first import

This commit is contained in:
Alvaro Videla
2012-09-14 13:38:41 +02:00
commit 54429b1982
11 changed files with 2284 additions and 0 deletions

10
.gitignore vendored Normal file
View File

@@ -0,0 +1,10 @@
/target
/lib
/classes
/checkouts
pom.xml
*.jar
*.class
.lein-deps-sum
.lein-failures
.lein-plugins

79
README.md Normal file
View File

@@ -0,0 +1,79 @@
# gifsockets
"This library is the websockets of the '90s" - Somebody at Hacker News.
This library demoes how to achieve realtime text communication using GIF images as transport.
The interesting part is that you can even use IE6 with this library and get the data in Real Time (TM).
Of course this should have been delivered as an April's Fools joke but sadly we are in mid September here in the northern hemisphere.
## How does it work
The idea is pretty simple. We use Animated Gif images to stream data in real time to the browser. Since a gif image doesn't specify how many frames it has, once the browser opens it, it will keep waiting for new frames until you send the bits indicating that there's no more image to fetch.
Pretty simple uh!
And yes. It works in IE6.
## Usage
The usage now is a bit rudimentary and manual. Feel free to improve it and send a PR.
```bash
$ git clone
$ cd gifsockets
$ lein deps
% lein repl
```
Then perform the following commands on the Clojure REPL.
```clojure
;; in the repl do the following to import the libs
(use 'gifsockets.core)
(use 'gifsockets.server)
;;
;;Then we declare the tcp server
(def server (tcp-server :port 8081 :handler gif-handler))
(start2 server)
;; wait for a browser connection on port 8081
;; go and open http://localhost:8081/ in Safari or IE6
;; In Chrome it works a bit laggy and in Firefox it doesn't work at all
;;
;; Now let's create the gif encoder that we use to write messages to the browser.
(def encoder (create-gif (.getOutputStream client)))
;;
;;Now we are ready to send messages to that browser client
(add-message encoder "Hello gif-sockets")
;; now you should see a GIF image with the new message on it.
(add-message encoder "Zup zup zup")
(add-message encoder "And so forth")
;;
;; Now let's clean up and close the connection
(.finish encoder)
(.close client)
```
As you can see from the code this handles only one connection in what is called an UPoC (Uber Proof Of Concept).
## Possible uses:
All joking aside I think this is a very low tech way to have say, an website where you could tail logs for instance and you need to do it with browser that have zero websockets support or something like that.
## License
Copyright © 2012 Alvaro Videla
The following classes:
- AnimatedGifEncoder.java
- GifDecoder.java
- LZWEncoder.java
- NeuQuant.java
Where taken from this website: [http://www.fmsware.com/stuff/gif.html](http://www.fmsware.com/stuff/gif.html).
And the server code was taken from here [https://github.com/weavejester/tcp-server](https://github.com/weavejester/tcp-server)
Distributed under the Eclipse Public License, the same as Clojure.

3
doc/intro.md Normal file
View File

@@ -0,0 +1,3 @@
# Introduction to gif-chat
TODO: write [great documentation](http://jacobian.org/writing/great-documentation/what-to-write/)

9
project.clj Normal file
View File

@@ -0,0 +1,9 @@
(defproject gifsockets "0.1.0-SNAPSHOT"
:description "FIXME: write description"
:url "http://example.com/FIXME"
:license {:name "Eclipse Public License"
:url "http://www.eclipse.org/legal/epl-v10.html"}
:source-paths ["src/clojure"]
:java-source-paths ["src/java"]
:dependencies [[org.clojure/clojure "1.4.0"]]
:plugins [[lein-swank "1.4.4"]])

View File

@@ -0,0 +1,53 @@
(ns gifsockets.core
(:import java.awt.image.BufferedImage
java.awt.Graphics2D
[java.io File IOException ByteArrayOutputStream]
javax.imageio.ImageIO
AnimatedGifEncoder
java.net.ServerSocket))
(defn save-to-disc [img format path]
(ImageIO/write img format (File. path)))
(defn write-text [text w h x y]
(let [bufferedImage (BufferedImage. w h BufferedImage/TYPE_INT_ARGB)
gd2 (.createGraphics bufferedImage)]
(.drawString gd2 text x y)
bufferedImage
))
(defn text-to-file [text w h x y]
(save-to-disc (write-text text w h x y) "jpg" "/tmp/text.jpg"))
(defn create-gif [output]
(let [e (AnimatedGifEncoder.)]
(.start e output)
(.setDelay e 1000)
e))
(defn add-frame [gif text w h x y]
(.addFrame gif (write-text text w h x y)))
(defn start-server [port]
(let [os (.getOutputStream (.accept (ServerSocket. port)))
e (create-gif os)]
;; see how to destroy the writer without closing the buffer
e))
(defn get-encoder []
(create-gif (ByteArrayOutputStream.)))
(defn add-message [encoder message]
"adds a message positioned at (20,20) in a 300x50 gif image"
(do
(add-frame encoder message 300 50 20 20)
(add-frame encoder message 300 50 20 20)))
(defn flush-encoder [encoder]
(.outFlush encoder))
(defn get-last-frame [encoder]
(.getFrameByteArray encoder))
(defn gif-handler [conn]
(def client conn))

View File

@@ -0,0 +1,103 @@
(ns gifsockets.server
"Functions for creating a threaded TCP server."
(:require [clojure.java.io :as io])
(:import [java.net InetAddress ServerSocket Socket SocketException]))
(defn- server-socket [server]
(ServerSocket.
(:port server)
(:backlog server)
(InetAddress/getByName (:host server))))
(defn tcp-server
"Create a new TCP server. Takes the following keyword arguments:
:host - the host to bind to (defaults to 127.0.0.1)
:port - the port to bind to
:handler - a function to handle incoming connections, expects a socket as
an argument
:backlog - the maximum backlog of connections to keep (defaults to 50)"
[& {:as options}]
{:pre [(:port options)
(:handler options)]}
(merge
{:host "127.0.0.1"
:backlog 50
:socket (atom nil)
:connections (atom #{})}
options))
(defn close-socket [server socket]
(swap! (:connections server) disj socket)
(when-not (.isClosed socket)
(.close socket)))
(defn- open-server-socket [server]
(reset! (:socket server)
(server-socket server)))
(defn- accept-connection
[{:keys [handler connections socket] :as server}]
(let [conn (.accept @socket)]
(swap! connections conj conn)
(future
(try (handler conn)
(finally (close-socket server conn))))))
(defn- accept-connection2
[{:keys [handler connections socket] :as server}]
(let [conn (.accept @socket)]
(swap! connections conj conn)
(future
(try (handler conn)))))
(defn running?
"True if the server is running."
[server]
(if-let [socket @(:socket server)]
(not (.isClosed socket))))
(defn start
"Start a TCP server going."
[server]
(open-server-socket server)
(future
(while (running? server)
(try
(accept-connection server)
(catch SocketException _)))))
(defn start2
"Start a TCP server going."
[server]
(open-server-socket server)
(future
(while (running? server)
(try
(accept-connection2 server)
(catch SocketException _)))))
(defn stop
"Stop the TCP server and close all open connections."
[server]
(doseq [socket @(:connections server)]
(close-socket server socket))
(.close @(:socket server)))
(defn wrap-streams
"Wrap a handler so that it expects an InputStream and an OutputStream
as arguments, rather than a raw Socket."
[handler]
(fn [socket]
(with-open [input (.getInputStream socket)
output (.getOutputStream socket)]
(handler input output))))
(defn wrap-io
"Wrap a handler so that it expects a Reader and Writer as arguments, rather
than a raw Socket."
[handler]
(wrap-streams
(fn [input output]
(with-open [reader (io/reader input)
writer (io/writer output)]
(handler reader writer)))))

487
src/java/AnimatedGifEncoder.java Executable file
View File

@@ -0,0 +1,487 @@
import java.io.*;
import java.awt.*;
import java.awt.image.*;
import org.apache.commons.io.IOUtils;
/**
* Class AnimatedGifEncoder - Encodes a GIF file consisting of one or
* more frames.
* <pre>
* Example:
* AnimatedGifEncoder e = new AnimatedGifEncoder();
* e.start(outputFileName);
* e.setDelay(1000); // 1 frame per sec
* e.addFrame(image1);
* e.addFrame(image2);
* e.finish();
* </pre>
* No copyright asserted on the source code of this class. May be used
* for any purpose, however, refer to the Unisys LZW patent for restrictions
* on use of the associated LZWEncoder class. Please forward any corrections
* to questions at fmsware.com.
*
* @author Kevin Weiner, FM Software
* @version 1.03 November 2003
*
*/
public class AnimatedGifEncoder {
protected int width; // image size
protected int height;
protected Color transparent = null; // transparent color if given
protected int transIndex; // transparent index in color table
protected int repeat = -1; // no repeat
protected int delay = 0; // frame delay (hundredths)
protected boolean started = false; // ready to output frames
protected OutputStream out;
protected BufferedImage image; // current frame
protected byte[] pixels; // BGR byte array from frame
protected byte[] indexedPixels; // converted frame indexed to palette
protected int colorDepth; // number of bit planes
protected byte[] colorTab; // RGB palette
protected boolean[] usedEntry = new boolean[256]; // active palette entries
protected int palSize = 7; // color table size (bits-1)
protected int dispose = -1; // disposal code (-1 = use default)
protected boolean closeStream = false; // close stream when finished
protected boolean firstFrame = true;
protected boolean sizeSet = false; // if false, get size from first frame
protected int sample = 10; // default sample interval for quantizer
/**
* Sets the delay time between each frame, or changes it
* for subsequent frames (applies to last frame added).
*
* @param ms int delay time in milliseconds
*/
public void setDelay(int ms) {
delay = Math.round(ms / 10.0f);
}
/**
* Sets the GIF frame disposal code for the last added frame
* and any subsequent frames. Default is 0 if no transparent
* color has been set, otherwise 2.
* @param code int disposal code.
*/
public void setDispose(int code) {
if (code >= 0) {
dispose = code;
}
}
/**
* Sets the number of times the set of GIF frames
* should be played. Default is 1; 0 means play
* indefinitely. Must be invoked before the first
* image is added.
*
* @param iter int number of iterations.
* @return
*/
public void setRepeat(int iter) {
if (iter >= 0) {
repeat = iter;
}
}
/**
* Sets the transparent color for the last added frame
* and any subsequent frames.
* Since all colors are subject to modification
* in the quantization process, the color in the final
* palette for each frame closest to the given color
* becomes the transparent color for that frame.
* May be set to null to indicate no transparent color.
*
* @param c Color to be treated as transparent on display.
*/
public void setTransparent(Color c) {
transparent = c;
}
/**
* Adds next GIF frame. The frame is not written immediately, but is
* actually deferred until the next frame is received so that timing
* data can be inserted. Invoking <code>finish()</code> flushes all
* frames. If <code>setSize</code> was not invoked, the size of the
* first image is used for all subsequent frames.
*
* @param im BufferedImage containing frame to write.
* @return true if successful.
*/
public boolean addFrame(BufferedImage im) {
if ((im == null) || !started) {
return false;
}
boolean ok = true;
try {
if (!sizeSet) {
// use first frame's size
setSize(im.getWidth(), im.getHeight());
}
image = im;
getImagePixels(); // convert to correct format if necessary
analyzePixels(); // build color table & map pixels
if (firstFrame) {
writeLSD(); // logical screen descriptior
writePalette(); // global color table
if (repeat >= 0) {
// use NS app extension to indicate reps
writeNetscapeExt();
}
}
writeGraphicCtrlExt(); // write graphic control extension
writeImageDesc(); // image descriptor
if (!firstFrame) {
writePalette(); // local color table
}
writePixels(); // encode and write pixel data
firstFrame = false;
} catch (IOException e) {
ok = false;
}
return ok;
}
//added by alvaro
public boolean outFlush() {
boolean ok = true;
try {
out.flush();
return ok;
} catch (IOException e) {
ok = false;
}
return ok;
}
public byte[] getFrameByteArray() {
return ((ByteArrayOutputStream) out).toByteArray();
}
/**
* Flushes any pending data and closes output file.
* If writing to an OutputStream, the stream is not
* closed.
*/
public boolean finish() {
if (!started) return false;
boolean ok = true;
started = false;
try {
out.write(0x3b); // gif trailer
out.flush();
if (closeStream) {
out.close();
}
} catch (IOException e) {
ok = false;
}
return ok;
}
public void reset() {
// reset for subsequent use
transIndex = 0;
out = null;
image = null;
pixels = null;
indexedPixels = null;
colorTab = null;
closeStream = false;
firstFrame = true;
}
/**
* Sets frame rate in frames per second. Equivalent to
* <code>setDelay(1000/fps)</code>.
*
* @param fps float frame rate (frames per second)
*/
public void setFrameRate(float fps) {
if (fps != 0f) {
delay = Math.round(100f / fps);
}
}
/**
* Sets quality of color quantization (conversion of images
* to the maximum 256 colors allowed by the GIF specification).
* Lower values (minimum = 1) produce better colors, but slow
* processing significantly. 10 is the default, and produces
* good color mapping at reasonable speeds. Values greater
* than 20 do not yield significant improvements in speed.
*
* @param quality int greater than 0.
* @return
*/
public void setQuality(int quality) {
if (quality < 1) quality = 1;
sample = quality;
}
/**
* Sets the GIF frame size. The default size is the
* size of the first frame added if this method is
* not invoked.
*
* @param w int frame width.
* @param h int frame width.
*/
public void setSize(int w, int h) {
if (started && !firstFrame) return;
width = w;
height = h;
if (width < 1) width = 320;
if (height < 1) height = 240;
sizeSet = true;
}
/**
* Initiates GIF file creation on the given stream. The stream
* is not closed automatically.
*
* @param os OutputStream on which GIF images are written.
* @return false if initial write failed.
*/
public boolean start(OutputStream os) {
if (os == null) return false;
boolean ok = true;
closeStream = false;
out = os;
try {
writeString("GIF89a"); // header
} catch (IOException e) {
ok = false;
}
return started = ok;
}
/**
* Initiates writing of a GIF file with the specified name.
*
* @param file String containing output file name.
* @return false if open or initial write failed.
*/
public boolean start(String file) {
boolean ok = true;
try {
out = new BufferedOutputStream(new FileOutputStream(file));
ok = start(out);
closeStream = true;
} catch (IOException e) {
ok = false;
}
return started = ok;
}
/**
* Analyzes image colors and creates color map.
*/
protected void analyzePixels() {
int len = pixels.length;
int nPix = len / 3;
indexedPixels = new byte[nPix];
NeuQuant nq = new NeuQuant(pixels, len, sample);
// initialize quantizer
colorTab = nq.process(); // create reduced palette
// convert map from BGR to RGB
for (int i = 0; i < colorTab.length; i += 3) {
byte temp = colorTab[i];
colorTab[i] = colorTab[i + 2];
colorTab[i + 2] = temp;
usedEntry[i / 3] = false;
}
// map image pixels to new palette
int k = 0;
for (int i = 0; i < nPix; i++) {
int index =
nq.map(pixels[k++] & 0xff,
pixels[k++] & 0xff,
pixels[k++] & 0xff);
usedEntry[index] = true;
indexedPixels[i] = (byte) index;
}
pixels = null;
colorDepth = 8;
palSize = 7;
// get closest match to transparent color if specified
if (transparent != null) {
transIndex = findClosest(transparent);
}
}
/**
* Returns index of palette color closest to c
*
*/
protected int findClosest(Color c) {
if (colorTab == null) return -1;
int r = c.getRed();
int g = c.getGreen();
int b = c.getBlue();
int minpos = 0;
int dmin = 256 * 256 * 256;
int len = colorTab.length;
for (int i = 0; i < len;) {
int dr = r - (colorTab[i++] & 0xff);
int dg = g - (colorTab[i++] & 0xff);
int db = b - (colorTab[i] & 0xff);
int d = dr * dr + dg * dg + db * db;
int index = i / 3;
if (usedEntry[index] && (d < dmin)) {
dmin = d;
minpos = index;
}
i++;
}
return minpos;
}
/**
* Extracts image pixels into byte array "pixels"
*/
protected void getImagePixels() {
int w = image.getWidth();
int h = image.getHeight();
int type = image.getType();
if ((w != width)
|| (h != height)
|| (type != BufferedImage.TYPE_3BYTE_BGR)) {
// create new image with right size/format
BufferedImage temp =
new BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR);
Graphics2D g = temp.createGraphics();
g.drawImage(image, 0, 0, null);
image = temp;
}
pixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
}
/**
* Writes Graphic Control Extension
*/
protected void writeGraphicCtrlExt() throws IOException {
out.write(0x21); // extension introducer
out.write(0xf9); // GCE label
out.write(4); // data block size
int transp, disp;
if (transparent == null) {
transp = 0;
disp = 0; // dispose = no action
} else {
transp = 1;
disp = 2; // force clear if using transparent color
}
if (dispose >= 0) {
disp = dispose & 7; // user override
}
disp <<= 2;
// packed fields
out.write(0 | // 1:3 reserved
disp | // 4:6 disposal
0 | // 7 user input - 0 = none
transp); // 8 transparency flag
writeShort(delay); // delay x 1/100 sec
out.write(transIndex); // transparent color index
out.write(0); // block terminator
}
/**
* Writes Image Descriptor
*/
protected void writeImageDesc() throws IOException {
out.write(0x2c); // image separator
writeShort(0); // image position x,y = 0,0
writeShort(0);
writeShort(width); // image size
writeShort(height);
// packed fields
if (firstFrame) {
// no LCT - GCT is used for first (or only) frame
out.write(0);
} else {
// specify normal LCT
out.write(0x80 | // 1 local color table 1=yes
0 | // 2 interlace - 0=no
0 | // 3 sorted - 0=no
0 | // 4-5 reserved
palSize); // 6-8 size of color table
}
}
/**
* Writes Logical Screen Descriptor
*/
protected void writeLSD() throws IOException {
// logical screen size
writeShort(width);
writeShort(height);
// packed fields
out.write((0x80 | // 1 : global color table flag = 1 (gct used)
0x70 | // 2-4 : color resolution = 7
0x00 | // 5 : gct sort flag = 0
palSize)); // 6-8 : gct size
out.write(0); // background color index
out.write(0); // pixel aspect ratio - assume 1:1
}
/**
* Writes Netscape application extension to define
* repeat count.
*/
protected void writeNetscapeExt() throws IOException {
out.write(0x21); // extension introducer
out.write(0xff); // app extension label
out.write(11); // block size
writeString("NETSCAPE" + "2.0"); // app id + auth code
out.write(3); // sub-block size
out.write(1); // loop sub-block id
writeShort(repeat); // loop count (extra iterations, 0=repeat forever)
out.write(0); // block terminator
}
/**
* Writes color table
*/
protected void writePalette() throws IOException {
out.write(colorTab, 0, colorTab.length);
int n = (3 * 256) - colorTab.length;
for (int i = 0; i < n; i++) {
out.write(0);
}
}
/**
* Encodes and writes pixel data
*/
protected void writePixels() throws IOException {
LZWEncoder encoder =
new LZWEncoder(width, height, indexedPixels, colorDepth);
encoder.encode(out);
}
/**
* Write 16-bit value to output stream, LSB first
*/
protected void writeShort(int value) throws IOException {
out.write(value & 0xff);
out.write((value >> 8) & 0xff);
}
/**
* Writes string to output stream
*/
protected void writeString(String s) throws IOException {
for (int i = 0; i < s.length(); i++) {
out.write((byte) s.charAt(i));
}
}
}

775
src/java/GifDecoder.java Executable file
View File

@@ -0,0 +1,775 @@
import java.net.*;
import java.io.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
/**
* Class GifDecoder - Decodes a GIF file into one or more frames.
* <br><pre>
* Example:
* GifDecoder d = new GifDecoder();
* d.read("sample.gif");
* int n = d.getFrameCount();
* for (int i = 0; i < n; i++) {
* BufferedImage frame = d.getFrame(i); // frame i
* int t = d.getDelay(i); // display duration of frame in milliseconds
* // do something with frame
* }
* </pre>
* No copyright asserted on the source code of this class. May be used for
* any purpose, however, refer to the Unisys LZW patent for any additional
* restrictions. Please forward any corrections to questions at fmsware.com.
*
* @author Kevin Weiner, FM Software; LZW decoder adapted from John Cristy's ImageMagick.
* @version 1.03 November 2003
*
*/
public class GifDecoder {
/**
* File read status: No errors.
*/
public static final int STATUS_OK = 0;
/**
* File read status: Error decoding file (may be partially decoded)
*/
public static final int STATUS_FORMAT_ERROR = 1;
/**
* File read status: Unable to open source.
*/
public static final int STATUS_OPEN_ERROR = 2;
protected BufferedInputStream in;
protected int status;
protected int width; // full image width
protected int height; // full image height
protected boolean gctFlag; // global color table used
protected int gctSize; // size of global color table
protected int loopCount = 1; // iterations; 0 = repeat forever
protected int[] gct; // global color table
protected int[] lct; // local color table
protected int[] act; // active color table
protected int bgIndex; // background color index
protected int bgColor; // background color
protected int lastBgColor; // previous bg color
protected int pixelAspect; // pixel aspect ratio
protected boolean lctFlag; // local color table flag
protected boolean interlace; // interlace flag
protected int lctSize; // local color table size
protected int ix, iy, iw, ih; // current image rectangle
protected Rectangle lastRect; // last image rect
protected BufferedImage image; // current frame
protected BufferedImage lastImage; // previous frame
protected byte[] block = new byte[256]; // current data block
protected int blockSize = 0; // block size
// last graphic control extension info
protected int dispose = 0;
// 0=no action; 1=leave in place; 2=restore to bg; 3=restore to prev
protected int lastDispose = 0;
protected boolean transparency = false; // use transparent color
protected int delay = 0; // delay in milliseconds
protected int transIndex; // transparent color index
protected static final int MaxStackSize = 4096;
// max decoder pixel stack size
// LZW decoder working arrays
protected short[] prefix;
protected byte[] suffix;
protected byte[] pixelStack;
protected byte[] pixels;
protected ArrayList frames; // frames read from current file
protected int frameCount;
static class GifFrame {
public GifFrame(BufferedImage im, int del) {
image = im;
delay = del;
}
public BufferedImage image;
public int delay;
}
/**
* Gets display duration for specified frame.
*
* @param n int index of frame
* @return delay in milliseconds
*/
public int getDelay(int n) {
//
delay = -1;
if ((n >= 0) && (n < frameCount)) {
delay = ((GifFrame) frames.get(n)).delay;
}
return delay;
}
/**
* Gets the number of frames read from file.
* @return frame count
*/
public int getFrameCount() {
return frameCount;
}
/**
* Gets the first (or only) image read.
*
* @return BufferedImage containing first frame, or null if none.
*/
public BufferedImage getImage() {
return getFrame(0);
}
/**
* Gets the "Netscape" iteration count, if any.
* A count of 0 means repeat indefinitiely.
*
* @return iteration count if one was specified, else 1.
*/
public int getLoopCount() {
return loopCount;
}
/**
* Creates new frame image from current data (and previous
* frames as specified by their disposition codes).
*/
protected void setPixels() {
// expose destination image's pixels as int array
int[] dest =
((DataBufferInt) image.getRaster().getDataBuffer()).getData();
// fill in starting image contents based on last image's dispose code
if (lastDispose > 0) {
if (lastDispose == 3) {
// use image before last
int n = frameCount - 2;
if (n > 0) {
lastImage = getFrame(n - 1);
} else {
lastImage = null;
}
}
if (lastImage != null) {
int[] prev =
((DataBufferInt) lastImage.getRaster().getDataBuffer()).getData();
System.arraycopy(prev, 0, dest, 0, width * height);
// copy pixels
if (lastDispose == 2) {
// fill last image rect area with background color
Graphics2D g = image.createGraphics();
Color c = null;
if (transparency) {
c = new Color(0, 0, 0, 0); // assume background is transparent
} else {
c = new Color(lastBgColor); // use given background color
}
g.setColor(c);
g.setComposite(AlphaComposite.Src); // replace area
g.fill(lastRect);
g.dispose();
}
}
}
// copy each source line to the appropriate place in the destination
int pass = 1;
int inc = 8;
int iline = 0;
for (int i = 0; i < ih; i++) {
int line = i;
if (interlace) {
if (iline >= ih) {
pass++;
switch (pass) {
case 2 :
iline = 4;
break;
case 3 :
iline = 2;
inc = 4;
break;
case 4 :
iline = 1;
inc = 2;
}
}
line = iline;
iline += inc;
}
line += iy;
if (line < height) {
int k = line * width;
int dx = k + ix; // start of line in dest
int dlim = dx + iw; // end of dest line
if ((k + width) < dlim) {
dlim = k + width; // past dest edge
}
int sx = i * iw; // start of line in source
while (dx < dlim) {
// map color and insert in destination
int index = ((int) pixels[sx++]) & 0xff;
int c = act[index];
if (c != 0) {
dest[dx] = c;
}
dx++;
}
}
}
}
/**
* Gets the image contents of frame n.
*
* @return BufferedImage representation of frame, or null if n is invalid.
*/
public BufferedImage getFrame(int n) {
BufferedImage im = null;
if ((n >= 0) && (n < frameCount)) {
im = ((GifFrame) frames.get(n)).image;
}
return im;
}
/**
* Gets image size.
*
* @return GIF image dimensions
*/
public Dimension getFrameSize() {
return new Dimension(width, height);
}
/**
* Reads GIF image from stream
*
* @param BufferedInputStream containing GIF file.
* @return read status code (0 = no errors)
*/
public int read(BufferedInputStream is) {
init();
if (is != null) {
in = is;
readHeader();
if (!err()) {
readContents();
if (frameCount < 0) {
status = STATUS_FORMAT_ERROR;
}
}
} else {
status = STATUS_OPEN_ERROR;
}
try {
is.close();
} catch (IOException e) {
}
return status;
}
/**
* Reads GIF image from stream
*
* @param InputStream containing GIF file.
* @return read status code (0 = no errors)
*/
public int read(InputStream is) {
init();
if (is != null) {
if (!(is instanceof BufferedInputStream))
is = new BufferedInputStream(is);
in = (BufferedInputStream) is;
readHeader();
if (!err()) {
readContents();
if (frameCount < 0) {
status = STATUS_FORMAT_ERROR;
}
}
} else {
status = STATUS_OPEN_ERROR;
}
try {
is.close();
} catch (IOException e) {
}
return status;
}
/**
* Reads GIF file from specified file/URL source
* (URL assumed if name contains ":/" or "file:")
*
* @param name String containing source
* @return read status code (0 = no errors)
*/
public int read(String name) {
status = STATUS_OK;
try {
name = name.trim().toLowerCase();
if ((name.indexOf("file:") >= 0) ||
(name.indexOf(":/") > 0)) {
URL url = new URL(name);
in = new BufferedInputStream(url.openStream());
} else {
in = new BufferedInputStream(new FileInputStream(name));
}
status = read(in);
} catch (IOException e) {
status = STATUS_OPEN_ERROR;
}
return status;
}
/**
* Decodes LZW image data into pixel array.
* Adapted from John Cristy's ImageMagick.
*/
protected void decodeImageData() {
int NullCode = -1;
int npix = iw * ih;
int available,
clear,
code_mask,
code_size,
end_of_information,
in_code,
old_code,
bits,
code,
count,
i,
datum,
data_size,
first,
top,
bi,
pi;
if ((pixels == null) || (pixels.length < npix)) {
pixels = new byte[npix]; // allocate new pixel array
}
if (prefix == null) prefix = new short[MaxStackSize];
if (suffix == null) suffix = new byte[MaxStackSize];
if (pixelStack == null) pixelStack = new byte[MaxStackSize + 1];
// Initialize GIF data stream decoder.
data_size = read();
clear = 1 << data_size;
end_of_information = clear + 1;
available = clear + 2;
old_code = NullCode;
code_size = data_size + 1;
code_mask = (1 << code_size) - 1;
for (code = 0; code < clear; code++) {
prefix[code] = 0;
suffix[code] = (byte) code;
}
// Decode GIF pixel stream.
datum = bits = count = first = top = pi = bi = 0;
for (i = 0; i < npix;) {
if (top == 0) {
if (bits < code_size) {
// Load bytes until there are enough bits for a code.
if (count == 0) {
// Read a new data block.
count = readBlock();
if (count <= 0)
break;
bi = 0;
}
datum += (((int) block[bi]) & 0xff) << bits;
bits += 8;
bi++;
count--;
continue;
}
// Get the next code.
code = datum & code_mask;
datum >>= code_size;
bits -= code_size;
// Interpret the code
if ((code > available) || (code == end_of_information))
break;
if (code == clear) {
// Reset decoder.
code_size = data_size + 1;
code_mask = (1 << code_size) - 1;
available = clear + 2;
old_code = NullCode;
continue;
}
if (old_code == NullCode) {
pixelStack[top++] = suffix[code];
old_code = code;
first = code;
continue;
}
in_code = code;
if (code == available) {
pixelStack[top++] = (byte) first;
code = old_code;
}
while (code > clear) {
pixelStack[top++] = suffix[code];
code = prefix[code];
}
first = ((int) suffix[code]) & 0xff;
// Add a new string to the string table,
if (available >= MaxStackSize)
break;
pixelStack[top++] = (byte) first;
prefix[available] = (short) old_code;
suffix[available] = (byte) first;
available++;
if (((available & code_mask) == 0)
&& (available < MaxStackSize)) {
code_size++;
code_mask += available;
}
old_code = in_code;
}
// Pop a pixel off the pixel stack.
top--;
pixels[pi++] = pixelStack[top];
i++;
}
for (i = pi; i < npix; i++) {
pixels[i] = 0; // clear missing pixels
}
}
/**
* Returns true if an error was encountered during reading/decoding
*/
protected boolean err() {
return status != STATUS_OK;
}
/**
* Initializes or re-initializes reader
*/
protected void init() {
status = STATUS_OK;
frameCount = 0;
frames = new ArrayList();
gct = null;
lct = null;
}
/**
* Reads a single byte from the input stream.
*/
protected int read() {
int curByte = 0;
try {
curByte = in.read();
} catch (IOException e) {
status = STATUS_FORMAT_ERROR;
}
return curByte;
}
/**
* Reads next variable length block from input.
*
* @return number of bytes stored in "buffer"
*/
protected int readBlock() {
blockSize = read();
int n = 0;
if (blockSize > 0) {
try {
int count = 0;
while (n < blockSize) {
count = in.read(block, n, blockSize - n);
if (count == -1)
break;
n += count;
}
} catch (IOException e) {
}
if (n < blockSize) {
status = STATUS_FORMAT_ERROR;
}
}
return n;
}
/**
* Reads color table as 256 RGB integer values
*
* @param ncolors int number of colors to read
* @return int array containing 256 colors (packed ARGB with full alpha)
*/
protected int[] readColorTable(int ncolors) {
int nbytes = 3 * ncolors;
int[] tab = null;
byte[] c = new byte[nbytes];
int n = 0;
try {
n = in.read(c);
} catch (IOException e) {
}
if (n < nbytes) {
status = STATUS_FORMAT_ERROR;
} else {
tab = new int[256]; // max size to avoid bounds checks
int i = 0;
int j = 0;
while (i < ncolors) {
int r = ((int) c[j++]) & 0xff;
int g = ((int) c[j++]) & 0xff;
int b = ((int) c[j++]) & 0xff;
tab[i++] = 0xff000000 | (r << 16) | (g << 8) | b;
}
}
return tab;
}
/**
* Main file parser. Reads GIF content blocks.
*/
protected void readContents() {
// read GIF file content blocks
boolean done = false;
while (!(done || err())) {
int code = read();
switch (code) {
case 0x2C : // image separator
readImage();
break;
case 0x21 : // extension
code = read();
switch (code) {
case 0xf9 : // graphics control extension
readGraphicControlExt();
break;
case 0xff : // application extension
readBlock();
String app = "";
for (int i = 0; i < 11; i++) {
app += (char) block[i];
}
if (app.equals("NETSCAPE2.0")) {
readNetscapeExt();
}
else
skip(); // don't care
break;
default : // uninteresting extension
skip();
}
break;
case 0x3b : // terminator
done = true;
break;
case 0x00 : // bad byte, but keep going and see what happens
break;
default :
status = STATUS_FORMAT_ERROR;
}
}
}
/**
* Reads Graphics Control Extension values
*/
protected void readGraphicControlExt() {
read(); // block size
int packed = read(); // packed fields
dispose = (packed & 0x1c) >> 2; // disposal method
if (dispose == 0) {
dispose = 1; // elect to keep old image if discretionary
}
transparency = (packed & 1) != 0;
delay = readShort() * 10; // delay in milliseconds
transIndex = read(); // transparent color index
read(); // block terminator
}
/**
* Reads GIF file header information.
*/
protected void readHeader() {
String id = "";
for (int i = 0; i < 6; i++) {
id += (char) read();
}
if (!id.startsWith("GIF")) {
status = STATUS_FORMAT_ERROR;
return;
}
readLSD();
if (gctFlag && !err()) {
gct = readColorTable(gctSize);
bgColor = gct[bgIndex];
}
}
/**
* Reads next frame image
*/
protected void readImage() {
ix = readShort(); // (sub)image position & size
iy = readShort();
iw = readShort();
ih = readShort();
int packed = read();
lctFlag = (packed & 0x80) != 0; // 1 - local color table flag
interlace = (packed & 0x40) != 0; // 2 - interlace flag
// 3 - sort flag
// 4-5 - reserved
lctSize = 2 << (packed & 7); // 6-8 - local color table size
if (lctFlag) {
lct = readColorTable(lctSize); // read table
act = lct; // make local table active
} else {
act = gct; // make global table active
if (bgIndex == transIndex)
bgColor = 0;
}
int save = 0;
if (transparency) {
save = act[transIndex];
act[transIndex] = 0; // set transparent color if specified
}
if (act == null) {
status = STATUS_FORMAT_ERROR; // no color table defined
}
if (err()) return;
decodeImageData(); // decode pixel data
skip();
if (err()) return;
frameCount++;
// create new image to receive frame data
image =
new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB_PRE);
setPixels(); // transfer pixel data to image
frames.add(new GifFrame(image, delay)); // add image to frame list
if (transparency) {
act[transIndex] = save;
}
resetFrame();
}
/**
* Reads Logical Screen Descriptor
*/
protected void readLSD() {
// logical screen size
width = readShort();
height = readShort();
// packed fields
int packed = read();
gctFlag = (packed & 0x80) != 0; // 1 : global color table flag
// 2-4 : color resolution
// 5 : gct sort flag
gctSize = 2 << (packed & 7); // 6-8 : gct size
bgIndex = read(); // background color index
pixelAspect = read(); // pixel aspect ratio
}
/**
* Reads Netscape extenstion to obtain iteration count
*/
protected void readNetscapeExt() {
do {
readBlock();
if (block[0] == 1) {
// loop count sub-block
int b1 = ((int) block[1]) & 0xff;
int b2 = ((int) block[2]) & 0xff;
loopCount = (b2 << 8) | b1;
}
} while ((blockSize > 0) && !err());
}
/**
* Reads next 16-bit value, LSB first
*/
protected int readShort() {
// read 16-bit value, LSB first
return read() | (read() << 8);
}
/**
* Resets frame state for reading next image.
*/
protected void resetFrame() {
lastDispose = dispose;
lastRect = new Rectangle(ix, iy, iw, ih);
lastImage = image;
lastBgColor = bgColor;
int dispose = 0;
boolean transparency = false;
int delay = 0;
lct = null;
}
/**
* Skips variable length blocks up to and including
* next zero length block.
*/
protected void skip() {
do {
readBlock();
} while ((blockSize > 0) && !err());
}
}

301
src/java/LZWEncoder.java Executable file
View File

@@ -0,0 +1,301 @@
import java.io.OutputStream;
import java.io.IOException;
//==============================================================================
// Adapted from Jef Poskanzer's Java port by way of J. M. G. Elliott.
// K Weiner 12/00
class LZWEncoder {
private static final int EOF = -1;
private int imgW, imgH;
private byte[] pixAry;
private int initCodeSize;
private int remaining;
private int curPixel;
// GIFCOMPR.C - GIF Image compression routines
//
// Lempel-Ziv compression based on 'compress'. GIF modifications by
// David Rowley (mgardi@watdcsu.waterloo.edu)
// General DEFINEs
static final int BITS = 12;
static final int HSIZE = 5003; // 80% occupancy
// GIF Image compression - modified 'compress'
//
// Based on: compress.c - File compression ala IEEE Computer, June 1984.
//
// By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas)
// Jim McKie (decvax!mcvax!jim)
// Steve Davies (decvax!vax135!petsd!peora!srd)
// Ken Turkowski (decvax!decwrl!turtlevax!ken)
// James A. Woods (decvax!ihnp4!ames!jaw)
// Joe Orost (decvax!vax135!petsd!joe)
int n_bits; // number of bits/code
int maxbits = BITS; // user settable max # bits/code
int maxcode; // maximum code, given n_bits
int maxmaxcode = 1 << BITS; // should NEVER generate this code
int[] htab = new int[HSIZE];
int[] codetab = new int[HSIZE];
int hsize = HSIZE; // for dynamic table sizing
int free_ent = 0; // first unused entry
// block compression parameters -- after all codes are used up,
// and compression rate changes, start over.
boolean clear_flg = false;
// Algorithm: use open addressing double hashing (no chaining) on the
// prefix code / next character combination. We do a variant of Knuth's
// algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
// secondary probe. Here, the modular division first probe is gives way
// to a faster exclusive-or manipulation. Also do block compression with
// an adaptive reset, whereby the code table is cleared when the compression
// ratio decreases, but after the table fills. The variable-length output
// codes are re-sized at this point, and a special CLEAR code is generated
// for the decompressor. Late addition: construct the table according to
// file size for noticeable speed improvement on small files. Please direct
// questions about this implementation to ames!jaw.
int g_init_bits;
int ClearCode;
int EOFCode;
// output
//
// Output the given code.
// Inputs:
// code: A n_bits-bit integer. If == -1, then EOF. This assumes
// that n_bits =< wordsize - 1.
// Outputs:
// Outputs code to the file.
// Assumptions:
// Chars are 8 bits long.
// Algorithm:
// Maintain a BITS character long buffer (so that 8 codes will
// fit in it exactly). Use the VAX insv instruction to insert each
// code in turn. When the buffer fills up empty it and start over.
int cur_accum = 0;
int cur_bits = 0;
int masks[] =
{
0x0000,
0x0001,
0x0003,
0x0007,
0x000F,
0x001F,
0x003F,
0x007F,
0x00FF,
0x01FF,
0x03FF,
0x07FF,
0x0FFF,
0x1FFF,
0x3FFF,
0x7FFF,
0xFFFF };
// Number of characters so far in this 'packet'
int a_count;
// Define the storage for the packet accumulator
byte[] accum = new byte[256];
//----------------------------------------------------------------------------
LZWEncoder(int width, int height, byte[] pixels, int color_depth) {
imgW = width;
imgH = height;
pixAry = pixels;
initCodeSize = Math.max(2, color_depth);
}
// Add a character to the end of the current packet, and if it is 254
// characters, flush the packet to disk.
void char_out(byte c, OutputStream outs) throws IOException {
accum[a_count++] = c;
if (a_count >= 254)
flush_char(outs);
}
// Clear out the hash table
// table clear for block compress
void cl_block(OutputStream outs) throws IOException {
cl_hash(hsize);
free_ent = ClearCode + 2;
clear_flg = true;
output(ClearCode, outs);
}
// reset code table
void cl_hash(int hsize) {
for (int i = 0; i < hsize; ++i)
htab[i] = -1;
}
void compress(int init_bits, OutputStream outs) throws IOException {
int fcode;
int i /* = 0 */;
int c;
int ent;
int disp;
int hsize_reg;
int hshift;
// Set up the globals: g_init_bits - initial number of bits
g_init_bits = init_bits;
// Set up the necessary values
clear_flg = false;
n_bits = g_init_bits;
maxcode = MAXCODE(n_bits);
ClearCode = 1 << (init_bits - 1);
EOFCode = ClearCode + 1;
free_ent = ClearCode + 2;
a_count = 0; // clear packet
ent = nextPixel();
hshift = 0;
for (fcode = hsize; fcode < 65536; fcode *= 2)
++hshift;
hshift = 8 - hshift; // set hash code range bound
hsize_reg = hsize;
cl_hash(hsize_reg); // clear hash table
output(ClearCode, outs);
outer_loop : while ((c = nextPixel()) != EOF) {
fcode = (c << maxbits) + ent;
i = (c << hshift) ^ ent; // xor hashing
if (htab[i] == fcode) {
ent = codetab[i];
continue;
} else if (htab[i] >= 0) // non-empty slot
{
disp = hsize_reg - i; // secondary hash (after G. Knott)
if (i == 0)
disp = 1;
do {
if ((i -= disp) < 0)
i += hsize_reg;
if (htab[i] == fcode) {
ent = codetab[i];
continue outer_loop;
}
} while (htab[i] >= 0);
}
output(ent, outs);
ent = c;
if (free_ent < maxmaxcode) {
codetab[i] = free_ent++; // code -> hashtable
htab[i] = fcode;
} else
cl_block(outs);
}
// Put out the final code.
output(ent, outs);
output(EOFCode, outs);
}
//----------------------------------------------------------------------------
void encode(OutputStream os) throws IOException {
os.write(initCodeSize); // write "initial code size" byte
remaining = imgW * imgH; // reset navigation variables
curPixel = 0;
compress(initCodeSize + 1, os); // compress and write the pixel data
os.write(0); // write block terminator
}
// Flush the packet to disk, and reset the accumulator
void flush_char(OutputStream outs) throws IOException {
if (a_count > 0) {
outs.write(a_count);
outs.write(accum, 0, a_count);
a_count = 0;
}
}
final int MAXCODE(int n_bits) {
return (1 << n_bits) - 1;
}
//----------------------------------------------------------------------------
// Return the next pixel from the image
//----------------------------------------------------------------------------
private int nextPixel() {
if (remaining == 0)
return EOF;
--remaining;
byte pix = pixAry[curPixel++];
return pix & 0xff;
}
void output(int code, OutputStream outs) throws IOException {
cur_accum &= masks[cur_bits];
if (cur_bits > 0)
cur_accum |= (code << cur_bits);
else
cur_accum = code;
cur_bits += n_bits;
while (cur_bits >= 8) {
char_out((byte) (cur_accum & 0xff), outs);
cur_accum >>= 8;
cur_bits -= 8;
}
// If the next entry is going to be too big for the code size,
// then increase it, if possible.
if (free_ent > maxcode || clear_flg) {
if (clear_flg) {
maxcode = MAXCODE(n_bits = g_init_bits);
clear_flg = false;
} else {
++n_bits;
if (n_bits == maxbits)
maxcode = maxmaxcode;
else
maxcode = MAXCODE(n_bits);
}
}
if (code == EOFCode) {
// At EOF, write the rest of the buffer.
while (cur_bits > 0) {
char_out((byte) (cur_accum & 0xff), outs);
cur_accum >>= 8;
cur_bits -= 8;
}
flush_char(outs);
}
}
}

457
src/java/NeuQuant.java Executable file
View File

@@ -0,0 +1,457 @@
/* NeuQuant Neural-Net Quantization Algorithm
* ------------------------------------------
*
* Copyright (c) 1994 Anthony Dekker
*
* NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
* See "Kohonen neural networks for optimal colour quantization"
* in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
* for a discussion of the algorithm.
*
* Any party obtaining a copy of these files from the author, directly or
* indirectly, is granted, free of charge, a full and unrestricted irrevocable,
* world-wide, paid up, royalty-free, nonexclusive right and license to deal
* in this software and documentation files (the "Software"), including without
* limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons who receive
* copies from any such party to do so, with the only requirement being
* that this copyright notice remain intact.
*/
// Ported to Java 12/00 K Weiner
public class NeuQuant {
protected static final int netsize = 256; /* number of colours used */
/* four primes near 500 - assume no image has a length so large */
/* that it is divisible by all four primes */
protected static final int prime1 = 499;
protected static final int prime2 = 491;
protected static final int prime3 = 487;
protected static final int prime4 = 503;
protected static final int minpicturebytes = (3 * prime4);
/* minimum size for input image */
/* Program Skeleton
----------------
[select samplefac in range 1..30]
[read image from input file]
pic = (unsigned char*) malloc(3*width*height);
initnet(pic,3*width*height,samplefac);
learn();
unbiasnet();
[write output image header, using writecolourmap(f)]
inxbuild();
write output image using inxsearch(b,g,r) */
/* Network Definitions
------------------- */
protected static final int maxnetpos = (netsize - 1);
protected static final int netbiasshift = 4; /* bias for colour values */
protected static final int ncycles = 100; /* no. of learning cycles */
/* defs for freq and bias */
protected static final int intbiasshift = 16; /* bias for fractions */
protected static final int intbias = (((int) 1) << intbiasshift);
protected static final int gammashift = 10; /* gamma = 1024 */
protected static final int gamma = (((int) 1) << gammashift);
protected static final int betashift = 10;
protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */
protected static final int betagamma =
(intbias << (gammashift - betashift));
/* defs for decreasing radius factor */
protected static final int initrad = (netsize >> 3); /* for 256 cols, radius starts */
protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
protected static final int radiusbias = (((int) 1) << radiusbiasshift);
protected static final int initradius = (initrad * radiusbias); /* and decreases by a */
protected static final int radiusdec = 30; /* factor of 1/30 each cycle */
/* defs for decreasing alpha factor */
protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */
protected static final int initalpha = (((int) 1) << alphabiasshift);
protected int alphadec; /* biased by 10 bits */
/* radbias and alpharadbias used for radpower calculation */
protected static final int radbiasshift = 8;
protected static final int radbias = (((int) 1) << radbiasshift);
protected static final int alpharadbshift = (alphabiasshift + radbiasshift);
protected static final int alpharadbias = (((int) 1) << alpharadbshift);
/* Types and Global Variables
-------------------------- */
protected byte[] thepicture; /* the input image itself */
protected int lengthcount; /* lengthcount = H*W*3 */
protected int samplefac; /* sampling factor 1..30 */
// typedef int pixel[4]; /* BGRc */
protected int[][] network; /* the network itself - [netsize][4] */
protected int[] netindex = new int[256];
/* for network lookup - really 256 */
protected int[] bias = new int[netsize];
/* bias and freq arrays for learning */
protected int[] freq = new int[netsize];
protected int[] radpower = new int[initrad];
/* radpower for precomputation */
/* Initialise network in range (0,0,0) to (255,255,255) and set parameters
----------------------------------------------------------------------- */
public NeuQuant(byte[] thepic, int len, int sample) {
int i;
int[] p;
thepicture = thepic;
lengthcount = len;
samplefac = sample;
network = new int[netsize][];
for (i = 0; i < netsize; i++) {
network[i] = new int[4];
p = network[i];
p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
freq[i] = intbias / netsize; /* 1/netsize */
bias[i] = 0;
}
}
public byte[] colorMap() {
byte[] map = new byte[3 * netsize];
int[] index = new int[netsize];
for (int i = 0; i < netsize; i++)
index[network[i][3]] = i;
int k = 0;
for (int i = 0; i < netsize; i++) {
int j = index[i];
map[k++] = (byte) (network[j][0]);
map[k++] = (byte) (network[j][1]);
map[k++] = (byte) (network[j][2]);
}
return map;
}
/* Insertion sort of network and building of netindex[0..255] (to do after unbias)
------------------------------------------------------------------------------- */
public void inxbuild() {
int i, j, smallpos, smallval;
int[] p;
int[] q;
int previouscol, startpos;
previouscol = 0;
startpos = 0;
for (i = 0; i < netsize; i++) {
p = network[i];
smallpos = i;
smallval = p[1]; /* index on g */
/* find smallest in i..netsize-1 */
for (j = i + 1; j < netsize; j++) {
q = network[j];
if (q[1] < smallval) { /* index on g */
smallpos = j;
smallval = q[1]; /* index on g */
}
}
q = network[smallpos];
/* swap p (i) and q (smallpos) entries */
if (i != smallpos) {
j = q[0];
q[0] = p[0];
p[0] = j;
j = q[1];
q[1] = p[1];
p[1] = j;
j = q[2];
q[2] = p[2];
p[2] = j;
j = q[3];
q[3] = p[3];
p[3] = j;
}
/* smallval entry is now in position i */
if (smallval != previouscol) {
netindex[previouscol] = (startpos + i) >> 1;
for (j = previouscol + 1; j < smallval; j++)
netindex[j] = i;
previouscol = smallval;
startpos = i;
}
}
netindex[previouscol] = (startpos + maxnetpos) >> 1;
for (j = previouscol + 1; j < 256; j++)
netindex[j] = maxnetpos; /* really 256 */
}
/* Main Learning Loop
------------------ */
public void learn() {
int i, j, b, g, r;
int radius, rad, alpha, step, delta, samplepixels;
byte[] p;
int pix, lim;
if (lengthcount < minpicturebytes)
samplefac = 1;
alphadec = 30 + ((samplefac - 1) / 3);
p = thepicture;
pix = 0;
lim = lengthcount;
samplepixels = lengthcount / (3 * samplefac);
delta = samplepixels / ncycles;
alpha = initalpha;
radius = initradius;
rad = radius >> radiusbiasshift;
if (rad <= 1)
rad = 0;
for (i = 0; i < rad; i++)
radpower[i] =
alpha * (((rad * rad - i * i) * radbias) / (rad * rad));
//fprintf(stderr,"beginning 1D learning: initial radius=%d\n", rad);
if (lengthcount < minpicturebytes)
step = 3;
else if ((lengthcount % prime1) != 0)
step = 3 * prime1;
else {
if ((lengthcount % prime2) != 0)
step = 3 * prime2;
else {
if ((lengthcount % prime3) != 0)
step = 3 * prime3;
else
step = 3 * prime4;
}
}
i = 0;
while (i < samplepixels) {
b = (p[pix + 0] & 0xff) << netbiasshift;
g = (p[pix + 1] & 0xff) << netbiasshift;
r = (p[pix + 2] & 0xff) << netbiasshift;
j = contest(b, g, r);
altersingle(alpha, j, b, g, r);
if (rad != 0)
alterneigh(rad, j, b, g, r); /* alter neighbours */
pix += step;
if (pix >= lim)
pix -= lengthcount;
i++;
if (delta == 0)
delta = 1;
if (i % delta == 0) {
alpha -= alpha / alphadec;
radius -= radius / radiusdec;
rad = radius >> radiusbiasshift;
if (rad <= 1)
rad = 0;
for (j = 0; j < rad; j++)
radpower[j] =
alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
}
}
//fprintf(stderr,"finished 1D learning: final alpha=%f !\n",((float)alpha)/initalpha);
}
/* Search for BGR values 0..255 (after net is unbiased) and return colour index
---------------------------------------------------------------------------- */
public int map(int b, int g, int r) {
int i, j, dist, a, bestd;
int[] p;
int best;
bestd = 1000; /* biggest possible dist is 256*3 */
best = -1;
i = netindex[g]; /* index on g */
j = i - 1; /* start at netindex[g] and work outwards */
while ((i < netsize) || (j >= 0)) {
if (i < netsize) {
p = network[i];
dist = p[1] - g; /* inx key */
if (dist >= bestd)
i = netsize; /* stop iter */
else {
i++;
if (dist < 0)
dist = -dist;
a = p[0] - b;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
a = p[2] - r;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
if (j >= 0) {
p = network[j];
dist = g - p[1]; /* inx key - reverse dif */
if (dist >= bestd)
j = -1; /* stop iter */
else {
j--;
if (dist < 0)
dist = -dist;
a = p[0] - b;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
a = p[2] - r;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
}
return (best);
}
public byte[] process() {
learn();
unbiasnet();
inxbuild();
return colorMap();
}
/* Unbias network to give byte values 0..255 and record position i to prepare for sort
----------------------------------------------------------------------------------- */
public void unbiasnet() {
int i, j;
for (i = 0; i < netsize; i++) {
network[i][0] >>= netbiasshift;
network[i][1] >>= netbiasshift;
network[i][2] >>= netbiasshift;
network[i][3] = i; /* record colour no */
}
}
/* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
--------------------------------------------------------------------------------- */
protected void alterneigh(int rad, int i, int b, int g, int r) {
int j, k, lo, hi, a, m;
int[] p;
lo = i - rad;
if (lo < -1)
lo = -1;
hi = i + rad;
if (hi > netsize)
hi = netsize;
j = i + 1;
k = i - 1;
m = 1;
while ((j < hi) || (k > lo)) {
a = radpower[m++];
if (j < hi) {
p = network[j++];
try {
p[0] -= (a * (p[0] - b)) / alpharadbias;
p[1] -= (a * (p[1] - g)) / alpharadbias;
p[2] -= (a * (p[2] - r)) / alpharadbias;
} catch (Exception e) {
} // prevents 1.3 miscompilation
}
if (k > lo) {
p = network[k--];
try {
p[0] -= (a * (p[0] - b)) / alpharadbias;
p[1] -= (a * (p[1] - g)) / alpharadbias;
p[2] -= (a * (p[2] - r)) / alpharadbias;
} catch (Exception e) {
}
}
}
}
/* Move neuron i towards biased (b,g,r) by factor alpha
---------------------------------------------------- */
protected void altersingle(int alpha, int i, int b, int g, int r) {
/* alter hit neuron */
int[] n = network[i];
n[0] -= (alpha * (n[0] - b)) / initalpha;
n[1] -= (alpha * (n[1] - g)) / initalpha;
n[2] -= (alpha * (n[2] - r)) / initalpha;
}
/* Search for biased BGR values
---------------------------- */
protected int contest(int b, int g, int r) {
/* finds closest neuron (min dist) and updates freq */
/* finds best neuron (min dist-bias) and returns position */
/* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
/* bias[i] = gamma*((1/netsize)-freq[i]) */
int i, dist, a, biasdist, betafreq;
int bestpos, bestbiaspos, bestd, bestbiasd;
int[] n;
bestd = ~(((int) 1) << 31);
bestbiasd = bestd;
bestpos = -1;
bestbiaspos = bestpos;
for (i = 0; i < netsize; i++) {
n = network[i];
dist = n[0] - b;
if (dist < 0)
dist = -dist;
a = n[1] - g;
if (a < 0)
a = -a;
dist += a;
a = n[2] - r;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
bestpos = i;
}
biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
if (biasdist < bestbiasd) {
bestbiasd = biasdist;
bestbiaspos = i;
}
betafreq = (freq[i] >> betashift);
freq[i] -= betafreq;
bias[i] += (betafreq << gammashift);
}
freq[bestpos] += beta;
bias[bestpos] -= betagamma;
return (bestbiaspos);
}
}

View File

@@ -0,0 +1,7 @@
(ns gifsockets.core-test
(:use clojure.test
gif-chat.core))
(deftest a-test
(testing "FIXME, I fail."
(is (= 0 1))))