Compare commits

...

7 Commits

Author SHA1 Message Date
AnmolShukla2002
51a1f71c59 docs: migration of Go Sdk docs 2026-01-12 15:54:14 +05:30
Anmol Shukla
4928f0be8f Merge branch 'main' into sdk-docs-migrate 2026-01-07 14:11:20 +05:30
Harsh Jha
0cb3ad9026 Merge branch 'main' into sdk-docs-migrate 2025-12-10 14:03:46 +05:30
Harsh Jha
290cba0f1e Merge branch 'main' into sdk-docs-migrate 2025-12-01 14:57:07 +05:30
Harsh Jha
047def93ef Merge branch 'main' into sdk-docs-migrate 2025-12-01 14:55:19 +05:30
Harsh Jha
875b5277e3 Merge branch 'main' into sdk-docs-migrate 2025-11-21 12:39:20 +05:30
Harsh Jha
a29f9e5484 feat: added basic template for sdks doc migrate 2025-11-17 13:57:49 +05:30
12 changed files with 781 additions and 45 deletions

View File

@@ -0,0 +1,25 @@
---
title: "JS SDK"
type: docs
weight: 7
description: >
JS SDKs to connect to the MCP Toolbox server.
---
## Overview
The MCP Toolbox service provides a centralized way to manage and expose tools
(like API connectors, database query tools, etc.) for use by GenAI applications.
These JS SDKs act as clients for that service. They handle the communication needed to:
* Fetch tool definitions from your running Toolbox instance.
* Provide convenient JS objects or functions representing those tools.
* Invoke the tools (calling the underlying APIs/services configured in Toolbox).
* Handle authentication and parameter binding as needed.
By using these SDKs, you can easily leverage your Toolbox-managed tools directly
within your JS applications or AI orchestration frameworks.
[Github](https://github.com/googleapis/mcp-toolbox-sdk-js)

View File

@@ -1,15 +0,0 @@
---
title: "Go SDK"
weight: 2
description: Go lang client SDK
icon: fa-brands fa-golang
manualLink: "https://github.com/googleapis/mcp-toolbox-sdk-go"
manualLinkTarget: _blank
---
<html>
<head>
<link rel="canonical" href="https://github.com/googleapis/mcp-toolbox-sdk-go"/>
<meta http-equiv="refresh" content="0;url=https://github.com/googleapis/mcp-toolbox-sdk-go"/>
</head>
</html>

View File

@@ -0,0 +1,114 @@
---
title: "Go SDK"
type: docs
weight: 7
description: >
Go SDKs to connect to the MCP Toolbox server.
---
## Overview
![MCP Toolbox
Logo](https://raw.githubusercontent.com/googleapis/genai-toolbox/main/logo.png)
# MCP Toolbox SDKs for Go
[![License: Apache
2.0](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Docs](https://img.shields.io/badge/Docs-MCP_Toolbox-blue)](https://googleapis.github.io/genai-toolbox/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=flat&logo=discord&logoColor=white)](https://discord.gg/Dmm69peqjh)
[![Medium](https://img.shields.io/badge/Medium-12100E?style=flat&logo=medium&logoColor=white)](https://medium.com/@mcp_toolbox)
[![Go Report Card](https://goreportcard.com/badge/github.com/googleapis/mcp-toolbox-sdk-go)](https://goreportcard.com/report/github.com/googleapis/mcp-toolbox-sdk-go)
[![Module Version](https://img.shields.io/github/v/release/googleapis/mcp-toolbox-sdk-go)](https://img.shields.io/github/v/release/googleapis/mcp-toolbox-sdk-go)
[![Go Version](https://img.shields.io/github/go-mod/go-version/googleapis/mcp-toolbox-sdk-go)](https://img.shields.io/github/go-mod/go-version/googleapis/mcp-toolbox-sdk-go)
This repository contains the Go SDK designed to seamlessly integrate the
functionalities of the [MCP
Toolbox](https://github.com/googleapis/genai-toolbox) into your Gen AI
applications. The SDK allow you to load tools defined in Toolbox and use them
as standard Go tools within popular orchestration frameworks
or your custom code.
This simplifies the process of incorporating external functionalities (like
Databases or APIs) managed by Toolbox into your GenAI applications.
<!-- TOC -->
- [Overview](#overview)
- [Which Package Should I Use?](#which-package-should-i-use)
- [Available Packages](#available-packages)
- [Getting Started](#getting-started)
<!-- /TOC -->
## Overview
The MCP Toolbox service provides a centralized way to manage and expose tools
(like API connectors, database query tools, etc.) for use by GenAI applications.
The Go SDK act as clients for that service. They handle the communication needed to:
* Fetch tool definitions from your running Toolbox instance.
* Provide convenient Go structs representing those tools.
* Invoke the tools (calling the underlying APIs/services configured in Toolbox).
* Handle authentication and parameter binding as needed.
By using the SDK, you can easily leverage your Toolbox-managed tools directly
within your Go applications or AI orchestration frameworks.
## Which Package Should I Use?
Choosing the right package depends on how you are building your application:
- [`core`](https://github.com/googleapis/mcp-toolbox-sdk-go/tree/main/core):
This is a framework agnostic way to connect the tools to popular frameworks
like Google GenAI, LangChain, etc.
- [`tbadk`](https://github.com/googleapis/mcp-toolbox-sdk-go/tree/main/tbadk):
This package provides a way to connect tools to ADK Go.
- [`tbgenkit`](https://github.com/googleapis/mcp-toolbox-sdk-go/tree/main/tbgenkit):
This package provides a functionality to convert the Tool fetched using the core package
into a Genkit Go compatible tool.
## Available Packages
This repository hosts the following Go packages. See the package-specific
README for detailed installation and usage instructions:
| Package | Target Use Case | Integration | Path | Details (README) |
| :------ | :----------| :---------- | :---------------------- | :---------- |
| `core` | Framework-agnostic / Custom applications | Use directly / Custom | `core/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-go/blob/main/core/README.md) |
| `tbadk` | ADK Go | Use directly | `tbadk/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-go/blob/main/tbadk/README.md) |
| `tbgenkit` | Genkit Go | Along with core | `tbgenkit/` | 📄 [View README](https://github.com/googleapis/mcp-toolbox-sdk-go/blob/main/tbgenkit/README.md) |
## Getting Started
To get started using Toolbox tools with an application, follow these general steps:
1. **Set up and Run the Toolbox Service:**
Before using the SDKs, you need the MCP Toolbox server running. Follow
the instructions here: [**Toolbox Getting Started
Guide**](https://github.com/googleapis/genai-toolbox?tab=readme-ov-file#getting-started)
2. **Install the Appropriate SDK:**
Choose the package based on your needs (see "[Which Package Should I Use?](#which-package-should-i-use)" above)
Use this command to install the SDK module
```bash
# For the core, framework-agnostic SDK
go get github.com/googleapis/mcp-toolbox-sdk-go
```
3. **Use the SDK:**
Consult the README for your chosen package (linked in the "[Available
Packages](#available-packages)" section above) for detailed instructions on
how to connect the client, load tool definitions, invoke tools, configure
authentication/binding, and integrate them into your application or
framework.
[Github](https://github.com/googleapis/mcp-toolbox-sdk-go)

View File

@@ -0,0 +1,7 @@
---
title: "Samples"
type: docs
weight: 20
---
## Go SDK Samples
Explore how to integrate the Go SDK with various orchestration frameworks.

View File

@@ -0,0 +1,114 @@
---
title: "ADK Integration"
linkTitle: "Go ADK"
type: docs
weight: 1
---
This sample contains a complete example on how to integrate MCP Toolbox Go SDK with ADK Go using the tbadk package.
```go
package main
import (
"context"
"fmt"
"log"
"os"
"github.com/googleapis/mcp-toolbox-sdk-go/tbadk"
"google.golang.org/adk/agent"
"google.golang.org/adk/agent/llmagent"
"google.golang.org/adk/model/gemini"
"google.golang.org/adk/runner"
"google.golang.org/adk/session"
"google.golang.org/adk/tool"
"google.golang.org/genai"
)
func main() {
genaiKey := os.Getenv("GEMINI_API_KEY")
toolboxURL := "http://localhost:5000"
ctx := context.Background()
// Initialize MCP Toolbox client
toolboxClient, err := tbadk.NewToolboxClient(toolboxURL)
if err != nil {
log.Fatalf("Failed to create MCP Toolbox client: %v", err)
}
toolsetName := "my-toolset"
toolset, err := toolboxClient.LoadToolset(toolsetName, ctx)
if err != nil {
log.Fatalf("Failed to load MCP toolset '%s': %v\nMake sure your Toolbox server is running.", toolsetName, err)
}
// Create Gemini model
model, err := gemini.NewModel(ctx, "gemini-2.5-flash", &genai.ClientConfig{
APIKey: genaiKey,
})
if err != nil {
log.Fatalf("Failed to create model: %v", err)
}
tools := make([]tool.Tool, len(toolset))
for i := range toolset {
tools[i] = &toolset[i]
}
llmagent, err := llmagent.New(llmagent.Config{
Name: "hotel_assistant",
Model: model,
Description: "Agent to answer questions about hotels.",
Tools: tools,
})
if err != nil {
log.Fatalf("Failed to create agent: %v", err)
}
appName := "hotel_assistant"
userID := "user-123"
sessionService := session.InMemoryService()
resp, err := sessionService.Create(ctx, &session.CreateRequest{
AppName: appName,
UserID: userID,
})
if err != nil {
log.Fatalf("Failed to create the session service: %v", err)
}
session := resp.Session
r, err := runner.New(runner.Config{
AppName: appName,
Agent: llmagent,
SessionService: sessionService,
})
if err != nil {
log.Fatalf("Failed to create runner: %v", err)
}
query := "Find hotels with Basel in its name."
fmt.Println(query)
userMsg := genai.NewContentFromText(query, genai.RoleUser)
streamingMode := agent.StreamingModeSSE
for event, err := range r.Run(ctx, userID, session.ID(), userMsg, agent.RunConfig{
StreamingMode: streamingMode,
}) {
if err != nil {
fmt.Printf("\nAGENT_ERROR: %v\n", err)
} else {
if event.LLMResponse.Content != nil {
for _, p := range event.LLMResponse.Content.Parts {
if streamingMode != agent.StreamingModeSSE || event.LLMResponse.Partial {
fmt.Print(p.Text)
}
}
}
}
}
fmt.Println()
}
```

View File

@@ -0,0 +1,150 @@
---
title: "GenAI Integration"
linkTitle: "Go GenAI"
type: docs
weight: 1
---
This sample contains a complete example on how to integrate MCP Toolbox Go Core SDK with the Go GenAI SDK.
```go
package main
import (
"context"
"encoding/json"
"fmt"
"log"
"os"
"github.com/googleapis/mcp-toolbox-sdk-go/core"
"google.golang.org/genai"
)
// ConvertToGenaiTool translates a ToolboxTool into the genai.FunctionDeclaration format.
func ConvertToGenaiTool(toolboxTool *core.ToolboxTool) *genai.Tool {
inputschema, err := toolboxTool.InputSchema()
if err != nil {
return &genai.Tool{}
}
var schema *genai.Schema
_ = json.Unmarshal(inputschema, &schema)
// First, create the function declaration.
funcDeclaration := &genai.FunctionDeclaration{
Name: toolboxTool.Name(),
Description: toolboxTool.Description(),
Parameters: schema,
}
// Then, wrap the function declaration in a genai.Tool struct.
return &genai.Tool{
FunctionDeclarations: []*genai.FunctionDeclaration{funcDeclaration},
}
}
// printResponse extracts and prints the relevant parts of the model's response.
func printResponse(resp *genai.GenerateContentResponse) {
for _, cand := range resp.Candidates {
if cand.Content != nil {
for _, part := range cand.Content.Parts {
fmt.Println(part.Text)
}
}
}
}
func main() {
// Setup
ctx := context.Background()
apiKey := os.Getenv("GOOGLE_API_KEY")
toolboxURL := "http://localhost:5000"
// Initialize the Google GenAI client using the explicit ClientConfig.
client, err := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: apiKey,
})
if err != nil {
log.Fatalf("Failed to create Google GenAI client: %v", err)
}
// Initialize the MCP Toolbox client.
toolboxClient, err := core.NewToolboxClient(toolboxURL)
if err != nil {
log.Fatalf("Failed to create Toolbox client: %v", err)
}
// Load the tools using the MCP Toolbox SDK.
tools, err := toolboxClient.LoadToolset("my-toolset", ctx)
if err != nil {
log.Fatalf("Failed to load tools: %v\nMake sure your Toolbox server is running and the tool is configured.", err)
}
genAITools := make([]*genai.Tool, len(tools))
toolsMap := make(map[string]*core.ToolboxTool, len(tools))
for i, tool := range tools {
// Convert the tools into usable format
genAITools[i] = ConvertToGenaiTool(tool)
// Add tool to a map for lookup later
toolsMap[tool.Name()] = tool
}
// Set up the generative model with the available tool.
modelName := "gemini-2.0-flash"
query := "Find hotels in Basel with Basel in it's name and share the names with me"
// Create the initial content prompt for the model.
contents := []*genai.Content{
genai.NewContentFromText(query, genai.RoleUser),
}
config := &genai.GenerateContentConfig{
Tools: genAITools,
ToolConfig: &genai.ToolConfig{
FunctionCallingConfig: &genai.FunctionCallingConfig{
Mode: genai.FunctionCallingConfigModeAny,
},
},
}
genContentResp, _ := client.Models.GenerateContent(ctx, modelName, contents, config)
printResponse(genContentResp)
functionCalls := genContentResp.FunctionCalls()
if len(functionCalls) == 0 {
log.Println("No function call returned by the AI. The model likely answered directly.")
return
}
// Process the first function call (the example assumes one for simplicity).
fc := functionCalls[0]
log.Printf("--- Gemini requested function call: %s ---\n", fc.Name)
log.Printf("--- Arguments: %+v ---\n", fc.Args)
var toolResultString string
if fc.Name == "search-hotels-by-name" {
tool := toolsMap["search-hotels-by-name"]
toolResult, err := tool.Invoke(ctx, fc.Args)
toolResultString = fmt.Sprintf("%v", toolResult)
if err != nil {
log.Fatalf("Failed to execute tool '%s': %v", fc.Name, err)
}
} else {
log.Println("LLM did not request our tool")
}
resultContents := []*genai.Content{
genai.NewContentFromText("The tool returned this result, share it with the user based of their previous querys"+toolResultString, genai.RoleUser),
}
finalResponse, err := client.Models.GenerateContent(ctx, modelName, resultContents, &genai.GenerateContentConfig{})
if err != nil {
log.Fatalf("Error calling GenerateContent (with function result): %v", err)
}
log.Println("=== Final Response from Model (after processing function result) ===")
printResponse(finalResponse)
}
```

View File

@@ -0,0 +1,71 @@
---
title: "Genkit Integration"
linkTitle: "Go Genkit"
type: docs
weight: 1
---
This sample contains a complete example on how to integrate MCP Toolbox Go SDK with Genkit Go using the tbgenkit package.
```go
package main
import (
"context"
"fmt"
"log"
"github.com/googleapis/mcp-toolbox-sdk-go/core"
"github.com/googleapis/mcp-toolbox-sdk-go/tbgenkit"
"github.com/firebase/genkit/go/ai"
"github.com/firebase/genkit/go/genkit"
"github.com/firebase/genkit/go/plugins/googlegenai"
)
func main() {
ctx := context.Background()
toolboxClient, err := core.NewToolboxClient("http://127.0.0.1:5000")
if err != nil {
log.Fatalf("Failed to create Toolbox client: %v", err)
}
// Load the tools using the MCP Toolbox SDK.
tools, err := toolboxClient.LoadToolset("my-toolset", ctx)
if err != nil {
log.Fatalf("Failed to load tools: %v\nMake sure your Toolbox server is running and the tool is configured.", err)
}
// Initialize genkit
g := genkit.Init(ctx,
genkit.WithPlugins(&googlegenai.GoogleAI{}),
genkit.WithDefaultModel("googleai/gemini-1.5-flash"),
)
// Convert your tool to a Genkit tool.
genkitTools := make([]ai.Tool, len(tools))
for i, tool := range tools {
newTool, err := tbgenkit.ToGenkitTool(tool, g)
if err != nil {
log.Fatalf("Failed to convert tool: %v\n", err)
}
genkitTools[i] = newTool
}
toolRefs := make([]ai.ToolRef, len(genkitTools))
for i, tool := range genkitTools {
toolRefs[i] = tool
}
// Generate llm response using prompts and tools.
resp, err := genkit.Generate(ctx, g,
ai.WithPrompt("Find hotels in Basel with Basel in it's name."),
ai.WithTools(toolRefs...),
)
if err != nil {
log.Fatalf("%v\n", err)
}
fmt.Println(resp.Text())
}
```

View File

@@ -0,0 +1,147 @@
---
title: "Langchain Integration"
linkTitle: "Go Langchain"
type: docs
weight: 1
---
This sample contains a complete example on how to integrate MCP Toolbox Go Core SDK with LangChain Go.
```go
package main
import (
"context"
"encoding/json"
"fmt"
"log"
"os"
"github.com/googleapis/mcp-toolbox-sdk-go/core"
"github.com/tmc/langchaingo/llms"
"github.com/tmc/langchaingo/llms/googleai"
)
// ConvertToLangchainTool converts a generic core.ToolboxTool into a LangChainGo llms.Tool.
func ConvertToLangchainTool(toolboxTool *core.ToolboxTool) llms.Tool {
// Fetch the tool's input schema
inputschema, err := toolboxTool.InputSchema()
if err != nil {
return llms.Tool{}
}
var paramsSchema map[string]any
_ = json.Unmarshal(inputschema, &paramsSchema)
// Convert into LangChain's llms.Tool
return llms.Tool{
Type: "function",
Function: &llms.FunctionDefinition{
Name: toolboxTool.Name(),
Description: toolboxTool.Description(),
Parameters: paramsSchema,
},
}
}
func main() {
genaiKey := os.Getenv("GOOGLE_API_KEY")
toolboxURL := "http://localhost:5000"
ctx := context.Background()
// Initialize the Google AI client (LLM).
llm, err := googleai.New(ctx, googleai.WithAPIKey(genaiKey), googleai.WithDefaultModel("gemini-1.5-flash"))
if err != nil {
log.Fatalf("Failed to create Google AI client: %v", err)
}
// Initialize the MCP Toolbox client.
toolboxClient, err := core.NewToolboxClient(toolboxURL)
if err != nil {
log.Fatalf("Failed to create Toolbox client: %v", err)
}
// Load the tools using the MCP Toolbox SDK.
tools, err := toolboxClient.LoadToolset("my-toolset", ctx)
if err != nil {
log.Fatalf("Failed to load tools: %v\nMake sure your Toolbox server is running and the tool is configured.", err)
}
toolsMap := make(map[string]*core.ToolboxTool, len(tools))
langchainTools := make([]llms.Tool, len(tools))
for i, tool := range tools {
// Convert the loaded ToolboxTools into the format LangChainGo requires.
langchainTools[i] = ConvertToLangchainTool(tool)
// Add tool to a map for lookup later
toolsMap[tool.Name()] = tool
}
// Start the conversation history.
messageHistory := []llms.MessageContent{
llms.TextParts(llms.ChatMessageTypeHuman, "Find hotels in Basel with Basel in it's name."),
}
// Make the first call to the LLM, making it aware of the tool.
resp, err := llm.GenerateContent(ctx, messageHistory, llms.WithTools(langchainTools))
if err != nil {
log.Fatalf("LLM call failed: %v", err)
}
// Add the model's response (which should be a tool call) to the history.
respChoice := resp.Choices[0]
assistantResponse := llms.TextParts(llms.ChatMessageTypeAI, respChoice.Content)
for _, tc := range respChoice.ToolCalls {
assistantResponse.Parts = append(assistantResponse.Parts, tc)
}
messageHistory = append(messageHistory, assistantResponse)
// Process each tool call requested by the model.
for _, tc := range respChoice.ToolCalls {
toolName := tc.FunctionCall.Name
switch tc.FunctionCall.Name {
case "search-hotels-by-name":
var args map[string]any
if err := json.Unmarshal([]byte(tc.FunctionCall.Arguments), &args); err != nil {
log.Fatalf("Failed to unmarshal arguments for tool '%s': %v", toolName, err)
}
tool := toolsMap["search-hotels-by-name"]
toolResult, err := tool.Invoke(ctx, args)
if err != nil {
log.Fatalf("Failed to execute tool '%s': %v", toolName, err)
}
// Create the tool call response message and add it to the history.
toolResponse := llms.MessageContent{
Role: llms.ChatMessageTypeTool,
Parts: []llms.ContentPart{
llms.ToolCallResponse{
Name: toolName,
Content: fmt.Sprintf("%v", toolResult),
},
},
}
messageHistory = append(messageHistory, toolResponse)
default:
log.Fatalf("got unexpected function call: %v", tc.FunctionCall.Name)
}
}
// Final LLM Call for Natural Language Response
log.Println("Sending tool response back to LLM for a final answer...")
// Call the LLM again with the updated history, which now includes the tool's result.
finalResp, err := llm.GenerateContent(ctx, messageHistory)
if err != nil {
log.Fatalf("Final LLM call failed: %v", err)
}
// Display the Result
fmt.Println("\n======================================")
fmt.Println("Final Response from LLM:")
fmt.Println(finalResp.Choices[0].Content)
fmt.Println("======================================")
}
```

View File

@@ -0,0 +1,128 @@
---
title: "OpenAI Integration"
linkTitle: "Go OpenAI"
type: docs
weight: 1
---
This sample contains a complete example on how to integrate MCP Toolbox Go Core SDK with the OpenAI Go SDK.
```go
package main
import (
"context"
"encoding/json"
"fmt"
"log"
"github.com/googleapis/mcp-toolbox-sdk-go/core"
openai "github.com/openai/openai-go"
)
// ConvertToOpenAITool converts a ToolboxTool into the go-openai library's Tool format.
func ConvertToOpenAITool(toolboxTool *core.ToolboxTool) openai.ChatCompletionToolParam {
// Get the input schema
jsonSchemaBytes, err := toolboxTool.InputSchema()
if err != nil {
return openai.ChatCompletionToolParam{}
}
// Unmarshal the JSON bytes into FunctionParameters
var paramsSchema openai.FunctionParameters
if err := json.Unmarshal(jsonSchemaBytes, &paramsSchema); err != nil {
return openai.ChatCompletionToolParam{}
}
// Create and return the final tool parameter struct.
return openai.ChatCompletionToolParam{
Function: openai.FunctionDefinitionParam{
Name: toolboxTool.Name(),
Description: openai.String(toolboxTool.Description()),
Parameters: paramsSchema,
},
}
}
func main() {
// Setup
ctx := context.Background()
toolboxURL := "http://localhost:5000"
openAIClient := openai.NewClient()
// Initialize the MCP Toolbox client.
toolboxClient, err := core.NewToolboxClient(toolboxURL)
if err != nil {
log.Fatalf("Failed to create Toolbox client: %v", err)
}
// Load the tools using the MCP Toolbox SDK.
tools, err := toolboxClient.LoadToolset("my-toolset", ctx)
if err != nil {
log.Fatalf("Failed to load tool : %v\nMake sure your Toolbox server is running and the tool is configured.", err)
}
openAITools := make([]openai.ChatCompletionToolParam, len(tools))
toolsMap := make(map[string]*core.ToolboxTool, len(tools))
for i, tool := range tools {
// Convert the Toolbox tool into the openAI FunctionDeclaration format.
openAITools[i] = ConvertToOpenAITool(tool)
// Add tool to a map for lookup later
toolsMap[tool.Name()] = tool
}
question := "Find hotels in Basel with Basel in it's name "
params := openai.ChatCompletionNewParams{
Messages: []openai.ChatCompletionMessageParamUnion{
openai.UserMessage(question),
},
Tools: openAITools,
Seed: openai.Int(0),
Model: openai.ChatModelGPT4o,
}
// Make initial chat completion request
completion, err := openAIClient.Chat.Completions.New(ctx, params)
if err != nil {
panic(err)
}
toolCalls := completion.Choices[0].Message.ToolCalls
// Return early if there are no tool calls
if len(toolCalls) == 0 {
fmt.Printf("No function call")
return
}
// If there is a was a function call, continue the conversation
params.Messages = append(params.Messages, completion.Choices[0].Message.ToParam())
for _, toolCall := range toolCalls {
if toolCall.Function.Name == "search-hotels-by-name" {
// Extract the location from the function call arguments
var args map[string]interface{}
tool := toolsMap["search-hotels-by-name"]
err := json.Unmarshal([]byte(toolCall.Function.Arguments), &args)
if err != nil {
panic(err)
}
result, err := tool.Invoke(ctx, args)
if err != nil {
log.Fatal("Could not invoke tool", err)
}
params.Messages = append(params.Messages, openai.ToolMessage(result.(string), toolCall.ID))
}
}
completion, err = openAIClient.Chat.Completions.New(ctx, params)
if err != nil {
panic(err)
}
fmt.Println(completion.Choices[0].Message.Content)
}
```

View File

@@ -1,15 +0,0 @@
---
title: "JS SDK"
weight: 2
description: Javascript client SDK
icon: fa-brands fa-node-js
manualLink: "https://github.com/googleapis/mcp-toolbox-sdk-js"
manualLinkTarget: _blank
---
<html>
<head>
<link rel="canonical" href="https://github.com/googleapis/mcp-toolbox-sdk-js"/>
<meta http-equiv="refresh" content="0;url=https://github.com/googleapis/mcp-toolbox-sdk-js"/>
</head>
</html>

View File

@@ -1,15 +0,0 @@
---
title: "Python SDK"
weight: 2
description: Python client SDK
icon: fa-brands fa-python
manualLink: "https://github.com/googleapis/mcp-toolbox-sdk-python"
manualLinkTarget: _blank
---
<html>
<head>
<link rel="canonical" href="https://github.com/googleapis/mcp-toolbox-sdk-python"/>
<meta http-equiv="refresh" content="0;url=https://github.com/googleapis/mcp-toolbox-sdk-python"/>
</head>
</html>

View File

@@ -0,0 +1,25 @@
---
title: "Python SDK"
type: docs
weight: 7
description: >
Python SDKs to connect to the MCP Toolbox server.
---
## Overview
The MCP Toolbox service provides a centralized way to manage and expose tools
(like API connectors, database query tools, etc.) for use by GenAI applications.
These Python SDKs act as clients for that service. They handle the communication needed to:
* Fetch tool definitions from your running Toolbox instance.
* Provide convenient Python objects or functions representing those tools.
* Invoke the tools (calling the underlying APIs/services configured in Toolbox).
* Handle authentication and parameter binding as needed.
By using these SDKs, you can easily leverage your Toolbox-managed tools directly
within your Python applications or AI orchestration frameworks.
[Github](https://github.com/googleapis/mcp-toolbox-sdk-python)