edit toplevel readme

Former-commit-id: 4ac9172f87e7889c132ba552ad658d508fcd8723 [formerly 778be614af9b19e0a85e728ce5230a7004ee152c]
Former-commit-id: 28b3db6fe34c736132c600847a9c4c09163a874f
This commit is contained in:
Raul Jordan
2018-03-05 14:50:34 -06:00
parent a419a37965
commit 0a6af384eb

344
README.md
View File

@@ -1,17 +1,40 @@
## Go Ethereum
Prysmatic Labs Sharding Implementation
==========================
This is the main repository for the sharding implementation of the go-ethereum client by [Prysmatic Labs](https://prysmaticlabs.com). For the original, go-ethereum project, refer to the following [link](https://github.com/ethereum/go-ethereum).
Official golang implementation of the Ethereum protocol.
Before you begin, check out our [Sharding Reference Implementation Doc](https://github.com/prysmaticlabs/geth-sharding/blob/master/sharding/README.md). This doc serves as the single source of truth for our team, our milestones, and details on the different components of our architecture.
[![API Reference](
https://camo.githubusercontent.com/915b7be44ada53c290eb157634330494ebe3e30a/68747470733a2f2f676f646f632e6f72672f6769746875622e636f6d2f676f6c616e672f6764646f3f7374617475732e737667
)](https://godoc.org/github.com/ethereum/go-ethereum)
[![Go Report Card](https://goreportcard.com/badge/github.com/ethereum/go-ethereum)](https://goreportcard.com/report/github.com/ethereum/go-ethereum)
[![Gitter](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/ethereum/go-ethereum?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)
Interested in contributing? Check out our [Contribution Guidelines](#contribution-guidelines) and join our active chat room on Gitter below:
Automated builds are available for stable releases and the unstable master branch.
Binary archives are published at https://geth.ethereum.org/downloads/.
[![Gitter](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/prysmaticlabs/geth-sharding?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)
## Building the source
Table of Contents
=================
* [Installation](#installation)
* [Sharding Instructions](#sharding)
* [Running a Local Geth Node](#running-a-local-geth-node)
* [Transaction Generator](#transaction-generator)
* [Becoming a Validator](#becoming-a-validator)
* [Becoming a Proposer](#becoming-a-proposer)
* [Testing](#testing)
* [Contribution Guidelines](#contribution-guidelines)
* [License](#license)
Installation
============
Create a folder in your `$GOPATH` and navigate to it
```
mkdir -p $GOPATH/src/github.com/ethereum && cd $GOPATH/src/github.com/ethereum
```
Clone our repository as `go-ethereum`
```
git clone https://github.com/prysmaticlabs/geth-sharding ./go-ethereum
```
For prerequisites and detailed build instructions please read the
[Installation Instructions](https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum)
@@ -21,286 +44,120 @@ Building geth requires both a Go (version 1.7 or later) and a C compiler.
You can install them using your favourite package manager.
Once the dependencies are installed, run
make geth
```
make geth
```
or, to build the full suite of utilities:
make all
## Executables
The go-ethereum project comes with several wrappers/executables found in the `cmd` directory.
| Command | Description |
|:----------:|-------------|
| **`geth`** | Our main Ethereum CLI client. It is the entry point into the Ethereum network (main-, test- or private net), capable of running as a full node (default) archive node (retaining all historical state) or a light node (retrieving data live). It can be used by other processes as a gateway into the Ethereum network via JSON RPC endpoints exposed on top of HTTP, WebSocket and/or IPC transports. `geth --help` and the [CLI Wiki page](https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options) for command line options. |
| `abigen` | Source code generator to convert Ethereum contract definitions into easy to use, compile-time type-safe Go packages. It operates on plain [Ethereum contract ABIs](https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI) with expanded functionality if the contract bytecode is also available. However it also accepts Solidity source files, making development much more streamlined. Please see our [Native DApps](https://github.com/ethereum/go-ethereum/wiki/Native-DApps:-Go-bindings-to-Ethereum-contracts) wiki page for details. |
| `bootnode` | Stripped down version of our Ethereum client implementation that only takes part in the network node discovery protocol, but does not run any of the higher level application protocols. It can be used as a lightweight bootstrap node to aid in finding peers in private networks. |
| `evm` | Developer utility version of the EVM (Ethereum Virtual Machine) that is capable of running bytecode snippets within a configurable environment and execution mode. Its purpose is to allow isolated, fine-grained debugging of EVM opcodes (e.g. `evm --code 60ff60ff --debug`). |
| `gethrpctest` | Developer utility tool to support our [ethereum/rpc-test](https://github.com/ethereum/rpc-tests) test suite which validates baseline conformity to the [Ethereum JSON RPC](https://github.com/ethereum/wiki/wiki/JSON-RPC) specs. Please see the [test suite's readme](https://github.com/ethereum/rpc-tests/blob/master/README.md) for details. |
| `rlpdump` | Developer utility tool to convert binary RLP ([Recursive Length Prefix](https://github.com/ethereum/wiki/wiki/RLP)) dumps (data encoding used by the Ethereum protocol both network as well as consensus wise) to user friendlier hierarchical representation (e.g. `rlpdump --hex CE0183FFFFFFC4C304050583616263`). |
| `swarm` | swarm daemon and tools. This is the entrypoint for the swarm network. `swarm --help` for command line options and subcommands. See https://swarm-guide.readthedocs.io for swarm documentation. |
| `puppeth` | a CLI wizard that aids in creating a new Ethereum network. |
## Running geth
Going through all the possible command line flags is out of scope here (please consult our
[CLI Wiki page](https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options)), but we've
enumerated a few common parameter combos to get you up to speed quickly on how you can run your
own Geth instance.
### Full node on the main Ethereum network
By far the most common scenario is people wanting to simply interact with the Ethereum network:
create accounts; transfer funds; deploy and interact with contracts. For this particular use-case
the user doesn't care about years-old historical data, so we can fast-sync quickly to the current
state of the network. To do so:
```
$ geth console
make all
```
This command will:
Sharding Instructions
==============
* Start geth in fast sync mode (default, can be changed with the `--syncmode` flag), causing it to
download more data in exchange for avoiding processing the entire history of the Ethereum network,
which is very CPU intensive.
* Start up Geth's built-in interactive [JavaScript console](https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console),
(via the trailing `console` subcommand) through which you can invoke all official [`web3` methods](https://github.com/ethereum/wiki/wiki/JavaScript-API)
as well as Geth's own [management APIs](https://github.com/ethereum/go-ethereum/wiki/Management-APIs).
This too is optional and if you leave it out you can always attach to an already running Geth instance
with `geth attach`.
To get started with running the project, follow the instructions to initialize your own private Ethereum blockchain and geth node, as they will be required to run before you can become a validator or a proposer.
### Full node on the Ethereum test network
Transitioning towards developers, if you'd like to play around with creating Ethereum contracts, you
almost certainly would like to do that without any real money involved until you get the hang of the
entire system. In other words, instead of attaching to the main network, you want to join the **test**
network with your node, which is fully equivalent to the main network, but with play-Ether only.
Running a Local Geth Node
------------------------------
```
$ geth --testnet console
$ make geth
$ ./build/bin/geth init ./sharding/genesis.json -datadir /path/to/your/datadir
$ ./build/bin/geth --nodiscover console --datadir /path/to/your/datadir --networkid 12345
```
The `console` subcommand have the exact same meaning as above and they are equally useful on the
testnet too. Please see above for their explanations if you've skipped to here.
Specifying the `--testnet` flag however will reconfigure your Geth instance a bit:
* Instead of using the default data directory (`~/.ethereum` on Linux for example), Geth will nest
itself one level deeper into a `testnet` subfolder (`~/.ethereum/testnet` on Linux). Note, on OSX
and Linux this also means that attaching to a running testnet node requires the use of a custom
endpoint since `geth attach` will try to attach to a production node endpoint by default. E.g.
`geth attach <datadir>/testnet/geth.ipc`. Windows users are not affected by this.
* Instead of connecting the main Ethereum network, the client will connect to the test network,
which uses different P2P bootnodes, different network IDs and genesis states.
*Note: Although there are some internal protective measures to prevent transactions from crossing
over between the main network and test network, you should make sure to always use separate accounts
for play-money and real-money. Unless you manually move accounts, Geth will by default correctly
separate the two networks and will not make any accounts available between them.*
### Full node on the Rinkeby test network
The above test network is a cross client one based on the ethash proof-of-work consensus algorithm. As such, it has certain extra overhead and is more susceptible to reorganization attacks due to the network's low difficulty / security. Go Ethereum also supports connecting to a proof-of-authority based test network called [*Rinkeby*](https://www.rinkeby.io) (operated by members of the community). This network is lighter, more secure, but is only supported by go-ethereum.
Then, the geth console can start up and you can start a miner as follows:
```
$ geth --rinkeby console
> personal.newAccount()
> miner.setEtherbase(eth.accounts[0])
> miner.start()
```
### Configuration
As an alternative to passing the numerous flags to the `geth` binary, you can also pass a configuration file via:
Then, once you are satisfied with mining for a few seconds, stop the miner with
```
$ geth --config /path/to/your_config.toml
> miner.stop()
```
To get an idea how the file should look like you can use the `dumpconfig` subcommand to export your existing configuration:
Now, save the passphrase you used in the geth node into a text file called password.txt. Then, once you have this private geth node running on your local network, we will need to generate fake, pending transactions that can then be processed into shards by validators and proposers. For this, we have created an in-house transaction generator CLI tool.
Transaction Generator
---------------------
Work in Progress. To track our current draft of the tx generator cli spec, visit this [link](https://docs.google.com/document/d/1YohsW4R9dIRo0u5RqfNOYjCkYKVCmzjgoBDBYDdu5m0/edit?usp=drive_web&ouid=105756662967435769870)
Once we have fake transactions broadcast to our local node, we can start a validator and proposer client in separate terminal windows to begin the sharding process.
Becoming a Validator
-----------------------
To deposit ETH and join as a validator in the Validator Manager Contract, run the following command:
```
$ geth --your-favourite-flags dumpconfig
geth validator --deposit 100eth --password ~/Desktop/password.txt
```
*Note: This works only with geth v1.6.0 and above.*
This will extract 100ETH from your account balance and insert you into the VMC's validator set. Then, the program will listen for incoming block headers and notify you when you have been selected as an eligible proposer for a certain shard in a given period. Once you are selected, the validator will request collations from a "collation proposals pool" that is created by a proposer node. We will need to run a proposal node concurrently in a separate terminal window as follows:
#### Docker quick start
One of the quickest ways to get Ethereum up and running on your machine is by using Docker:
Becoming a Proposer
-----------------------
The proposer node can be started with the following command:
```
docker run -d --name ethereum-node -v /Users/alice/ethereum:/root \
-p 8545:8545 -p 30303:30303 \
ethereum/client-go
geth proposer --password ~/Desktop/password.txt
```
This will start geth in fast-sync mode with a DB memory allowance of 1GB just as the above command does. It will also create a persistent volume in your home directory for saving your blockchain as well as map the default ports. There is also an `alpine` tag available for a slim version of the image.
Proposers are tasked with state execution, so they will process and validate pending transactions in the Geth node and create collations with headers that are then broadcast to a proposals pool along with an ETH deposit. Validators then subscribe to changes in the proposals pool and fetch the collation headers that offer the highest ETH deposit. Once a validator signs this collation, the proposer needs to provide the full collation body and the validator can then append the collation header to the Validator Manager Contract. Once this is done, the full, end-to-end sharding example is complete and another iteration can occur.
Do not forget `--rpcaddr 0.0.0.0`, if you want to access RPC from other containers and/or hosts. By default, `geth` binds to the local interface and RPC endpoints is not accessible from the outside.
### Programatically interfacing Geth nodes
Making Changes
==============
As a developer, sooner rather than later you'll want to start interacting with Geth and the Ethereum
network via your own programs and not manually through the console. To aid this, Geth has built in
support for a JSON-RPC based APIs ([standard APIs](https://github.com/ethereum/wiki/wiki/JSON-RPC) and
[Geth specific APIs](https://github.com/ethereum/go-ethereum/wiki/Management-APIs)). These can be
exposed via HTTP, WebSockets and IPC (unix sockets on unix based platforms, and named pipes on Windows).
The IPC interface is enabled by default and exposes all the APIs supported by Geth, whereas the HTTP
and WS interfaces need to manually be enabled and only expose a subset of APIs due to security reasons.
These can be turned on/off and configured as you'd expect.
HTTP based JSON-RPC API options:
* `--rpc` Enable the HTTP-RPC server
* `--rpcaddr` HTTP-RPC server listening interface (default: "localhost")
* `--rpcport` HTTP-RPC server listening port (default: 8545)
* `--rpcapi` API's offered over the HTTP-RPC interface (default: "eth,net,web3")
* `--rpccorsdomain` Comma separated list of domains from which to accept cross origin requests (browser enforced)
* `--ws` Enable the WS-RPC server
* `--wsaddr` WS-RPC server listening interface (default: "localhost")
* `--wsport` WS-RPC server listening port (default: 8546)
* `--wsapi` API's offered over the WS-RPC interface (default: "eth,net,web3")
* `--wsorigins` Origins from which to accept websockets requests
* `--ipcdisable` Disable the IPC-RPC server
* `--ipcapi` API's offered over the IPC-RPC interface (default: "admin,debug,eth,miner,net,personal,shh,txpool,web3")
* `--ipcpath` Filename for IPC socket/pipe within the datadir (explicit paths escape it)
You'll need to use your own programming environments' capabilities (libraries, tools, etc) to connect
via HTTP, WS or IPC to a Geth node configured with the above flags and you'll need to speak [JSON-RPC](http://www.jsonrpc.org/specification)
on all transports. You can reuse the same connection for multiple requests!
**Note: Please understand the security implications of opening up an HTTP/WS based transport before
doing so! Hackers on the internet are actively trying to subvert Ethereum nodes with exposed APIs!
Further, all browser tabs can access locally running webservers, so malicious webpages could try to
subvert locally available APIs!**
### Operating a private network
Maintaining your own private network is more involved as a lot of configurations taken for granted in
the official networks need to be manually set up.
#### Defining the private genesis state
First, you'll need to create the genesis state of your networks, which all nodes need to be aware of
and agree upon. This consists of a small JSON file (e.g. call it `genesis.json`):
```json
{
"config": {
"chainId": 0,
"homesteadBlock": 0,
"eip155Block": 0,
"eip158Block": 0
},
"alloc" : {},
"coinbase" : "0x0000000000000000000000000000000000000000",
"difficulty" : "0x20000",
"extraData" : "",
"gasLimit" : "0x2fefd8",
"nonce" : "0x0000000000000042",
"mixhash" : "0x0000000000000000000000000000000000000000000000000000000000000000",
"parentHash" : "0x0000000000000000000000000000000000000000000000000000000000000000",
"timestamp" : "0x00"
}
```
The above fields should be fine for most purposes, although we'd recommend changing the `nonce` to
some random value so you prevent unknown remote nodes from being able to connect to you. If you'd
like to pre-fund some accounts for easier testing, you can populate the `alloc` field with account
configs:
```json
"alloc": {
"0x0000000000000000000000000000000000000001": {"balance": "111111111"},
"0x0000000000000000000000000000000000000002": {"balance": "222222222"}
}
```
With the genesis state defined in the above JSON file, you'll need to initialize **every** Geth node
with it prior to starting it up to ensure all blockchain parameters are correctly set:
Rebuilding the Validator Manager Contract Bindings
---------------------------------------------------------
The Validator Manager Contract is built in Solidity and deployed to the geth node upon launch of the client if it does not exist in the network at a specified address. If there are any changes to the VMC's code, the Golang bindigs must be rebuilt with the following command.
```
$ geth init path/to/genesis.json
go generate abigen --sol contracts/validator_manager.sol --pkg contracts --out contracts/validator_manager.go
```
#### Creating the rendezvous point
Testing
=======
With all nodes that you want to run initialized to the desired genesis state, you'll need to start a
bootstrap node that others can use to find each other in your network and/or over the internet. The
clean way is to configure and run a dedicated bootnode:
To run the unit tests of our system do:
```
$ bootnode --genkey=boot.key
$ bootnode --nodekey=boot.key
go test ./sharding
```
With the bootnode online, it will display an [`enode` URL](https://github.com/ethereum/wiki/wiki/enode-url-format)
that other nodes can use to connect to it and exchange peer information. Make sure to replace the
displayed IP address information (most probably `[::]`) with your externally accessible IP to get the
actual `enode` URL.
We will require more complex testing scenarios (fuzz tests) to measure the full integrity of the system as it evolves.
*Note: You could also use a full fledged Geth node as a bootnode, but it's the less recommended way.*
Contribution Guidelines
===============
#### Starting up your member nodes
Excited by our work and want to get involved in building out our sharding releases? Our [Sharding Reference Implementation Doc](https://github.com/prysmaticlabs/geth-sharding/blob/master/sharding/README.md) has all you need to know in order to begin helping us make this happen. We created this document as a single source of reference for all things related to sharding Ethereum, and we need as much help as we can get!
With the bootnode operational and externally reachable (you can try `telnet <ip> <port>` to ensure
it's indeed reachable), start every subsequent Geth node pointed to the bootnode for peer discovery
via the `--bootnodes` flag. It will probably also be desirable to keep the data directory of your
private network separated, so do also specify a custom `--datadir` flag.
You can explore our [Current Projects](https://github.com/prysmaticlabs/geth-sharding/projects) in-the works for the Ruby release. Each of the project boards contain a full collection of open and closed issues relevant to the different parts of our first implementation that we use to track our open source progress. Feel free to fork our repo and start creating PRs after assigning yourself to an issue of interest. We are always chatting on [Gitter](https://gitter.im/prysmaticlabs/geth-sharding), so drop us a line there if you want to get more involved or have any questions on our implementation!
```
$ geth --datadir=path/to/custom/data/folder --bootnodes=<bootnode-enode-url-from-above>
```
**Contribution Steps**
*Note: Since your network will be completely cut off from the main and test networks, you'll also
need to configure a miner to process transactions and create new blocks for you.*
- Create a folder in your `$GOPATH` and navigate to it `mkdir -p $GOPATH/src/github.com/ethereum && cd $GOPATH/src/github.com/ethereum`
- Clone our repository as `go-ethereum`, `git clone https://github.com/prysmaticlabs/geth-sharding ./go-ethereum`
- Fork the `go-ethereum` repository on Github: https://github.com/ethereum/go-ethereum
- Add a remote to your fork
`git remote add YOURNAME https://github.com/YOURNAME/go-ethereum
#### Running a private miner
Now you should have a remote pointing to the `origin` repo (geth-sharding) and to your forked, go-ethereum repo on Github. To commit changes and start a Pull Request, our workflow is as follows:
Mining on the public Ethereum network is a complex task as it's only feasible using GPUs, requiring
an OpenCL or CUDA enabled `ethminer` instance. For information on such a setup, please consult the
[EtherMining subreddit](https://www.reddit.com/r/EtherMining/) and the [Genoil miner](https://github.com/Genoil/cpp-ethereum)
repository.
In a private network setting however, a single CPU miner instance is more than enough for practical
purposes as it can produce a stable stream of blocks at the correct intervals without needing heavy
resources (consider running on a single thread, no need for multiple ones either). To start a Geth
instance for mining, run it with all your usual flags, extended by:
```
$ geth <usual-flags> --mine --minerthreads=1 --etherbase=0x0000000000000000000000000000000000000000
```
Which will start mining blocks and transactions on a single CPU thread, crediting all proceedings to
the account specified by `--etherbase`. You can further tune the mining by changing the default gas
limit blocks converge to (`--targetgaslimit`) and the price transactions are accepted at (`--gasprice`).
## Contribution
Thank you for considering to help out with the source code! We welcome contributions from
anyone on the internet, and are grateful for even the smallest of fixes!
If you'd like to contribute to go-ethereum, please fork, fix, commit and send a pull request
for the maintainers to review and merge into the main code base. If you wish to submit more
complex changes though, please check up with the core devs first on [our gitter channel](https://gitter.im/ethereum/go-ethereum)
to ensure those changes are in line with the general philosophy of the project and/or get some
early feedback which can make both your efforts much lighter as well as our review and merge
procedures quick and simple.
Please make sure your contributions adhere to our coding guidelines:
* Code must adhere to the official Go [formatting](https://golang.org/doc/effective_go.html#formatting) guidelines (i.e. uses [gofmt](https://golang.org/cmd/gofmt/)).
* Code must be documented adhering to the official Go [commentary](https://golang.org/doc/effective_go.html#commentary) guidelines.
* Pull requests need to be based on and opened against the `master` branch.
* Commit messages should be prefixed with the package(s) they modify.
* E.g. "eth, rpc: make trace configs optional"
Please see the [Developers' Guide](https://github.com/ethereum/go-ethereum/wiki/Developers'-Guide)
for more details on configuring your environment, managing project dependencies and testing procedures.
## License
- Create a new branch with a clear feature name such as `git checkout -b collations-pool`
- Issue changes with clear commit messages
- Push to your remote `git push YOURNAME collations-pool`
- Go to the [geth-sharding](https://github.com/prysmaticlabs/geth-sharding) repository on Github and start a PR comparing `geth-sharding:master` with `go-ethereum:collations-pool` (your fork on your profile).
- Add a clear PR title along with a description of what this PR encompasses, when it can be closed, and what you are currently working on. Github markdown checklists work great for this.
License
=====
The go-ethereum library (i.e. all code outside of the `cmd` directory) is licensed under the
[GNU Lesser General Public License v3.0](https://www.gnu.org/licenses/lgpl-3.0.en.html), also
included in our repository in the `COPYING.LESSER` file.
@@ -308,3 +165,6 @@ included in our repository in the `COPYING.LESSER` file.
The go-ethereum binaries (i.e. all code inside of the `cmd` directory) is licensed under the
[GNU General Public License v3.0](https://www.gnu.org/licenses/gpl-3.0.en.html), also included
in our repository in the `COPYING` file.