Former-commit-id: d9e4ef72bd42bf36b98c7e052d9a34838ae996dc [formerly 8e0d5dca4592d67663d91655a6abeca60c37b27d]
Former-commit-id: 821fc21775c8e5d973dca6c4702bca43905f777d
This commit is contained in:
Raul Jordan
2018-02-05 11:49:46 -06:00
2 changed files with 88 additions and 602 deletions

View File

@@ -1,398 +0,0 @@
pragma solidity ^0.4.19;
/**
* @title RLPReader
*
* RLPReader is used to read and parse RLP encoded data in memory.
*
* @author Andreas Olofsson (androlo1980@gmail.com)
*/
library RLP {
uint constant DATA_SHORT_START = 0x80;
uint constant DATA_LONG_START = 0xB8;
uint constant LIST_SHORT_START = 0xC0;
uint constant LIST_LONG_START = 0xF8;
uint constant DATA_LONG_OFFSET = 0xB7;
uint constant LIST_LONG_OFFSET = 0xF7;
struct RLPItem {
uint _unsafe_memPtr; // Pointer to the RLP-encoded bytes.
uint _unsafe_length; // Number of bytes. This is the full length of the string.
}
struct Iterator {
RLPItem _unsafe_item; // Item that's being iterated over.
uint _unsafe_nextPtr; // Position of the next item in the list.
}
/* Iterator */
function next(Iterator memory self) internal pure returns (RLPItem memory subItem) {
if(hasNext(self)) {
var ptr = self._unsafe_nextPtr;
var itemLength = _itemLength(ptr);
subItem._unsafe_memPtr = ptr;
subItem._unsafe_length = itemLength;
self._unsafe_nextPtr = ptr + itemLength;
}
else
revert();
}
function next(Iterator memory self, bool strict) internal pure returns (RLPItem memory subItem) {
subItem = next(self);
require(!strict || _validate(subItem));
return;
}
function hasNext(Iterator memory self) internal pure returns (bool) {
var item = self._unsafe_item;
return self._unsafe_nextPtr < item._unsafe_memPtr + item._unsafe_length;
}
/* RLPItem */
/// @dev Creates an RLPItem from an array of RLP encoded bytes.
/// @param self The RLP encoded bytes.
/// @return An RLPItem
function toRLPItem(bytes memory self) internal pure returns (RLPItem memory) {
uint len = self.length;
if (len == 0) {
return RLPItem(0, 0);
}
uint memPtr;
assembly {
memPtr := add(self, 0x20)
}
return RLPItem(memPtr, len);
}
/// @dev Creates an RLPItem from an array of RLP encoded bytes.
/// @param self The RLP encoded bytes.
/// @param strict Will throw if the data is not RLP encoded.
/// @return An RLPItem
function toRLPItem(bytes memory self, bool strict) internal pure returns (RLPItem memory) {
var item = toRLPItem(self);
if(strict) {
uint len = self.length;
assert(_payloadOffset(item) <= len);
assert(_itemLength(item._unsafe_memPtr) == len);
assert(_validate(item));
}
return item;
}
/// @dev Check if the RLP item is null.
/// @param self The RLP item.
/// @return 'true' if the item is null.
function isNull(RLPItem memory self) internal pure returns (bool ret) {
return self._unsafe_length == 0;
}
/// @dev Check if the RLP item is a list.
/// @param self The RLP item.
/// @return 'true' if the item is a list.
function isList(RLPItem memory self) internal pure returns (bool ret) {
if (self._unsafe_length == 0)
return false;
uint memPtr = self._unsafe_memPtr;
assembly {
ret := iszero(lt(byte(0, mload(memPtr)), 0xC0))
}
}
/// @dev Check if the RLP item is data.
/// @param self The RLP item.
/// @return 'true' if the item is data.
function isData(RLPItem memory self) internal pure returns (bool ret) {
if (self._unsafe_length == 0)
return false;
uint memPtr = self._unsafe_memPtr;
assembly {
ret := lt(byte(0, mload(memPtr)), 0xC0)
}
}
/// @dev Check if the RLP item is empty (string or list).
/// @param self The RLP item.
/// @return 'true' if the item is null.
function isEmpty(RLPItem memory self) internal pure returns (bool ret) {
if(isNull(self))
return false;
uint b0;
uint memPtr = self._unsafe_memPtr;
assembly {
b0 := byte(0, mload(memPtr))
}
return (b0 == DATA_SHORT_START || b0 == LIST_SHORT_START);
}
/// @dev Get the number of items in an RLP encoded list.
/// @param self The RLP item.
/// @return The number of items.
function items(RLPItem memory self) internal pure returns (uint) {
if (!isList(self))
return 0;
uint b0;
uint memPtr = self._unsafe_memPtr;
assembly {
b0 := byte(0, mload(memPtr))
}
uint pos = memPtr + _payloadOffset(self);
uint last = memPtr + self._unsafe_length - 1;
uint itms;
while(pos <= last) {
pos += _itemLength(pos);
itms++;
}
return itms;
}
/// @dev Create an iterator.
/// @param self The RLP item.
/// @return An 'Iterator' over the item.
function iterator(RLPItem memory self) internal pure returns (Iterator memory it) {
require(isList(self));
uint ptr = self._unsafe_memPtr + _payloadOffset(self);
it._unsafe_item = self;
it._unsafe_nextPtr = ptr;
}
/// @dev Return the RLP encoded bytes.
/// @param self The RLPItem.
/// @return The bytes.
function toBytes(RLPItem memory self) internal constant returns (bytes memory bts) {
var len = self._unsafe_length;
if (len == 0)
return;
bts = new bytes(len);
_copyToBytes(self._unsafe_memPtr, bts, len);
}
/// @dev Decode an RLPItem into bytes. This will not work if the
/// RLPItem is a list.
/// @param self The RLPItem.
/// @return The decoded string.
function toData(RLPItem memory self) internal constant returns (bytes memory bts) {
require(isData(self));
var (rStartPos, len) = _decode(self);
bts = new bytes(len);
_copyToBytes(rStartPos, bts, len);
}
/// @dev Get the list of sub-items from an RLP encoded list.
/// Warning: This is inefficient, as it requires that the list is read twice.
/// @param self The RLP item.
/// @return Array of RLPItems.
function toList(RLPItem memory self) internal pure returns (RLPItem[] memory list) {
require(isList(self));
var numItems = items(self);
list = new RLPItem[](numItems);
var it = iterator(self);
uint idx;
while(hasNext(it)) {
list[idx] = next(it);
idx++;
}
}
/// @dev Decode an RLPItem into an ascii string. This will not work if the
/// RLPItem is a list.
/// @param self The RLPItem.
/// @return The decoded string.
function toAscii(RLPItem memory self) internal constant returns (string memory str) {
require(isData(self));
var (rStartPos, len) = _decode(self);
bytes memory bts = new bytes(len);
_copyToBytes(rStartPos, bts, len);
str = string(bts);
}
/// @dev Decode an RLPItem into a uint. This will not work if the
/// RLPItem is a list.
/// @param self The RLPItem.
/// @return The decoded string.
function toUint(RLPItem memory self) internal pure returns (uint data) {
require(isData(self));
var (rStartPos, len) = _decode(self);
assert(len <= 32 && len != 0);
assembly {
data := div(mload(rStartPos), exp(256, sub(32, len)))
}
}
/// @dev Decode an RLPItem into a boolean. This will not work if the
/// RLPItem is a list.
/// @param self The RLPItem.
/// @return The decoded string.
function toBool(RLPItem memory self) internal pure returns (bool data) {
require(isData(self));
var (rStartPos, len) = _decode(self);
assert(len == 1);
uint temp;
assembly {
temp := byte(0, mload(rStartPos))
}
assert(temp <= 1);
return temp == 1 ? true : false;
}
/// @dev Decode an RLPItem into a byte. This will not work if the
/// RLPItem is a list.
/// @param self The RLPItem.
/// @return The decoded string.
function toByte(RLPItem memory self) internal pure returns (byte data) {
require(isData(self));
var (rStartPos, len) = _decode(self);
assert(len == 1);
uint temp;
assembly {
temp := byte(0, mload(rStartPos))
}
return byte(temp);
}
/// @dev Decode an RLPItem into an int. This will not work if the
/// RLPItem is a list.
/// @param self The RLPItem.
/// @return The decoded string.
function toInt(RLPItem memory self) internal pure returns (int data) {
return int(toUint(self));
}
/// @dev Decode an RLPItem into a bytes32. This will not work if the
/// RLPItem is a list.
/// @param self The RLPItem.
/// @return The decoded string.
function toBytes32(RLPItem memory self) internal pure returns (bytes32 data) {
return bytes32(toUint(self));
}
/// @dev Decode an RLPItem into an address. This will not work if the
/// RLPItem is a list.
/// @param self The RLPItem.
/// @return The decoded string.
function toAddress(RLPItem memory self) internal pure returns (address data) {
require(isData(self));
var (rStartPos, len) = _decode(self);
assert(len == 20);
assembly {
data := div(mload(rStartPos), exp(256, 12))
}
}
// Get the payload offset.
function _payloadOffset(RLPItem memory self) private pure returns (uint) {
if(self._unsafe_length == 0)
return 0;
uint b0;
uint memPtr = self._unsafe_memPtr;
assembly {
b0 := byte(0, mload(memPtr))
}
if(b0 < DATA_SHORT_START)
return 0;
if(b0 < DATA_LONG_START || (b0 >= LIST_SHORT_START && b0 < LIST_LONG_START))
return 1;
if(b0 < LIST_SHORT_START)
return b0 - DATA_LONG_OFFSET + 1;
return b0 - LIST_LONG_OFFSET + 1;
}
// Get the full length of an RLP item.
function _itemLength(uint memPtr) private pure returns (uint len) {
uint b0;
assembly {
b0 := byte(0, mload(memPtr))
}
if (b0 < DATA_SHORT_START)
len = 1;
else if (b0 < DATA_LONG_START)
len = b0 - DATA_SHORT_START + 1;
else if (b0 < LIST_SHORT_START) {
assembly {
let bLen := sub(b0, 0xB7) // bytes length (DATA_LONG_OFFSET)
let dLen := div(mload(add(memPtr, 1)), exp(256, sub(32, bLen))) // data length
len := add(1, add(bLen, dLen)) // total length
}
}
else if (b0 < LIST_LONG_START)
len = b0 - LIST_SHORT_START + 1;
else {
assembly {
let bLen := sub(b0, 0xF7) // bytes length (LIST_LONG_OFFSET)
let dLen := div(mload(add(memPtr, 1)), exp(256, sub(32, bLen))) // data length
len := add(1, add(bLen, dLen)) // total length
}
}
}
// Get start position and length of the data.
function _decode(RLPItem memory self) private pure returns (uint memPtr, uint len) {
require(isData(self));
uint b0;
uint start = self._unsafe_memPtr;
assembly {
b0 := byte(0, mload(start))
}
if (b0 < DATA_SHORT_START) {
memPtr = start;
len = 1;
return;
}
if (b0 < DATA_LONG_START) {
len = self._unsafe_length - 1;
memPtr = start + 1;
} else {
uint bLen;
assembly {
bLen := sub(b0, 0xB7) // DATA_LONG_OFFSET
}
len = self._unsafe_length - 1 - bLen;
memPtr = start + bLen + 1;
}
return;
}
// Assumes that enough memory has been allocated to store in target.
function _copyToBytes(uint btsPtr, bytes memory tgt, uint btsLen) private constant {
// Exploiting the fact that 'tgt' was the last thing to be allocated,
// we can write entire words, and just overwrite any excess.
assembly {
{
let i := 0 // Start at arr + 0x20
let words := div(add(btsLen, 31), 32)
let rOffset := btsPtr
let wOffset := add(tgt, 0x20)
tag_loop:
jumpi(end, eq(i, words))
{
let offset := mul(i, 0x20)
mstore(add(wOffset, offset), mload(add(rOffset, offset)))
i := add(i, 1)
}
jump(tag_loop)
end:
mstore(add(tgt, add(0x20, mload(tgt))), 0)
}
}
}
// Check that an RLP item is valid.
function _validate(RLPItem memory self) private pure returns (bool ret) {
// Check that RLP is well-formed.
uint b0;
uint b1;
uint memPtr = self._unsafe_memPtr;
assembly {
b0 := byte(0, mload(memPtr))
b1 := byte(1, mload(memPtr))
}
if(b0 == DATA_SHORT_START + 1 && b1 < DATA_SHORT_START)
return false;
return true;
}
}

View File

@@ -1,25 +1,16 @@
pragma solidity ^0.4.19;
import "RLP.sol";
interface SigHasherContract {
// function () returns(bytes32);
}
contract VMC {
using RLP for RLP.RLPItem;
using RLP for RLP.Iterator;
using RLP for bytes;
event TxToShard(address indexed to, int indexed shardId, int receiptId);
event CollationAdded(uint indexed shardId, bytes collationHeader, bool isNewHead, uint score);
event Deposit(address validator, int index);
event Withdraw(int validatorIndex);
struct Validator {
// Amount of wei the validator holds
uint deposit;
// The validator's address
address addr;
// Addess to withdraw to
address returnAddr;
// The cycle number which the validator would be included after
int cycle;
}
struct CollationHeader {
@@ -32,9 +23,9 @@ contract VMC {
uint txStartgas;
uint txGasprice;
uint value;
bytes32 data;
address sender;
address to;
bytes32 data;
}
mapping (int => Validator) validators;
@@ -48,34 +39,22 @@ contract VMC {
mapping (int => int) emptySlotsStack;
// The top index of the stack in empty_slots_stack
int emptySlotsStackTop;
// Has the validator deposited before?
mapping (address => bool) isValidatorDeposited;
// Constant values
uint constant periodLength = 5;
int constant shardCount = 100;
// The exact deposit size which you have to deposit to become a validator
uint depositSize;
// Any given validator randomly gets allocated to some number of shards every SHUFFLING_CYCLE
int shufflingCycleLength;
// Gas limit of the signature validation code
uint sigGasLimit;
// Is a valcode addr deposited now?
mapping (address => bool) isValcodeDeposited;
uint periodLength;
int numValidatorsPerCycle;
int shardCount;
bytes32 addHeaderLogTopic;
SigHasherContract sighasher;
uint constant depositSize = 100 ether;
// Number of periods ahead of current period, which the contract
// is able to return the collator of that period
uint constant lookAheadPeriods = 4;
// Log the latest period number of the shard
mapping (int => int) periodHead;
function VMC() public {
numValidators = 0;
emptySlotsStackTop = 0;
depositSize = 100 ether;
shufflingCycleLength = 5; // FIXME: just modified temporarily for test;
sigGasLimit = 400000;
periodLength = 5;
numValidatorsPerCycle = 100;
shardCount = 100;
addHeaderLogTopic = keccak256("add_header()");
sighasher = SigHasherContract(0xDFFD41E18F04Ad8810c83B14FD1426a82E625A7D);
}
function isStackEmpty() internal view returns(bool) {
@@ -92,230 +71,135 @@ contract VMC {
return emptySlotsStack[emptySlotsStackTop];
}
function getValidatorsMaxIndex() public view returns(int) {
function getValidatorsMaxIndex() internal view returns(int) {
int activateValidatorNum = 0;
int currentCycle = int(block.number) / shufflingCycleLength;
int allValidatorSlotsNum = numValidators + emptySlotsStackTop;
// TODO: any better way to iterate the mapping?
for (int i = 0; i < 1024; ++i) {
if (i >= allValidatorSlotsNum)
break;
if (validators[i].cycle <= currentCycle)
if (validators[i].addr != 0x0)
activateValidatorNum += 1;
}
return activateValidatorNum + emptySlotsStackTop;
}
function deposit(address _returnAddr) public payable returns(int) {
require(!isValcodeDeposited[msg.sender]);
function deposit() public payable returns(int) {
require(!isValidatorDeposited[msg.sender]);
require(msg.value == depositSize);
// Find the empty slot index in validators set
int index;
int nextCycle = 0;
if (!isStackEmpty())
index = stackPop();
else {
else
index = int(numValidators);
nextCycle = (int(block.number) / shufflingCycleLength) + 1;
validators[index] = Validator({
deposit: msg.value,
addr: msg.sender,
returnAddr: _returnAddr,
cycle: nextCycle
});
}
++numValidators;
isValcodeDeposited[msg.sender] = true;
log2(keccak256("deposit()"), bytes32(msg.sender), bytes32(index));
return index;
validators[index] = Validator({
deposit: msg.value,
addr: msg.sender
});
++numValidators;
isValidatorDeposited[msg.sender] = true;
Deposit(msg.sender, index);
return index;
}
function withdraw(int _validatorIndex) public {
var msgHash = keccak256("withdraw");
require(msg.sender == validators[_validatorIndex].addr);
validators[_validatorIndex].returnAddr.transfer(validators[_validatorIndex].deposit);
isValcodeDeposited[validators[_validatorIndex].addr] = false;
// [FIXME] Should consider calling the validator's contract, might be useful
// when the validator is a contract.
validators[_validatorIndex].addr.transfer(validators[_validatorIndex].deposit);
isValidatorDeposited[validators[_validatorIndex].addr] = false;
delete validators[_validatorIndex];
stackPush(_validatorIndex);
--numValidators;
log1(msgHash, bytes32(_validatorIndex));
Withdraw(_validatorIndex);
}
function sample(int _shardId) public constant returns(address) {
require(block.number >= periodLength);
var cycle = int(block.number) / shufflingCycleLength;
int cycleStartBlockNumber = cycle * shufflingCycleLength - 1;
if (cycleStartBlockNumber < 0)
cycleStartBlockNumber = 0;
int cycleSeed = int(block.blockhash(uint(cycleStartBlockNumber)));
// originally, error occurs when block.number <= 4 because
// `seed_block_number` becomes negative in these cases.
int seed = int(block.blockhash(block.number - (block.number % uint(periodLength)) - 1));
uint indexInSubset = uint(keccak256(seed, bytes32(_shardId))) % uint(numValidatorsPerCycle);
uint validatorIndex = uint(keccak256(cycleSeed, bytes32(_shardId), bytes32(indexInSubset))) % uint(getValidatorsMaxIndex());
if (validators[int(validatorIndex)].cycle > cycle)
return 0x0;
else
return validators[int(validatorIndex)].addr;
// Uses a block hash as a seed to pseudorandomly select a signer from the validator set.
// [TODO] Chance of being selected should be proportional to the validator's deposit.
// Should be able to return a value for the current period or any future period up to.
function getEligibleProposer(int _shardId, uint _period) public view returns(address) {
require(_period >= lookAheadPeriods);
require((_period - lookAheadPeriods) * periodLength < block.number);
require(numValidators > 0);
// [TODO] Should check further if this safe or not
return validators[
int(
uint(keccak256(uint(block.blockhash(_period - lookAheadPeriods)) * periodLength, _shardId))
%
uint(getValidatorsMaxIndex())
)].addr;
}
// Get all possible shard ids that the given _valcodeAddr
// may be sampled in the current cycle
function getShardList(address _validatorAddr) public constant returns(bool[100]) {
bool[100] memory shardList;
int cycle = int(block.number) / shufflingCycleLength;
int cycleStartBlockNumber = cycle * shufflingCycleLength - 1;
if (cycleStartBlockNumber < 0)
cycleStartBlockNumber = 0;
var cycleSeed = block.blockhash(uint(cycleStartBlockNumber));
int validatorsMaxIndex = getValidatorsMaxIndex();
if (numValidators != 0) {
for (uint8 shardId = 0; shardId < 100; ++shardId) {
shardList[shardId] = false;
for (uint8 possibleIndexInSubset = 0; possibleIndexInSubset < 100; ++possibleIndexInSubset) {
uint validatorIndex = uint(keccak256(cycleSeed, bytes32(shardId), bytes32(possibleIndexInSubset)))
% uint(validatorsMaxIndex);
if (_validatorAddr == validators[int(validatorIndex)].addr) {
shardList[shardId] = true;
break;
}
}
}
}
return shardList;
struct HeaderVars {
bytes32 entireHeaderHash;
int score;
address validatorAddr;
bool isNewHead;
}
// function checkHeader(int _shardId, bytes32 _periodStartPrevhash, int _expectedPeriodNumber) internal {
// // Check if the header is valid
// assert(_shardId >= 0 && _shardId < shardCount);
// assert(block.number >= periodLength);
// assert(uint(_expectedPeriodNumber) == block.number / periodLength);
// assert(_periodStartPrevhash == block.blockhash(uint(_expectedPeriodNumber)*periodLength - 1));
// // Check if this header already exists
// var entireHeaderHash = keccak256(_header);
// assert(entireHeaderHash != bytes32(0));
// assert(collationHeaders[shardId][entireHeaderHash].score == 0);
// }
struct Header {
int shardId;
uint expectedPeriodNumber;
bytes32 periodStartPrevhash;
bytes32 parentCollationHash;
bytes32 txListRoot;
address collationCoinbase;
bytes32 postStateRoot;
bytes32 receiptRoot;
int collationNumber;
bytes sig;
}
function addHeader(bytes _header) public returns(bool) {
// require(_header.length <= 4096);
// TODO
// values = RLPList(header, [num, num, bytes32, bytes32, bytes32, address, bytes32, bytes32, num, bytes])
// return True
bytes memory mHeader = _header;
var RLPList = mHeader.toRLPItem(true).iterator();
var header = Header({
shardId: RLPList.next().toInt(),
expectedPeriodNumber: RLPList.next().toUint(),
periodStartPrevhash: RLPList.next().toBytes32(),
parentCollationHash: RLPList.next().toBytes32(),
txListRoot: RLPList.next().toBytes32(),
collationCoinbase: RLPList.next().toAddress(),
postStateRoot: RLPList.next().toBytes32(),
receiptRoot: RLPList.next().toBytes32(),
collationNumber: RLPList.next().toInt(),
sig: RLPList.next().toBytes()
});
function addHeader(int _shardId, uint _expectedPeriodNumber, bytes32 _periodStartPrevHash,
bytes32 _parentCollationHash, bytes32 _txListRoot, address _collationCoinbase,
bytes32 _postStateRoot, bytes32 _receiptRoot, int _collationNumber) public returns(bool) {
HeaderVars memory headerVars;
// Check if the header is valid
require((header.shardId >= 0) && (header.shardId < shardCount));
require((_shardId >= 0) && (_shardId < shardCount));
require(block.number >= periodLength);
require(header.expectedPeriodNumber == (block.number / periodLength));
require(header.periodStartPrevhash == block.blockhash(header.expectedPeriodNumber * periodLength - 1));
require(_expectedPeriodNumber == block.number / periodLength);
require(_periodStartPrevHash == block.blockhash(_expectedPeriodNumber * periodLength - 1));
// Check if this header already exists
var entireHeaderHash = keccak256(header);
assert(entireHeaderHash != 0x0);
assert(collationHeaders[header.shardId][entireHeaderHash].score == 0);
headerVars.entireHeaderHash = keccak256(_shardId, _expectedPeriodNumber, _periodStartPrevHash,
_parentCollationHash, _txListRoot, bytes32(_collationCoinbase),
_postStateRoot, _receiptRoot, _collationNumber);
assert(headerVars.entireHeaderHash != 0x0);
assert(collationHeaders[_shardId][headerVars.entireHeaderHash].score == 0);
// Check whether the parent exists.
// if (parent_collation_hash == 0), i.e., is the genesis,
// then there is no need to check.
if (header.parentCollationHash != 0x0)
assert ((header.parentCollationHash == 0x0) || (collationHeaders[header.shardId][header.parentCollationHash].score > 0));
// Check if only one colllation in one period
assert (periodHead[header.shardId] < int(header.expectedPeriodNumber));
if (_parentCollationHash != 0x0)
assert((_parentCollationHash == 0x0) || (collationHeaders[_shardId][_parentCollationHash].score > 0));
// Check if only one collation in one period
assert(periodHead[_shardId] < int(_expectedPeriodNumber));
// Check the signature with validation_code_addr
var collatorValcodeAddr = sample(header.shardId);
if (collatorValcodeAddr == 0x0)
return false;
// assembly {
// TODO next block
// }
// sighash = extract32(raw_call(self.sighasher_addr, header, gas=200000, outsize=32), 0)
// assert extract32(raw_call(collator_valcode_addr, concat(sighash, sig), gas=self.sig_gas_limit, outsize=32), 0) == as_bytes32(1)
// Check score == collation_number
var _score = collationHeaders[header.shardId][header.parentCollationHash].score + 1;
assert(header.collationNumber == _score);
headerVars.validatorAddr = getEligibleProposer(_shardId, block.number/periodLength);
require(headerVars.validatorAddr != 0x0);
require(msg.sender == headerVars.validatorAddr);
// Check score == collationNumber
headerVars.score = collationHeaders[_shardId][_parentCollationHash].score + 1;
require(_collationNumber == headerVars.score);
// Add the header
collationHeaders[header.shardId][entireHeaderHash] = CollationHeader({
parentCollationHash: header.parentCollationHash,
score: _score
collationHeaders[_shardId][headerVars.entireHeaderHash] = CollationHeader({
parentCollationHash: _parentCollationHash,
score: headerVars.score
});
// Update the latest period number
periodHead[header.shardId] = int(header.expectedPeriodNumber);
periodHead[_shardId] = int(_expectedPeriodNumber);
// Determine the head
if (_score > collationHeaders[header.shardId][shardHead[header.shardId]].score) {
var previousHeadHash = shardHead[header.shardId];
shardHead[header.shardId] = entireHeaderHash;
// Logs only when `change_head` happens due to the fork
// TODO LOG
// log1([addHeaderLogTopic, keccak256("change_head"), entireHeaderHash], previousHeadHash);
if (headerVars.score > collationHeaders[_shardId][shardHead[_shardId]].score) {
shardHead[_shardId] = headerVars.entireHeaderHash;
headerVars.isNewHead = true;
}
// Emit log
// TODO LOG
// log1(addHeaderLogTopic, _header);
// [TODO] Log
//CollationAdded(headerBytes, isNewHead, _score);
return true;
}
function getPeriodStartPrevhash(uint _expectedPeriodNumber) public constant returns(bytes32) {
uint blockNumber = _expectedPeriodNumber * periodLength - 1;
require(block.number > blockNumber);
return block.blockhash(blockNumber);
}
// Returns the difference between the block number of this hash and the block
// number of the 10000th ancestor of this hash.
function getAncestorDistance(bytes32 /*_hash*/) public pure returns(bytes32) {
// TODO
}
// Returns the gas limit that collations can currently have (by default make
// this function always answer 10 million).
function getCollationGasLimit() public pure returns(uint) {
return 10000000;
}
// Records a request to deposit msg.value ETH to address to in shard shard_id
// during a future collation. Saves a `receipt ID` for this request,
// also saving `msg.sender`, `msg.value`, `to`, `shard_id`, `startgas`,
@@ -333,7 +217,7 @@ contract VMC {
var receiptId = numReceipts;
++numReceipts;
log3(keccak256("tx_to_shard()"), bytes32(_to), bytes32(_shardId), bytes32(receiptId));
TxToShard(_to, _shardId, receiptId);
return receiptId;
}