mirror of
https://github.com/googleapis/genai-toolbox.git
synced 2026-02-12 08:05:06 -05:00
🤖 I have created a release *beep* *boop* --- ## [0.11.0](https://github.com/googleapis/genai-toolbox/compare/v0.11.0...v0.11.0) (2025-08-05) ### ⚠ BREAKING CHANGES * **tools/bigquery-sql:** Ensure invoke always returns a non-null value ([#1020](https://github.com/googleapis/genai-toolbox/issues/1020)) ([9af55b6](9af55b651d)) * **tools/bigquery-execute-sql:** Update the return messages ([#1034](https://github.com/googleapis/genai-toolbox/issues/1034)) ([051e686](051e686476)) ### Features * Add TiDB source and tool ([#829](https://github.com/googleapis/genai-toolbox/issues/829)) ([6eaf36a](6eaf36ac85)) * Interactive web UI for Toolbox ([#1065](https://github.com/googleapis/genai-toolbox/issues/1065)) ([8749b03](8749b03003)) * **prebuiltconfigs/cloud-sql-postgres:** Introduce additional parameter to limit context in list tables ([#1062](https://github.com/googleapis/genai-toolbox/issues/1062)) ([c3a58e1](c3a58e1d16)) * **tools/looker-query-url:** Add support for `looker-query-url` tool ([#1015](https://github.com/googleapis/genai-toolbox/issues/1015)) ([327ddf0](327ddf0439)) * **tools/dataplex-lookup-entry:** Add support for `dataplex-lookup-entry` tool ([#1009](https://github.com/googleapis/genai-toolbox/issues/1009)) ([5fa1660](5fa1660fc8)) ### Bug Fixes * **tools/bigquery,mssql,mysql,postgres,spanner,tidb:** Add query logging to execute-sql tools ([#1069](https://github.com/googleapis/genai-toolbox/issues/1069)) ([0527532]([0527532bd7)) --- This PR was generated with [Release Please](https://github.com/googleapis/release-please). See [documentation](https://github.com/googleapis/release-please#release-please). --------- Co-authored-by: release-please[bot] <55107282+release-please[bot]@users.noreply.github.com> Co-authored-by: Yuan Teoh <45984206+Yuan325@users.noreply.github.com>
682 lines
24 KiB
Markdown
682 lines
24 KiB
Markdown
---
|
||
title: "Python Quickstart (Local)"
|
||
type: docs
|
||
weight: 2
|
||
description: >
|
||
How to get started running Toolbox locally with [Python](https://github.com/googleapis/mcp-toolbox-sdk-python), PostgreSQL, and [Agent Development Kit](https://google.github.io/adk-docs/),
|
||
[LangGraph](https://www.langchain.com/langgraph), [LlamaIndex](https://www.llamaindex.ai/) or [GoogleGenAI](https://pypi.org/project/google-genai/).
|
||
---
|
||
|
||
[](https://colab.research.google.com/github/googleapis/genai-toolbox/blob/main/docs/en/getting-started/colab_quickstart.ipynb)
|
||
|
||
## Before you begin
|
||
|
||
This guide assumes you have already done the following:
|
||
|
||
1. Installed [Python 3.9+][install-python] (including [pip][install-pip] and
|
||
your preferred virtual environment tool for managing dependencies e.g. [venv][install-venv]).
|
||
1. Installed [PostgreSQL 16+ and the `psql` client][install-postgres].
|
||
|
||
### Cloud Setup (Optional)
|
||
|
||
If you plan to use **Google Cloud’s Vertex AI** with your agent (e.g., using
|
||
`vertexai=True` or a Google GenAI model), follow these one-time setup steps for
|
||
local development:
|
||
|
||
1. [Install the Google Cloud CLI](https://cloud.google.com/sdk/docs/install)
|
||
1. [Set up Application Default Credentials (ADC)](https://cloud.google.com/docs/authentication/set-up-adc-local-dev-environment)
|
||
1. Set your project and enable Vertex AI
|
||
|
||
```bash
|
||
gcloud config set project YOUR_PROJECT_ID
|
||
gcloud services enable aiplatform.googleapis.com
|
||
```
|
||
|
||
[install-python]: https://wiki.python.org/moin/BeginnersGuide/Download
|
||
[install-pip]: https://pip.pypa.io/en/stable/installation/
|
||
[install-venv]: https://packaging.python.org/en/latest/tutorials/installing-packages/#creating-virtual-environments
|
||
[install-postgres]: https://www.postgresql.org/download/
|
||
|
||
## Step 1: Set up your database
|
||
|
||
In this section, we will create a database, insert some data that needs to be
|
||
accessed by our agent, and create a database user for Toolbox to connect with.
|
||
|
||
1. Connect to postgres using the `psql` command:
|
||
|
||
```bash
|
||
psql -h 127.0.0.1 -U postgres
|
||
```
|
||
|
||
Here, `postgres` denotes the default postgres superuser.
|
||
|
||
{{< notice info >}}
|
||
|
||
#### **Having trouble connecting?**
|
||
|
||
* **Password Prompt:** If you are prompted for a password for the `postgres`
|
||
user and do not know it (or a blank password doesn't work), your PostgreSQL
|
||
installation might require a password or a different authentication method.
|
||
* **`FATAL: role "postgres" does not exist`:** This error means the default
|
||
`postgres` superuser role isn't available under that name on your system.
|
||
* **`Connection refused`:** Ensure your PostgreSQL server is actually running.
|
||
You can typically check with `sudo systemctl status postgresql` and start it
|
||
with `sudo systemctl start postgresql` on Linux systems.
|
||
|
||
<br/>
|
||
|
||
#### **Common Solution**
|
||
|
||
For password issues or if the `postgres` role seems inaccessible directly, try
|
||
switching to the `postgres` operating system user first. This user often has
|
||
permission to connect without a password for local connections (this is called
|
||
peer authentication).
|
||
|
||
```bash
|
||
sudo -i -u postgres
|
||
psql -h 127.0.0.1
|
||
```
|
||
|
||
Once you are in the `psql` shell using this method, you can proceed with the
|
||
database creation steps below. Afterwards, type `\q` to exit `psql`, and then
|
||
`exit` to return to your normal user shell.
|
||
|
||
If desired, once connected to `psql` as the `postgres` OS user, you can set a
|
||
password for the `postgres` *database* user using: `ALTER USER postgres WITH
|
||
PASSWORD 'your_chosen_password';`. This would allow direct connection with `-U
|
||
postgres` and a password next time.
|
||
{{< /notice >}}
|
||
|
||
1. Create a new database and a new user:
|
||
|
||
{{< notice tip >}}
|
||
For a real application, it's best to follow the principle of least permission
|
||
and only grant the privileges your application needs.
|
||
{{< /notice >}}
|
||
|
||
```sql
|
||
CREATE USER toolbox_user WITH PASSWORD 'my-password';
|
||
|
||
CREATE DATABASE toolbox_db;
|
||
GRANT ALL PRIVILEGES ON DATABASE toolbox_db TO toolbox_user;
|
||
|
||
ALTER DATABASE toolbox_db OWNER TO toolbox_user;
|
||
```
|
||
|
||
1. End the database session:
|
||
|
||
```bash
|
||
\q
|
||
```
|
||
|
||
(If you used `sudo -i -u postgres` and then `psql`, remember you might also
|
||
need to type `exit` after `\q` to leave the `postgres` user's shell
|
||
session.)
|
||
|
||
1. Connect to your database with your new user:
|
||
|
||
```bash
|
||
psql -h 127.0.0.1 -U toolbox_user -d toolbox_db
|
||
```
|
||
|
||
1. Create a table using the following command:
|
||
|
||
```sql
|
||
CREATE TABLE hotels(
|
||
id INTEGER NOT NULL PRIMARY KEY,
|
||
name VARCHAR NOT NULL,
|
||
location VARCHAR NOT NULL,
|
||
price_tier VARCHAR NOT NULL,
|
||
checkin_date DATE NOT NULL,
|
||
checkout_date DATE NOT NULL,
|
||
booked BIT NOT NULL
|
||
);
|
||
```
|
||
|
||
1. Insert data into the table.
|
||
|
||
```sql
|
||
INSERT INTO hotels(id, name, location, price_tier, checkin_date, checkout_date, booked)
|
||
VALUES
|
||
(1, 'Hilton Basel', 'Basel', 'Luxury', '2024-04-22', '2024-04-20', B'0'),
|
||
(2, 'Marriott Zurich', 'Zurich', 'Upscale', '2024-04-14', '2024-04-21', B'0'),
|
||
(3, 'Hyatt Regency Basel', 'Basel', 'Upper Upscale', '2024-04-02', '2024-04-20', B'0'),
|
||
(4, 'Radisson Blu Lucerne', 'Lucerne', 'Midscale', '2024-04-24', '2024-04-05', B'0'),
|
||
(5, 'Best Western Bern', 'Bern', 'Upper Midscale', '2024-04-23', '2024-04-01', B'0'),
|
||
(6, 'InterContinental Geneva', 'Geneva', 'Luxury', '2024-04-23', '2024-04-28', B'0'),
|
||
(7, 'Sheraton Zurich', 'Zurich', 'Upper Upscale', '2024-04-27', '2024-04-02', B'0'),
|
||
(8, 'Holiday Inn Basel', 'Basel', 'Upper Midscale', '2024-04-24', '2024-04-09', B'0'),
|
||
(9, 'Courtyard Zurich', 'Zurich', 'Upscale', '2024-04-03', '2024-04-13', B'0'),
|
||
(10, 'Comfort Inn Bern', 'Bern', 'Midscale', '2024-04-04', '2024-04-16', B'0');
|
||
```
|
||
|
||
1. End the database session:
|
||
|
||
```bash
|
||
\q
|
||
```
|
||
|
||
## Step 2: Install and configure Toolbox
|
||
|
||
In this section, we will download Toolbox, configure our tools in a
|
||
`tools.yaml`, and then run the Toolbox server.
|
||
|
||
1. Download the latest version of Toolbox as a binary:
|
||
|
||
{{< notice tip >}}
|
||
Select the
|
||
[correct binary](https://github.com/googleapis/genai-toolbox/releases)
|
||
corresponding to your OS and CPU architecture.
|
||
{{< /notice >}}
|
||
<!-- {x-release-please-start-version} -->
|
||
```bash
|
||
export OS="linux/amd64" # one of linux/amd64, darwin/arm64, darwin/amd64, or windows/amd64
|
||
curl -O https://storage.googleapis.com/genai-toolbox/v0.11.0/$OS/toolbox
|
||
```
|
||
<!-- {x-release-please-end} -->
|
||
|
||
1. Make the binary executable:
|
||
|
||
```bash
|
||
chmod +x toolbox
|
||
```
|
||
|
||
1. Write the following into a `tools.yaml` file. Be sure to update any fields
|
||
such as `user`, `password`, or `database` that you may have customized in the
|
||
previous step.
|
||
|
||
{{< notice tip >}}
|
||
In practice, use environment variable replacement with the format ${ENV_NAME}
|
||
instead of hardcoding your secrets into the configuration file.
|
||
{{< /notice >}}
|
||
|
||
```yaml
|
||
sources:
|
||
my-pg-source:
|
||
kind: postgres
|
||
host: 127.0.0.1
|
||
port: 5432
|
||
database: toolbox_db
|
||
user: ${USER_NAME}
|
||
password: ${PASSWORD}
|
||
tools:
|
||
search-hotels-by-name:
|
||
kind: postgres-sql
|
||
source: my-pg-source
|
||
description: Search for hotels based on name.
|
||
parameters:
|
||
- name: name
|
||
type: string
|
||
description: The name of the hotel.
|
||
statement: SELECT * FROM hotels WHERE name ILIKE '%' || $1 || '%';
|
||
search-hotels-by-location:
|
||
kind: postgres-sql
|
||
source: my-pg-source
|
||
description: Search for hotels based on location.
|
||
parameters:
|
||
- name: location
|
||
type: string
|
||
description: The location of the hotel.
|
||
statement: SELECT * FROM hotels WHERE location ILIKE '%' || $1 || '%';
|
||
book-hotel:
|
||
kind: postgres-sql
|
||
source: my-pg-source
|
||
description: >-
|
||
Book a hotel by its ID. If the hotel is successfully booked, returns a NULL, raises an error if not.
|
||
parameters:
|
||
- name: hotel_id
|
||
type: string
|
||
description: The ID of the hotel to book.
|
||
statement: UPDATE hotels SET booked = B'1' WHERE id = $1;
|
||
update-hotel:
|
||
kind: postgres-sql
|
||
source: my-pg-source
|
||
description: >-
|
||
Update a hotel's check-in and check-out dates by its ID. Returns a message
|
||
indicating whether the hotel was successfully updated or not.
|
||
parameters:
|
||
- name: hotel_id
|
||
type: string
|
||
description: The ID of the hotel to update.
|
||
- name: checkin_date
|
||
type: string
|
||
description: The new check-in date of the hotel.
|
||
- name: checkout_date
|
||
type: string
|
||
description: The new check-out date of the hotel.
|
||
statement: >-
|
||
UPDATE hotels SET checkin_date = CAST($2 as date), checkout_date = CAST($3
|
||
as date) WHERE id = $1;
|
||
cancel-hotel:
|
||
kind: postgres-sql
|
||
source: my-pg-source
|
||
description: Cancel a hotel by its ID.
|
||
parameters:
|
||
- name: hotel_id
|
||
type: string
|
||
description: The ID of the hotel to cancel.
|
||
statement: UPDATE hotels SET booked = B'0' WHERE id = $1;
|
||
toolsets:
|
||
my-toolset:
|
||
- search-hotels-by-name
|
||
- search-hotels-by-location
|
||
- book-hotel
|
||
- update-hotel
|
||
- cancel-hotel
|
||
```
|
||
|
||
For more info on tools, check out the `Resources` section of the docs.
|
||
|
||
1. Run the Toolbox server, pointing to the `tools.yaml` file created earlier:
|
||
|
||
```bash
|
||
./toolbox --tools-file "tools.yaml"
|
||
```
|
||
|
||
{{< notice note >}}
|
||
Toolbox enables dynamic reloading by default. To disable, use the
|
||
`--disable-reload` flag.
|
||
{{< /notice >}}
|
||
|
||
## Step 3: Connect your agent to Toolbox
|
||
|
||
In this section, we will write and run an agent that will load the Tools
|
||
from Toolbox.
|
||
|
||
{{< notice tip>}} If you prefer to experiment within a Google Colab environment,
|
||
you can connect to a
|
||
[local runtime](https://research.google.com/colaboratory/local-runtimes.html).
|
||
{{< /notice >}}
|
||
|
||
1. In a new terminal, install the SDK package.
|
||
|
||
{{< tabpane persist=header >}}
|
||
{{< tab header="ADK" lang="bash" >}}
|
||
|
||
pip install toolbox-core
|
||
{{< /tab >}}
|
||
{{< tab header="Langchain" lang="bash" >}}
|
||
|
||
pip install toolbox-langchain
|
||
{{< /tab >}}
|
||
{{< tab header="LlamaIndex" lang="bash" >}}
|
||
|
||
pip install toolbox-llamaindex
|
||
{{< /tab >}}
|
||
{{< tab header="Core" lang="bash" >}}
|
||
|
||
pip install toolbox-core
|
||
{{< /tab >}}
|
||
{{< /tabpane >}}
|
||
|
||
1. Install other required dependencies:
|
||
|
||
{{< tabpane persist=header >}}
|
||
{{< tab header="ADK" lang="bash" >}}
|
||
|
||
pip install google-adk
|
||
{{< /tab >}}
|
||
{{< tab header="Langchain" lang="bash" >}}
|
||
|
||
# TODO(developer): replace with correct package if needed
|
||
|
||
pip install langgraph langchain-google-vertexai
|
||
|
||
# pip install langchain-google-genai
|
||
|
||
# pip install langchain-anthropic
|
||
|
||
{{< /tab >}}
|
||
{{< tab header="LlamaIndex" lang="bash" >}}
|
||
|
||
# TODO(developer): replace with correct package if needed
|
||
|
||
pip install llama-index-llms-google-genai
|
||
|
||
# pip install llama-index-llms-anthropic
|
||
|
||
{{< /tab >}}
|
||
{{< tab header="Core" lang="bash" >}}
|
||
|
||
pip install google-genai
|
||
{{< /tab >}}
|
||
{{< /tabpane >}}
|
||
|
||
1. Create a new file named `hotel_agent.py` and copy the following
|
||
code to create an agent:
|
||
{{< tabpane persist=header >}}
|
||
{{< tab header="ADK" lang="python" >}}
|
||
from google.adk.agents import Agent
|
||
from google.adk.runners import Runner
|
||
from google.adk.sessions import InMemorySessionService
|
||
from google.adk.artifacts.in_memory_artifact_service import InMemoryArtifactService
|
||
from google.genai import types
|
||
from toolbox_core import ToolboxSyncClient
|
||
|
||
import asyncio
|
||
import os
|
||
|
||
# TODO(developer): replace this with your Google API key
|
||
|
||
os.environ['GOOGLE_API_KEY'] = 'your-api-key'
|
||
|
||
async def main():
|
||
with ToolboxSyncClient("<http://127.0.0.1:5000>") as toolbox_client:
|
||
|
||
prompt = """
|
||
You're a helpful hotel assistant. You handle hotel searching, booking and
|
||
cancellations. When the user searches for a hotel, mention it's name, id,
|
||
location and price tier. Always mention hotel ids while performing any
|
||
searches. This is very important for any operations. For any bookings or
|
||
cancellations, please provide the appropriate confirmation. Be sure to
|
||
update checkin or checkout dates if mentioned by the user.
|
||
Don't ask for confirmations from the user.
|
||
"""
|
||
|
||
root_agent = Agent(
|
||
model='gemini-2.0-flash-001',
|
||
name='hotel_agent',
|
||
description='A helpful AI assistant.',
|
||
instruction=prompt,
|
||
tools=toolbox_client.load_toolset("my-toolset"),
|
||
)
|
||
|
||
session_service = InMemorySessionService()
|
||
artifacts_service = InMemoryArtifactService()
|
||
session = await session_service.create_session(
|
||
state={}, app_name='hotel_agent', user_id='123'
|
||
)
|
||
runner = Runner(
|
||
app_name='hotel_agent',
|
||
agent=root_agent,
|
||
artifact_service=artifacts_service,
|
||
session_service=session_service,
|
||
)
|
||
|
||
queries = [
|
||
"Find hotels in Basel with Basel in it's name.",
|
||
"Can you book the Hilton Basel for me?",
|
||
"Oh wait, this is too expensive. Please cancel it and book the Hyatt Regency instead.",
|
||
"My check in dates would be from April 10, 2024 to April 19, 2024.",
|
||
]
|
||
|
||
for query in queries:
|
||
content = types.Content(role='user', parts=[types.Part(text=query)])
|
||
events = runner.run(session_id=session.id,
|
||
user_id='123', new_message=content)
|
||
|
||
responses = (
|
||
part.text
|
||
for event in events
|
||
for part in event.content.parts
|
||
if part.text is not None
|
||
)
|
||
|
||
for text in responses:
|
||
print(text)
|
||
|
||
asyncio.run(main())
|
||
{{< /tab >}}
|
||
{{< tab header="LangChain" lang="python" >}}
|
||
import asyncio
|
||
|
||
from langgraph.prebuilt import create_react_agent
|
||
|
||
# TODO(developer): replace this with another import if needed
|
||
|
||
from langchain_google_vertexai import ChatVertexAI
|
||
|
||
# from langchain_google_genai import ChatGoogleGenerativeAI
|
||
|
||
# from langchain_anthropic import ChatAnthropic
|
||
|
||
from langgraph.checkpoint.memory import MemorySaver
|
||
|
||
from toolbox_langchain import ToolboxClient
|
||
|
||
prompt = """
|
||
You're a helpful hotel assistant. You handle hotel searching, booking and
|
||
cancellations. When the user searches for a hotel, mention it's name, id,
|
||
location and price tier. Always mention hotel ids while performing any
|
||
searches. This is very important for any operations. For any bookings or
|
||
cancellations, please provide the appropriate confirmation. Be sure to
|
||
update checkin or checkout dates if mentioned by the user.
|
||
Don't ask for confirmations from the user.
|
||
"""
|
||
|
||
queries = [
|
||
"Find hotels in Basel with Basel in it's name.",
|
||
"Can you book the Hilton Basel for me?",
|
||
"Oh wait, this is too expensive. Please cancel it and book the Hyatt Regency instead.",
|
||
"My check in dates would be from April 10, 2024 to April 19, 2024.",
|
||
]
|
||
|
||
async def run_application():
|
||
# TODO(developer): replace this with another model if needed
|
||
model = ChatVertexAI(model_name="gemini-2.0-flash-001")
|
||
# model = ChatGoogleGenerativeAI(model="gemini-2.0-flash-001")
|
||
# model = ChatAnthropic(model="claude-3-5-sonnet-20240620")
|
||
|
||
# Load the tools from the Toolbox server
|
||
async with ToolboxClient("http://127.0.0.1:5000") as client:
|
||
tools = await client.aload_toolset()
|
||
|
||
agent = create_react_agent(model, tools, checkpointer=MemorySaver())
|
||
|
||
config = {"configurable": {"thread_id": "thread-1"}}
|
||
for query in queries:
|
||
inputs = {"messages": [("user", prompt + query)]}
|
||
response = agent.invoke(inputs, stream_mode="values", config=config)
|
||
print(response["messages"][-1].content)
|
||
|
||
asyncio.run(run_application())
|
||
{{< /tab >}}
|
||
{{< tab header="LlamaIndex" lang="python" >}}
|
||
import asyncio
|
||
import os
|
||
|
||
from llama_index.core.agent.workflow import AgentWorkflow
|
||
|
||
from llama_index.core.workflow import Context
|
||
|
||
# TODO(developer): replace this with another import if needed
|
||
|
||
from llama_index.llms.google_genai import GoogleGenAI
|
||
|
||
# from llama_index.llms.anthropic import Anthropic
|
||
|
||
from toolbox_llamaindex import ToolboxClient
|
||
|
||
prompt = """
|
||
You're a helpful hotel assistant. You handle hotel searching, booking and
|
||
cancellations. When the user searches for a hotel, mention it's name, id,
|
||
location and price tier. Always mention hotel ids while performing any
|
||
searches. This is very important for any operations. For any bookings or
|
||
cancellations, please provide the appropriate confirmation. Be sure to
|
||
update checkin or checkout dates if mentioned by the user.
|
||
Don't ask for confirmations from the user.
|
||
"""
|
||
|
||
queries = [
|
||
"Find hotels in Basel with Basel in it's name.",
|
||
"Can you book the Hilton Basel for me?",
|
||
"Oh wait, this is too expensive. Please cancel it and book the Hyatt Regency instead.",
|
||
"My check in dates would be from April 10, 2024 to April 19, 2024.",
|
||
]
|
||
|
||
async def run_application():
|
||
# TODO(developer): replace this with another model if needed
|
||
llm = GoogleGenAI(
|
||
model="gemini-2.0-flash-001",
|
||
vertexai_config={"project": "project-id", "location": "us-central1"},
|
||
)
|
||
# llm = GoogleGenAI(
|
||
# api_key=os.getenv("GOOGLE_API_KEY"),
|
||
# model="gemini-2.0-flash-001",
|
||
# )
|
||
# llm = Anthropic(
|
||
# model="claude-3-7-sonnet-latest",
|
||
# api_key=os.getenv("ANTHROPIC_API_KEY")
|
||
# )
|
||
|
||
# Load the tools from the Toolbox server
|
||
async with ToolboxClient("http://127.0.0.1:5000") as client:
|
||
tools = await client.aload_toolset()
|
||
|
||
agent = AgentWorkflow.from_tools_or_functions(
|
||
tools,
|
||
llm=llm,
|
||
system_prompt=prompt,
|
||
)
|
||
ctx = Context(agent)
|
||
for query in queries:
|
||
response = await agent.run(user_msg=query, ctx=ctx)
|
||
print(f"---- {query} ----")
|
||
print(str(response))
|
||
|
||
asyncio.run(run_application())
|
||
{{< /tab >}}
|
||
{{< tab header="Core" lang="python" >}}
|
||
import asyncio
|
||
|
||
from google import genai
|
||
from google.genai.types import (
|
||
Content,
|
||
FunctionDeclaration,
|
||
GenerateContentConfig,
|
||
Part,
|
||
Tool,
|
||
)
|
||
|
||
from toolbox_core import ToolboxClient
|
||
|
||
prompt = """
|
||
You're a helpful hotel assistant. You handle hotel searching, booking and
|
||
cancellations. When the user searches for a hotel, mention it's name, id,
|
||
location and price tier. Always mention hotel id while performing any
|
||
searches. This is very important for any operations. For any bookings or
|
||
cancellations, please provide the appropriate confirmation. Be sure to
|
||
update checkin or checkout dates if mentioned by the user.
|
||
Don't ask for confirmations from the user.
|
||
"""
|
||
|
||
queries = [
|
||
"Find hotels in Basel with Basel in it's name.",
|
||
"Please book the hotel Hilton Basel for me.",
|
||
"This is too expensive. Please cancel it.",
|
||
"Please book Hyatt Regency for me",
|
||
"My check in dates for my booking would be from April 10, 2024 to April 19, 2024.",
|
||
]
|
||
|
||
async def run_application():
|
||
async with ToolboxClient("<http://127.0.0.1:5000>") as toolbox_client:
|
||
|
||
# The toolbox_tools list contains Python callables (functions/methods) designed for LLM tool-use
|
||
# integration. While this example uses Google's genai client, these callables can be adapted for
|
||
# various function-calling or agent frameworks. For easier integration with supported frameworks
|
||
# (https://github.com/googleapis/mcp-toolbox-python-sdk/tree/main/packages), use the
|
||
# provided wrapper packages, which handle framework-specific boilerplate.
|
||
toolbox_tools = await toolbox_client.load_toolset("my-toolset")
|
||
genai_client = genai.Client(
|
||
vertexai=True, project="project-id", location="us-central1"
|
||
)
|
||
|
||
genai_tools = [
|
||
Tool(
|
||
function_declarations=[
|
||
FunctionDeclaration.from_callable_with_api_option(callable=tool)
|
||
]
|
||
)
|
||
for tool in toolbox_tools
|
||
]
|
||
history = []
|
||
for query in queries:
|
||
user_prompt_content = Content(
|
||
role="user",
|
||
parts=[Part.from_text(text=query)],
|
||
)
|
||
history.append(user_prompt_content)
|
||
|
||
response = genai_client.models.generate_content(
|
||
model="gemini-2.0-flash-001",
|
||
contents=history,
|
||
config=GenerateContentConfig(
|
||
system_instruction=prompt,
|
||
tools=genai_tools,
|
||
),
|
||
)
|
||
history.append(response.candidates[0].content)
|
||
function_response_parts = []
|
||
for function_call in response.function_calls:
|
||
fn_name = function_call.name
|
||
# The tools are sorted alphabetically
|
||
if fn_name == "search-hotels-by-name":
|
||
function_result = await toolbox_tools[3](**function_call.args)
|
||
elif fn_name == "search-hotels-by-location":
|
||
function_result = await toolbox_tools[2](**function_call.args)
|
||
elif fn_name == "book-hotel":
|
||
function_result = await toolbox_tools[0](**function_call.args)
|
||
elif fn_name == "update-hotel":
|
||
function_result = await toolbox_tools[4](**function_call.args)
|
||
elif fn_name == "cancel-hotel":
|
||
function_result = await toolbox_tools[1](**function_call.args)
|
||
else:
|
||
raise ValueError("Function name not present.")
|
||
function_response = {"result": function_result}
|
||
function_response_part = Part.from_function_response(
|
||
name=function_call.name,
|
||
response=function_response,
|
||
)
|
||
function_response_parts.append(function_response_part)
|
||
|
||
if function_response_parts:
|
||
tool_response_content = Content(role="tool", parts=function_response_parts)
|
||
history.append(tool_response_content)
|
||
|
||
response2 = genai_client.models.generate_content(
|
||
model="gemini-2.0-flash-001",
|
||
contents=history,
|
||
config=GenerateContentConfig(
|
||
tools=genai_tools,
|
||
),
|
||
)
|
||
final_model_response_content = response2.candidates[0].content
|
||
history.append(final_model_response_content)
|
||
print(response2.text)
|
||
|
||
asyncio.run(run_application())
|
||
|
||
{{< /tab >}}
|
||
{{< /tabpane >}}
|
||
|
||
{{< tabpane text=true persist=header >}}
|
||
{{% tab header="ADK" lang="en" %}}
|
||
To learn more about Agent Development Kit, check out the [ADK
|
||
documentation.](https://google.github.io/adk-docs/)
|
||
{{% /tab %}}
|
||
{{% tab header="Langchain" lang="en" %}}
|
||
To learn more about Agents in LangChain, check out the [LangGraph Agent
|
||
documentation.](https://langchain-ai.github.io/langgraph/reference/prebuilt/#langgraph.prebuilt.chat_agent_executor.create_react_agent)
|
||
{{% /tab %}}
|
||
{{% tab header="LlamaIndex" lang="en" %}}
|
||
To learn more about Agents in LlamaIndex, check out the [LlamaIndex
|
||
AgentWorkflow
|
||
documentation.](https://docs.llamaindex.ai/en/stable/examples/agent/agent_workflow_basic/)
|
||
{{% /tab %}}
|
||
{{% tab header="Core" lang="en" %}}
|
||
To learn more about tool calling with Google GenAI, check out the
|
||
[Google GenAI
|
||
Documentation](https://github.com/googleapis/python-genai?tab=readme-ov-file#manually-declare-and-invoke-a-function-for-function-calling).
|
||
{{% /tab %}}
|
||
{{< /tabpane >}}
|
||
|
||
1. Run your agent, and observe the results:
|
||
|
||
```sh
|
||
python hotel_agent.py
|
||
```
|
||
|
||
{{< notice info >}}
|
||
For more information, visit the [Python SDK repo](https://github.com/googleapis/mcp-toolbox-sdk-python).
|
||
{{</ notice >}}
|