Compare commits

..

4 Commits

Author SHA1 Message Date
duwenxin99
92a22de07c typo 2026-01-13 17:25:52 -05:00
duwenxin99
9a515a8792 resolve ai comments 2026-01-13 17:25:04 -05:00
duwenxin99
e255808714 docs: Add PR guidelines in 'CONTRIBUTING.md' 2026-01-13 17:22:21 -05:00
Sahaja Reddy Pabbathi Reddy
d69792d843 chore: update dataplex aspecttypes integration tests (#2193)
## Description

Addresses an issue where Dataplex AspectTypes created during integration
tests were not consistently deleted. This accumulation led to exceeding
the AspectType quota.
To prevent this, the test setup now includes a step to list and delete
all existing AspectTypes within the test project and location *before*
attempting to create any new ones. This ensures a clean state for each
test run and avoids hitting the quota.


## PR Checklist

> Thank you for opening a Pull Request! Before submitting your PR, there
are a
> few things you can do to make sure it goes smoothly:

- [ ] Make sure you reviewed

[CONTRIBUTING.md](https://github.com/googleapis/genai-toolbox/blob/main/CONTRIBUTING.md)
- [ ] Make sure to open an issue as a

[bug/issue](https://github.com/googleapis/genai-toolbox/issues/new/choose)
  before writing your code! That way we can discuss the change, evaluate
  designs, and agree on the general idea
- [ ] Ensure the tests and linter pass
- [ ] Code coverage does not decrease (if any source code was changed)
- [ ] Appropriate docs were updated (if necessary)
- [ ] Make sure to add `!` if this involve a breaking change

🛠️ Fixes #2057

Co-authored-by: Averi Kitsch <akitsch@google.com>
2026-01-13 08:24:33 -08:00
8 changed files with 120 additions and 62 deletions

View File

@@ -59,6 +59,13 @@ You can manually trigger the bot by commenting on your Pull Request:
* `/gemini summary`: Posts a summary of the changes in the pull request.
* `/gemini help`: Overview of the available commands
## Guidelines for Pull Requests
1. Please keep your PR small for more thorough review and easier updates. In case of regression, it also allows us to roll back a single feature instead of multiple ones.
1. For non-trivial changes, consider opening an issue and discussing it with the code owners first.
1. Provide a good PR description as a record of what change is being made and why it was made. Link to a GitHub issue if it exists.
1. Make sure your code is thoroughly tested with unit tests and integration tests. Remember to clean up the test instances properly in your code to avoid memory leaks.
## Adding a New Database Source or Tool
Please create an
@@ -110,6 +117,8 @@ implementation](https://github.com/googleapis/genai-toolbox/blob/main/internal/s
We recommend looking at an [example tool
implementation](https://github.com/googleapis/genai-toolbox/tree/main/internal/tools/postgres/postgressql).
Remember to keep your PRs small. For example, if you are contributing a new Source, only include one or two core Tools within the same PR, the rest of the Tools can come in subsequent PRs.
* **Create a new directory** under `internal/tools` for your tool type (e.g., `internal/tools/newdb/newdbtool`).
* **Define a configuration struct** for your tool in a file named `newdbtool.go`.
Create a `Config` struct and a `Tool` struct to store necessary parameters for
@@ -163,6 +172,8 @@ tools.
parameters][temp-param-doc]. Only run this test if template
parameters apply to your tool.
* **Add additional tests** for the tools that are not covered by the predefined tests. Every tool must be tested!
* **Add the new database to the integration test workflow** in
[integration.cloudbuild.yaml](.ci/integration.cloudbuild.yaml).
@@ -179,6 +190,7 @@ tools.
[temp-param-doc]:
https://googleapis.github.io/genai-toolbox/resources/tools/#template-parameters
### Adding Documentation
* **Update the documentation** to include information about your new data source

View File

@@ -509,7 +509,7 @@
},
"outputs": [],
"source": [
"! pip install toolbox-adk --quiet\n",
"! pip install toolbox-core --quiet\n",
"! pip install google-adk --quiet"
]
},
@@ -525,18 +525,14 @@
"from google.adk.runners import Runner\n",
"from google.adk.sessions import InMemorySessionService\n",
"from google.adk.artifacts.in_memory_artifact_service import InMemoryArtifactService\n",
"from google.adk.tools.toolbox_toolset import ToolboxToolset\n",
"from google.genai import types\n",
"from toolbox_core import ToolboxSyncClient\n",
"\n",
"import os\n",
"# TODO(developer): replace this with your Google API key\n",
"os.environ['GOOGLE_API_KEY'] = \"<GOOGLE_API_KEY>\"\n",
"\n",
"# Configure toolset\n",
"toolset = ToolboxToolset(\n",
" server_url=\"http://127.0.0.1:5000\",\n",
" toolset_name=\"my-toolset\"\n",
")\n",
"toolbox_client = ToolboxSyncClient(\"http://127.0.0.1:5000\")\n",
"\n",
"prompt = \"\"\"\n",
" You're a helpful hotel assistant. You handle hotel searching, booking and\n",
@@ -553,7 +549,7 @@
" name='hotel_agent',\n",
" description='A helpful AI assistant.',\n",
" instruction=prompt,\n",
" tools=[toolset],\n",
" tools=toolbox_client.load_toolset(\"my-toolset\"),\n",
")\n",
"\n",
"session_service = InMemorySessionService()\n",

View File

@@ -52,7 +52,7 @@ runtime](https://research.google.com/colaboratory/local-runtimes.html).
{{< tabpane persist=header >}}
{{< tab header="ADK" lang="bash" >}}
pip install toolbox-adk
pip install toolbox-core
{{< /tab >}}
{{< tab header="Langchain" lang="bash" >}}

View File

@@ -1,17 +1,15 @@
from google.adk import Agent
from google.adk.apps import App
from google.adk.tools.toolbox_toolset import ToolboxToolset
from toolbox_core import ToolboxSyncClient
# TODO(developer): update the TOOLBOX_URL to your toolbox endpoint
toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000",
)
client = ToolboxSyncClient("http://127.0.0.1:5000")
root_agent = Agent(
name='root_agent',
model='gemini-2.5-flash',
instruction="You are a helpful AI assistant designed to provide accurate and useful information.",
tools=[toolset],
tools=client.load_toolset(),
)
app = App(root_agent=root_agent, name="my_agent")

View File

@@ -1,3 +1,3 @@
google-adk==1.21.0
toolbox-adk>=0.1.0
toolbox-core==0.5.4
pytest==9.0.2

View File

@@ -49,7 +49,7 @@ with the necessary configuration for deployment to Vertex AI Agent Engine.
4. Add `toolbox-core` as a dependency to the new project:
```bash
uv add toolbox-adk
uv add toolbox-core
```
## Step 3: Configure Google Cloud Authentication
@@ -95,23 +95,22 @@ authentication token.
```python
from google.adk import Agent
from google.adk.apps import App
from google.adk.tools.toolbox_toolset import ToolboxToolset
from toolbox_adk import CredentialStrategy
from toolbox_core import ToolboxSyncClient, auth_methods
# TODO(developer): Replace with your Toolbox Cloud Run Service URL
TOOLBOX_URL = "https://your-toolbox-service-xyz.a.run.app"
# Initialize the toolset with Workload Identity (generates ID token for the URL)
toolset = ToolboxToolset(
server_url=TOOLBOX_URL,
credentials=CredentialStrategy.workload_identity(target_audience=TOOLBOX_URL)
# Initialize the client with the Cloud Run URL and Auth headers
client = ToolboxSyncClient(
TOOLBOX_URL,
client_headers={"Authorization": auth_methods.get_google_id_token(TOOLBOX_URL)}
)
root_agent = Agent(
name='root_agent',
model='gemini-2.5-flash',
instruction="You are a helpful AI assistant designed to provide accurate and useful information.",
tools=[toolset],
tools=client.load_toolset(),
)
app = App(root_agent=root_agent, name="my_agent")

View File

@@ -365,7 +365,7 @@ pip install llama-index-llms-google-genai
{{< /tab >}}
{{< tab header="ADK" lang="bash" >}}
pip install toolbox-adk
pip install toolbox-core
{{< /tab >}}
{{< /tabpane >}}
@@ -607,8 +607,8 @@ from google.adk.agents import Agent
from google.adk.runners import Runner
from google.adk.sessions import InMemorySessionService
from google.adk.artifacts.in_memory_artifact_service import InMemoryArtifactService
from google.adk.tools.toolbox_toolset import ToolboxToolset
from google.genai import types # For constructing message content
from toolbox_core import ToolboxSyncClient
import os
os.environ['GOOGLE_GENAI_USE_VERTEXAI'] = 'True'
@@ -623,47 +623,48 @@ os.environ['GOOGLE_CLOUD_LOCATION'] = 'us-central1'
# --- Load Tools from Toolbox ---
# TODO(developer): Ensure the Toolbox server is running at http://127.0.0.1:5000
toolset = ToolboxToolset(server_url="http://127.0.0.1:5000")
# TODO(developer): Ensure the Toolbox server is running at <http://127.0.0.1:5000>
# --- Define the Agent's Prompt ---
prompt = """
You're a helpful hotel assistant. You handle hotel searching, booking and
cancellations. When the user searches for a hotel, mention it's name, id,
location and price tier. Always mention hotel ids while performing any
searches. This is very important for any operations. For any bookings or
cancellations, please provide the appropriate confirmation. Be sure to
update checkin or checkout dates if mentioned by the user.
Don't ask for confirmations from the user.
"""
with ToolboxSyncClient("<http://127.0.0.1:5000>") as toolbox_client:
# TODO(developer): Replace "my-toolset" with the actual ID of your toolset as configured in your MCP Toolbox server.
agent_toolset = toolbox_client.load_toolset("my-toolset")
# --- Configure the Agent ---
# --- Define the Agent's Prompt ---
prompt = """
You're a helpful hotel assistant. You handle hotel searching, booking and
cancellations. When the user searches for a hotel, mention it's name, id,
location and price tier. Always mention hotel ids while performing any
searches. This is very important for any operations. For any bookings or
cancellations, please provide the appropriate confirmation. Be sure to
update checkin or checkout dates if mentioned by the user.
Don't ask for confirmations from the user.
"""
root_agent = Agent(
model='gemini-2.0-flash-001',
name='hotel_agent',
description='A helpful AI assistant that can search and book hotels.',
instruction=prompt,
tools=[toolset], # Pass the loaded toolset
)
# --- Configure the Agent ---
# --- Initialize Services for Running the Agent ---
session_service = InMemorySessionService()
artifacts_service = InMemoryArtifactService()
root_agent = Agent(
model='gemini-2.0-flash-001',
name='hotel_agent',
description='A helpful AI assistant that can search and book hotels.',
instruction=prompt,
tools=agent_toolset, # Pass the loaded toolset
)
runner = Runner(
app_name='hotel_agent',
agent=root_agent,
artifact_service=artifacts_service,
session_service=session_service,
)
async def main():
# --- Initialize Services for Running the Agent ---
session_service = InMemorySessionService()
artifacts_service = InMemoryArtifactService()
# Create a new session for the interaction.
session = await session_service.create_session(
session = session_service.create_session(
state={}, app_name='hotel_agent', user_id='123'
)
runner = Runner(
app_name='hotel_agent',
agent=root_agent,
artifact_service=artifacts_service,
session_service=session_service,
)
# --- Define Queries and Run the Agent ---
queries = [
"Find hotels in Basel with Basel in it's name.",
@@ -686,10 +687,6 @@ async def main():
for text in responses:
print(text)
import asyncio
if __name__ == "__main__":
asyncio.run(main())
{{< /tab >}}
{{< /tabpane >}}

View File

@@ -85,13 +85,66 @@ func initDataplexConnection(ctx context.Context) (*dataplex.CatalogClient, error
return client, nil
}
// cleanupOldAspectTypes Deletes AspectTypes older than the specified duration.
func cleanupOldAspectTypes(t *testing.T, ctx context.Context, client *dataplex.CatalogClient, oldThreshold time.Duration) {
parent := fmt.Sprintf("projects/%s/locations/us", DataplexProject)
olderThanTime := time.Now().Add(-oldThreshold)
listReq := &dataplexpb.ListAspectTypesRequest{
Parent: parent,
PageSize: 100, // Fetch up to 100 items
OrderBy: "create_time asc", // Order by creation time
}
const maxDeletes = 8 // Explicitly limit the number of deletions
it := client.ListAspectTypes(ctx, listReq)
var aspectTypesToDelete []string
for len(aspectTypesToDelete) < maxDeletes {
aspectType, err := it.Next()
if err == iterator.Done {
break
}
if err != nil {
t.Logf("Warning: Failed to list aspect types during cleanup: %v", err)
return
}
// Perform time-based filtering in memory
if aspectType.CreateTime != nil {
createTime := aspectType.CreateTime.AsTime()
if createTime.Before(olderThanTime) {
aspectTypesToDelete = append(aspectTypesToDelete, aspectType.GetName())
}
} else {
t.Logf("Warning: AspectType %s has no CreateTime", aspectType.GetName())
}
}
if len(aspectTypesToDelete) == 0 {
t.Logf("cleanupOldAspectTypes: No aspect types found older than %s to delete.", oldThreshold.String())
return
}
for _, aspectTypeName := range aspectTypesToDelete {
deleteReq := &dataplexpb.DeleteAspectTypeRequest{Name: aspectTypeName}
op, err := client.DeleteAspectType(ctx, deleteReq)
if err != nil {
t.Logf("Warning: Failed to delete aspect type %s: %v", aspectTypeName, err)
continue // Skip to the next item if initiation fails
}
if err := op.Wait(ctx); err != nil {
t.Logf("Warning: Failed to delete aspect type %s, operation error: %v", aspectTypeName, err)
} else {
t.Logf("cleanupOldAspectTypes: Successfully deleted %s", aspectTypeName)
}
}
}
func TestDataplexToolEndpoints(t *testing.T) {
sourceConfig := getDataplexVars(t)
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
defer cancel()
var args []string
bigqueryClient, err := initBigQueryConnection(ctx, DataplexProject)
if err != nil {
t.Fatalf("unable to create Cloud SQL connection pool: %s", err)
@@ -102,6 +155,9 @@ func TestDataplexToolEndpoints(t *testing.T) {
t.Fatalf("unable to create Dataplex connection: %s", err)
}
// Cleanup older aspecttypes
cleanupOldAspectTypes(t, ctx, dataplexClient, 1*time.Hour)
// create resources with UUID
datasetName := fmt.Sprintf("temp_toolbox_test_%s", strings.ReplaceAll(uuid.New().String(), "-", ""))
tableName := fmt.Sprintf("param_table_%s", strings.ReplaceAll(uuid.New().String(), "-", ""))