Mend Renovate cd4ae81501 chore(deps): update dependency google-adk to v1.18.0 (#1850)
This PR contains the following updates:

| Package | Change | Age | Confidence |
|---|---|---|---|
| [google-adk](https://redirect.github.com/google/adk-python)
([changelog](https://redirect.github.com/google/adk-python/blob/main/CHANGELOG.md))
| `==1.15.1` -> `==1.18.0` |
[![age](https://developer.mend.io/api/mc/badges/age/pypi/google-adk/1.18.0?slim=true)](https://docs.renovatebot.com/merge-confidence/)
|
[![confidence](https://developer.mend.io/api/mc/badges/confidence/pypi/google-adk/1.15.1/1.18.0?slim=true)](https://docs.renovatebot.com/merge-confidence/)
|

---

### Release Notes

<details>
<summary>google/adk-python (google-adk)</summary>

###
[`v1.18.0`](https://redirect.github.com/google/adk-python/blob/HEAD/CHANGELOG.md#1180-2025-11-05)

[Compare
Source](https://redirect.github.com/google/adk-python/compare/v1.17.0...v1.18.0)

##### Features

- **\[ADK Visual Agent Builder]**
  - Core Features
    - Visual workflow designer for agent creation
- Support for multiple agent types (LLM, Sequential, Parallel, Loop,
Workflow)
    - Agent tool support with nested agent tools
    - Built-in and custom tool integration
- Callback management for all ADK callback types (before/after agent,
model, tool)
    - Assistant to help you build your agents with natural language
- Assistant proposes and writes agent configuration yaml files for you
    - Save to test with chat interfaces as normal
    - Build and debug at the same time in adk web!

- **\[Core]**
- Add support for extracting cache-related token counts from LiteLLM
usage
([4f85e86](4f85e86fc3))
- Expose the Python code run by the code interpreter in the logs
([a2c6a8a](a2c6a8a85c))
- Add run\_debug() helper method for quick agent experimentation
([0487eea](0487eea2ab))
- Allow injecting a custom Runner into `agent_to_a2a`
([156d235](156d235479))
- Support MCP prompts via the McpInstructionProvider class
([88032cf](88032cf5c5))

- **\[Models]**
- Add model tracking to LiteLlm and introduce a LiteLLM with fallbacks
demo
([d4c63fc](d4c63fc562))
- Add ApigeeLlm as a model that lets ADK Agent developers to connect
with an Apigee proxy
([87dcb3f](87dcb3f7ba))

- **\[Integrations]**
- Add example and fix for loading and upgrading old ADK session
databases
([338c3c8](338c3c89c6))
- Add support for specifying logging level for adk eval cli command
([b1ff85f](b1ff85fb23))
- Propagate LiteLLM finish\_reason to LlmResponse for use in callbacks
([71aa564](71aa5645f6))
- Allow LLM request to override the model used in the generate content
async method in LiteLLM
([ce8f674](ce8f674a28))
- Add api key argument to Vertex Session and Memory services for Express
Mode support
([9014a84](9014a849ea))
- Added support for enums as arguments for function tools
([240ef5b](240ef5beea))
- Implement artifact\_version related methods in GcsArtifactService
([e194ebb](e194ebb33c))

- **\[Services]**
- Add support for Vertex AI Express Mode when deploying to Agent Engine
([d4b2a8b](d4b2a8b49f))
- Remove custom polling logic for Vertex AI Session Service since LRO
polling is supported in express mode
([546c2a6](546c2a6816))
- Make VertexAiSessionService fully asynchronous
([f7e2a7a](f7e2a7a40e))

- **\[Tools]**
- Add Bigquery detect\_anomalies tool
([9851340](9851340ad1))
- Extend Bigquery detect\_anomalies tool to support future data anomaly
detection
([38ea749](38ea749c9c))
- Add get\_job\_info tool to BigQuery toolset
([6429457](64294572c1))

- **\[Evals]**
- Add "final\_session\_state" to the EvalCase data model
([2274c4f](2274c4f304))
- Marked expected\_invocation as optional field on evaluator interface
([b17c8f1](b17c8f19e5))
- Adds LLM-backed user simulator
([54c4ecc](54c4ecc733))

- **\[Observability]**
- Add BigQueryLoggingPlugin for event logging to BigQuery
([b7dbfed](b7dbfed4a3))

- **\[Live]**
- Add token usage to live events for bidi streaming
([6e5c0eb](6e5c0eb6e0))

##### Bug Fixes

- Reduce logging spam for MCP tools without authentication
([11571c3](11571c37ab))
- Fix typo in several files
([d2888a3](d2888a3766))
- Disable SetModelResponseTool workaround for Vertex AI Gemini 2+ models
([6a94af2](6a94af24bf))
- Bug when callback\_context\_invocation\_context is missing in
GlobalInstructionPlugin
([f81ebdb](f81ebdb622))
- Support models slash prefix in model name extraction
([8dff850](8dff85099d))
- Do not consider events with state delta and no content as final
response
([1ee93c8](1ee93c8bcb))
- Parameter filtering for CrewAI functions with \*\*kwargs
([74a3500](74a3500fc5))
- Do not treat FinishReason.STOP as error case for LLM responses
containing candidates with empty contents
([2f72ceb](2f72ceb49b))
- Fixes null check for reflect\_retry plugin sample
([86f0155](86f01550bd))
- Creates evalset directory on evalset create
([6c3882f](6c3882f2d6))
- Add ADK\_DISABLE\_LOAD\_DOTENV environment variable that disables
automatic loading of .env when running ADK cli, if set to true or 1
([15afbcd](15afbcd158))
- Allow tenacity 9.0.0
([ee8acc5](ee8acc58be))
- Output file uploading to artifact service should handle both base64
encoded and raw bytes
([496f8cd](496f8cd6bb))
- Correct message part ordering in A2A history
([5eca72f](5eca72f9bf))
- Change instruction insertion to respect tool call/response pairs
([1e6a9da](1e6a9daa63))
- DynamicPickleType to support MySQL dialect
([fc15c9a](fc15c9a0c3))
- Enable usage metadata in LiteLLM streaming
([f9569bb](f9569bbb1a))
- Fix issue with MCP tools throwing an error
([1a4261a](1a4261ad4b))
- Remove redundant `format` field from LiteLLM content objects
([489c39d](489c39db01))
- Update the contribution analysis tool to use original write mode
([54db3d4](54db3d4434))
- Fix agent evaluations detailed output rows wrapping
issue([4284c61](4284c61901))
- Update dependency version constraints to be based on PyPI
versions([0b1784e](0b1784e0e4))

##### Improvements

- Add Community Repo section to README
([432d30a](432d30af48))
- Undo adding MCP tools output schema to FunctionDeclaration
([92a7d19](92a7d19573))
- Refactor ADK README for clarity and consistency
([b0017ae](b0017aed44))
- Add support for reversed proxy in adk web
([a0df75b](a0df75b6fa))
- Avoid rendering empty columns as part of detailed results rendering of
eval results
([5cb35db](5cb35db921))
- Clear the behavior of disallow\_transfer\_to\_parent
([48ddd07](48ddd07894))
- Disable the scheduled execution for issue triage workflow
([a02f321](a02f321f1b))
- Include delimiter when matching events from parent nodes in content
processor
([b8a2b6c](b8a2b6c570))
- Improve Tau-bench ADK colab stability
([04dbc42](04dbc42e50))
- Implement ADK-based agent factory for Tau-bench
([c0c67c8](c0c67c8698))
- Add util to run ADK LLM Agent with simulation environment
([87f415a](87f415a7c3))
- Demonstrate CodeExecutor customization for environment setup
([8eeff35](8eeff35b35))
- Add sample agent for VertexAiCodeExecutor
([edfe553](edfe553942))
- Adds a new sample agent that demonstrates how to integrate PostgreSQL
databases using the Model Context Protocol (MCP)
([45a2168](45a2168e0e))
- Add example for using ADK with Fast MCP sampling
([d3796f9](d3796f9b33))
- Refactor gepa sample code and clean-up user demo
colab([63353b2](63353b2b74))

###
[`v1.17.0`](https://redirect.github.com/google/adk-python/blob/HEAD/CHANGELOG.md#1170-2025-10-22)

[Compare
Source](https://redirect.github.com/google/adk-python/compare/v1.16.0...v1.17.0)

##### Features

- **\[Core]**
- Add a service registry to provide a generic way to register custom
service implementations to be used in FastAPI server. See short
instruction
[here](https://redirect.github.com/google/adk-python/discussions/3175#discussioncomment-14745120).
([391628f](391628fcdc))
- Add the ability to rewind a session to before a previous invocation
([9dce06f](9dce06f9b0))
- Support resuming a parallel agent with multiple branches paused on
tool confirmation requests
([9939e0b](9939e0b087))
- Support content union as static instruction
([cc24d61](cc24d616f8))

- **\[Evals]**
- ADK cli allows developers to create an eval set and add an eval case
([ae139bb](ae139bb461))

- **\[Integrations]**
- Allow custom request and event converters in A2aAgentExecutor
([a17f3b2](a17f3b2e6d))

- **\[Observability]**
- Env variable for disabling llm\_request and llm\_response in spans
([e50f05a](e50f05a9fc))

- **\[Services]**
- Allow passing extra kwargs to create\_session of
VertexAiSessionService
([6a5eac0](6a5eac0bdc))
- Implement new methods in in-memory artifact service to support custom
metadata, artifact versions, etc.
([5a543c0](5a543c00df))
- Add create\_time and mime\_type to ArtifactVersion
([2c7a342](2c7a342593))
- Support returning all sessions when user id is none
([141318f](141318f775))

- **\[Tools]**
- Support additional headers for Google API toolset
([ed37e34](ed37e343f0))
- Introduces a new AgentEngineSandboxCodeExecutor class that supports
executing agent-generated code using the Vertex AI Code Execution
Sandbox API
([ee39a89](ee39a89110))
- Support dynamic per-request headers in MCPToolset
([6dcbb5a](6dcbb5aca6))
- Add `bypass_multi_tools_limit` option to GoogleSearchTool and
VertexAiSearchTool
([9a6b850](9a6b8507f0),
[6da7274](6da7274858))
- Extend `ReflectAndRetryToolPlugin` to support hallucinating function
calls
([f51380f](f51380f9ea))
- Add require\_confirmation param for MCP tool/toolset
([78e74b5](78e74b5bf2))

- **\[UI]**
- Granular per agent speech configuration
([409df13](409df1378f))

##### Bug Fixes

- Returns dict as result from McpTool to comply with BaseTool
expectations
([4df9263](4df926388b))
- Fixes the identity prompt to be one line
([7d5c6b9](7d5c6b9acf))
- Fix the broken langchain importing caused their 1.0.0 release
([c850da3](c850da3a07))
- Fix BuiltInCodeExecutor to support visualizations
([ce3418a](ce3418a69d))
- Relax runner app-name enforcement and improve agent origin inference
([dc4975d](dc4975dea9))
- Improve error message when adk web is run in wrong directory
([4a842c5](4a842c5a13))
- Handle App objects in eval and graph endpoints
([0b73a69](0b73a6937b))
- Exclude `additionalProperties` from Gemini schemas
([307896a](307896aece))
- Overall eval status should be NOT\_EVALUATED if no invocations were
evaluated
([9fbed0b](9fbed0b15a))
- Create context cache only when prefix matches with previous request
([9e0b1fb](9e0b1fb62b))
- Handle `App` instances returned by `agent_loader.load_agent`
([847df16](847df1638c))
- Add support for file URIs in LiteLLM content conversion
([85ed500](85ed500871))
- Only exclude scores that are None
([998264a](998264a5b1))
- Better handling the A2A streaming tasks
([bddc70b](bddc70b5d0))
- Correctly populate context\_id in remote\_a2a\_agent library
([2158b3c](2158b3c915))
- Remove unnecessary Aclosing
([2f4f561](2f4f5611bd))
- Fix pickle data was truncated error in database session using MySql
([36c96ec](36c96ec5b3))

##### Improvements

- Improve hint message in agent loader
([fe1fc75](fe1fc75c15))
- Fixes MCPToolset --> McpToolset in various places
([d4dc645](d4dc645478))
- Add span for context caching handling and new cache creation
([a2d9f13](a2d9f13fa1))
- Checks gemini version for `2 and above` for gemini-builtin tools
([0df6759](0df67599c0))
- Refactor and fix state management in the session service
([8b3ed05](8b3ed059c2))
- Update agent builder instructions and remove run command details
([89344da](89344da813))
- Clarify how to use adk built-in tool in instruction
([d22b8bf](d22b8bf890))
- Delegate the agent state reset logic to LoopAgent
([bb1ea74](bb1ea74924))
- Adjust the instruction about default model
([214986e](214986ebeb))
- Migrate invocation\_context to callback\_context
([e2072af](e2072af69f))
- Correct the callback signatures
([fa84bcb](fa84bcb575))
- Set default for `bypass_multi_tools_limit` to False for
GoogleSearchTool and VertexAiSearchTool
([6da7274](6da7274858))
- Add more clear instruction to the doc updater agent about one PR for
each recommended change
([b21d0a5](b21d0a50d6))
- Add a guideline to avoid content deletion
([16b030b](16b030b2b2))
- Add an sample agent for the `ReflectAndRetryToolPlugin`
([9b8a4aa](9b8a4aad6f))
- Improve error message when adk web is run in wrong directory
([4a842c5](4a842c5a13))
- Add an sample agent for the `ReflectAndRetryToolPlugin`
([9b8a4aa](9b8a4aad6f))
- Add span for context caching handling and new cache creation
([a2d9f13](a2d9f13fa1))
- Disable the scheduled execution for issue triage workflow
([bae2102](bae21027d9))
- Correct the callback signatures
([fa84bcb](fa84bcb575))

##### Documentation

- Format README.md for samples
([0bdba30](0bdba30263))
- Bump models in llms and llms-full to Gemini 2.5
([ce46386](ce4638651f))
- Update gemini\_llm\_connection.py - typo spelling correction
([e6e2767](e6e2767c39))
- Announce the first ADK Community Call in the README
([731bb90](731bb9078d))

###
[`v1.16.0`](https://redirect.github.com/google/adk-python/blob/HEAD/CHANGELOG.md#1160-2025-10-08)

[Compare
Source](https://redirect.github.com/google/adk-python/compare/v1.15.1...v1.16.0)

##### Features

- **\[Core]**
- Implementation of LLM context compaction
([e0dd06f](e0dd06ff04))
- Support pause and resume an invocation in ADK
([ce9c39f](ce9c39f5a8),

[2f1040f](2f1040f296),

[1ee01cc](1ee01cc05a),

[f005414](f005414895),

[fbf7576](fbf75761bb))
- **\[Models]**
- Add `citation_metadata` to `LlmResponse`
([3f28e30](3f28e30c6d))
- Add support for gemma model via gemini api
([2b5acb9](2b5acb98f5))
- **\[Tools]**
- Add `dry_run` functionality to BigQuery `execute_sql` tool
([960eda3](960eda3d1f))
- Add BigQuery analyze\_contribution tool
([4bb089d](4bb089d386))
- Spanner ADK toolset supports customizable template SQL and
parameterized SQL
([da62700](da62700d73))
- Support Oauth2 client credentials grant type
([5c6cdcd](5c6cdcd197))
- Add `ReflectRetryToolPlugin` to reflect from errors and retry with
different arguments when tool errors
([e55b894](e55b8946d6))
- Support using `VertexAiSearchTool` built-in tool with other tools in
the same agent
([4485379](4485379a04))
- Support using google search built-in tool with other tools in the same
agent
([d3148da](d3148dacc9))
- **\[Evals]**
- Add HallucinationsV1 evaluation metric
([8c73d29](8c73d29c75))
- Add Rubric based tool use metric
([c984b9e](c984b9e552))
- **\[UI]**
- Adds `adk web` options for custom logo
([822efe0](822efe0065))
- **\[Observability]**
- **otel:** Switch CloudTraceSpanExporter to telemetry.googleapis.com
([bd76b46](bd76b46ce2))

##### Bug Fixes

- Adapt to new computer use tool name in genai sdk 1.41.0
([c6dd444](c6dd444fc9))
- Add AuthConfig json serialization in vertex ai session service
([636def3](636def3687))
- Added more agent instructions for doc content changes
([7459962](745996212d))
- Convert argument to pydantic model when tool declares it accepts
pydantic model as argument
([571c802](571c802fba))
- Do not re-create `App` object when loader returns an `App`
([d5c46e4](d5c46e4960))
- Fix compaction logic
([3f2b457](3f2b457efd))
- Fix the instruction in workflow\_triage example agent
([8f3ca03](8f3ca0359e))
- Fixes a bug that causes intermittent `pydantic` validation errors when
uploading files
([e680063](e68006386f))
- Handle A2A Task Status Update Event when streaming in
remote\_a2a\_agent
([a5cf80b](a5cf80b952))
- Make compactor optional in Events Compaction Config and add a default
([3f4bd67](3f4bd67b49))
- Rename SlidingWindowCompactor to LlmEventSummarizer and refine its
docstring
([f1abdb1](f1abdb1938))
- Rollback compaction handling from \_get\_contents
([84f2f41](84f2f417f7))
- Set `max_output_tokens` for the agent builder
([2e2d61b](2e2d61b6fe))
- Set default response modality to AUDIO in run\_session
([68402bd](68402bda49))
- Update remote\_a2a\_agent to better handle streaming events and avoid
duplicate responses
([8e5f361](8e5f361264))
- Update the load\_artifacts tool so that the model can reliably call it
for follow up questions about the same artifact
([238472d](238472d083))
- Fix VertexAiSessionService base\_url override to preserve initialized
http\_options
([8110e41](8110e41b36),
[c51ea0b](c51ea0b52e))
- Handle `App` instances returned by `agent_loader.load_agent`
([847df16](847df1638c))

##### Improvements

- Migrate VertexAiSessionService to use Agent Engine SDK
([90d4c19](90d4c19c51))
- Migrate VertexAiMemoryBankService to use Agent Engine SDK
([d1efc84](d1efc8461e),
[97b950b](97b950b36b),
[83fd045](83fd045718))
- Add support for resolving $ref and $defs in OpenAPI schemas
([a239716](a239716930))

##### Documentation

- Update BigQuery samples README
([3021266](30212669ff))

</details>

---

### Configuration

📅 **Schedule**: Branch creation - At any time (no schedule defined),
Automerge - At any time (no schedule defined).

🚦 **Automerge**: Disabled by config. Please merge this manually once you
are satisfied.

♻ **Rebasing**: Whenever PR becomes conflicted, or you tick the
rebase/retry checkbox.

🔕 **Ignore**: Close this PR and you won't be reminded about this update
again.

---

- [ ] <!-- rebase-check -->If you want to rebase/retry this PR, check
this box

---

This PR was generated by [Mend Renovate](https://mend.io/renovate/).
View the [repository job
log](https://developer.mend.io/github/googleapis/genai-toolbox).

<!--renovate-debug:eyJjcmVhdGVkSW5WZXIiOiI0MS4xNTkuNCIsInVwZGF0ZWRJblZlciI6IjQxLjE1OS40IiwidGFyZ2V0QnJhbmNoIjoibWFpbiIsImxhYmVscyI6W119-->

Co-authored-by: Averi Kitsch <akitsch@google.com>
2025-11-06 19:31:02 +00:00
2024-06-07 21:29:24 +00:00
2025-05-20 21:50:26 +00:00

logo

MCP Toolbox for Databases

Docs Discord Medium Go Report Card

Note

MCP Toolbox for Databases is currently in beta, and may see breaking changes until the first stable release (v1.0).

MCP Toolbox for Databases is an open source MCP server for databases. It enables you to develop tools easier, faster, and more securely by handling the complexities such as connection pooling, authentication, and more.

This README provides a brief overview. For comprehensive details, see the full documentation.

Note

This solution was originally named “Gen AI Toolbox for Databases” as its initial development predated MCP, but was renamed to align with recently added MCP compatibility.

Table of Contents

Why Toolbox?

Toolbox helps you build Gen AI tools that let your agents access data in your database. Toolbox provides:

  • Simplified development: Integrate tools to your agent in less than 10 lines of code, reuse tools between multiple agents or frameworks, and deploy new versions of tools more easily.
  • Better performance: Best practices such as connection pooling, authentication, and more.
  • Enhanced security: Integrated auth for more secure access to your data
  • End-to-end observability: Out of the box metrics and tracing with built-in support for OpenTelemetry.

Supercharge Your Workflow with an AI Database Assistant

Stop context-switching and let your AI assistant become a true co-developer. By connecting your IDE to your databases with MCP Toolbox, you can delegate complex and time-consuming database tasks, allowing you to build faster and focus on what matters. This isn't just about code completion; it's about giving your AI the context it needs to handle the entire development lifecycle.

Heres how it will save you time:

  • Query in Plain English: Interact with your data using natural language right from your IDE. Ask complex questions like, "How many orders were delivered in 2024, and what items were in them?" without writing any SQL.
  • Automate Database Management: Simply describe your data needs, and let the AI assistant manage your database for you. It can handle generating queries, creating tables, adding indexes, and more.
  • Generate Context-Aware Code: Empower your AI assistant to generate application code and tests with a deep understanding of your real-time database schema. This accelerates the development cycle by ensuring the generated code is directly usable.
  • Slash Development Overhead: Radically reduce the time spent on manual setup and boilerplate. MCP Toolbox helps streamline lengthy database configurations, repetitive code, and error-prone schema migrations.

Learn how to connect your AI tools (IDEs) to Toolbox using MCP.

General Architecture

Toolbox sits between your application's orchestration framework and your database, providing a control plane that is used to modify, distribute, or invoke tools. It simplifies the management of your tools by providing you with a centralized location to store and update tools, allowing you to share tools between agents and applications and update those tools without necessarily redeploying your application.

architecture

Getting Started

Installing the server

For the latest version, check the releases page and use the following instructions for your OS and CPU architecture.

Binary

To install Toolbox as a binary:

Linux (AMD64)

To install Toolbox as a binary on Linux (AMD64):

# see releases page for other versions
export VERSION=0.18.0
curl -L -o toolbox https://storage.googleapis.com/genai-toolbox/v$VERSION/linux/amd64/toolbox
chmod +x toolbox
macOS (Apple Silicon)

To install Toolbox as a binary on macOS (Apple Silicon):

# see releases page for other versions
export VERSION=0.18.0
curl -L -o toolbox https://storage.googleapis.com/genai-toolbox/v$VERSION/darwin/arm64/toolbox
chmod +x toolbox
macOS (Intel)

To install Toolbox as a binary on macOS (Intel):

# see releases page for other versions
export VERSION=0.18.0
curl -L -o toolbox https://storage.googleapis.com/genai-toolbox/v$VERSION/darwin/amd64/toolbox
chmod +x toolbox
Windows (AMD64)

To install Toolbox as a binary on Windows (AMD64):

# see releases page for other versions
$VERSION = "0.18.0"
Invoke-WebRequest -Uri "https://storage.googleapis.com/genai-toolbox/v$VERSION/windows/amd64/toolbox.exe" -OutFile "toolbox.exe"
Container image You can also install Toolbox as a container:
# see releases page for other versions
export VERSION=0.18.0
docker pull us-central1-docker.pkg.dev/database-toolbox/toolbox/toolbox:$VERSION
Homebrew

To install Toolbox using Homebrew on macOS or Linux:

brew install mcp-toolbox
Compile from source

To install from source, ensure you have the latest version of Go installed, and then run the following command:

go install github.com/googleapis/genai-toolbox@v0.18.0
Gemini CLI Extensions

To install Gemini CLI Extensions for MCP Toolbox, run the following command:

gemini extensions install https://github.com/gemini-cli-extensions/mcp-toolbox

Running the server

Configure a tools.yaml to define your tools, and then execute toolbox to start the server:

Binary

To run Toolbox from binary:

./toolbox --tools-file "tools.yaml"

ⓘ Note
Toolbox enables dynamic reloading by default. To disable, use the --disable-reload flag.

Container image

To run the server after pulling the container image:

export VERSION=0.11.0 # Use the version you pulled
docker run -p 5000:5000 \
-v $(pwd)/tools.yaml:/app/tools.yaml \
us-central1-docker.pkg.dev/database-toolbox/toolbox/toolbox:$VERSION \
--tools-file "/app/tools.yaml"

ⓘ Note
The -v flag mounts your local tools.yaml into the container, and -p maps the container's port 5000 to your host's port 5000.

Source

To run the server directly from source, navigate to the project root directory and run:

go run .

ⓘ Note
This command runs the project from source, and is more suitable for development and testing. It does not compile a binary into your $GOPATH. If you want to compile a binary instead, refer the Developer Documentation.

Homebrew

If you installed Toolbox using Homebrew, the toolbox binary is available in your system path. You can start the server with the same command:

toolbox --tools-file "tools.yaml"
Gemini CLI

Interact with your custom tools using natural language. Check gemini-cli-extensions/mcp-toolbox for more information.

You can use toolbox help for a full list of flags! To stop the server, send a terminate signal (ctrl+c on most platforms).

For more detailed documentation on deploying to different environments, check out the resources in the How-to section

Integrating your application

Once your server is up and running, you can load the tools into your application. See below the list of Client SDKs for using various frameworks:

Python (Github)
Core
  1. Install Toolbox Core SDK:

    pip install toolbox-core
    
  2. Load tools:

    from toolbox_core import ToolboxClient
    
    # update the url to point to your server
    async with ToolboxClient("http://127.0.0.1:5000") as client:
    
        # these tools can be passed to your application!
        tools = await client.load_toolset("toolset_name")
    

For more detailed instructions on using the Toolbox Core SDK, see the project's README.

LangChain / LangGraph
  1. Install Toolbox LangChain SDK:

    pip install toolbox-langchain
    
  2. Load tools:

    from toolbox_langchain import ToolboxClient
    
    # update the url to point to your server
    async with ToolboxClient("http://127.0.0.1:5000") as client:
    
        # these tools can be passed to your application!
        tools = client.load_toolset()
    

    For more detailed instructions on using the Toolbox LangChain SDK, see the project's README.

LlamaIndex
  1. Install Toolbox Llamaindex SDK:

    pip install toolbox-llamaindex
    
  2. Load tools:

    from toolbox_llamaindex import ToolboxClient
    
    # update the url to point to your server
    async with ToolboxClient("http://127.0.0.1:5000") as client:
    
        # these tools can be passed to your application!
        tools = client.load_toolset()
    

    For more detailed instructions on using the Toolbox Llamaindex SDK, see the project's README.

Javascript/Typescript (Github)
Core
  1. Install Toolbox Core SDK:

    npm install @toolbox-sdk/core
    
  2. Load tools:

    import { ToolboxClient } from '@toolbox-sdk/core';
    
    // update the url to point to your server
    const URL = 'http://127.0.0.1:5000';
    let client = new ToolboxClient(URL);
    
    // these tools can be passed to your application!
    const tools = await client.loadToolset('toolsetName');
    

    For more detailed instructions on using the Toolbox Core SDK, see the project's README.

LangChain / LangGraph
  1. Install Toolbox Core SDK:

    npm install @toolbox-sdk/core
    
  2. Load tools:

    import { ToolboxClient } from '@toolbox-sdk/core';
    
    // update the url to point to your server
    const URL = 'http://127.0.0.1:5000';
    let client = new ToolboxClient(URL);
    
    // these tools can be passed to your application!
    const toolboxTools = await client.loadToolset('toolsetName');
    
    // Define the basics of the tool: name, description, schema and core logic
    const getTool = (toolboxTool) => tool(currTool, {
        name: toolboxTool.getName(),
        description: toolboxTool.getDescription(),
        schema: toolboxTool.getParamSchema()
    });
    
    // Use these tools in your Langchain/Langraph applications
    const tools = toolboxTools.map(getTool);
    
Genkit
  1. Install Toolbox Core SDK:

    npm install @toolbox-sdk/core
    
  2. Load tools:

    import { ToolboxClient } from '@toolbox-sdk/core';
    import { genkit } from 'genkit';
    
    // Initialise genkit
    const ai = genkit({
        plugins: [
            googleAI({
                apiKey: process.env.GEMINI_API_KEY || process.env.GOOGLE_API_KEY
            })
        ],
        model: googleAI.model('gemini-2.0-flash'),
    });
    
    // update the url to point to your server
    const URL = 'http://127.0.0.1:5000';
    let client = new ToolboxClient(URL);
    
    // these tools can be passed to your application!
    const toolboxTools = await client.loadToolset('toolsetName');
    
    // Define the basics of the tool: name, description, schema and core logic
    const getTool = (toolboxTool) => ai.defineTool({
        name: toolboxTool.getName(),
        description: toolboxTool.getDescription(),
        schema: toolboxTool.getParamSchema()
    }, toolboxTool)
    
    // Use these tools in your Genkit applications
    const tools = toolboxTools.map(getTool);
    
Go (Github)
Core
  1. Install Toolbox Go SDK:

    go get github.com/googleapis/mcp-toolbox-sdk-go
    
  2. Load tools:

    package main
    
    import (
      "github.com/googleapis/mcp-toolbox-sdk-go/core"
      "context"
    )
    
    func main() {
      // Make sure to add the error checks
      // update the url to point to your server
      URL := "http://127.0.0.1:5000";
      ctx := context.Background()
    
      client, err := core.NewToolboxClient(URL)
    
      // Framework agnostic tools
      tools, err := client.LoadToolset("toolsetName", ctx)
    }
    

    For more detailed instructions on using the Toolbox Go SDK, see the project's README.

LangChain Go
  1. Install Toolbox Go SDK:

    go get github.com/googleapis/mcp-toolbox-sdk-go
    
  2. Load tools:

    package main
    
    import (
      "context"
      "encoding/json"
    
      "github.com/googleapis/mcp-toolbox-sdk-go/core"
      "github.com/tmc/langchaingo/llms"
    )
    
    func main() {
      // Make sure to add the error checks
      // update the url to point to your server
      URL := "http://127.0.0.1:5000"
      ctx := context.Background()
    
      client, err := core.NewToolboxClient(URL)
    
      // Framework agnostic tool
      tool, err := client.LoadTool("toolName", ctx)
    
      // Fetch the tool's input schema
      inputschema, err := tool.InputSchema()
    
      var paramsSchema map[string]any
      _ = json.Unmarshal(inputschema, &paramsSchema)
    
      // Use this tool with LangChainGo
      langChainTool := llms.Tool{
        Type: "function",
        Function: &llms.FunctionDefinition{
          Name:        tool.Name(),
          Description: tool.Description(),
          Parameters:  paramsSchema,
        },
      }
    }
    
    
Genkit
  1. Install Toolbox Go SDK:

    go get github.com/googleapis/mcp-toolbox-sdk-go
    
  2. Load tools:

    package main
    import (
      "context"
      "log"
    
      "github.com/firebase/genkit/go/genkit"
      "github.com/googleapis/mcp-toolbox-sdk-go/core"
      "github.com/googleapis/mcp-toolbox-sdk-go/tbgenkit"
    )
    
    func main() {
      // Make sure to add the error checks
      // Update the url to point to your server
      URL := "http://127.0.0.1:5000"
      ctx := context.Background()
      g := genkit.Init(ctx)
    
      client, err := core.NewToolboxClient(URL)
    
      // Framework agnostic tool
      tool, err := client.LoadTool("toolName", ctx)
    
      // Convert the tool using the tbgenkit package
      // Use this tool with Genkit Go
      genkitTool, err := tbgenkit.ToGenkitTool(tool, g)
      if err != nil {
        log.Fatalf("Failed to convert tool: %v\n", err)
      }
      log.Printf("Successfully converted tool: %s", genkitTool.Name())
    }
    
Go GenAI
  1. Install Toolbox Go SDK:

    go get github.com/googleapis/mcp-toolbox-sdk-go
    
  2. Load tools:

    package main
    
    import (
      "context"
      "encoding/json"
    
      "github.com/googleapis/mcp-toolbox-sdk-go/core"
      "google.golang.org/genai"
    )
    
    func main() {
      // Make sure to add the error checks
      // Update the url to point to your server
      URL := "http://127.0.0.1:5000"
      ctx := context.Background()
    
      client, err := core.NewToolboxClient(URL)
    
      // Framework agnostic tool
      tool, err := client.LoadTool("toolName", ctx)
    
      // Fetch the tool's input schema
      inputschema, err := tool.InputSchema()
    
      var schema *genai.Schema
      _ = json.Unmarshal(inputschema, &schema)
    
      funcDeclaration := &genai.FunctionDeclaration{
        Name:        tool.Name(),
        Description: tool.Description(),
        Parameters:  schema,
      }
    
      // Use this tool with Go GenAI
      genAITool := &genai.Tool{
        FunctionDeclarations: []*genai.FunctionDeclaration{funcDeclaration},
      }
    }
    
OpenAI Go
  1. Install Toolbox Go SDK:

    go get github.com/googleapis/mcp-toolbox-sdk-go
    
  2. Load tools:

    package main
    
    import (
      "context"
      "encoding/json"
    
      "github.com/googleapis/mcp-toolbox-sdk-go/core"
      openai "github.com/openai/openai-go"
    )
    
    func main() {
      // Make sure to add the error checks
      // Update the url to point to your server
      URL := "http://127.0.0.1:5000"
      ctx := context.Background()
    
      client, err := core.NewToolboxClient(URL)
    
      // Framework agnostic tool
      tool, err := client.LoadTool("toolName", ctx)
    
      // Fetch the tool's input schema
      inputschema, err := tool.InputSchema()
    
      var paramsSchema openai.FunctionParameters
      _ = json.Unmarshal(inputschema, &paramsSchema)
    
      // Use this tool with OpenAI Go
      openAITool := openai.ChatCompletionToolParam{
        Function: openai.FunctionDefinitionParam{
          Name:        tool.Name(),
          Description: openai.String(tool.Description()),
          Parameters:  paramsSchema,
        },
      }
    
    }
    
ADK Go
  1. Install Toolbox Go SDK:

    go get github.com/googleapis/mcp-toolbox-sdk-go
    
  2. Load tools:

    package main
    
    import (
      "github.com/googleapis/mcp-toolbox-sdk-go/tbadk"
      "context"
    )
    
    func main() {
      // Make sure to add the error checks
      // Update the url to point to your server
      URL := "http://127.0.0.1:5000"
      ctx := context.Background()
      client, err := tbadk.NewToolboxClient(URL)
      if err != nil {
        return fmt.Sprintln("Could not start Toolbox Client", err)
      }
    
      // Use this tool with ADK Go
      tool, err := client.LoadTool("toolName", ctx)
      if err != nil {
        return fmt.Sprintln("Could not load Toolbox Tool", err)
      }
    }
    

    For more detailed instructions on using the Toolbox Go SDK, see the project's README.

Using Toolbox with Gemini CLI Extensions

Gemini CLI extensions provide tools to interact directly with your data sources from command line. Below is a list of Gemini CLI extensions that are built on top of Toolbox. They allow you to interact with your data sources through pre-defined or custom tools with natural language. Click into the link to see detailed instructions on their usage.

To use custom tools with Gemini CLI:

To use prebuilt tools with Gemini CLI:

Configuration

The primary way to configure Toolbox is through the tools.yaml file. If you have multiple files, you can tell toolbox which to load with the --tools-file tools.yaml flag.

You can find more detailed reference documentation to all resource types in the Resources.

Sources

The sources section of your tools.yaml defines what data sources your Toolbox should have access to. Most tools will have at least one source to execute against.

sources:
  my-pg-source:
    kind: postgres
    host: 127.0.0.1
    port: 5432
    database: toolbox_db
    user: toolbox_user
    password: my-password

For more details on configuring different types of sources, see the Sources.

Tools

The tools section of a tools.yaml define the actions an agent can take: what kind of tool it is, which source(s) it affects, what parameters it uses, etc.

tools:
  search-hotels-by-name:
    kind: postgres-sql
    source: my-pg-source
    description: Search for hotels based on name.
    parameters:
      - name: name
        type: string
        description: The name of the hotel.
    statement: SELECT * FROM hotels WHERE name ILIKE '%' || $1 || '%';

For more details on configuring different types of tools, see the Tools.

Toolsets

The toolsets section of your tools.yaml allows you to define groups of tools that you want to be able to load together. This can be useful for defining different groups based on agent or application.

toolsets:
    my_first_toolset:
        - my_first_tool
        - my_second_tool
    my_second_toolset:
        - my_second_tool
        - my_third_tool

You can load toolsets by name:

# This will load all tools
all_tools = client.load_toolset()

# This will only load the tools listed in 'my_second_toolset'
my_second_toolset = client.load_toolset("my_second_toolset")

Versioning

This project uses semantic versioning (MAJOR.MINOR.PATCH). Since the project is in a pre-release stage (version 0.x.y), we follow the standard conventions for initial development:

Pre-1.0.0 Versioning

While the major version is 0, the public API should be considered unstable. The version will be incremented as follows:

  • 0.MINOR.PATCH: The MINOR version is incremented when we add new functionality or make breaking, incompatible API changes.
  • 0.MINOR.PATCH: The PATCH version is incremented for backward-compatible bug fixes.

Post-1.0.0 Versioning

Once the project reaches a stable 1.0.0 release, the versioning will follow the more common convention:

  • MAJOR.MINOR.PATCH: Incremented for incompatible API changes.
  • MAJOR.MINOR.PATCH: Incremented for new, backward-compatible functionality.
  • MAJOR.MINOR.PATCH: Incremented for backward-compatible bug fixes.

The public API that this applies to is the CLI associated with Toolbox, the interactions with official SDKs, and the definitions in the tools.yaml file.

Contributing

Contributions are welcome. Please, see the CONTRIBUTING to get started.

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms. See Contributor Code of Conduct for more information.

Community

Join our discord community to connect with our developers!

Description
No description provided
Readme Apache-2.0 782 MiB
Latest
2025-07-02 11:30:33 -04:00
Languages
Go 97.5%
JavaScript 1.5%
Shell 0.4%
CSS 0.3%
HTML 0.2%