mirror of
https://github.com/googleapis/genai-toolbox.git
synced 2026-01-10 07:58:12 -05:00
Inlcude tag for sample agents
This commit is contained in:
@@ -354,306 +354,16 @@ pip install google-genai
|
||||
code to create an agent:
|
||||
{{< tabpane persist=header >}}
|
||||
{{< tab header="ADK" lang="python" >}}
|
||||
from google.adk.agents import Agent
|
||||
from google.adk.runners import Runner
|
||||
from google.adk.sessions import InMemorySessionService
|
||||
from google.adk.artifacts.in_memory_artifact_service import InMemoryArtifactService
|
||||
from google.genai import types
|
||||
from toolbox_core import ToolboxSyncClient
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
|
||||
# TODO(developer): replace this with your Google API key
|
||||
|
||||
os.environ['GOOGLE_API_KEY'] = 'your-api-key'
|
||||
|
||||
async def main():
|
||||
with ToolboxSyncClient("<http://127.0.0.1:5000>") as toolbox_client:
|
||||
|
||||
prompt = """
|
||||
You're a helpful hotel assistant. You handle hotel searching, booking and
|
||||
cancellations. When the user searches for a hotel, mention it's name, id,
|
||||
location and price tier. Always mention hotel ids while performing any
|
||||
searches. This is very important for any operations. For any bookings or
|
||||
cancellations, please provide the appropriate confirmation. Be sure to
|
||||
update checkin or checkout dates if mentioned by the user.
|
||||
Don't ask for confirmations from the user.
|
||||
"""
|
||||
|
||||
root_agent = Agent(
|
||||
model='gemini-2.0-flash-001',
|
||||
name='hotel_agent',
|
||||
description='A helpful AI assistant.',
|
||||
instruction=prompt,
|
||||
tools=toolbox_client.load_toolset("my-toolset"),
|
||||
)
|
||||
|
||||
session_service = InMemorySessionService()
|
||||
artifacts_service = InMemoryArtifactService()
|
||||
session = await session_service.create_session(
|
||||
state={}, app_name='hotel_agent', user_id='123'
|
||||
)
|
||||
runner = Runner(
|
||||
app_name='hotel_agent',
|
||||
agent=root_agent,
|
||||
artifact_service=artifacts_service,
|
||||
session_service=session_service,
|
||||
)
|
||||
|
||||
queries = [
|
||||
"Find hotels in Basel with Basel in its name.",
|
||||
"Can you book the Hilton Basel for me?",
|
||||
"Oh wait, this is too expensive. Please cancel it and book the Hyatt Regency instead.",
|
||||
"My check in dates would be from April 10, 2024 to April 19, 2024.",
|
||||
]
|
||||
|
||||
for query in queries:
|
||||
content = types.Content(role='user', parts=[types.Part(text=query)])
|
||||
events = runner.run(session_id=session.id,
|
||||
user_id='123', new_message=content)
|
||||
|
||||
responses = (
|
||||
part.text
|
||||
for event in events
|
||||
for part in event.content.parts
|
||||
if part.text is not None
|
||||
)
|
||||
|
||||
for text in responses:
|
||||
print(text)
|
||||
|
||||
asyncio.run(main())
|
||||
{{< include "quickstart/python/adk/quickstart.py" >}}
|
||||
{{< /tab >}}
|
||||
{{< tab header="LangChain" lang="python" >}}
|
||||
import asyncio
|
||||
|
||||
from langgraph.prebuilt import create_react_agent
|
||||
|
||||
# TODO(developer): replace this with another import if needed
|
||||
|
||||
from langchain_google_vertexai import ChatVertexAI
|
||||
|
||||
# from langchain_google_genai import ChatGoogleGenerativeAI
|
||||
|
||||
# from langchain_anthropic import ChatAnthropic
|
||||
|
||||
from langgraph.checkpoint.memory import MemorySaver
|
||||
|
||||
from toolbox_langchain import ToolboxClient
|
||||
|
||||
prompt = """
|
||||
You're a helpful hotel assistant. You handle hotel searching, booking and
|
||||
cancellations. When the user searches for a hotel, mention it's name, id,
|
||||
location and price tier. Always mention hotel ids while performing any
|
||||
searches. This is very important for any operations. For any bookings or
|
||||
cancellations, please provide the appropriate confirmation. Be sure to
|
||||
update checkin or checkout dates if mentioned by the user.
|
||||
Don't ask for confirmations from the user.
|
||||
"""
|
||||
|
||||
queries = [
|
||||
"Find hotels in Basel with Basel in its name.",
|
||||
"Can you book the Hilton Basel for me?",
|
||||
"Oh wait, this is too expensive. Please cancel it and book the Hyatt Regency instead.",
|
||||
"My check in dates would be from April 10, 2024 to April 19, 2024.",
|
||||
]
|
||||
|
||||
async def run_application():
|
||||
# TODO(developer): replace this with another model if needed
|
||||
model = ChatVertexAI(model_name="gemini-2.0-flash-001")
|
||||
# model = ChatGoogleGenerativeAI(model="gemini-2.0-flash-001")
|
||||
# model = ChatAnthropic(model="claude-3-5-sonnet-20240620")
|
||||
|
||||
# Load the tools from the Toolbox server
|
||||
async with ToolboxClient("http://127.0.0.1:5000") as client:
|
||||
tools = await client.aload_toolset()
|
||||
|
||||
agent = create_react_agent(model, tools, checkpointer=MemorySaver())
|
||||
|
||||
config = {"configurable": {"thread_id": "thread-1"}}
|
||||
for query in queries:
|
||||
inputs = {"messages": [("user", prompt + query)]}
|
||||
response = agent.invoke(inputs, stream_mode="values", config=config)
|
||||
print(response["messages"][-1].content)
|
||||
|
||||
asyncio.run(run_application())
|
||||
{{< include "quickstart/python/langchain/quickstart.py" >}}
|
||||
{{< /tab >}}
|
||||
{{< tab header="LlamaIndex" lang="python" >}}
|
||||
import asyncio
|
||||
import os
|
||||
|
||||
from llama_index.core.agent.workflow import AgentWorkflow
|
||||
|
||||
from llama_index.core.workflow import Context
|
||||
|
||||
# TODO(developer): replace this with another import if needed
|
||||
|
||||
from llama_index.llms.google_genai import GoogleGenAI
|
||||
|
||||
# from llama_index.llms.anthropic import Anthropic
|
||||
|
||||
from toolbox_llamaindex import ToolboxClient
|
||||
|
||||
prompt = """
|
||||
You're a helpful hotel assistant. You handle hotel searching, booking and
|
||||
cancellations. When the user searches for a hotel, mention it's name, id,
|
||||
location and price tier. Always mention hotel ids while performing any
|
||||
searches. This is very important for any operations. For any bookings or
|
||||
cancellations, please provide the appropriate confirmation. Be sure to
|
||||
update checkin or checkout dates if mentioned by the user.
|
||||
Don't ask for confirmations from the user.
|
||||
"""
|
||||
|
||||
queries = [
|
||||
"Find hotels in Basel with Basel in its name.",
|
||||
"Can you book the Hilton Basel for me?",
|
||||
"Oh wait, this is too expensive. Please cancel it and book the Hyatt Regency instead.",
|
||||
"My check in dates would be from April 10, 2024 to April 19, 2024.",
|
||||
]
|
||||
|
||||
async def run_application():
|
||||
# TODO(developer): replace this with another model if needed
|
||||
llm = GoogleGenAI(
|
||||
model="gemini-2.0-flash-001",
|
||||
vertexai_config={"project": "project-id", "location": "us-central1"},
|
||||
)
|
||||
# llm = GoogleGenAI(
|
||||
# api_key=os.getenv("GOOGLE_API_KEY"),
|
||||
# model="gemini-2.0-flash-001",
|
||||
# )
|
||||
# llm = Anthropic(
|
||||
# model="claude-3-7-sonnet-latest",
|
||||
# api_key=os.getenv("ANTHROPIC_API_KEY")
|
||||
# )
|
||||
|
||||
# Load the tools from the Toolbox server
|
||||
async with ToolboxClient("http://127.0.0.1:5000") as client:
|
||||
tools = await client.aload_toolset()
|
||||
|
||||
agent = AgentWorkflow.from_tools_or_functions(
|
||||
tools,
|
||||
llm=llm,
|
||||
system_prompt=prompt,
|
||||
)
|
||||
ctx = Context(agent)
|
||||
for query in queries:
|
||||
response = await agent.run(user_msg=query, ctx=ctx)
|
||||
print(f"---- {query} ----")
|
||||
print(str(response))
|
||||
|
||||
asyncio.run(run_application())
|
||||
{{< include "quickstart/python/llamaindex/quickstart.py" >}}
|
||||
{{< /tab >}}
|
||||
{{< tab header="Core" lang="python" >}}
|
||||
import asyncio
|
||||
|
||||
from google import genai
|
||||
from google.genai.types import (
|
||||
Content,
|
||||
FunctionDeclaration,
|
||||
GenerateContentConfig,
|
||||
Part,
|
||||
Tool,
|
||||
)
|
||||
|
||||
from toolbox_core import ToolboxClient
|
||||
|
||||
prompt = """
|
||||
You're a helpful hotel assistant. You handle hotel searching, booking and
|
||||
cancellations. When the user searches for a hotel, mention it's name, id,
|
||||
location and price tier. Always mention hotel id while performing any
|
||||
searches. This is very important for any operations. For any bookings or
|
||||
cancellations, please provide the appropriate confirmation. Be sure to
|
||||
update checkin or checkout dates if mentioned by the user.
|
||||
Don't ask for confirmations from the user.
|
||||
"""
|
||||
|
||||
queries = [
|
||||
"Find hotels in Basel with Basel in its name.",
|
||||
"Please book the hotel Hilton Basel for me.",
|
||||
"This is too expensive. Please cancel it.",
|
||||
"Please book Hyatt Regency for me",
|
||||
"My check in dates for my booking would be from April 10, 2024 to April 19, 2024.",
|
||||
]
|
||||
|
||||
async def run_application():
|
||||
async with ToolboxClient("<http://127.0.0.1:5000>") as toolbox_client:
|
||||
|
||||
# The toolbox_tools list contains Python callables (functions/methods) designed for LLM tool-use
|
||||
# integration. While this example uses Google's genai client, these callables can be adapted for
|
||||
# various function-calling or agent frameworks. For easier integration with supported frameworks
|
||||
# (https://github.com/googleapis/mcp-toolbox-python-sdk/tree/main/packages), use the
|
||||
# provided wrapper packages, which handle framework-specific boilerplate.
|
||||
toolbox_tools = await toolbox_client.load_toolset("my-toolset")
|
||||
genai_client = genai.Client(
|
||||
vertexai=True, project="project-id", location="us-central1"
|
||||
)
|
||||
|
||||
genai_tools = [
|
||||
Tool(
|
||||
function_declarations=[
|
||||
FunctionDeclaration.from_callable_with_api_option(callable=tool)
|
||||
]
|
||||
)
|
||||
for tool in toolbox_tools
|
||||
]
|
||||
history = []
|
||||
for query in queries:
|
||||
user_prompt_content = Content(
|
||||
role="user",
|
||||
parts=[Part.from_text(text=query)],
|
||||
)
|
||||
history.append(user_prompt_content)
|
||||
|
||||
response = genai_client.models.generate_content(
|
||||
model="gemini-2.0-flash-001",
|
||||
contents=history,
|
||||
config=GenerateContentConfig(
|
||||
system_instruction=prompt,
|
||||
tools=genai_tools,
|
||||
),
|
||||
)
|
||||
history.append(response.candidates[0].content)
|
||||
function_response_parts = []
|
||||
for function_call in response.function_calls:
|
||||
fn_name = function_call.name
|
||||
# The tools are sorted alphabetically
|
||||
if fn_name == "search-hotels-by-name":
|
||||
function_result = await toolbox_tools[3](**function_call.args)
|
||||
elif fn_name == "search-hotels-by-location":
|
||||
function_result = await toolbox_tools[2](**function_call.args)
|
||||
elif fn_name == "book-hotel":
|
||||
function_result = await toolbox_tools[0](**function_call.args)
|
||||
elif fn_name == "update-hotel":
|
||||
function_result = await toolbox_tools[4](**function_call.args)
|
||||
elif fn_name == "cancel-hotel":
|
||||
function_result = await toolbox_tools[1](**function_call.args)
|
||||
else:
|
||||
raise ValueError("Function name not present.")
|
||||
function_response = {"result": function_result}
|
||||
function_response_part = Part.from_function_response(
|
||||
name=function_call.name,
|
||||
response=function_response,
|
||||
)
|
||||
function_response_parts.append(function_response_part)
|
||||
|
||||
if function_response_parts:
|
||||
tool_response_content = Content(role="tool", parts=function_response_parts)
|
||||
history.append(tool_response_content)
|
||||
|
||||
response2 = genai_client.models.generate_content(
|
||||
model="gemini-2.0-flash-001",
|
||||
contents=history,
|
||||
config=GenerateContentConfig(
|
||||
tools=genai_tools,
|
||||
),
|
||||
)
|
||||
final_model_response_content = response2.candidates[0].content
|
||||
history.append(final_model_response_content)
|
||||
print(response2.text)
|
||||
|
||||
asyncio.run(run_application())
|
||||
|
||||
{{< include "quickstart/python/core/quickstart.py" >}}
|
||||
{{< /tab >}}
|
||||
{{< /tabpane >}}
|
||||
|
||||
|
||||
70
docs/en/getting-started/quickstart/python/adk/quickstart.py
Normal file
70
docs/en/getting-started/quickstart/python/adk/quickstart.py
Normal file
@@ -0,0 +1,70 @@
|
||||
from google.adk.agents import Agent
|
||||
from google.adk.runners import Runner
|
||||
from google.adk.sessions import InMemorySessionService
|
||||
from google.adk.artifacts.in_memory_artifact_service import InMemoryArtifactService
|
||||
from google.genai import types
|
||||
from toolbox_core import ToolboxSyncClient
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
|
||||
# TODO(developer): replace this with your Google API key
|
||||
|
||||
os.environ['GOOGLE_API_KEY'] = 'your-api-key'
|
||||
|
||||
async def main():
|
||||
with ToolboxSyncClient("<http://127.0.0.1:5000>") as toolbox_client:
|
||||
|
||||
prompt = """
|
||||
You're a helpful hotel assistant. You handle hotel searching, booking and
|
||||
cancellations. When the user searches for a hotel, mention it's name, id,
|
||||
location and price tier. Always mention hotel ids while performing any
|
||||
searches. This is very important for any operations. For any bookings or
|
||||
cancellations, please provide the appropriate confirmation. Be sure to
|
||||
update checkin or checkout dates if mentioned by the user.
|
||||
Don't ask for confirmations from the user.
|
||||
"""
|
||||
|
||||
root_agent = Agent(
|
||||
model='gemini-2.0-flash-001',
|
||||
name='hotel_agent',
|
||||
description='A helpful AI assistant.',
|
||||
instruction=prompt,
|
||||
tools=toolbox_client.load_toolset("my-toolset"),
|
||||
)
|
||||
|
||||
session_service = InMemorySessionService()
|
||||
artifacts_service = InMemoryArtifactService()
|
||||
session = await session_service.create_session(
|
||||
state={}, app_name='hotel_agent', user_id='123'
|
||||
)
|
||||
runner = Runner(
|
||||
app_name='hotel_agent',
|
||||
agent=root_agent,
|
||||
artifact_service=artifacts_service,
|
||||
session_service=session_service,
|
||||
)
|
||||
|
||||
queries = [
|
||||
"Find hotels in Basel with Basel in its name.",
|
||||
"Can you book the Hilton Basel for me?",
|
||||
"Oh wait, this is too expensive. Please cancel it and book the Hyatt Regency instead.",
|
||||
"My check in dates would be from April 10, 2024 to April 19, 2024.",
|
||||
]
|
||||
|
||||
for query in queries:
|
||||
content = types.Content(role='user', parts=[types.Part(text=query)])
|
||||
events = runner.run(session_id=session.id,
|
||||
user_id='123', new_message=content)
|
||||
|
||||
responses = (
|
||||
part.text
|
||||
for event in events
|
||||
for part in event.content.parts
|
||||
if part.text is not None
|
||||
)
|
||||
|
||||
for text in responses:
|
||||
print(text)
|
||||
|
||||
asyncio.run(main())
|
||||
108
docs/en/getting-started/quickstart/python/core/quickstart.py
Normal file
108
docs/en/getting-started/quickstart/python/core/quickstart.py
Normal file
@@ -0,0 +1,108 @@
|
||||
import asyncio
|
||||
|
||||
from google import genai
|
||||
from google.genai.types import (
|
||||
Content,
|
||||
FunctionDeclaration,
|
||||
GenerateContentConfig,
|
||||
Part,
|
||||
Tool,
|
||||
)
|
||||
|
||||
from toolbox_core import ToolboxClient
|
||||
|
||||
prompt = """
|
||||
You're a helpful hotel assistant. You handle hotel searching, booking and
|
||||
cancellations. When the user searches for a hotel, mention it's name, id,
|
||||
location and price tier. Always mention hotel id while performing any
|
||||
searches. This is very important for any operations. For any bookings or
|
||||
cancellations, please provide the appropriate confirmation. Be sure to
|
||||
update checkin or checkout dates if mentioned by the user.
|
||||
Don't ask for confirmations from the user.
|
||||
"""
|
||||
|
||||
queries = [
|
||||
"Find hotels in Basel with Basel in its name.",
|
||||
"Please book the hotel Hilton Basel for me.",
|
||||
"This is too expensive. Please cancel it.",
|
||||
"Please book Hyatt Regency for me",
|
||||
"My check in dates for my booking would be from April 10, 2024 to April 19, 2024.",
|
||||
]
|
||||
|
||||
async def run_application():
|
||||
async with ToolboxClient("<http://127.0.0.1:5000>") as toolbox_client:
|
||||
|
||||
# The toolbox_tools list contains Python callables (functions/methods) designed for LLM tool-use
|
||||
# integration. While this example uses Google's genai client, these callables can be adapted for
|
||||
# various function-calling or agent frameworks. For easier integration with supported frameworks
|
||||
# (https://github.com/googleapis/mcp-toolbox-python-sdk/tree/main/packages), use the
|
||||
# provided wrapper packages, which handle framework-specific boilerplate.
|
||||
toolbox_tools = await toolbox_client.load_toolset("my-toolset")
|
||||
genai_client = genai.Client(
|
||||
vertexai=True, project="project-id", location="us-central1"
|
||||
)
|
||||
|
||||
genai_tools = [
|
||||
Tool(
|
||||
function_declarations=[
|
||||
FunctionDeclaration.from_callable_with_api_option(callable=tool)
|
||||
]
|
||||
)
|
||||
for tool in toolbox_tools
|
||||
]
|
||||
history = []
|
||||
for query in queries:
|
||||
user_prompt_content = Content(
|
||||
role="user",
|
||||
parts=[Part.from_text(text=query)],
|
||||
)
|
||||
history.append(user_prompt_content)
|
||||
|
||||
response = genai_client.models.generate_content(
|
||||
model="gemini-2.0-flash-001",
|
||||
contents=history,
|
||||
config=GenerateContentConfig(
|
||||
system_instruction=prompt,
|
||||
tools=genai_tools,
|
||||
),
|
||||
)
|
||||
history.append(response.candidates[0].content)
|
||||
function_response_parts = []
|
||||
for function_call in response.function_calls:
|
||||
fn_name = function_call.name
|
||||
# The tools are sorted alphabetically
|
||||
if fn_name == "search-hotels-by-name":
|
||||
function_result = await toolbox_tools[3](**function_call.args)
|
||||
elif fn_name == "search-hotels-by-location":
|
||||
function_result = await toolbox_tools[2](**function_call.args)
|
||||
elif fn_name == "book-hotel":
|
||||
function_result = await toolbox_tools[0](**function_call.args)
|
||||
elif fn_name == "update-hotel":
|
||||
function_result = await toolbox_tools[4](**function_call.args)
|
||||
elif fn_name == "cancel-hotel":
|
||||
function_result = await toolbox_tools[1](**function_call.args)
|
||||
else:
|
||||
raise ValueError("Function name not present.")
|
||||
function_response = {"result": function_result}
|
||||
function_response_part = Part.from_function_response(
|
||||
name=function_call.name,
|
||||
response=function_response,
|
||||
)
|
||||
function_response_parts.append(function_response_part)
|
||||
|
||||
if function_response_parts:
|
||||
tool_response_content = Content(role="tool", parts=function_response_parts)
|
||||
history.append(tool_response_content)
|
||||
|
||||
response2 = genai_client.models.generate_content(
|
||||
model="gemini-2.0-flash-001",
|
||||
contents=history,
|
||||
config=GenerateContentConfig(
|
||||
tools=genai_tools,
|
||||
),
|
||||
)
|
||||
final_model_response_content = response2.candidates[0].content
|
||||
history.append(final_model_response_content)
|
||||
print(response2.text)
|
||||
|
||||
asyncio.run(run_application())
|
||||
@@ -0,0 +1,52 @@
|
||||
import asyncio
|
||||
|
||||
from langgraph.prebuilt import create_react_agent
|
||||
|
||||
# TODO(developer): replace this with another import if needed
|
||||
|
||||
from langchain_google_vertexai import ChatVertexAI
|
||||
|
||||
# from langchain_google_genai import ChatGoogleGenerativeAI
|
||||
|
||||
# from langchain_anthropic import ChatAnthropic
|
||||
|
||||
from langgraph.checkpoint.memory import MemorySaver
|
||||
|
||||
from toolbox_langchain import ToolboxClient
|
||||
|
||||
prompt = """
|
||||
You're a helpful hotel assistant. You handle hotel searching, booking and
|
||||
cancellations. When the user searches for a hotel, mention it's name, id,
|
||||
location and price tier. Always mention hotel ids while performing any
|
||||
searches. This is very important for any operations. For any bookings or
|
||||
cancellations, please provide the appropriate confirmation. Be sure to
|
||||
update checkin or checkout dates if mentioned by the user.
|
||||
Don't ask for confirmations from the user.
|
||||
"""
|
||||
|
||||
queries = [
|
||||
"Find hotels in Basel with Basel in its name.",
|
||||
"Can you book the Hilton Basel for me?",
|
||||
"Oh wait, this is too expensive. Please cancel it and book the Hyatt Regency instead.",
|
||||
"My check in dates would be from April 10, 2024 to April 19, 2024.",
|
||||
]
|
||||
|
||||
async def run_application():
|
||||
# TODO(developer): replace this with another model if needed
|
||||
model = ChatVertexAI(model_name="gemini-2.0-flash-001")
|
||||
# model = ChatGoogleGenerativeAI(model="gemini-2.0-flash-001")
|
||||
# model = ChatAnthropic(model="claude-3-5-sonnet-20240620")
|
||||
|
||||
# Load the tools from the Toolbox server
|
||||
async with ToolboxClient("http://127.0.0.1:5000") as client:
|
||||
tools = await client.aload_toolset()
|
||||
|
||||
agent = create_react_agent(model, tools, checkpointer=MemorySaver())
|
||||
|
||||
config = {"configurable": {"thread_id": "thread-1"}}
|
||||
for query in queries:
|
||||
inputs = {"messages": [("user", prompt + query)]}
|
||||
response = agent.invoke(inputs, stream_mode="values", config=config)
|
||||
print(response["messages"][-1].content)
|
||||
|
||||
asyncio.run(run_application())
|
||||
@@ -0,0 +1,63 @@
|
||||
import asyncio
|
||||
import os
|
||||
|
||||
from llama_index.core.agent.workflow import AgentWorkflow
|
||||
|
||||
from llama_index.core.workflow import Context
|
||||
|
||||
# TODO(developer): replace this with another import if needed
|
||||
|
||||
from llama_index.llms.google_genai import GoogleGenAI
|
||||
|
||||
# from llama_index.llms.anthropic import Anthropic
|
||||
|
||||
from toolbox_llamaindex import ToolboxClient
|
||||
|
||||
prompt = """
|
||||
You're a helpful hotel assistant. You handle hotel searching, booking and
|
||||
cancellations. When the user searches for a hotel, mention it's name, id,
|
||||
location and price tier. Always mention hotel ids while performing any
|
||||
searches. This is very important for any operations. For any bookings or
|
||||
cancellations, please provide the appropriate confirmation. Be sure to
|
||||
update checkin or checkout dates if mentioned by the user.
|
||||
Don't ask for confirmations from the user.
|
||||
"""
|
||||
|
||||
queries = [
|
||||
"Find hotels in Basel with Basel in its name.",
|
||||
"Can you book the Hilton Basel for me?",
|
||||
"Oh wait, this is too expensive. Please cancel it and book the Hyatt Regency instead.",
|
||||
"My check in dates would be from April 10, 2024 to April 19, 2024.",
|
||||
]
|
||||
|
||||
async def run_application():
|
||||
# TODO(developer): replace this with another model if needed
|
||||
llm = GoogleGenAI(
|
||||
model="gemini-2.0-flash-001",
|
||||
vertexai_config={"project": "project-id", "location": "us-central1"},
|
||||
)
|
||||
# llm = GoogleGenAI(
|
||||
# api_key=os.getenv("GOOGLE_API_KEY"),
|
||||
# model="gemini-2.0-flash-001",
|
||||
# )
|
||||
# llm = Anthropic(
|
||||
# model="claude-3-7-sonnet-latest",
|
||||
# api_key=os.getenv("ANTHROPIC_API_KEY")
|
||||
# )
|
||||
|
||||
# Load the tools from the Toolbox server
|
||||
async with ToolboxClient("http://127.0.0.1:5000") as client:
|
||||
tools = await client.aload_toolset()
|
||||
|
||||
agent = AgentWorkflow.from_tools_or_functions(
|
||||
tools,
|
||||
llm=llm,
|
||||
system_prompt=prompt,
|
||||
)
|
||||
ctx = Context(agent)
|
||||
for query in queries:
|
||||
response = await agent.run(user_msg=query, ctx=ctx)
|
||||
print(f"---- {query} ----")
|
||||
print(str(response))
|
||||
|
||||
asyncio.run(run_application())
|
||||
Reference in New Issue
Block a user