mirror of
https://github.com/SYSTRAN/faster-whisper.git
synced 2026-01-08 13:14:00 -05:00
Use correct features padding for encoder input (#1101)
* pad to 3000 instead of `feature_extractor.nb_max_frames` * correct trimming for batched features
This commit is contained in:
@@ -109,9 +109,9 @@ def _resample_frames(frames, resampler):
|
||||
yield from resampler.resample(frame)
|
||||
|
||||
|
||||
def pad_or_trim(array, length: int, *, axis: int = -1):
|
||||
def pad_or_trim(array, length: int = 3000, *, axis: int = -1):
|
||||
"""
|
||||
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
||||
Pad or trim the Mel features array to 3000, as expected by the encoder.
|
||||
"""
|
||||
axis = axis % array.ndim
|
||||
if array.shape[axis] > length:
|
||||
|
||||
@@ -441,9 +441,12 @@ class BatchedInferencePipeline:
|
||||
features = (
|
||||
torch.stack(
|
||||
[
|
||||
self.model.feature_extractor(chunk, to_cpu=to_cpu)[
|
||||
..., : self.model.feature_extractor.nb_max_frames
|
||||
]
|
||||
pad_or_trim(
|
||||
self.model.feature_extractor(chunk, to_cpu=to_cpu)[
|
||||
...,
|
||||
: chunk.shape[0] // self.model.feature_extractor.hop_length,
|
||||
]
|
||||
)
|
||||
for chunk in audio_chunks
|
||||
]
|
||||
)
|
||||
@@ -847,7 +850,7 @@ class WhisperModel:
|
||||
segment = features[
|
||||
:, seek : seek + self.feature_extractor.nb_max_frames
|
||||
]
|
||||
encoder_output = self.encode(segment)
|
||||
encoder_output = self.encode(pad_or_trim(segment))
|
||||
# results is a list of tuple[str, float] with language names and
|
||||
# probabilities.
|
||||
results = self.model.detect_language(encoder_output)[0]
|
||||
@@ -1105,7 +1108,7 @@ class WhisperModel:
|
||||
)
|
||||
segment = features[:, seek : seek + segment_size]
|
||||
segment_duration = segment_size * self.feature_extractor.time_per_frame
|
||||
segment = pad_or_trim(segment, self.feature_extractor.nb_max_frames)
|
||||
segment = pad_or_trim(segment)
|
||||
|
||||
if self.logger.isEnabledFor(logging.DEBUG):
|
||||
self.logger.debug(
|
||||
@@ -1766,7 +1769,7 @@ class WhisperModel:
|
||||
segment = self.feature_extractor(audio, padding=True, to_cpu=to_cpu)[
|
||||
:, : self.feature_extractor.nb_max_frames
|
||||
]
|
||||
encoder_output = self.encode(segment)
|
||||
encoder_output = self.encode(pad_or_trim(segment))
|
||||
results = self.model.detect_language(encoder_output)
|
||||
language_token, language_probability = results[0][0]
|
||||
language = language_token[2:-2]
|
||||
@@ -1895,7 +1898,7 @@ class WhisperModel:
|
||||
for i in indices:
|
||||
segment_features = features[:, i * nb_max_frames : (i + 1) * nb_max_frames]
|
||||
try:
|
||||
encoder_output = self.encode(segment_features)
|
||||
encoder_output = self.encode(pad_or_trim(segment_features))
|
||||
results = self.model.detect_language(encoder_output)[0]
|
||||
|
||||
except ValueError as e: # or RuntimeError
|
||||
|
||||
Reference in New Issue
Block a user