Compare commits

..

2 Commits

Author SHA1 Message Date
Harsh Jha
61262a83e1 feat: added js toolbox-adk sdk docs 2026-02-02 13:55:40 +05:30
Harsh Jha
2cadf1bf07 feat: Js SDK documentation added 2026-01-19 13:11:56 +05:30
4 changed files with 519 additions and 1088 deletions

View File

@@ -1,12 +1,11 @@
---
title: "JS SDK"
title: "Javascript"
type: docs
weight: 7
description: >
JS SDKs to connect to the MCP Toolbox server.
Javascript SDKs to connect to the MCP Toolbox server.
---
## Overview
The MCP Toolbox service provides a centralized way to manage and expose tools
@@ -22,4 +21,48 @@ These JS SDKs act as clients for that service. They handle the communication nee
By using these SDKs, you can easily leverage your Toolbox-managed tools directly
within your JS applications or AI orchestration frameworks.
[Github](https://github.com/googleapis/mcp-toolbox-sdk-js)
## Which Package Should I Use?
Choosing the right package depends on how you are building your application:
- [`@toolbox-sdk/core`](https://github.com/googleapis/mcp-toolbox-sdk-js/tree/main/packages/toolbox-core):
This is a framework agnostic way to connect the tools to popular frameworks
like Langchain, LlamaIndex and Genkit.
- [`@toolbox-sdk/adk`](https://github.com/googleapis/mcp-toolbox-sdk-js/tree/main/packages/toolbox-adk):
This package provides a seamless way to connect to [Google ADK TS](https://github.com/google/adk-js).
## Available Packages
This repository hosts the following TS packages. See the package-specific
README for detailed installation and usage instructions:
| Package | Target Use Case | Integration | Path | Details (README) | Npm Version |
| :------ | :---------- | :---------- | :---------------------- | :---------- | :---------
| `toolbox-core` | Framework-agnostic / Custom applications | Use directly / Custom | `packages/toolbox-core/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-js/blob/main/packages/toolbox-core/README.md) | ![npm](https://img.shields.io/npm/v/@toolbox-sdk/core) |
| `toolbox-adk` | ADK applications | ADK | `packages/toolbox-adk/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-js/blob/main/packages/toolbox-adk/README.md) | ![npm](https://img.shields.io/npm/v/@toolbox-sdk/adk) |
## Getting Started
To get started using Toolbox tools with an application, follow these general steps:
1. **Set up and Run the Toolbox Service:**
Before using the SDKs, you need the main MCP Toolbox service running. Follow
the instructions here: [**Toolbox Getting Started
Guide**](https://github.com/googleapis/genai-toolbox?tab=readme-ov-file#getting-started)
2. **Install the Appropriate SDK:**
Choose the package based on your needs (see "[Which Package Should I Use?](#which-package-should-i-use)" above) and install it:
```bash
# For the core, framework-agnostic SDK
npm install @toolbox-sdk/core
```
{{< notice note >}}
Source code for [js-sdk](https://github.com/googleapis/mcp-toolbox-sdk-js)
{{< /notice >}}

View File

@@ -0,0 +1,472 @@
---
title: "adk"
type: docs
weight: 8
description: >
Toolbox-adk SDK for connecting to the MCP Toolbox server and invoking tools programmatically.
---
## Overview
The `@toolbox-sdk/adk` package provides a Javascript interface to the MCP Toolbox service, enabling you to load and invoke tools from your own applications.
## Supported Environments
This SDK is a standard Node.js package built with TypeScript, ensuring broad compatibility with the modern JavaScript ecosystem.
- Node.js: Actively supported on Node.js v18.x and higher. The package is compatible with both modern ES Module (import) and legacy CommonJS (require).
- TypeScript: The SDK is written in TypeScript and ships with its own type declarations, providing a first-class development experience with autocompletion and type-checking out of the box.
- JavaScript: Fully supports modern JavaScript in Node.js environments.
## Installation
```bash
npm install @toolbox-sdk/adk
```
## Quickstart
1. **Start the Toolbox Service**
- Make sure the MCP Toolbox service is running. See the [Toolbox Getting Started Guide](/getting-started/introduction/#getting-started).
2. **Minimal Example**
Here's a minimal example to get you started. Ensure your Toolbox service is running and accessible.
```javascript
import { ToolboxClient } from '@toolbox-sdk/adk';
const client = new ToolboxClient(URL);
async function quickstart() {
try {
const tools = await client.loadToolset();
// Use tools
} catch (error) {
console.error("unable to load toolset:", error.message);
}
}
quickstart();
```
{{< notice note>}}
This guide uses modern ES Module (`import`) syntax. If your project uses CommonJS, you can import the library using require: `const { ToolboxClient } = require('@toolbox-sdk/adk')`;.
{{< /notice >}}
## Usage
Import and initialize a Toolbox client, pointing it to the URL of your running Toolbox service.
```javascript
import { ToolboxClient } from '@toolbox-sdk/adk';
// Replace with the actual URL where your Toolbox service is running
const URL = 'http://127.0.0.1:5000';
let client = new ToolboxClient(URL);
const tools = await client.loadToolset();
// Use the client and tools as per requirement
```
All interactions for loading and invoking tools happen through this client.
{{< notice note>}}
Closing the `ToolboxClient` also closes the underlying network session shared by all tools loaded from that client. As a result, any tool instances you have loaded will cease to function and will raise an error if you attempt to invoke them after the client is closed.
{{< /notice >}}
{{< notice note>}}
For advanced use cases, you can provide an external `AxiosInstance` during initialization (e.g., `ToolboxClient(url, my_session)`).
{{< /notice >}}
## Transport Protocols
The SDK supports multiple transport protocols to communicate with the Toolbox server. You can specify the protocol version during client initialization.
### Available Protocols
- `Protocol.MCP`: The default protocol version (currently aliases to `MCP_v20250618`).
- `Protocol.MCP_v20241105`: Use this for compatibility with older MCP servers (November 2024 version).
- `Protocol.MCP_v20250326`: March 2025 version.
- `Protocol.MCP_v20250618`: June 2025 version.
- `Protocol.MCP_v20251125`: November 2025 version.
- `Protocol.TOOLBOX`: Legacy Toolbox protocol.
### Specifying a Protocol
You can explicitly set the protocol by passing the `protocol` argument to the `ToolboxClient` constructor.
```javascript
import { ToolboxClient, Protocol } from '@toolbox-sdk/adk';
const URL = 'http://127.0.0.1:5000';
// Initialize with a specific protocol version
const client = new ToolboxClient(URL, null, null, Protocol.MCP_v20241105);
const tools = await client.loadToolset();
```
## Loading Tools
You can load tools individually or in groups (toolsets) as defined in your Toolbox service configuration. Loading a toolset is convenient when working with multiple related functions, while loading a single tool offers more granular control.
### Load a toolset
A toolset is a collection of related tools. You can load all tools in a toolset or a specific one:
```javascript
// Load all tools
const tools = await toolbox.loadToolset()
// Load a specific toolset
const tools = await toolbox.loadToolset("my-toolset")
```
### Load a single tool
Loads a specific tool by its unique name. This provides fine-grained control.
```javascript
const tool = await toolbox.loadTool("my-tool")
```
## Invoking Tools
Once loaded, tools behave like awaitable JS functions. You invoke them using `await` and pass arguments corresponding to the parameters defined in the tool's configuration within the Toolbox service.
```javascript
const tool = await toolbox.loadTool("my-tool")
const result = await tool.runAsync(args: {a: 5, b: 2})
```
{{< notice tip>}}
For a more comprehensive guide on setting up the Toolbox service itself, which you'll need running to use this SDK, please refer to the [Toolbox Quickstart Guide](getting-started/local_quickstart).
{{< /notice >}}
## Client to Server Authentication
This section describes how to authenticate the ToolboxClient itself when
connecting to a Toolbox server instance that requires authentication. This is
crucial for securing your Toolbox server endpoint, especially when deployed on
platforms like Cloud Run, GKE, or any environment where unauthenticated access is restricted.
This client-to-server authentication ensures that the Toolbox server can verify
the identity of the client making the request before any tool is loaded or
called. It is different from [Authenticating Tools](#authenticating-tools),
which deals with providing credentials for specific tools within an already
connected Toolbox session.
### When is Client-to-Server Authentication Needed?
You'll need this type of authentication if your Toolbox server is configured to
deny unauthenticated requests. For example:
- Your Toolbox server is deployed on Cloud Run and configured to "Require authentication."
- Your server is behind an Identity-Aware Proxy (IAP) or a similar
authentication layer.
- You have custom authentication middleware on your self-hosted Toolbox server.
Without proper client authentication in these scenarios, attempts to connect or
make calls (like `load_tool`) will likely fail with `Unauthorized` errors.
### How it works
The `ToolboxClient` allows you to specify functions that dynamically generate
HTTP headers for every request sent to the Toolbox server. The most common use
case is to add an [Authorization
header](https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Authorization)
with a bearer token (e.g., a Google ID token).
These header-generating functions are called just before each request, ensuring
that fresh credentials or header values can be used.
### Configuration
You can configure these dynamic headers as seen below:
```javascript
import { ToolboxClient } from '@toolbox-sdk/adk';
import {getGoogleIdToken} from '@toolbox-sdk/core/auth'
const URL = 'http://127.0.0.1:5000';
const getGoogleIdTokenGetter = () => getGoogleIdToken(URL);
const client = new ToolboxClient(URL, null, {"Authorization": getGoogleIdTokenGetter});
// Use the client as usual
```
### Authenticating with Google Cloud Servers
For Toolbox servers hosted on Google Cloud (e.g., Cloud Run) and requiring
`Google ID token` authentication, the helper module
[auth_methods](src/toolbox_core/authMethods.ts) provides utility functions.
### Step by Step Guide for Cloud Run
1. **Configure Permissions**: [Grant](https://cloud.google.com/run/docs/securing/managing-access#service-add-principals) the `roles/run.invoker` IAM role on the Cloud
Run service to the principal. This could be your `user account email` or a
`service account`.
2. **Configure Credentials**
- Local Development: Set up
[ADC](https://cloud.google.com/docs/authentication/set-up-adc-local-dev-environment).
- Google Cloud Environments: When running within Google Cloud (e.g., Compute
Engine, GKE, another Cloud Run service, Cloud Functions), ADC is typically
configured automatically, using the environment's default service account.
3. **Connect to the Toolbox Server**
```javascript
import { ToolboxClient } from '@toolbox-sdk/adk';
import {getGoogleIdToken} from '@toolbox-sdk/core/auth'
const URL = 'http://127.0.0.1:5000';
const getGoogleIdTokenGetter = () => getGoogleIdToken(URL);
const client = new ToolboxClient(URL, null, {"Authorization": getGoogleIdTokenGetter});
// Use the client as usual
```
## Authenticating Tools
{{< notice note>}}
**Always use HTTPS** to connect your application with the Toolbox service, especially in **production environments** or whenever the communication involves **sensitive data** (including scenarios where tools require authentication tokens). Using plain HTTP lacks encryption and exposes your application and data to significant security risks, such as eavesdropping and tampering.
{{< /notice >}}
Tools can be configured within the Toolbox service to require authentication,
ensuring only authorized users or applications can invoke them, especially when
accessing sensitive data.
### When is Authentication Needed?
Authentication is configured per-tool within the Toolbox service itself. If a
tool you intend to use is marked as requiring authentication in the service, you
must configure the SDK client to provide the necessary credentials (currently
Oauth2 tokens) when invoking that specific tool.
### Supported Authentication Mechanisms
The Toolbox service enables secure tool usage through **Authenticated Parameters**. For detailed information on how these mechanisms work within the Toolbox service and how to configure them, please refer to [Toolbox Service Documentation - Authenticated Parameters](resources/tools/#authenticated-parameters)
### Step 1: Configure Tools in Toolbox Service
First, ensure the target tool(s) are configured correctly in the Toolbox service
to require authentication. Refer to the [Toolbox Service Documentation -
Authenticated
Parameters](resources/tools/#authenticated-parameters)
for instructions.
### Step 2: Configure SDK Client
Your application needs a way to obtain the required Oauth2 token for the
authenticated user. The SDK requires you to provide a function capable of
retrieving this token *when the tool is invoked*.
#### Provide an ID Token Retriever Function
You must provide the SDK with a function (sync or async) that returns the
necessary token when called. The implementation depends on your application's
authentication flow (e.g., retrieving a stored token, initiating an OAuth flow).
{{< notice note>}}
The name used when registering the getter function with the SDK (e.g., `"my_api_token"`) must exactly match the `name` of the corresponding `authServices` defined in the tool's configuration within the Toolbox service.
{{< /notice >}}
```javascript
async function getAuthToken() {
// ... Logic to retrieve ID token (e.g., from local storage, OAuth flow)
// This example just returns a placeholder. Replace with your actual token retrieval.
return "YOUR_ID_TOKEN" // Placeholder
}
```
{{< notice tip>}}
Your token retriever function is invoked every time an authenticated parameter requires a token for a tool call. Consider implementing caching logic within this function to avoid redundant token fetching or generation, especially for tokens with longer validity periods or if the retrieval process is resource-intensive.
{{< /notice >}}
#### Option A: Add Authentication to a Loaded Tool
You can add the token retriever function to a tool object *after* it has been
loaded. This modifies the specific tool instance.
```javascript
const URL = 'http://127.0.0.1:5000';
let client = new ToolboxClient(URL);
let tool = await client.loadTool("my-tool")
const authTool = tool.addAuthTokenGetter("my_auth", get_auth_token) // Single token
// OR
const multiAuthTool = tool.addAuthTokenGetters({
"my_auth_1": getAuthToken1,
"my_auth_2": getAuthToken2,
}) // Multiple tokens
```
#### Option B: Add Authentication While Loading Tools
You can provide the token retriever(s) directly during the `loadTool` or
`loadToolset` calls. This applies the authentication configuration only to the
tools loaded in that specific call, without modifying the original tool objects
if they were loaded previously.
```javascript
const authTool = await toolbox.loadTool("toolName", {"myAuth": getAuthToken})
// OR
const authTools = await toolbox.loadToolset({"myAuth": getAuthToken})
```
{{< notice note>}}
Adding auth tokens during loading only affect the tools loaded within that call.
{{< /notice >}}
### Complete Authentication Example
```javascript
import { ToolboxClient } from '@toolbox-sdk/adk';
async function getAuthToken() {
// ... Logic to retrieve ID token (e.g., from local storage, OAuth flow)
// This example just returns a placeholder. Replace with your actual token retrieval.
return "YOUR_ID_TOKEN" // Placeholder
}
const URL = 'http://127.0.0.1:5000';
let client = new ToolboxClient(URL);
const tool = await client.loadTool("my-tool");
const authTool = tool.addAuthTokenGetters({"my_auth": getAuthToken});
const result = await authTool.runAsync(args: {input:"some input"});
console.log(result);
```
## Binding Parameter Values
The SDK allows you to pre-set, or "bind", values for specific tool parameters
before the tool is invoked or even passed to an LLM. These bound values are
fixed and will not be requested or modified by the LLM during tool use.
### Why Bind Parameters?
- **Protecting sensitive information:** API keys, secrets, etc.
- **Enforcing consistency:** Ensuring specific values for certain parameters.
- **Pre-filling known data:** Providing defaults or context.
{{< notice note>}}
The parameter names used for binding (e.g., `"api_key"`) must exactly match the parameter names defined in the tool's configuration within the Toolbox service.
{{< /notice >}}
{{< notice note>}}
You do not need to modify the tool's configuration in the Toolbox service to
> bind parameter values using the SDK.
{{< /notice >}}
### Option A: Binding Parameters to a Loaded Tool
Bind values to a tool object *after* it has been loaded. This modifies the
specific tool instance.
```javascript
import { ToolboxClient } from '@toolbox-sdk/adk';
const URL = 'http://127.0.0.1:5000';
let client = new ToolboxClient(URL);
const tool = await client.loadTool("my-tool");
const boundTool = tool.bindParam("param", "value");
// OR
const boundTool = tool.bindParams({"param": "value"});
```
### Option B: Binding Parameters While Loading Tools
Specify bound parameters directly when loading tools. This applies the binding
only to the tools loaded in that specific call.
```javascript
const boundTool = await client.loadTool("my-tool", null, {"param": "value"})
// OR
const boundTools = await client.loadToolset(null, {"param": "value"})
```
{{< notice note>}}
Bound values during loading only affect the tools loaded in that call.
{{< /notice >}}
### Binding Dynamic Values
Instead of a static value, you can bind a parameter to a synchronous or
asynchronous function. This function will be called *each time* the tool is
invoked to dynamically determine the parameter's value at runtime.
```javascript
async function getDynamicValue() {
// Logic to determine the value
return "dynamicValue";
}
const dynamicBoundTool = tool.bindParam("param", getDynamicValue)
```
{{< notice note>}}
You don't need to modify tool configurations to bind parameter values.
{{< /notice >}}
# Using with ADK
ADK JS:
```javascript
import {FunctionTool, InMemoryRunner, LlmAgent} from '@google/adk';
import {Content} from '@google/genai';
import {ToolboxClient} from '@toolbox-sdk/core'
const toolboxClient = new ToolboxClient("http://127.0.0.1:5000");
const loadedTools = await toolboxClient.loadToolset();
export const rootAgent = new LlmAgent({
name: 'weather_time_agent',
model: 'gemini-2.5-flash',
description:
'Agent to answer questions about the time and weather in a city.',
instruction:
'You are a helpful agent who can answer user questions about the time and weather in a city.',
tools: loadedTools,
});
async function main() {
const userId = 'test_user';
const appName = rootAgent.name;
const runner = new InMemoryRunner({agent: rootAgent, appName});
const session = await runner.sessionService.createSession({
appName,
userId,
});
const prompt = 'What is the weather in New York? And the time?';
const content: Content = {
role: 'user',
parts: [{text: prompt}],
};
console.log(content);
for await (const e of runner.runAsync({
userId,
sessionId: session.id,
newMessage: content,
})) {
if (e.content?.parts?.[0]?.text) {
console.log(`${e.author}: ${JSON.stringify(e.content, null, 2)}`);
}
}
}
main().catch(console.error);
```

View File

@@ -7,41 +7,6 @@ description: >
---
## Overview
![MCP Toolbox
Logo](https://raw.githubusercontent.com/googleapis/genai-toolbox/main/logo.png)
# MCP Toolbox SDKs for Go
[![License: Apache
2.0](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Docs](https://img.shields.io/badge/Docs-MCP_Toolbox-blue)](https://googleapis.github.io/genai-toolbox/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=flat&logo=discord&logoColor=white)](https://discord.gg/Dmm69peqjh)
[![Medium](https://img.shields.io/badge/Medium-12100E?style=flat&logo=medium&logoColor=white)](https://medium.com/@mcp_toolbox)
[![Go Report Card](https://goreportcard.com/badge/github.com/googleapis/mcp-toolbox-sdk-go)](https://goreportcard.com/report/github.com/googleapis/mcp-toolbox-sdk-go)
[![Module Version](https://img.shields.io/github/v/release/googleapis/mcp-toolbox-sdk-go)](https://img.shields.io/github/v/release/googleapis/mcp-toolbox-sdk-go)
[![Go Version](https://img.shields.io/github/go-mod/go-version/googleapis/mcp-toolbox-sdk-go)](https://img.shields.io/github/go-mod/go-version/googleapis/mcp-toolbox-sdk-go)
This repository contains the Go SDK designed to seamlessly integrate the
functionalities of the [MCP
Toolbox](https://github.com/googleapis/genai-toolbox) into your Gen AI
applications. The SDK allow you to load tools defined in Toolbox and use them
as standard Go tools within popular orchestration frameworks
or your custom code.
This simplifies the process of incorporating external functionalities (like
Databases or APIs) managed by Toolbox into your GenAI applications.
<!-- TOC -->
- [Overview](#overview)
- [Which Package Should I Use?](#which-package-should-i-use)
- [Available Packages](#available-packages)
- [Getting Started](#getting-started)
<!-- /TOC -->
## Overview
The MCP Toolbox service provides a centralized way to manage and expose tools
@@ -57,58 +22,4 @@ The Go SDK act as clients for that service. They handle the communication needed
By using the SDK, you can easily leverage your Toolbox-managed tools directly
within your Go applications or AI orchestration frameworks.
## Which Package Should I Use?
Choosing the right package depends on how you are building your application:
- [**`core`**](core/):
This is a framework-agnostic way to connect tools to popular frameworks
like Google GenAI, LangChain, etc.
- [**`tbadk`**](tbadk/):
This package provides a way to connect tools to ADK Go.
- [**`tbgenkit`**](tbgenkit/):
This package provides functionality to convert the Tool fetched using the core package
into a Genkit Go compatible tool.
## Available Packages
This repository hosts the following Go packages. See the package-specific
README for detailed installation and usage instructions:
| Package | Target Use Case | Integration | Path | Details (README) |
| :------ | :----------| :---------- | :---------------------- | :---------- |
| [`core`](core/) | Framework-agnostic / Custom applications | Use directly / Custom | `core/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-go/blob/main/core/README.md) |
| [`tbadk`](tbadk/) | ADK Go | Use directly | `tbadk/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-go/blob/main/tbadk/README.md) |
| [`tbgenkit`](tbgenkit/) | Genkit Go | Along with core | `tbgenkit/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-go/blob/main/tbgenkit/README.md) |
## Getting Started
To get started using Toolbox tools with an application, follow these general steps:
1. **Set up and Run the Toolbox Service:**
Before using the SDKs, you need the MCP Toolbox server running. Follow
the instructions here: [**Toolbox Getting Started
Guide**](https://github.com/googleapis/genai-toolbox?tab=readme-ov-file#getting-started)
2. **Install the Appropriate SDK:**
Choose the package based on your needs (see "[Which Package Should I Use?](#which-package-should-i-use)" above)
Use this command to install the SDK module
```bash
# For the core, framework-agnostic SDK
go get github.com/googleapis/mcp-toolbox-sdk-go
```
3. **Use the SDK:**
Consult the README for your chosen package (linked in the "[Available
Packages](#available-packages)" section above) for detailed instructions on
how to connect the client, load tool definitions, invoke tools, configure
authentication/binding, and integrate them into your application or
framework.
[Github](https://github.com/googleapis/mcp-toolbox-sdk-go)

View File

@@ -1,995 +0,0 @@
---
title: "Core Package"
linkTitle: "Core"
type: docs
weight: 1
---
![MCP Toolbox Logo](https://raw.githubusercontent.com/googleapis/genai-toolbox/main/logo.png)
# MCP Toolbox Core SDK
[![License: Apache 2.0](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
This SDK allows you to seamlessly integrate the functionalities of
[Toolbox](https://github.com/googleapis/genai-toolbox) allowing you to load and
use tools defined in the service as standard Go structs within your GenAI
applications.
This simplifies integrating external functionalities (like APIs, databases, or
custom logic) managed by the Toolbox into your workflows, especially those
involving Large Language Models (LLMs).
<!-- TOC ignore:true -->
<!-- TOC -->
- [MCP Toolbox Core SDK](#mcp-toolbox-core-sdk)
- [Installation](#installation)
- [Quickstart](#quickstart)
- [Usage](#usage)
- [Transport Protocols](#transport-protocols)
- [Supported Protocols](#supported-protocols)
- [Example](#example)
- [Loading Tools](#loading-tools)
- [Load a toolset](#load-a-toolset)
- [Load a single tool](#load-a-single-tool)
- [Invoking Tools](#invoking-tools)
- [Client to Server Authentication](#client-to-server-authentication)
- [When is Client-to-Server Authentication Needed?](#when-is-client-to-server-authentication-needed)
- [How it works](#how-it-works)
- [Configuration](#configuration)
- [Authenticating with Google Cloud Servers](#authenticating-with-google-cloud-servers)
- [Step by Step Guide for Cloud Run](#step-by-step-guide-for-cloud-run)
- [Authenticating Tools](#authenticating-tools)
- [When is Authentication Needed?](#when-is-authentication-needed)
- [Supported Authentication Mechanisms](#supported-authentication-mechanisms)
- [Step 1: Configure Tools in Toolbox Service](#step-1-configure-tools-in-toolbox-service)
- [Step 2: Configure SDK Client](#step-2-configure-sdk-client)
- [Provide an ID Token Retriever Function](#provide-an-id-token-retriever-function)
- [Option A: Add Default Authentication to a Client](#option-a-add-default-authentication-to-a-client)
- [Option B: Add Authentication to a Loaded Tool](#option-b-add-authentication-to-a-loaded-tool)
- [Option C: Add Authentication While Loading Tools](#option-c-add-authentication-while-loading-tools)
- [Complete Authentication Example](#complete-authentication-example)
- [Binding Parameter Values](#binding-parameter-values)
- [Why Bind Parameters?](#why-bind-parameters)
- [Option A: Add Default Bound Parameters to a Client](#option-a-add-default-bound-parameters-to-a-client)
- [Option B: Binding Parameters to a Loaded Tool](#option-b-binding-parameters-to-a-loaded-tool)
- [Option C: Binding Parameters While Loading Tools](#option-c-binding-parameters-while-loading-tools)
- [Binding Dynamic Values](#binding-dynamic-values)
- [Using with Orchestration Frameworks](#using-with-orchestration-frameworks)
- [Contributing](#contributing)
- [License](#license)
- [Support](#support)
<!-- /TOC -->
## Installation
```bash
go get github.com/googleapis/mcp-toolbox-sdk-go
```
This SDK is supported on Go version 1.24.4 and higher.
{{< notice note >}}
While the SDK itself is synchronous, you can execute its functions within goroutines to achieve asynchronous behavior.
{{< /notice >}}
## Quickstart
Here's a minimal example to get you started. Ensure your Toolbox service is
running and accessible.
```go
package main
import (
"context"
"fmt"
"github.com/googleapis/mcp-toolbox-sdk-go/core"
)
func quickstart() string {
ctx := context.Background()
inputs := map[string]any{"location": "London"}
client, err := core.NewToolboxClient("http://localhost:5000")
if err != nil {
return fmt.Sprintln("Could not start Toolbox Client", err)
}
tool, err := client.LoadTool("get_weather", ctx)
if err != nil {
return fmt.Sprintln("Could not load Toolbox Tool", err)
}
result, err := tool.Invoke(ctx, inputs)
if err != nil {
return fmt.Sprintln("Could not invoke tool", err)
}
return fmt.Sprintln(result)
}
func main() {
fmt.Println(quickstart())
}
```
## Usage
Import and initialize a Toolbox client, pointing it to the URL of your running
Toolbox service.
```go
import "github.com/googleapis/mcp-toolbox-sdk-go/core"
client, err := core.NewToolboxClient("http://localhost:5000")
```
All interactions for loading and invoking tools happen through this client.
{{< notice note >}}
For advanced use cases, you can provide an external custom `http.Client` during initialization (e.g., `core.NewToolboxClient(URL, core.WithHTTPClient(myClient)`).
If you provide your own session, you are responsible for managing its lifecycle; `ToolboxClient` *will not* close it.
{{< /notice >}}
{{< notice info >}}
Closing the `ToolboxClient` also closes the underlying network session shared by all tools loaded from that client. As a result, any tool instances you have loaded will cease to function and will raise an error if you attempt to invoke them after the client is closed.
{{< /notice >}}
## Transport Protocols
The SDK supports multiple transport protocols for communicating with the Toolbox server. By default, the client uses the latest supported version of the **Model Context Protocol (MCP)**.
You can explicitly select a protocol using the `core.WithProtocol` option during client initialization. This is useful if you need to use the native Toolbox HTTP protocol or pin the client to a specific legacy version of MCP.
{{< notice note >}}
* **Native Toolbox Transport**: This uses the service's native **REST over HTTP** API.
* **MCP Transports**: These options use the **Model Context Protocol over HTTP**.
{{< /notice >}}
### Supported Protocols
| Constant | Description |
| :--- | :--- |
| `core.MCP` | **(Default)** Alias for the latest supported MCP version (currently `v2025-06-18`). |
| `core.Toolbox` | The native Toolbox HTTP protocol. |
| `core.MCPv20250618` | MCP Protocol version 2025-06-18. |
| `core.MCPv20250326` | MCP Protocol version 2025-03-26. |
| `core.MCPv20241105` | MCP Protocol version 2024-11-05. |
### Example
If you wish to use the native Toolbox protocol:
```go
import "github.com/googleapis/mcp-toolbox-sdk-go/core"
client, err := core.NewToolboxClient(
"http://localhost:5000",
core.WithProtocol(core.Toolbox),
)
```
If you want to pin the MCP Version 2025-03-26:
```go
import "github.com/googleapis/mcp-toolbox-sdk-go/core"
client, err := core.NewToolboxClient(
"http://localhost:5000",
core.WithProtocol(core.MCPv20250326),
)
```
## Loading Tools
You can load tools individually or in groups (toolsets) as defined in your
Toolbox service configuration. Loading a toolset is convenient when working with
multiple related functions, while loading a single tool offers more granular
control.
### Load a toolset
A toolset is a collection of related tools. You can load all tools in a toolset
or a specific one:
```go
// Load default toolset by providing an empty string as the name
tools, err := client.LoadToolset("", ctx)
// Load a specific toolset
tools, err := client.LoadToolset("my-toolset", ctx)
```
### Load a single tool
Loads a specific tool by its unique name. This provides fine-grained control.
```go
tool, err = client.LoadTool("my-tool", ctx)
```
## Invoking Tools
Once loaded, tools behave like Go structs. You invoke them using `Invoke` method
by passing arguments corresponding to the parameters defined in the tool's
configuration within the Toolbox service.
```go
tool, err = client.LoadTool("my-tool", ctx)
inputs := map[string]any{"location": "London"}
result, err := tool.Invoke(ctx, inputs)
```
{{< notice tip >}}
For a more comprehensive guide on setting up the Toolbox service itself, which you'll need running to use this SDK, please refer to the [Toolbox Quickstart Guide](https://googleapis.github.io/genai-toolbox/getting-started/local_quickstart).
{{< /notice >}}
## Client to Server Authentication
This section describes how to authenticate the ToolboxClient itself when
connecting to a Toolbox server instance that requires authentication. This is
crucial for securing your Toolbox server endpoint, especially when deployed on
platforms like Cloud Run, GKE, or any environment where unauthenticated access is restricted.
This client-to-server authentication ensures that the Toolbox server can verify
the identity of the client making the request before any tool is loaded or
called. It is different from [Authenticating Tools](#authenticating-tools),
which deals with providing credentials for specific tools within an already
connected Toolbox session.
### When is Client-to-Server Authentication Needed?
You'll need this type of authentication if your Toolbox server is configured to
deny unauthenticated requests. For example:
- Your Toolbox server is deployed on Cloud Run and configured to "Require authentication."
- Your server is behind an Identity-Aware Proxy (IAP) or a similar
authentication layer.
- You have custom authentication middleware on your self-hosted Toolbox server.
Without proper client authentication in these scenarios, attempts to connect or
make calls (like `LoadTool`) will likely fail with `Unauthorized` errors.
### How it works
The `ToolboxClient` allows you to specify TokenSources that dynamically generate HTTP headers for
every request sent to the Toolbox server. The most common use case is to add an
Authorization header with a bearer token (e.g., a Google ID token).
These header-generating functions are called just before each request, ensuring
that fresh credentials or header values can be used.
### Configuration
You can configure these dynamic headers as seen below:
```go
import "github.com/googleapis/mcp-toolbox-sdk-go/core"
tokenProvider := func() string {
return "header3_value"
}
staticTokenSource := oauth2.StaticTokenSource(&oauth2.Token{AccessToken: "header2_value"})
dynamicTokenSource := core.NewCustomTokenSource(tokenProvider)
client, err := core.NewToolboxClient(
"toolbox-url",
core.WithClientHeaderString("header1", "header1_value"),
core.WithClientHeaderTokenSource("header2", staticTokenSource),
core.WithClientHeaderTokenSource("header3", dynamicTokenSource),
)
```
### Authenticating with Google Cloud Servers
For Toolbox servers hosted on Google Cloud (e.g., Cloud Run) and requiring
`Google ID token` authentication, the helper module
[auth_methods](https://github.com/googleapis/mcp-toolbox-sdk-go/blob/main/core/auth.go) provides utility functions.
### Step by Step Guide for Cloud Run
1. **Configure Permissions**: [Grant](https://cloud.google.com/run/docs/securing/managing-access#service-add-principals) the `roles/run.invoker` IAM role on the Cloud
Run service to the principal. This could be your `user account email` or a
`service account`.
2. **Configure Credentials**
- Local Development: Set up
[ADC](https://cloud.google.com/docs/authentication/set-up-adc-local-dev-environment).
- Google Cloud Environments: When running within Google Cloud (e.g., Compute
Engine, GKE, another Cloud Run service, Cloud Functions), ADC is typically
configured automatically, using the environment's default service account.
3. **Connect to the Toolbox Server**
```go
import "github.com/googleapis/mcp-toolbox-sdk-go/core"
import "context"
ctx := context.Background()
token, err := core.GetGoogleIDToken(ctx, URL)
client, err := core.NewToolboxClient(
URL,
core.WithClientHeaderString("Authorization", token),
)
// Now, you can use the client as usual.
```
## Authenticating Tools
{{< notice warning >}}
**Always use HTTPS** to connect your application with the Toolbox service, especially in **production environments** or whenever the communication involves **sensitive data** (including scenarios where tools requireauthentication tokens). Using plain HTTP lacks encryption and exposes your application and data to significant security risks, such as eavesdropping and tampering.
{{< /notice >}}
Tools can be configured within the Toolbox service to require authentication,
ensuring only authorized users or applications can invoke them, especially when
accessing sensitive data.
### When is Authentication Needed?
Authentication is configured per-tool within the Toolbox service itself. If a
tool you intend to use is marked as requiring authentication in the service, you
must configure the SDK client to provide the necessary credentials (currently
Oauth2 tokens) when invoking that specific tool.
### Supported Authentication Mechanisms
The Toolbox service enables secure tool usage through **Authenticated Parameters**.
For detailed information on how these mechanisms work within the Toolbox service and how to configure them, please refer to [Toolbox Service Documentation - Authenticated Parameters](https://googleapis.github.io/genai-toolbox/resources/tools/#authenticated-parameters).
### Step 1: Configure Tools in Toolbox Service
First, ensure the target tool(s) are configured correctly in the Toolbox service
to require authentication. Refer to the [Toolbox Service Documentation -
Authenticated
Parameters](https://googleapis.github.io/genai-toolbox/resources/tools/#authenticated-parameters)
for instructions.
### Step 2: Configure SDK Client
Your application needs a way to obtain the required Oauth2 token for the
authenticated user. The SDK requires you to provide a function capable of
retrieving this token *when the tool is invoked*.
#### Provide an ID Token Retriever Function
You must provide the SDK with a function that returns the
necessary token when called. The implementation depends on your application's
authentication flow (e.g., retrieving a stored token, initiating an OAuth flow).
{{< notice info >}}
The name used when registering the getter function with the SDK (e.g., `"my_api_token"`) must exactly match the `name` of the corresponding `authServices` defined in the tool's configuration within the Toolbox service.
{{< /notice >}}
```go
func getAuthToken() string {
// ... Logic to retrieve ID token (e.g., from local storage, OAuth flow)
// This example just returns a placeholder. Replace with your actual token retrieval.
return "YOUR_ID_TOKEN" // Placeholder
}
```
{{< notice tip >}}
Your token retriever function is invoked every time an authenticated parameter requires a token for a tool call. Consider implementing caching logic within this function to avoid redundant token fetching or generation, especially for tokens with longer validity periods or if the retrieval process is resource-intensive.
{{< /notice >}}
#### Option A: Add Default Authentication to a Client
You can add default tool level authentication to a client.
Every tool / toolset loaded by the client will contain the auth token.
```go
ctx := context.Background()
client, err := core.NewToolboxClient("http://127.0.0.1:5000",
core.WithDefaultToolOptions(
core.WithAuthTokenString("my-auth-1", "auth-value"),
),
)
AuthTool, err := client.LoadTool("my-tool", ctx)
```
#### Option B: Add Authentication to a Loaded Tool
You can add the token retriever function to a tool object *after* it has been
loaded. This modifies the specific tool instance.
```go
ctx := context.Background()
client, err := core.NewToolboxClient("http://127.0.0.1:5000")
tool, err := client.LoadTool("my-tool", ctx)
AuthTool, err := tool.ToolFrom(
core.WithAuthTokenSource("my-auth", headerTokenSource),
core.WithAuthTokenString("my-auth-1", "value"),
)
```
#### Option C: Add Authentication While Loading Tools
You can provide the token retriever(s) directly during the `LoadTool` or
`LoadToolset` calls. This applies the authentication configuration only to the
tools loaded in that specific call, without modifying the original tool objects
if they were loaded previously.
```go
AuthTool, err := client.LoadTool("my-tool", ctx, core.WithAuthTokenString("my-auth-1", "value"))
// or
AuthTools, err := client.LoadToolset(
"my-toolset",
ctx,
core.WithAuthTokenString("my-auth-1", "value"),
)
```
{{< notice note >}}
Adding auth tokens during loading only affect the tools loaded within that call.
{{< /notice >}}
### Complete Authentication Example
```go
import "github.com/googleapis/mcp-toolbox-sdk-go/core"
import "fmt"
func getAuthToken() string {
// ... Logic to retrieve ID token (e.g., from local storage, OAuth flow)
// This example just returns a placeholder. Replace with your actual token retrieval.
return "YOUR_ID_TOKEN" // Placeholder
}
func main() {
ctx := context.Background()
inputs := map[string]any{"input": "some input"}
dynamicTokenSource := core.NewCustomTokenSource(getAuthToken)
client, err := core.NewToolboxClient("http://127.0.0.1:5000")
tool, err := client.LoadTool("my-tool", ctx)
AuthTool, err := tool.ToolFrom(core.WithAuthTokenSource("my_auth", dynamicTokenSource))
result, err := AuthTool.Invoke(ctx, inputs)
fmt.Println(result)
}
```
{{< notice note >}}
An auth token getter for a specific name (e.g., "GOOGLE_ID") will replace any client header with the same name followed by "_token" (e.g., "GOOGLE_ID_token").
{{< /notice >}}
## Binding Parameter Values
The SDK allows you to pre-set, or "bind", values for specific tool parameters
before the tool is invoked or even passed to an LLM. These bound values are
fixed and will not be requested or modified by the LLM during tool use.
### Why Bind Parameters?
- **Protecting sensitive information:** API keys, secrets, etc.
- **Enforcing consistency:** Ensuring specific values for certain parameters.
- **Pre-filling known data:** Providing defaults or context.
{{< notice info >}}
The parameter names used for binding (e.g., `"api_key"`) must exactly match the parameter names defined in the tool's configuration within the Toolbox service.
{{< /notice >}}
{{< notice note >}}
You do not need to modify the tool's configuration in the Toolbox service to bind parameter values using the SDK.
{{< /notice >}}
#### Option A: Add Default Bound Parameters to a Client
You can add default tool level bound parameters to a client. Every tool / toolset
loaded by the client will have the bound parameter.
```go
ctx := context.Background()
client, err := core.NewToolboxClient("http://127.0.0.1:5000",
core.WithDefaultToolOptions(
core.WithBindParamString("param1", "value"),
),
)
boundTool, err := client.LoadTool("my-tool", ctx)
```
### Option B: Binding Parameters to a Loaded Tool
Bind values to a tool object *after* it has been loaded. This modifies the
specific tool instance.
```go
client, err := core.NewToolboxClient("http://127.0.0.1:5000")
tool, err := client.LoadTool("my-tool", ctx)
boundTool, err := tool.ToolFrom(
core.WithBindParamString("param1", "value"),
core.WithBindParamString("param2", "value")
)
```
### Option C: Binding Parameters While Loading Tools
Specify bound parameters directly when loading tools. This applies the binding
only to the tools loaded in that specific call.
```go
boundTool, err := client.LoadTool("my-tool", ctx, core.WithBindParamString("param", "value"))
// OR
boundTool, err := client.LoadToolset("", ctx, core.WithBindParamString("param", "value"))
```
{{< notice note >}} Bound values during loading only affect the tools loaded in that call. {{< /notice >}}
### Binding Dynamic Values
Instead of a static value, you can bind a parameter to a synchronous or
asynchronous function. This function will be called *each time* the tool is
invoked to dynamically determine the parameter's value at runtime.
Functions with the return type (data_type, error) can be provided.
```go
getDynamicValue := func() (string, error) { return "req-123", nil }
dynamicBoundTool, err := tool.ToolFrom(core.WithBindParamStringFunc("param", getDynamicValue))
```
{{< notice info >}} You don't need to modify tool configurations to bind parameter values. {{< /notice >}}
# Using with Orchestration Frameworks
To see how the MCP Toolbox Go SDK works with orchestration frameworks, check out the end-to-end examples in the [/samples/](https://github.com/googleapis/mcp-toolbox-sdk-go/tree/main/core/samples) folder.
Use the [tbgenkit package](https://github.com/googleapis/mcp-toolbox-sdk-go/tree/main/tbgenkit) to convert Toolbox Tools into Genkit compatible tools.
# Contributing
Contributions are welcome! Please refer to the [DEVELOPER.md](https://github.com/googleapis/mcp-toolbox-sdk-go/blob/main/DEVELOPER.md)
file for guidelines on how to set up a development environment and run tests.
# License
This project is licensed under the Apache License 2.0. See the
[LICENSE](https://github.com/googleapis/mcp-toolbox-sdk-go/blob/main/LICENSE) file for details.
# Support
If you encounter issues or have questions, check the existing [GitHub Issues](https://github.com/googleapis/genai-toolbox/issues) for the main Toolbox project.
# Samples for Reference
These samples demonstrate how to integrate the MCP Toolbox Go Core SDK with popular orchestration frameworks.
<details>
<summary>Google GenAI</summary>
```go
// This sample demonstrates integration with the standard Google GenAI framework.
package main
import (
"context"
"encoding/json"
"fmt"
"log"
"os"
"github.com/googleapis/mcp-toolbox-sdk-go/core"
"google.golang.org/genai"
)
// ConvertToGenaiTool translates a ToolboxTool into the genai.FunctionDeclaration format.
func ConvertToGenaiTool(toolboxTool *core.ToolboxTool) *genai.Tool {
inputschema, err := toolboxTool.InputSchema()
if err != nil {
return &genai.Tool{}
}
var schema *genai.Schema
_ = json.Unmarshal(inputschema, &schema)
// First, create the function declaration.
funcDeclaration := &genai.FunctionDeclaration{
Name: toolboxTool.Name(),
Description: toolboxTool.Description(),
Parameters: schema,
}
// Then, wrap the function declaration in a genai.Tool struct.
return &genai.Tool{
FunctionDeclarations: []*genai.FunctionDeclaration{funcDeclaration},
}
}
// printResponse extracts and prints the relevant parts of the model's response.
func printResponse(resp *genai.GenerateContentResponse) {
for _, cand := range resp.Candidates {
if cand.Content != nil {
for _, part := range cand.Content.Parts {
fmt.Println(part.Text)
}
}
}
}
func main() {
// Setup
ctx := context.Background()
apiKey := os.Getenv("GOOGLE_API_KEY")
toolboxURL := "http://localhost:5000"
// Initialize the Google GenAI client using the explicit ClientConfig.
client, err := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: apiKey,
})
if err != nil {
log.Fatalf("Failed to create Google GenAI client: %v", err)
}
// Initialize the MCP Toolbox client.
toolboxClient, err := core.NewToolboxClient(toolboxURL)
if err != nil {
log.Fatalf("Failed to create Toolbox client: %v", err)
}
// Load the tools using the MCP Toolbox SDK.
tools, err := toolboxClient.LoadToolset("my-toolset", ctx)
if err != nil {
log.Fatalf("Failed to load tools: %v\nMake sure your Toolbox server is running and the tool is configured.", err)
}
genAITools := make([]*genai.Tool, len(tools))
toolsMap := make(map[string]*core.ToolboxTool, len(tools))
for i, tool := range tools {
// Convert the tools into usable format
genAITools[i] = ConvertToGenaiTool(tool)
// Add tool to a map for lookup later
toolsMap[tool.Name()] = tool
}
// Set up the generative model with the available tool.
modelName := "gemini-2.0-flash"
query := "Find hotels in Basel with Basel in it's name and share the names with me"
// Create the initial content prompt for the model.
contents := []*genai.Content{
genai.NewContentFromText(query, genai.RoleUser),
}
config := &genai.GenerateContentConfig{
Tools: genAITools,
ToolConfig: &genai.ToolConfig{
FunctionCallingConfig: &genai.FunctionCallingConfig{
Mode: genai.FunctionCallingConfigModeAny,
},
},
}
genContentResp, _ := client.Models.GenerateContent(ctx, modelName, contents, config)
printResponse(genContentResp)
functionCalls := genContentResp.FunctionCalls()
if len(functionCalls) == 0 {
log.Println("No function call returned by the AI. The model likely answered directly.")
return
}
// Process the first function call (the example assumes one for simplicity).
fc := functionCalls[0]
log.Printf("--- Gemini requested function call: %s ---\n", fc.Name)
log.Printf("--- Arguments: %+v ---\n", fc.Args)
var toolResultString string
if fc.Name == "search-hotels-by-name" {
tool := toolsMap["search-hotels-by-name"]
toolResult, err := tool.Invoke(ctx, fc.Args)
toolResultString = fmt.Sprintf("%v", toolResult)
if err != nil {
log.Fatalf("Failed to execute tool '%s': %v", fc.Name, err)
}
} else {
log.Println("LLM did not request our tool")
}
resultContents := []*genai.Content{
genai.NewContentFromText("The tool returned this result, share it with the user based of their previous querys"+toolResultString, genai.RoleUser),
}
finalResponse, err := client.Models.GenerateContent(ctx, modelName, resultContents, &genai.GenerateContentConfig{})
if err != nil {
log.Fatalf("Error calling GenerateContent (with function result): %v", err)
}
log.Println("=== Final Response from Model (after processing function result) ===")
printResponse(finalResponse)
}
```
</details>
<details>
<summary>LangChain</summary>
```go
// This sample demonstrates how to use Toolbox tools as function definitions in LangChain Go.
package main
import (
"context"
"encoding/json"
"fmt"
"log"
"os"
"github.com/googleapis/mcp-toolbox-sdk-go/core"
"github.com/tmc/langchaingo/llms"
"github.com/tmc/langchaingo/llms/googleai"
)
// ConvertToLangchainTool converts a generic core.ToolboxTool into a LangChainGo llms.Tool.
func ConvertToLangchainTool(toolboxTool *core.ToolboxTool) llms.Tool {
// Fetch the tool's input schema
inputschema, err := toolboxTool.InputSchema()
if err != nil {
return llms.Tool{}
}
var paramsSchema map[string]any
_ = json.Unmarshal(inputschema, &paramsSchema)
// Convert into LangChain's llms.Tool
return llms.Tool{
Type: "function",
Function: &llms.FunctionDefinition{
Name: toolboxTool.Name(),
Description: toolboxTool.Description(),
Parameters: paramsSchema,
},
}
}
func main() {
genaiKey := os.Getenv("GOOGLE_API_KEY")
toolboxURL := "http://localhost:5000"
ctx := context.Background()
// Initialize the Google AI client (LLM).
llm, err := googleai.New(ctx, googleai.WithAPIKey(genaiKey), googleai.WithDefaultModel("gemini-1.5-flash"))
if err != nil {
log.Fatalf("Failed to create Google AI client: %v", err)
}
// Initialize the MCP Toolbox client.
toolboxClient, err := core.NewToolboxClient(toolboxURL)
if err != nil {
log.Fatalf("Failed to create Toolbox client: %v", err)
}
// Load the tools using the MCP Toolbox SDK.
tools, err := toolboxClient.LoadToolset("my-toolset", ctx)
if err != nil {
log.Fatalf("Failed to load tools: %v\nMake sure your Toolbox server is running and the tool is configured.", err)
}
toolsMap := make(map[string]*core.ToolboxTool, len(tools))
langchainTools := make([]llms.Tool, len(tools))
for i, tool := range tools {
// Convert the loaded ToolboxTools into the format LangChainGo requires.
langchainTools[i] = ConvertToLangchainTool(tool)
// Add tool to a map for lookup later
toolsMap[tool.Name()] = tool
}
// Start the conversation history.
messageHistory := []llms.MessageContent{
llms.TextParts(llms.ChatMessageTypeHuman, "Find hotels in Basel with Basel in it's name."),
}
// Make the first call to the LLM, making it aware of the tool.
resp, err := llm.GenerateContent(ctx, messageHistory, llms.WithTools(langchainTools))
if err != nil {
log.Fatalf("LLM call failed: %v", err)
}
// Add the model's response (which should be a tool call) to the history.
respChoice := resp.Choices[0]
assistantResponse := llms.TextParts(llms.ChatMessageTypeAI, respChoice.Content)
for _, tc := range respChoice.ToolCalls {
assistantResponse.Parts = append(assistantResponse.Parts, tc)
}
messageHistory = append(messageHistory, assistantResponse)
// Process each tool call requested by the model.
for _, tc := range respChoice.ToolCalls {
toolName := tc.FunctionCall.Name
switch tc.FunctionCall.Name {
case "search-hotels-by-name":
var args map[string]any
if err := json.Unmarshal([]byte(tc.FunctionCall.Arguments), &args); err != nil {
log.Fatalf("Failed to unmarshal arguments for tool '%s': %v", toolName, err)
}
tool := toolsMap["search-hotels-by-name"]
toolResult, err := tool.Invoke(ctx, args)
if err != nil {
log.Fatalf("Failed to execute tool '%s': %v", toolName, err)
}
// Create the tool call response message and add it to the history.
toolResponse := llms.MessageContent{
Role: llms.ChatMessageTypeTool,
Parts: []llms.ContentPart{
llms.ToolCallResponse{
Name: toolName,
Content: fmt.Sprintf("%v", toolResult),
},
},
}
messageHistory = append(messageHistory, toolResponse)
default:
log.Fatalf("got unexpected function call: %v", tc.FunctionCall.Name)
}
}
// Final LLM Call for Natural Language Response
log.Println("Sending tool response back to LLM for a final answer...")
// Call the LLM again with the updated history, which now includes the tool's result.
finalResp, err := llm.GenerateContent(ctx, messageHistory)
if err != nil {
log.Fatalf("Final LLM call failed: %v", err)
}
// Display the Result
fmt.Println("\n======================================")
fmt.Println("Final Response from LLM:")
fmt.Println(finalResp.Choices[0].Content)
fmt.Println("======================================")
}
```
</details>
<details>
<summary>OpenAI</summary>
```go
// This sample demonstrates integration with the OpenAI Go client.
package main
import (
"context"
"encoding/json"
"fmt"
"log"
"github.com/googleapis/mcp-toolbox-sdk-go/core"
openai "github.com/openai/openai-go"
)
// ConvertToOpenAITool converts a ToolboxTool into the go-openai library's Tool format.
func ConvertToOpenAITool(toolboxTool *core.ToolboxTool) openai.ChatCompletionToolParam {
// Get the input schema
jsonSchemaBytes, err := toolboxTool.InputSchema()
if err != nil {
return openai.ChatCompletionToolParam{}
}
// Unmarshal the JSON bytes into FunctionParameters
var paramsSchema openai.FunctionParameters
if err := json.Unmarshal(jsonSchemaBytes, &paramsSchema); err != nil {
return openai.ChatCompletionToolParam{}
}
// Create and return the final tool parameter struct.
return openai.ChatCompletionToolParam{
Function: openai.FunctionDefinitionParam{
Name: toolboxTool.Name(),
Description: openai.String(toolboxTool.Description()),
Parameters: paramsSchema,
},
}
}
func main() {
// Setup
ctx := context.Background()
toolboxURL := "http://localhost:5000"
openAIClient := openai.NewClient()
// Initialize the MCP Toolbox client.
toolboxClient, err := core.NewToolboxClient(toolboxURL)
if err != nil {
log.Fatalf("Failed to create Toolbox client: %v", err)
}
// Load the tools using the MCP Toolbox SDK.
tools, err := toolboxClient.LoadToolset("my-toolset", ctx)
if err != nil {
log.Fatalf("Failed to load tool : %v\nMake sure your Toolbox server is running and the tool is configured.", err)
}
openAITools := make([]openai.ChatCompletionToolParam, len(tools))
toolsMap := make(map[string]*core.ToolboxTool, len(tools))
for i, tool := range tools {
// Convert the Toolbox tool into the openAI FunctionDeclaration format.
openAITools[i] = ConvertToOpenAITool(tool)
// Add tool to a map for lookup later
toolsMap[tool.Name()] = tool
}
question := "Find hotels in Basel with Basel in it's name "
params := openai.ChatCompletionNewParams{
Messages: []openai.ChatCompletionMessageParamUnion{
openai.UserMessage(question),
},
Tools: openAITools,
Seed: openai.Int(0),
Model: openai.ChatModelGPT4o,
}
// Make initial chat completion request
completion, err := openAIClient.Chat.Completions.New(ctx, params)
if err != nil {
panic(err)
}
toolCalls := completion.Choices[0].Message.ToolCalls
// Return early if there are no tool calls
if len(toolCalls) == 0 {
fmt.Printf("No function call")
return
}
// If there was a function call, continue the conversation
params.Messages = append(params.Messages, completion.Choices[0].Message.ToParam())
for _, toolCall := range toolCalls {
if toolCall.Function.Name == "search-hotels-by-name" {
// Extract the location from the function call arguments
var args map[string]interface{}
tool := toolsMap["search-hotels-by-name"]
err := json.Unmarshal([]byte(toolCall.Function.Arguments), &args)
if err != nil {
panic(err)
}
result, err := tool.Invoke(ctx, args)
if err != nil {
log.Fatal("Could not invoke tool", err)
}
params.Messages = append(params.Messages, openai.ToolMessage(result.(string), toolCall.ID))
}
}
completion, err = openAIClient.Chat.Completions.New(ctx, params)
if err != nil {
panic(err)
}
fmt.Println(completion.Choices[0].Message.Content)
}
```
</details>