialOrd>(
let (_, assigned_output) =
dynamic_lookup(config, region, &[index, output], &[dim_indices, input])?;
let end = start.elapsed();
trace!("select took: {:?}", end);
Ok(assigned_output)
}
fn one_hot<F: PrimeField + TensorType + PartialOrd>(
fn one_hot<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -692,7 +691,7 @@ fn one_hot<F: PrimeField + TensorType + PartialOrd>(
let output: ValTensor<F> = if is_assigned {
let int_evals = input.get_int_evals()?;
let res = tensor::ops::one_hot(&int_evals, num_classes, 1)?;
res.iter()
res.par_iter()
.map(|x| Value::known(i128_to_felt(*x)))
.collect::<Tensor<_>>()
} else {
@@ -728,12 +727,13 @@ fn one_hot<F: PrimeField + TensorType + PartialOrd>(
}
/// Dynamic lookup
pub(crate) fn dynamic_lookup<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn dynamic_lookup<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
lookups: &[ValTensor<F>; 2],
tables: &[ValTensor<F>; 2],
) -> Result<(ValTensor<F>, ValTensor<F>), Box<dyn Error>> {
let start = instant::Instant::now();
// if not all lookups same length err
if lookups[0].len() != lookups[1].len() {
return Err("lookups must be same length".into());
@@ -753,20 +753,28 @@ pub(crate) fn dynamic_lookup<F: PrimeField + TensorType + PartialOrd>(
let _table_1 = region.assign_dynamic_lookup(&config.dynamic_lookups.tables[1], &table_1)?;
let table_len = table_0.len();
trace!("assigning tables took: {:?}", start.elapsed());
// now create a vartensor of constants for the dynamic lookup index
let table_index = create_constant_tensor(F::from(dynamic_lookup_index as u64), table_len);
let _table_index =
region.assign_dynamic_lookup(&config.dynamic_lookups.tables[2], &table_index)?;
trace!("assigning table index took: {:?}", start.elapsed());
let lookup_0 = region.assign(&config.dynamic_lookups.inputs[0], &lookup_0)?;
let lookup_1 = region.assign(&config.dynamic_lookups.inputs[1], &lookup_1)?;
let lookup_len = lookup_0.len();
trace!("assigning lookups took: {:?}", start.elapsed());
// now set the lookup index
let lookup_index = create_constant_tensor(F::from(dynamic_lookup_index as u64), lookup_len);
let _lookup_index = region.assign(&config.dynamic_lookups.inputs[2], &lookup_index)?;
trace!("assigning lookup index took: {:?}", start.elapsed());
if !region.is_dummy() {
(0..table_len)
.map(|i| {
@@ -802,11 +810,14 @@ pub(crate) fn dynamic_lookup<F: PrimeField + TensorType + PartialOrd>(
region.increment_dynamic_lookup_index(1);
region.increment(lookup_len);
let end = start.elapsed();
trace!("dynamic lookup took: {:?}", end);
Ok((lookup_0, lookup_1))
}
/// Shuffle arg
pub(crate) fn shuffles<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn shuffles<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
input: &[ValTensor<F>; 1],
@@ -869,7 +880,7 @@ pub(crate) fn shuffles<F: PrimeField + TensorType + PartialOrd>(
}
/// One hot accumulated layout
pub(crate) fn one_hot_axis<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn one_hot_axis<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -922,7 +933,7 @@ pub(crate) fn one_hot_axis<F: PrimeField + TensorType + PartialOrd>(
}
/// Gather accumulated layout
pub(crate) fn gather<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn gather<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
@@ -950,7 +961,7 @@ pub(crate) fn gather<F: PrimeField + TensorType + PartialOrd>(
}
/// Gather accumulated layout
pub(crate) fn gather_elements<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn gather_elements<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
@@ -973,7 +984,7 @@ pub(crate) fn gather_elements<F: PrimeField + TensorType + PartialOrd>(
}
/// Gather accumulated layout
pub(crate) fn gather_nd<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn gather_nd<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
@@ -1024,7 +1035,7 @@ pub(crate) fn gather_nd<F: PrimeField + TensorType + PartialOrd>(
/// Takes a tensor representing a multi-dimensional index and returns a tensor representing the linearized index.
/// The linearized index is the index of the element in the flattened tensor.
/// FOr instance if the dims is [3,5,2], the linearized index of [2] at dim 1 is 2*5 + 3 = 13
pub(crate) fn linearize_element_index<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn linearize_element_index<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -1032,6 +1043,7 @@ pub(crate) fn linearize_element_index<F: PrimeField + TensorType + PartialOrd>(
dim: usize,
is_flat_index: bool,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let start_time = instant::Instant::now();
let index = values[0].clone();
if !is_flat_index {
assert_eq!(index.dims().len(), dims.len());
@@ -1105,6 +1117,9 @@ pub(crate) fn linearize_element_index<F: PrimeField + TensorType + PartialOrd>(
region.apply_in_loop(&mut output, inner_loop_function)?;
let elapsed = start_time.elapsed();
trace!("linearize_element_index took: {:?}", elapsed);
Ok(output.into())
}
@@ -1125,7 +1140,7 @@ pub(crate) fn linearize_element_index<F: PrimeField + TensorType + PartialOrd>(
/// If indices_shape[-1] == r-b, since the rank of indices is q, indices can be thought of as N (q-b-1)-dimensional tensors containing 1-D tensors of dimension r-b, where N is an integer equals to the product of 1 and all the elements in the batch dimensions of the indices_shape.
/// Let us think of each such r-b ranked tensor as indices_slice. Each scalar value corresponding to data[0:b-1,indices_slice] is filled into the corresponding location of the (q-b-1)-dimensional tensor to form the output tensor (Example 1 below)
/// If indices_shape[-1] < r-b, since the rank of indices is q, indices can be thought of as N (q-b-1)-dimensional tensor containing 1-D tensors of dimension < r-b. Let us think of each such tensors as indices_slice. Each tensor slice corresponding to data[0:b-1, indices_slice , :] is filled into the corresponding location of the (q-b-1)-dimensional tensor to form the output tensor (Examples 2, 3, 4 and 5 below)
pub(crate) fn linearize_nd_index<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn linearize_nd_index<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -1222,7 +1237,7 @@ pub(crate) fn linearize_nd_index<F: PrimeField + TensorType + PartialOrd>(
.iter()
.map(|x| {
let slice = x.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
Ok(index_slice.get_slice(&slice)?)
index_slice.get_slice(&slice)
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?
};
@@ -1232,7 +1247,6 @@ pub(crate) fn linearize_nd_index<F: PrimeField + TensorType + PartialOrd>(
const_offset += F::from(coord[i] as u64) * dim_multiplier[i];
}
let const_offset = create_constant_tensor(const_offset, 1);
let mut results = vec![];
@@ -1250,16 +1264,18 @@ pub(crate) fn linearize_nd_index<F: PrimeField + TensorType + PartialOrd>(
let res = sum(config, region, &[res])?;
results.push(res.get_inner_tensor()?.clone());
// assert than res is less than the product of the dims
assert!(
if region.witness_gen() {
assert!(
res.get_int_evals()?
.iter()
.all(|x| *x < dims.iter().product::<usize>() as i128),
"res is greater than the product of the dims {} (coord={}, index_dim_multiplier={}, res={})",
dims.iter().product::<usize>(),
index_val.show(),
index_val.show(),
index_dim_multiplier.show(),
res.show()
);
}
}
let result_tensor = Tensor::from(results.into_iter());
@@ -1273,7 +1289,9 @@ pub(crate) fn linearize_nd_index<F: PrimeField + TensorType + PartialOrd>(
Ok(output.into())
}
pub(crate) fn get_missing_set_elements<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn get_missing_set_elements<
F: PrimeField + TensorType + PartialOrd + std::hash::Hash,
>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
@@ -1304,7 +1322,7 @@ pub(crate) fn get_missing_set_elements<F: PrimeField + TensorType + PartialOrd>(
}
fullset_evals
.iter()
.par_iter()
.map(|x| Value::known(i128_to_felt(*x)))
.collect::<Tensor<Value<F>>>()
.into()
@@ -1337,7 +1355,7 @@ pub(crate) fn get_missing_set_elements<F: PrimeField + TensorType + PartialOrd>(
}
/// Gather accumulated layout
pub(crate) fn scatter_elements<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn scatter_elements<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 3],
@@ -1354,14 +1372,14 @@ pub(crate) fn scatter_elements<F: PrimeField + TensorType + PartialOrd>(
let is_assigned = !input.any_unknowns()? && !index.any_unknowns()? && !src.any_unknowns()?;
let claimed_output: ValTensor<F> = if is_assigned {
let claimed_output: ValTensor<F> = if is_assigned && region.witness_gen() {
let input_inner = input.get_int_evals()?;
let index_inner = index.get_int_evals()?.map(|x| x as usize);
let src_inner = src.get_int_evals()?;
let res = tensor::ops::scatter(&input_inner, &index_inner, &src_inner, dim)?;
res.iter()
res.par_iter()
.map(|x| Value::known(i128_to_felt(*x)))
.collect::<Tensor<Value<F>>>()
.into()
@@ -1419,7 +1437,7 @@ pub(crate) fn scatter_elements<F: PrimeField + TensorType + PartialOrd>(
}
/// Scatter Nd
pub(crate) fn scatter_nd<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn scatter_nd<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 3],
@@ -1433,14 +1451,14 @@ pub(crate) fn scatter_nd<F: PrimeField + TensorType + PartialOrd>(
let is_assigned = !input.any_unknowns()? && !index.any_unknowns()? && !src.any_unknowns()?;
let claimed_output: ValTensor<F> = if is_assigned {
let claimed_output: ValTensor<F> = if is_assigned && region.witness_gen() {
let input_inner = input.get_int_evals()?;
let index_inner = index.get_int_evals()?.map(|x| x as usize);
let src_inner = src.get_int_evals()?;
let res = tensor::ops::scatter_nd(&input_inner, &index_inner, &src_inner)?;
res.iter()
res.par_iter()
.map(|x| Value::known(i128_to_felt(*x)))
.collect::<Tensor<Value<F>>>()
.into()
@@ -1457,7 +1475,6 @@ pub(crate) fn scatter_nd<F: PrimeField + TensorType + PartialOrd>(
region.increment(claimed_output.len());
claimed_output.reshape(input.dims())?;
// scatter elements is the inverse of gather elements
let (gather_src, linear_index) =
gather_nd(config, region, &[claimed_output.clone(), index.clone()], 0)?;
@@ -1498,7 +1515,7 @@ pub(crate) fn scatter_nd<F: PrimeField + TensorType + PartialOrd>(
}
/// sum accumulated layout
pub(crate) fn sum<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn sum<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -1581,7 +1598,7 @@ pub(crate) fn sum<F: PrimeField + TensorType + PartialOrd>(
}
/// product accumulated layout
pub(crate) fn prod<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn prod<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -1661,7 +1678,7 @@ pub(crate) fn prod<F: PrimeField + TensorType + PartialOrd>(
}
/// Axes wise op wrapper
fn axes_wise_op<F: PrimeField + TensorType + PartialOrd>(
fn axes_wise_op<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -1722,7 +1739,7 @@ fn axes_wise_op<F: PrimeField + TensorType + PartialOrd>(
}
/// Sum accumulated layout
pub(crate) fn prod_axes<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn prod_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -1733,7 +1750,7 @@ pub(crate) fn prod_axes<F: PrimeField + TensorType + PartialOrd>(
}
/// Sum accumulated layout
pub(crate) fn sum_axes<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn sum_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -1744,7 +1761,7 @@ pub(crate) fn sum_axes<F: PrimeField + TensorType + PartialOrd>(
}
/// argmax layout
pub(crate) fn argmax_axes<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn argmax_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -1762,7 +1779,7 @@ pub(crate) fn argmax_axes<F: PrimeField + TensorType + PartialOrd>(
}
/// Max accumulated layout
pub(crate) fn max_axes<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn max_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -1774,7 +1791,7 @@ pub(crate) fn max_axes<F: PrimeField + TensorType + PartialOrd>(
}
/// Argmin layout
pub(crate) fn argmin_axes<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn argmin_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -1792,7 +1809,7 @@ pub(crate) fn argmin_axes<F: PrimeField + TensorType + PartialOrd>(
}
/// Min accumulated layout
pub(crate) fn min_axes<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn min_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -1804,7 +1821,7 @@ pub(crate) fn min_axes<F: PrimeField + TensorType + PartialOrd>(
}
/// Pairwise (elementwise) op layout
pub(crate) fn pairwise<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn pairwise<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
@@ -1958,8 +1975,23 @@ pub(crate) fn pairwise<F: PrimeField + TensorType + PartialOrd>(
Ok(output)
}
pub(crate) fn mean_of_squares_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
axes: &[usize],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let squared = pow(config, region, values, 2)?;
let sum_squared = sum_axes(config, region, &[squared], axes)?;
let dividand: usize = values[0].len() / sum_squared.len();
let mean_squared = div(config, region, &[sum_squared], F::from(dividand as u64))?;
Ok(mean_squared)
}
/// expand the tensor to the given shape
pub(crate) fn expand<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn expand<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -1972,7 +2004,7 @@ pub(crate) fn expand<F: PrimeField + TensorType + PartialOrd>(
}
///
pub(crate) fn greater<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn greater<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
@@ -1995,7 +2027,7 @@ pub(crate) fn greater<F: PrimeField + TensorType + PartialOrd>(
}
///
pub(crate) fn greater_equal<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn greater_equal<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
@@ -2018,7 +2050,7 @@ pub(crate) fn greater_equal<F: PrimeField + TensorType + PartialOrd>(
}
///
pub(crate) fn less<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn less<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
@@ -2028,7 +2060,7 @@ pub(crate) fn less<F: PrimeField + TensorType + PartialOrd>(
}
///
pub(crate) fn less_equal<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn less_equal<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
@@ -2038,7 +2070,7 @@ pub(crate) fn less_equal<F: PrimeField + TensorType + PartialOrd>(
}
/// And boolean operation
pub(crate) fn and<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn and<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
@@ -2049,7 +2081,7 @@ pub(crate) fn and<F: PrimeField + TensorType + PartialOrd>(
}
/// Or boolean operation
pub(crate) fn or<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn or<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
@@ -2065,7 +2097,7 @@ pub(crate) fn or<F: PrimeField + TensorType + PartialOrd>(
}
/// Equality boolean operation
pub(crate) fn equals<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn equals<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
@@ -2075,7 +2107,7 @@ pub(crate) fn equals<F: PrimeField + TensorType + PartialOrd>(
}
/// Equality boolean operation
pub(crate) fn equals_zero<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn equals_zero<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -2109,7 +2141,7 @@ pub(crate) fn equals_zero<F: PrimeField + TensorType + PartialOrd>(
}
/// Xor boolean operation
pub(crate) fn xor<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn xor<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
@@ -2135,7 +2167,7 @@ pub(crate) fn xor<F: PrimeField + TensorType + PartialOrd>(
}
/// Not boolean operation
pub(crate) fn not<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn not<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -2151,7 +2183,7 @@ pub(crate) fn not<F: PrimeField + TensorType + PartialOrd>(
}
/// Iff
pub(crate) fn iff<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn iff<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 3],
@@ -2175,7 +2207,7 @@ pub(crate) fn iff<F: PrimeField + TensorType + PartialOrd>(
}
/// Negation operation accumulated layout
pub(crate) fn neg<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn neg<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -2185,7 +2217,7 @@ pub(crate) fn neg<F: PrimeField + TensorType + PartialOrd>(
}
/// Sumpool accumulated layout
pub(crate) fn sumpool<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn sumpool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>],
@@ -2239,7 +2271,7 @@ pub(crate) fn sumpool<F: PrimeField + TensorType + PartialOrd>(
}
/// Convolution accumulated layout
pub(crate) fn max_pool2d<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn max_pool2d<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -2304,7 +2336,7 @@ pub(crate) fn max_pool2d<F: PrimeField + TensorType + PartialOrd>(
/// DeConvolution accumulated layout
pub(crate) fn deconv<
F: PrimeField + TensorType + PartialOrd + std::marker::Send + std::marker::Sync,
F: PrimeField + TensorType + PartialOrd + std::hash::Hash + std::marker::Send + std::marker::Sync,
>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
@@ -2397,7 +2429,7 @@ pub(crate) fn deconv<
/// Convolution accumulated layout
pub(crate) fn conv<
F: PrimeField + TensorType + PartialOrd + std::marker::Send + std::marker::Sync,
F: PrimeField + TensorType + PartialOrd + std::hash::Hash + std::marker::Send + std::marker::Sync,
>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
@@ -2578,7 +2610,7 @@ pub(crate) fn conv<
}
/// Power accumulated layout
pub(crate) fn pow<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn pow<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -2594,7 +2626,7 @@ pub(crate) fn pow<F: PrimeField + TensorType + PartialOrd>(
}
/// Rescaled op accumulated layout
pub(crate) fn rescale<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn rescale<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>],
@@ -2616,7 +2648,7 @@ pub(crate) fn rescale<F: PrimeField + TensorType + PartialOrd>(
}
/// Dummy (no contraints) reshape layout
pub(crate) fn reshape<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn reshape<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
values: &[ValTensor<F>; 1],
new_dims: &[usize],
) -> Result<ValTensor<F>, Box<dyn Error>> {
@@ -2626,7 +2658,7 @@ pub(crate) fn reshape<F: PrimeField + TensorType + PartialOrd>(
}
/// Dummy (no contraints) move_axis layout
pub(crate) fn move_axis<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn move_axis<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
values: &[ValTensor<F>; 1],
source: usize,
destination: usize,
@@ -2637,7 +2669,7 @@ pub(crate) fn move_axis<F: PrimeField + TensorType + PartialOrd>(
}
/// resize layout
pub(crate) fn resize<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn resize<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -2651,7 +2683,7 @@ pub(crate) fn resize<F: PrimeField + TensorType + PartialOrd>(
}
/// Slice layout
pub(crate) fn slice<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn slice<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -2660,15 +2692,45 @@ pub(crate) fn slice<F: PrimeField + TensorType + PartialOrd>(
end: &usize,
) -> Result<ValTensor<F>, Box<dyn Error>> {
// assigns the instance to the advice.
let mut output = region.assign(&config.custom_gates.output, &values[0])?;
region.increment(output.len());
let mut output = values[0].clone();
let is_assigned = output.all_prev_assigned();
if !is_assigned {
output = region.assign(&config.custom_gates.output, &values[0])?;
region.increment(output.len());
}
output.slice(axis, start, end)?;
Ok(output)
}
/// Trilu layout
pub(crate) fn trilu<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
k: &i32,
upper: &bool,
) -> Result<ValTensor<F>, Box<dyn Error>> {
// assigns the instance to the advice.
let mut output = values[0].clone();
let is_assigned = output.all_prev_assigned();
if !is_assigned {
output = region.assign(&config.custom_gates.inputs[0], &values[0])?;
}
let res = tensor::ops::trilu(output.get_inner_tensor()?, *k, *upper)?;
let output = region.assign(&config.custom_gates.output, &res.into())?;
region.increment(output.len());
Ok(output)
}
/// Concat layout
pub(crate) fn concat<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn concat<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
values: &[ValTensor<F>],
axis: &usize,
) -> Result<ValTensor<F>, Box<dyn Error>> {
@@ -2680,7 +2742,7 @@ pub(crate) fn concat<F: PrimeField + TensorType + PartialOrd>(
}
/// Identity constraint. Usually used to constrain an instance column to an advice so the returned cells / values can be operated upon.
pub(crate) fn identity<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn identity<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -2695,7 +2757,7 @@ pub(crate) fn identity<F: PrimeField + TensorType + PartialOrd>(
}
/// Boolean identity constraint. Usually used to constrain an instance column to an advice so the returned cells / values can be operated upon.
pub(crate) fn boolean_identity<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn boolean_identity<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -2731,7 +2793,7 @@ pub(crate) fn boolean_identity<F: PrimeField + TensorType + PartialOrd>(
}
/// Downsample layout
pub(crate) fn downsample<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn downsample<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -2748,7 +2810,7 @@ pub(crate) fn downsample<F: PrimeField + TensorType + PartialOrd>(
}
/// layout for enforcing two sets of cells to be equal
pub(crate) fn enforce_equality<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn enforce_equality<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
@@ -2774,7 +2836,7 @@ pub(crate) fn enforce_equality<F: PrimeField + TensorType + PartialOrd>(
}
/// layout for range check.
pub(crate) fn range_check<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn range_check<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -2830,12 +2892,13 @@ pub(crate) fn range_check<F: PrimeField + TensorType + PartialOrd>(
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
if region.throw_range_check_error() {
let is_assigned = !w.any_unknowns()?;
if is_assigned && region.witness_gen() {
// assert is within range
let int_values = w.get_int_evals()?;
for v in int_values {
if v < range.0 || v > range.1 {
log::debug!("Value ({:?}) out of range: {:?}", v, range);
for v in int_values.iter() {
if v < &range.0 || v > &range.1 {
log::error!("Value ({:?}) out of range: {:?}", v, range);
return Err(Box::new(TensorError::TableLookupError));
}
}
@@ -2855,7 +2918,7 @@ pub(crate) fn range_check<F: PrimeField + TensorType + PartialOrd>(
}
/// layout for nonlinearity check.
pub(crate) fn nonlinearity<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn nonlinearity<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -2957,7 +3020,7 @@ pub(crate) fn nonlinearity<F: PrimeField + TensorType + PartialOrd>(
}
/// Argmax
pub(crate) fn argmax<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn argmax<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -2993,7 +3056,7 @@ pub(crate) fn argmax<F: PrimeField + TensorType + PartialOrd>(
}
/// Argmin
pub(crate) fn argmin<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn argmin<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -3029,7 +3092,7 @@ pub(crate) fn argmin<F: PrimeField + TensorType + PartialOrd>(
}
/// max layout
pub(crate) fn max<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn max<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -3039,7 +3102,7 @@ pub(crate) fn max<F: PrimeField + TensorType + PartialOrd>(
}
/// min layout
pub(crate) fn min<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn min<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -3047,7 +3110,7 @@ pub(crate) fn min<F: PrimeField + TensorType + PartialOrd>(
_sort_ascending(config, region, values)?.get_slice(&[0..1])
}
fn multi_dim_axes_op<F: PrimeField + TensorType + PartialOrd>(
fn multi_dim_axes_op<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
@@ -3150,18 +3213,19 @@ fn multi_dim_axes_op<F: PrimeField + TensorType + PartialOrd>(
}
/// softmax layout
pub(crate) fn softmax_axes<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn softmax_axes<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
scale: utils::F32,
input_scale: utils::F32,
output_scale: utils::F32,
axes: &[usize],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let soft_max_at_scale = move |config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1]|
-> Result<ValTensor<F>, Box<dyn Error>> {
softmax(config, region, values, scale)
softmax(config, region, values, input_scale, output_scale)
};
let output = multi_dim_axes_op(config, region, values, axes, soft_max_at_scale)?;
@@ -3169,33 +3233,66 @@ pub(crate) fn softmax_axes<F: PrimeField + TensorType + PartialOrd>(
Ok(output)
}
/// softmax func
pub(crate) fn softmax<F: PrimeField + TensorType + PartialOrd>(
/// percent func
pub(crate) fn percent<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
scale: utils::F32,
input_scale: utils::F32,
output_scale: utils::F32,
) -> Result<ValTensor<F>, Box<dyn Error>> {
// elementwise exponential
let ex = nonlinearity(config, region, values, &LookupOp::Exp { scale })?;
let is_assigned = values[0].all_prev_assigned();
let mut input = values[0].clone();
if !is_assigned {
input = region.assign(&config.custom_gates.inputs[0], &values[0])?;
region.increment(input.len());
};
// sum of exps
let denom = sum(config, region, &[ex.clone()])?;
// get the inverse
let felt_scale = F::from(scale.0 as u64);
let inv_denom = recip(config, region, &[denom], felt_scale, felt_scale)?;
let denom = sum(config, region, &[input.clone()])?;
let input_felt_scale = F::from(input_scale.0 as u64);
let output_felt_scale = F::from(output_scale.0 as u64);
let inv_denom = recip(
config,
region,
&[denom],
input_felt_scale,
output_felt_scale,
)?;
// product of num * (1 / denom) = 2*output_scale
let softmax = pairwise(config, region, &[ex, inv_denom], BaseOp::Mult)?;
let percent = pairwise(config, region, &[input, inv_denom], BaseOp::Mult)?;
Ok(softmax)
// rebase the percent to 2x the scale
loop_div(config, region, &[percent], input_felt_scale)
}
/// softmax func
pub(crate) fn softmax<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
input_scale: utils::F32,
output_scale: utils::F32,
) -> Result<ValTensor<F>, Box<dyn Error>> {
// get the max then subtract it
let max_val = max(config, region, values)?;
// rebase the input to 0
let sub = pairwise(config, region, &[values[0].clone(), max_val], BaseOp::Sub)?;
// elementwise exponential
let ex = nonlinearity(
config,
region,
&[sub],
&LookupOp::Exp { scale: input_scale },
)?;
percent(config, region, &[ex.clone()], input_scale, output_scale)
}
/// Checks that the percent error between the expected public output and the actual output value
/// is within the percent error expressed by the `tol` input, where `tol == 1.0` means the percent
/// error tolerance is 1 percent.
pub(crate) fn range_check_percent<F: PrimeField + TensorType + PartialOrd>(
pub(crate) fn range_check_percent<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],

View File

@@ -123,6 +123,9 @@ pub enum LookupOp {
scale: utils::F32,
a: utils::F32,
},
HardSwish {
scale: utils::F32,
},
}
impl LookupOp {
@@ -134,7 +137,7 @@ impl LookupOp {
}
}
impl<F: PrimeField + TensorType + PartialOrd> Op<F> for LookupOp {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for LookupOp {
/// Returns a reference to the Any trait.
fn as_any(&self) -> &dyn Any {
self
@@ -223,6 +226,9 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for LookupOp {
LookupOp::ATan { scale } => Ok(tensor::ops::nonlinearities::atan(&x, scale.into())),
LookupOp::ATanh { scale } => Ok(tensor::ops::nonlinearities::atanh(&x, scale.into())),
LookupOp::Tanh { scale } => Ok(tensor::ops::nonlinearities::tanh(&x, scale.into())),
LookupOp::HardSwish { scale } => {
Ok(tensor::ops::nonlinearities::hardswish(&x, scale.into()))
}
}?;
let output = res.map(|x| i128_to_felt(x));
@@ -276,6 +282,7 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for LookupOp {
LookupOp::ASin { scale } => format!("ASIN(scale={})", scale),
LookupOp::Sinh { scale } => format!("SINH(scale={})", scale),
LookupOp::ASinh { scale } => format!("ASINH(scale={})", scale),
LookupOp::HardSwish { scale } => format!("HARDSWISH(scale={})", scale),
}
}

View File

@@ -27,12 +27,14 @@ pub mod region;
/// A struct representing the result of a forward pass.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct ForwardResult<F: PrimeField + TensorType + PartialOrd> {
pub struct ForwardResult<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> {
pub(crate) output: Tensor<F>,
}
/// A trait representing operations that can be represented as constraints in a circuit.
pub trait Op<F: PrimeField + TensorType + PartialOrd>: std::fmt::Debug + Send + Sync + Any {
pub trait Op<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>:
std::fmt::Debug + Send + Sync + Any
{
/// Matches a [Op] to an operation in the `tensor::ops` module.
fn f(&self, x: &[Tensor<F>]) -> Result<ForwardResult<F>, TensorError>;
/// Returns a string representation of the operation.
@@ -98,7 +100,7 @@ pub trait Op<F: PrimeField + TensorType + PartialOrd>: std::fmt::Debug + Send +
}
}
impl<F: PrimeField + TensorType + PartialOrd> Clone for Box<dyn Op<F>> {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Clone for Box<dyn Op<F>> {
fn clone(&self) -> Self {
self.clone_dyn()
}
@@ -165,7 +167,7 @@ pub struct Input {
pub datum_type: InputType,
}
impl<F: PrimeField + TensorType + PartialOrd> Op<F> for Input {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Input {
fn out_scale(&self, _: Vec<crate::Scale>) -> Result<crate::Scale, Box<dyn Error>> {
Ok(self.scale)
}
@@ -226,7 +228,7 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for Input {
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Serialize, Deserialize)]
pub struct Unknown;
impl<F: PrimeField + TensorType + PartialOrd> Op<F> for Unknown {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Unknown {
fn out_scale(&self, _: Vec<crate::Scale>) -> Result<crate::Scale, Box<dyn Error>> {
Ok(0)
}
@@ -256,7 +258,7 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for Unknown {
///
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Constant<F: PrimeField + TensorType + PartialOrd> {
pub struct Constant<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> {
///
pub quantized_values: Tensor<F>,
///
@@ -266,7 +268,7 @@ pub struct Constant<F: PrimeField + TensorType + PartialOrd> {
pub pre_assigned_val: Option<ValTensor<F>>,
}
impl<F: PrimeField + TensorType + PartialOrd> Constant<F> {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Constant<F> {
///
pub fn new(quantized_values: Tensor<F>, raw_values: Tensor<f32>) -> Self {
Self {
@@ -293,8 +295,14 @@ impl<F: PrimeField + TensorType + PartialOrd> Constant<F> {
}
}
impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<'de>> Op<F>
for Constant<F>
impl<
F: PrimeField
+ TensorType
+ PartialOrd
+ std::hash::Hash
+ Serialize
+ for<'de> Deserialize<'de>,
> Op<F> for Constant<F>
{
fn as_any(&self) -> &dyn Any {
self

View File

@@ -1,6 +1,6 @@
use crate::{
circuit::layouts,
fieldutils::felt_to_i128,
fieldutils::{felt_to_i128, i128_to_felt},
tensor::{self, Tensor, TensorError},
};
@@ -62,6 +62,9 @@ pub enum PolyOp {
Sum {
axes: Vec<usize>,
},
MeanOfSquares {
axes: Vec<usize>,
},
Prod {
axes: Vec<usize>,
len_prod: usize,
@@ -83,10 +86,20 @@ pub enum PolyOp {
And,
Or,
Xor,
Trilu {
upper: bool,
k: i32,
},
}
impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<'de>> Op<F>
for PolyOp
impl<
F: PrimeField
+ TensorType
+ PartialOrd
+ std::hash::Hash
+ Serialize
+ for<'de> Deserialize<'de>,
> Op<F> for PolyOp
{
/// Returns a reference to the Any trait.
fn as_any(&self) -> &dyn Any {
@@ -95,10 +108,28 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
fn as_string(&self) -> String {
match &self {
PolyOp::GatherElements { dim, .. } => format!("GATHERELEMENTS (dim={})", dim),
PolyOp::GatherND { batch_dims, .. } => format!("GATHERND (batch_dims={})", batch_dims),
PolyOp::ScatterElements { dim, .. } => format!("SCATTERELEMENTS (dim={})", dim),
PolyOp::ScatterND { .. } => "SCATTERND".into(),
PolyOp::GatherElements { dim, constant_idx } => format!(
"GATHERELEMENTS (dim={}, constant_idx{})",
dim,
constant_idx.is_some()
),
PolyOp::GatherND {
batch_dims,
indices,
} => format!(
"GATHERND (batch_dims={}, constant_idx{})",
batch_dims,
indices.is_some()
),
PolyOp::MeanOfSquares { axes } => format!("MEANOFSQUARES (axes={:?})", axes),
PolyOp::ScatterElements { dim, constant_idx } => format!(
"SCATTERELEMENTS (dim={}, constant_idx{})",
dim,
constant_idx.is_some()
),
PolyOp::ScatterND { constant_idx } => {
format!("SCATTERND (constant_idx={})", constant_idx.is_some())
}
PolyOp::MultiBroadcastTo { shape } => format!("MULTIBROADCASTTO (shape={:?})", shape),
PolyOp::MoveAxis { .. } => "MOVEAXIS".into(),
PolyOp::Downsample { .. } => "DOWNSAMPLE".into(),
@@ -114,7 +145,7 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
PolyOp::Add => "ADD".into(),
PolyOp::Mult => "MULT".into(),
PolyOp::Sub => "SUB".into(),
PolyOp::Sum { .. } => "SUM".into(),
PolyOp::Sum { axes } => format!("SUM (axes={:?})", axes),
PolyOp::Prod { .. } => "PROD".into(),
PolyOp::Pow(_) => "POW".into(),
PolyOp::Conv { .. } => "CONV".into(),
@@ -128,6 +159,7 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
PolyOp::And => "AND".into(),
PolyOp::Or => "OR".into(),
PolyOp::Xor => "XOR".into(),
PolyOp::Trilu { upper, k } => format!("TRILU (upper={}, k={})", upper, k),
}
}
@@ -135,6 +167,10 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
fn f(&self, inputs: &[Tensor<F>]) -> Result<ForwardResult<F>, TensorError> {
let mut inputs = inputs.to_vec();
let res = match &self {
PolyOp::MeanOfSquares { axes } => {
let x = inputs[0].map(|x| felt_to_i128(x));
Ok(tensor::ops::nonlinearities::mean_of_squares_axes(&x, axes).map(i128_to_felt))
}
PolyOp::MultiBroadcastTo { shape } => {
if 1 != inputs.len() {
return Err(TensorError::DimMismatch(
@@ -265,6 +301,7 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
};
tensor::ops::scatter_nd(&x, &idx, &src)
}
PolyOp::Trilu { upper, k } => tensor::ops::trilu(&inputs[0], *k, *upper),
}?;
Ok(ForwardResult { output: res })
@@ -280,6 +317,9 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
PolyOp::MultiBroadcastTo { shape } => {
layouts::expand(config, region, values[..].try_into()?, shape)?
}
PolyOp::MeanOfSquares { axes } => {
layouts::mean_of_squares_axes(config, region, values[..].try_into()?, axes)?
}
PolyOp::Xor => layouts::xor(config, region, values[..].try_into()?)?,
PolyOp::Or => layouts::or(config, region, values[..].try_into()?)?,
PolyOp::And => layouts::and(config, region, values[..].try_into()?)?,
@@ -384,11 +424,15 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
PolyOp::Slice { axis, start, end } => {
layouts::slice(config, region, values[..].try_into()?, axis, start, end)?
}
PolyOp::Trilu { upper, k } => {
layouts::trilu(config, region, values[..].try_into()?, k, upper)?
}
}))
}
fn out_scale(&self, in_scales: Vec<crate::Scale>) -> Result<crate::Scale, Box<dyn Error>> {
let scale = match self {
PolyOp::MeanOfSquares { .. } => 2 * in_scales[0],
PolyOp::Xor | PolyOp::Or | PolyOp::And | PolyOp::Not => 0,
PolyOp::Iff => in_scales[1],
PolyOp::Einsum { .. } => {

View File

@@ -2,24 +2,28 @@ use crate::{
circuit::table::Range,
tensor::{Tensor, TensorError, TensorType, ValTensor, ValType, VarTensor},
};
#[cfg(not(target_arch = "wasm32"))]
use colored::Colorize;
use halo2_proofs::{
circuit::Region,
plonk::{Error, Selector},
};
use halo2curves::ff::PrimeField;
use portable_atomic::AtomicI128 as AtomicInt;
use std::{
cell::RefCell,
collections::HashSet,
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicUsize, Ordering},
Arc, Mutex,
},
};
use portable_atomic::AtomicI128 as AtomicInt;
use super::lookup::LookupOp;
/// Constants map
pub type ConstantsMap<F> = HashMap<F, ValType<F>>;
/// Dynamic lookup index
#[derive(Clone, Debug, Default)]
pub struct DynamicLookupIndex {
@@ -120,12 +124,11 @@ impl From<Box<dyn std::error::Error>> for RegionError {
#[derive(Debug)]
/// A context for a region
pub struct RegionCtx<'a, F: PrimeField + TensorType + PartialOrd> {
pub struct RegionCtx<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> {
region: Option<RefCell<Region<'a, F>>>,
row: usize,
linear_coord: usize,
num_inner_cols: usize,
total_constants: usize,
dynamic_lookup_index: DynamicLookupIndex,
shuffle_index: ShuffleIndex,
used_lookups: HashSet<LookupOp>,
@@ -133,13 +136,34 @@ pub struct RegionCtx<'a, F: PrimeField + TensorType + PartialOrd> {
max_lookup_inputs: i128,
min_lookup_inputs: i128,
max_range_size: i128,
throw_range_check_error: bool,
witness_gen: bool,
assigned_constants: ConstantsMap<F>,
}
impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a, F> {
#[cfg(not(target_arch = "wasm32"))]
///
pub fn increment_total_constants(&mut self, n: usize) {
self.total_constants += n;
pub fn debug_report(&self) {
log::debug!(
"(rows={}, coord={}, constants={}, max_lookup_inputs={}, min_lookup_inputs={}, max_range_size={}, dynamic_lookup_col_coord={}, shuffle_col_coord={})",
self.row().to_string().blue(),
self.linear_coord().to_string().yellow(),
self.total_constants().to_string().red(),
self.max_lookup_inputs().to_string().green(),
self.min_lookup_inputs().to_string().green(),
self.max_range_size().to_string().green(),
self.dynamic_lookup_col_coord().to_string().green(),
self.shuffle_col_coord().to_string().green());
}
///
pub fn assigned_constants(&self) -> &ConstantsMap<F> {
&self.assigned_constants
}
///
pub fn update_constants(&mut self, constants: ConstantsMap<F>) {
self.assigned_constants.extend(constants);
}
///
@@ -163,8 +187,8 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
}
///
pub fn throw_range_check_error(&self) -> bool {
self.throw_range_check_error
pub fn witness_gen(&self) -> bool {
self.witness_gen
}
/// Create a new region context
@@ -177,7 +201,6 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
num_inner_cols,
row,
linear_coord,
total_constants: 0,
dynamic_lookup_index: DynamicLookupIndex::default(),
shuffle_index: ShuffleIndex::default(),
used_lookups: HashSet::new(),
@@ -185,9 +208,22 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
max_lookup_inputs: 0,
min_lookup_inputs: 0,
max_range_size: 0,
throw_range_check_error: false,
witness_gen: true,
assigned_constants: HashMap::new(),
}
}
/// Create a new region context
pub fn new_with_constants(
region: Region<'a, F>,
row: usize,
num_inner_cols: usize,
constants: ConstantsMap<F>,
) -> RegionCtx<'a, F> {
let mut new_self = Self::new(region, row, num_inner_cols);
new_self.assigned_constants = constants;
new_self
}
/// Create a new region context from a wrapped region
pub fn from_wrapped_region(
region: Option<RefCell<Region<'a, F>>>,
@@ -202,7 +238,6 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
num_inner_cols,
linear_coord,
row,
total_constants: 0,
dynamic_lookup_index,
shuffle_index,
used_lookups: HashSet::new(),
@@ -210,16 +245,13 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
max_lookup_inputs: 0,
min_lookup_inputs: 0,
max_range_size: 0,
throw_range_check_error: false,
witness_gen: false,
assigned_constants: HashMap::new(),
}
}
/// Create a new region context
pub fn new_dummy(
row: usize,
num_inner_cols: usize,
throw_range_check_error: bool,
) -> RegionCtx<'a, F> {
pub fn new_dummy(row: usize, num_inner_cols: usize, witness_gen: bool) -> RegionCtx<'a, F> {
let region = None;
let linear_coord = row * num_inner_cols;
@@ -228,7 +260,6 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
num_inner_cols,
linear_coord,
row,
total_constants: 0,
dynamic_lookup_index: DynamicLookupIndex::default(),
shuffle_index: ShuffleIndex::default(),
used_lookups: HashSet::new(),
@@ -236,17 +267,17 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
max_lookup_inputs: 0,
min_lookup_inputs: 0,
max_range_size: 0,
throw_range_check_error,
witness_gen,
assigned_constants: HashMap::new(),
}
}
/// Create a new region context
pub fn new_dummy_with_constants(
pub fn new_dummy_with_linear_coord(
row: usize,
linear_coord: usize,
total_constants: usize,
num_inner_cols: usize,
throw_range_check_error: bool,
witness_gen: bool,
) -> RegionCtx<'a, F> {
let region = None;
RegionCtx {
@@ -254,7 +285,6 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
num_inner_cols,
linear_coord,
row,
total_constants,
dynamic_lookup_index: DynamicLookupIndex::default(),
shuffle_index: ShuffleIndex::default(),
used_lookups: HashSet::new(),
@@ -262,7 +292,8 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
max_lookup_inputs: 0,
min_lookup_inputs: 0,
max_range_size: 0,
throw_range_check_error,
witness_gen,
assigned_constants: HashMap::new(),
}
}
@@ -312,29 +343,27 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
) -> Result<(), RegionError> {
let row = AtomicUsize::new(self.row());
let linear_coord = AtomicUsize::new(self.linear_coord());
let constants = AtomicUsize::new(self.total_constants());
let max_lookup_inputs = AtomicInt::new(self.max_lookup_inputs());
let min_lookup_inputs = AtomicInt::new(self.min_lookup_inputs());
let lookups = Arc::new(Mutex::new(self.used_lookups.clone()));
let range_checks = Arc::new(Mutex::new(self.used_range_checks.clone()));
let dynamic_lookup_index = Arc::new(Mutex::new(self.dynamic_lookup_index.clone()));
let shuffle_index = Arc::new(Mutex::new(self.shuffle_index.clone()));
let constants = Arc::new(Mutex::new(self.assigned_constants.clone()));
*output = output
.par_enum_map(|idx, _| {
// we kick off the loop with the current offset
let starting_offset = row.load(Ordering::SeqCst);
let starting_linear_coord = linear_coord.load(Ordering::SeqCst);
let starting_constants = constants.load(Ordering::SeqCst);
// get inner value of the locked lookups
// we need to make sure that the region is not shared between threads
let mut local_reg = Self::new_dummy_with_constants(
let mut local_reg = Self::new_dummy_with_linear_coord(
starting_offset,
starting_linear_coord,
starting_constants,
self.num_inner_cols,
self.throw_range_check_error,
self.witness_gen,
);
let res = inner_loop_function(idx, &mut local_reg);
// we update the offset and constants
@@ -343,10 +372,6 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
local_reg.linear_coord() - starting_linear_coord,
Ordering::SeqCst,
);
constants.fetch_add(
local_reg.total_constants() - starting_constants,
Ordering::SeqCst,
);
max_lookup_inputs.fetch_max(local_reg.max_lookup_inputs(), Ordering::SeqCst);
min_lookup_inputs.fetch_min(local_reg.min_lookup_inputs(), Ordering::SeqCst);
@@ -362,11 +387,13 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
// update the shuffle index
let mut shuffle_index = shuffle_index.lock().unwrap();
shuffle_index.update(&local_reg.shuffle_index);
// update the constants
let mut constants = constants.lock().unwrap();
constants.extend(local_reg.assigned_constants);
res
})
.map_err(|e| RegionError::from(format!("dummy_loop: {:?}", e)))?;
self.total_constants = constants.into_inner();
self.linear_coord = linear_coord.into_inner();
#[allow(trivial_numeric_casts)]
{
@@ -410,6 +437,14 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
.map_err(|e| {
RegionError::from(format!("dummy_loop: failed to get shuffle index: {:?}", e))
})?;
self.assigned_constants = Arc::try_unwrap(constants)
.map_err(|e| {
RegionError::from(format!("dummy_loop: failed to get constants: {:?}", e))
})?
.into_inner()
.map_err(|e| {
RegionError::from(format!("dummy_loop: failed to get constants: {:?}", e))
})?;
Ok(())
}
@@ -435,7 +470,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
range: Range,
) -> Result<(), Box<dyn std::error::Error>> {
if range.0 > range.1 {
return Err("update_max_min_lookup_range: invalid range".into());
return Err(format!("update_max_min_lookup_range: invalid range {:?}", range).into());
}
let range_size = (range.1 - range.0).abs();
@@ -477,7 +512,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
/// Get the total number of constants
pub fn total_constants(&self) -> usize {
self.total_constants
self.assigned_constants.len()
}
/// Get the dynamic lookup index
@@ -525,26 +560,24 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
self.max_range_size
}
/// Assign a constant value
pub fn assign_constant(&mut self, var: &VarTensor, value: F) -> Result<ValType<F>, Error> {
self.total_constants += 1;
if let Some(region) = &self.region {
let cell = var.assign_constant(&mut region.borrow_mut(), self.linear_coord, value)?;
Ok(cell.into())
} else {
Ok(value.into())
}
}
/// Assign a valtensor to a vartensor
pub fn assign(
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
) -> Result<ValTensor<F>, Error> {
self.total_constants += values.num_constants();
if let Some(region) = &self.region {
var.assign(&mut region.borrow_mut(), self.linear_coord, values)
var.assign(
&mut region.borrow_mut(),
self.linear_coord,
values,
&mut self.assigned_constants,
)
} else {
if !values.is_instance() {
let values_map = values.create_constants_map_iterator();
self.assigned_constants.extend(values_map);
}
Ok(values.clone())
}
}
@@ -560,14 +593,18 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
var: &VarTensor,
values: &ValTensor<F>,
) -> Result<ValTensor<F>, Error> {
self.total_constants += values.num_constants();
if let Some(region) = &self.region {
var.assign(
&mut region.borrow_mut(),
self.combined_dynamic_shuffle_coord(),
values,
&mut self.assigned_constants,
)
} else {
if !values.is_instance() {
let values_map = values.create_constants_map_iterator();
self.assigned_constants.extend(values_map);
}
Ok(values.clone())
}
}
@@ -594,13 +631,20 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
self.linear_coord,
values,
ommissions,
&mut self.assigned_constants,
)
} else {
self.total_constants += values.num_constants();
let inner_tensor = values.get_inner_tensor().unwrap();
let mut values_map = values.create_constants_map();
for o in ommissions {
self.total_constants -= inner_tensor.get_flat_index(**o).is_constant() as usize;
if let ValType::Constant(value) = inner_tensor.get_flat_index(**o) {
values_map.remove(&value);
}
}
self.assigned_constants.extend(values_map);
Ok(values.clone())
}
}
@@ -615,24 +659,24 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
) -> Result<(ValTensor<F>, usize), Error> {
if let Some(region) = &self.region {
// duplicates every nth element to adjust for column overflow
let (res, len, total_assigned_constants) = var.assign_with_duplication(
let (res, len) = var.assign_with_duplication(
&mut region.borrow_mut(),
self.row,
self.linear_coord,
values,
check_mode,
single_inner_col,
&mut self.assigned_constants,
)?;
self.total_constants += total_assigned_constants;
Ok((res, len))
} else {
let (_, len, total_assigned_constants) = var.dummy_assign_with_duplication(
let (_, len) = var.dummy_assign_with_duplication(
self.row,
self.linear_coord,
values,
single_inner_col,
&mut self.assigned_constants,
)?;
self.total_constants += total_assigned_constants;
Ok((values.clone(), len))
}
}
@@ -699,9 +743,4 @@ impl<'a, F: PrimeField + TensorType + PartialOrd> RegionCtx<'a, F> {
}
Ok(())
}
/// increment constants
pub fn increment_constants(&mut self, n: usize) {
self.total_constants += n
}
}

View File

@@ -6,7 +6,7 @@ use halo2_proofs::{
circuit::{Layouter, Value},
plonk::{ConstraintSystem, Expression, TableColumn},
};
use log::warn;
use log::{debug, warn};
use maybe_rayon::prelude::{IntoParallelIterator, ParallelIterator};
use crate::{
@@ -98,7 +98,7 @@ pub struct Table<F: PrimeField> {
_marker: PhantomData<F>,
}
impl<F: PrimeField + TensorType + PartialOrd> Table<F> {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
/// get column index given input
pub fn get_col_index(&self, input: F) -> F {
// range is split up into chunks of size col_size, find the chunk that input is in
@@ -138,7 +138,7 @@ pub fn num_cols_required(range_len: i128, col_size: usize) -> usize {
(range_len / (col_size as i128)) as usize + 1
}
impl<F: PrimeField + TensorType + PartialOrd> Table<F> {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
/// Configures the table.
pub fn configure(
cs: &mut ConstraintSystem<F>,
@@ -152,7 +152,7 @@ impl<F: PrimeField + TensorType + PartialOrd> Table<F> {
// number of cols needed to store the range
let num_cols = num_cols_required((range.1 - range.0).abs(), col_size);
log::debug!("table range: {:?}", range);
debug!("table range: {:?}", range);
let table_inputs = preexisting_inputs.unwrap_or_else(|| {
let mut cols = vec![];
@@ -275,7 +275,7 @@ pub struct RangeCheck<F: PrimeField> {
_marker: PhantomData<F>,
}
impl<F: PrimeField + TensorType + PartialOrd> RangeCheck<F> {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RangeCheck<F> {
/// get first_element of column
pub fn get_first_element(&self, chunk: usize) -> F {
let chunk = chunk as i128;
@@ -303,7 +303,7 @@ impl<F: PrimeField + TensorType + PartialOrd> RangeCheck<F> {
}
}
impl<F: PrimeField + TensorType + PartialOrd> RangeCheck<F> {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RangeCheck<F> {
/// Configures the table.
pub fn configure(cs: &mut ConstraintSystem<F>, range: Range, logrows: usize) -> RangeCheck<F> {
log::debug!("range check range: {:?}", range);

View File

@@ -245,7 +245,13 @@ mod matmul_col_overflow {
#[cfg(test)]
#[cfg(not(all(target_arch = "wasm32", target_os = "unknown")))]
mod matmul_col_ultra_overflow_double_col {
use halo2_proofs::poly::commitment::{Params, ParamsProver};
use halo2_proofs::poly::kzg::{
commitment::KZGCommitmentScheme,
multiopen::{ProverSHPLONK, VerifierSHPLONK},
strategy::SingleStrategy,
};
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use super::*;
@@ -324,46 +330,46 @@ mod matmul_col_ultra_overflow_double_col {
let pk = crate::pfsys::create_keys::<
halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme<halo2curves::bn256::Bn256>,
F,
MatmulCircuit<F>,
>(&circuit, &params, true)
.unwrap();
let prover = crate::pfsys::create_proof_circuit_kzg(
let prover = crate::pfsys::create_proof_circuit::<
KZGCommitmentScheme<_>,
_,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
crate::pfsys::TranscriptType::EVM,
halo2_proofs::poly::kzg::strategy::SingleStrategy::new(&params),
// use safe mode to verify that the proof is correct
CheckMode::SAFE,
crate::Commitments::KZG,
crate::pfsys::TranscriptType::EVM,
None,
None,
);
assert!(prover.is_ok());
let proof = prover.unwrap();
let strategy =
halo2_proofs::poly::kzg::strategy::SingleStrategy::new(params.verifier_params());
let vk = pk.get_vk();
let result = crate::pfsys::verify_proof_circuit_kzg(
params.verifier_params(),
proof,
vk,
strategy,
params.n(),
);
assert!(result.is_ok());
}
}
#[cfg(test)]
#[cfg(not(all(target_arch = "wasm32", target_os = "unknown")))]
mod matmul_col_ultra_overflow {
use halo2_proofs::poly::commitment::{Params, ParamsProver};
use halo2_proofs::poly::kzg::{
commitment::KZGCommitmentScheme,
multiopen::{ProverSHPLONK, VerifierSHPLONK},
strategy::SingleStrategy,
};
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use super::*;
@@ -441,39 +447,33 @@ mod matmul_col_ultra_overflow {
let pk = crate::pfsys::create_keys::<
halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme<halo2curves::bn256::Bn256>,
F,
MatmulCircuit<F>,
>(&circuit, &params, true)
.unwrap();
let prover = crate::pfsys::create_proof_circuit_kzg(
let prover = crate::pfsys::create_proof_circuit::<
KZGCommitmentScheme<_>,
_,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
crate::pfsys::TranscriptType::EVM,
halo2_proofs::poly::kzg::strategy::SingleStrategy::new(&params),
// use safe mode to verify that the proof is correct
CheckMode::SAFE,
crate::Commitments::KZG,
crate::pfsys::TranscriptType::EVM,
None,
None,
);
assert!(prover.is_ok());
let proof = prover.unwrap();
let strategy =
halo2_proofs::poly::kzg::strategy::SingleStrategy::new(params.verifier_params());
let vk = pk.get_vk();
let result = crate::pfsys::verify_proof_circuit_kzg(
params.verifier_params(),
proof,
vk,
strategy,
params.n(),
);
assert!(result.is_ok());
}
}
@@ -1145,7 +1145,15 @@ mod conv {
#[cfg(test)]
#[cfg(not(all(target_arch = "wasm32", target_os = "unknown")))]
mod conv_col_ultra_overflow {
use halo2_proofs::poly::commitment::{Params, ParamsProver};
use halo2_proofs::poly::{
kzg::strategy::SingleStrategy,
kzg::{
commitment::KZGCommitmentScheme,
multiopen::{ProverSHPLONK, VerifierSHPLONK},
},
};
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use super::*;
@@ -1243,39 +1251,33 @@ mod conv_col_ultra_overflow {
let pk = crate::pfsys::create_keys::<
halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme<halo2curves::bn256::Bn256>,
F,
ConvCircuit<F>,
>(&circuit, &params, true)
.unwrap();
let prover = crate::pfsys::create_proof_circuit_kzg(
let prover = crate::pfsys::create_proof_circuit::<
KZGCommitmentScheme<_>,
_,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
crate::pfsys::TranscriptType::EVM,
halo2_proofs::poly::kzg::strategy::SingleStrategy::new(&params),
// use safe mode to verify that the proof is correct
CheckMode::SAFE,
crate::Commitments::KZG,
crate::pfsys::TranscriptType::EVM,
None,
None,
);
assert!(prover.is_ok());
let proof = prover.unwrap();
let strategy =
halo2_proofs::poly::kzg::strategy::SingleStrategy::new(params.verifier_params());
let vk = pk.get_vk();
let result = crate::pfsys::verify_proof_circuit_kzg(
params.verifier_params(),
proof,
vk,
strategy,
params.n(),
);
assert!(result.is_ok());
}
}
@@ -1283,7 +1285,13 @@ mod conv_col_ultra_overflow {
// not wasm 32 unknown
#[cfg(not(all(target_arch = "wasm32", target_os = "unknown")))]
mod conv_relu_col_ultra_overflow {
use halo2_proofs::poly::commitment::{Params, ParamsProver};
use halo2_proofs::poly::kzg::{
commitment::KZGCommitmentScheme,
multiopen::{ProverSHPLONK, VerifierSHPLONK},
strategy::SingleStrategy,
};
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use super::*;
@@ -1396,39 +1404,33 @@ mod conv_relu_col_ultra_overflow {
let pk = crate::pfsys::create_keys::<
halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme<halo2curves::bn256::Bn256>,
F,
ConvCircuit<F>,
>(&circuit, &params, true)
.unwrap();
let prover = crate::pfsys::create_proof_circuit_kzg(
let prover = crate::pfsys::create_proof_circuit::<
KZGCommitmentScheme<_>,
_,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
crate::pfsys::TranscriptType::EVM,
halo2_proofs::poly::kzg::strategy::SingleStrategy::new(&params),
// use safe mode to verify that the proof is correct
CheckMode::SAFE,
crate::Commitments::KZG,
crate::pfsys::TranscriptType::EVM,
// use safe mode to verify that the proof is correct
None,
None,
);
assert!(prover.is_ok());
let proof = prover.unwrap();
let strategy =
halo2_proofs::poly::kzg::strategy::SingleStrategy::new(params.verifier_params());
let vk = pk.get_vk();
let result = crate::pfsys::verify_proof_circuit_kzg(
params.verifier_params(),
proof,
vk,
strategy,
params.n(),
);
assert!(result.is_ok());
}
}
@@ -1909,6 +1911,8 @@ mod add_with_overflow {
#[cfg(test)]
mod add_with_overflow_and_poseidon {
use std::collections::HashMap;
use halo2curves::bn256::Fr;
use crate::circuit::modules::{
@@ -1967,8 +1971,10 @@ mod add_with_overflow_and_poseidon {
let poseidon_chip: PoseidonChip<PoseidonSpec, WIDTH, RATE, WIDTH> =
PoseidonChip::new(config.poseidon.clone());
let assigned_inputs_a = poseidon_chip.layout(&mut layouter, &self.inputs[0..1], 0)?;
let assigned_inputs_b = poseidon_chip.layout(&mut layouter, &self.inputs[1..2], 1)?;
let assigned_inputs_a =
poseidon_chip.layout(&mut layouter, &self.inputs[0..1], 0, &mut HashMap::new())?;
let assigned_inputs_b =
poseidon_chip.layout(&mut layouter, &self.inputs[1..2], 1, &mut HashMap::new())?;
layouter.assign_region(|| "_new_module", |_| Ok(()))?;
@@ -2417,8 +2423,13 @@ mod lookup_ultra_overflow {
use halo2_proofs::{
circuit::{Layouter, SimpleFloorPlanner, Value},
plonk::{Circuit, ConstraintSystem, Error},
poly::commitment::{Params, ParamsProver},
poly::kzg::{
commitment::KZGCommitmentScheme,
multiopen::{ProverSHPLONK, VerifierSHPLONK},
strategy::SingleStrategy,
},
};
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
#[derive(Clone)]
struct ReLUCircuit<F: PrimeField + TensorType + PartialOrd> {
@@ -2497,38 +2508,32 @@ mod lookup_ultra_overflow {
let pk = crate::pfsys::create_keys::<
halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme<halo2curves::bn256::Bn256>,
F,
ReLUCircuit<F>,
>(&circuit, &params, true)
.unwrap();
let prover = crate::pfsys::create_proof_circuit_kzg(
let prover = crate::pfsys::create_proof_circuit::<
KZGCommitmentScheme<_>,
_,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
crate::pfsys::TranscriptType::EVM,
halo2_proofs::poly::kzg::strategy::SingleStrategy::new(&params),
// use safe mode to verify that the proof is correct
CheckMode::SAFE,
crate::Commitments::KZG,
crate::pfsys::TranscriptType::EVM,
None,
None,
);
assert!(prover.is_ok());
let proof = prover.unwrap();
let strategy =
halo2_proofs::poly::kzg::strategy::SingleStrategy::new(params.verifier_params());
let vk = pk.get_vk();
let result = crate::pfsys::verify_proof_circuit_kzg(
params.verifier_params(),
proof,
vk,
strategy,
params.n(),
);
assert!(result.is_ok());
}
}

Some files were not shown because too many files have changed in this diff Show More