Files
prysm/beacon-chain/blockchain/process_block.go
Manu NALEPA 2773bdef89 Remove NUMBER_OF_COLUMNS and MAX_CELLS_IN_EXTENDED_MATRIX configuration. (#16073)
**What type of PR is this?**
Other

**What does this PR do? Why is it needed?**
This pull request removes `NUMBER_OF_COLUMNS` and
`MAX_CELLS_IN_EXTENDED_MATRIX` configuration.

**Other notes for review**
Please read commit by commit, with commit messages.

**Acknowledgements**
- [x] I have read
[CONTRIBUTING.md](https://github.com/prysmaticlabs/prysm/blob/develop/CONTRIBUTING.md).
- [x] I have included a uniquely named [changelog fragment
file](https://github.com/prysmaticlabs/prysm/blob/develop/CONTRIBUTING.md#maintaining-changelogmd).
- [x] I have added a description to this PR with sufficient context for
reviewers to understand this PR.
2025-11-29 09:30:54 +00:00

1000 lines
35 KiB
Go

package blockchain
import (
"context"
"fmt"
"time"
"github.com/OffchainLabs/go-bitfield"
"github.com/OffchainLabs/prysm/v7/beacon-chain/core/blocks"
"github.com/OffchainLabs/prysm/v7/beacon-chain/core/helpers"
"github.com/OffchainLabs/prysm/v7/beacon-chain/core/peerdas"
coreTime "github.com/OffchainLabs/prysm/v7/beacon-chain/core/time"
"github.com/OffchainLabs/prysm/v7/beacon-chain/core/transition"
"github.com/OffchainLabs/prysm/v7/beacon-chain/das"
"github.com/OffchainLabs/prysm/v7/beacon-chain/db/filesystem"
forkchoicetypes "github.com/OffchainLabs/prysm/v7/beacon-chain/forkchoice/types"
"github.com/OffchainLabs/prysm/v7/beacon-chain/state"
"github.com/OffchainLabs/prysm/v7/config/features"
fieldparams "github.com/OffchainLabs/prysm/v7/config/fieldparams"
"github.com/OffchainLabs/prysm/v7/config/params"
consensusblocks "github.com/OffchainLabs/prysm/v7/consensus-types/blocks"
"github.com/OffchainLabs/prysm/v7/consensus-types/interfaces"
"github.com/OffchainLabs/prysm/v7/consensus-types/primitives"
"github.com/OffchainLabs/prysm/v7/crypto/bls"
"github.com/OffchainLabs/prysm/v7/encoding/bytesutil"
"github.com/OffchainLabs/prysm/v7/monitoring/tracing"
"github.com/OffchainLabs/prysm/v7/monitoring/tracing/trace"
ethpb "github.com/OffchainLabs/prysm/v7/proto/prysm/v1alpha1"
"github.com/OffchainLabs/prysm/v7/proto/prysm/v1alpha1/attestation"
"github.com/OffchainLabs/prysm/v7/runtime/version"
"github.com/OffchainLabs/prysm/v7/time/slots"
"github.com/pkg/errors"
"github.com/sirupsen/logrus"
)
// A custom slot deadline for processing state slots in our cache.
const slotDeadline = 5 * time.Second
// A custom deadline for deposit trie insertion.
const depositDeadline = 20 * time.Second
// This defines size of the upper bound for initial sync block cache.
var initialSyncBlockCacheSize = uint64(2 * params.BeaconConfig().SlotsPerEpoch)
// postBlockProcessConfig is a structure that contains the data needed to
// process the beacon block after validating the state transition function
type postBlockProcessConfig struct {
ctx context.Context
roblock consensusblocks.ROBlock
headRoot [32]byte
postState state.BeaconState
isValidPayload bool
}
// postBlockProcess is called when a gossip block is received. This function performs
// several duties most importantly informing the engine if head was updated,
// saving the new head information to the blockchain package and
// handling attestations, slashings and similar included in the block.
func (s *Service) postBlockProcess(cfg *postBlockProcessConfig) error {
ctx, span := trace.StartSpan(cfg.ctx, "blockChain.onBlock")
defer span.End()
cfg.ctx = ctx
if err := consensusblocks.BeaconBlockIsNil(cfg.roblock); err != nil {
return invalidBlock{error: err}
}
startTime := time.Now()
fcuArgs := &fcuConfig{}
if s.inRegularSync() {
defer s.handleSecondFCUCall(cfg, fcuArgs)
}
if features.Get().EnableLightClient && slots.ToEpoch(s.CurrentSlot()) >= params.BeaconConfig().AltairForkEpoch {
defer s.processLightClientUpdates(cfg)
}
defer reportProcessingTime(startTime)
defer reportAttestationInclusion(cfg.roblock.Block())
err := s.cfg.ForkChoiceStore.InsertNode(ctx, cfg.postState, cfg.roblock)
if err != nil {
// Do not use parent context in the event it deadlined
ctx = trace.NewContext(context.Background(), span)
s.rollbackBlock(ctx, cfg.roblock.Root())
return errors.Wrapf(err, "could not insert block %d to fork choice store", cfg.roblock.Block().Slot())
}
if err := s.handleBlockAttestations(ctx, cfg.roblock.Block(), cfg.postState); err != nil {
return errors.Wrap(err, "could not handle block's attestations")
}
s.InsertSlashingsToForkChoiceStore(ctx, cfg.roblock.Block().Body().AttesterSlashings())
if cfg.isValidPayload {
if err := s.cfg.ForkChoiceStore.SetOptimisticToValid(ctx, cfg.roblock.Root()); err != nil {
return errors.Wrap(err, "could not set optimistic block to valid")
}
}
defer s.sendStateFeedOnBlock(cfg) // only send event after successful insertion
start := time.Now()
cfg.headRoot, err = s.cfg.ForkChoiceStore.Head(ctx)
if err != nil {
log.WithError(err).Warn("Could not update head")
}
newBlockHeadElapsedTime.Observe(float64(time.Since(start).Milliseconds()))
if cfg.headRoot != cfg.roblock.Root() {
s.logNonCanonicalBlockReceived(cfg.roblock.Root(), cfg.headRoot)
return nil
}
if err := s.getFCUArgs(cfg, fcuArgs); err != nil {
log.WithError(err).Error("Could not get forkchoice update argument")
return nil
}
if err := s.sendFCU(cfg, fcuArgs); err != nil {
return errors.Wrap(err, "could not send FCU to engine")
}
return nil
}
func getStateVersionAndPayload(st state.BeaconState) (int, interfaces.ExecutionData, error) {
if st == nil {
return 0, nil, errors.New("nil state")
}
var preStateHeader interfaces.ExecutionData
var err error
preStateVersion := st.Version()
switch preStateVersion {
case version.Phase0, version.Altair:
default:
preStateHeader, err = st.LatestExecutionPayloadHeader()
if err != nil {
return 0, nil, err
}
}
return preStateVersion, preStateHeader, nil
}
func (s *Service) onBlockBatch(ctx context.Context, blks []consensusblocks.ROBlock, avs das.AvailabilityStore) error {
ctx, span := trace.StartSpan(ctx, "blockChain.onBlockBatch")
defer span.End()
if len(blks) == 0 {
return errors.New("no blocks provided")
}
if err := consensusblocks.BeaconBlockIsNil(blks[0]); err != nil {
return invalidBlock{error: err}
}
b := blks[0].Block()
// Retrieve incoming block's pre state.
if err := s.verifyBlkPreState(ctx, b.ParentRoot()); err != nil {
return err
}
preState, err := s.cfg.StateGen.StateByRootInitialSync(ctx, b.ParentRoot())
if err != nil {
return err
}
if preState == nil || preState.IsNil() {
return fmt.Errorf("nil pre state for slot %d", b.Slot())
}
// Fill in missing blocks
if err := s.fillInForkChoiceMissingBlocks(ctx, blks[0], preState.FinalizedCheckpoint(), preState.CurrentJustifiedCheckpoint()); err != nil {
return errors.Wrap(err, "could not fill in missing blocks to forkchoice")
}
jCheckpoints := make([]*ethpb.Checkpoint, len(blks))
fCheckpoints := make([]*ethpb.Checkpoint, len(blks))
sigSet := bls.NewSet()
type versionAndHeader struct {
version int
header interfaces.ExecutionData
}
preVersionAndHeaders := make([]*versionAndHeader, len(blks))
postVersionAndHeaders := make([]*versionAndHeader, len(blks))
var set *bls.SignatureBatch
boundaries := make(map[[32]byte]state.BeaconState)
for i, b := range blks {
if features.BlacklistedBlock(b.Root()) {
return errBlacklistedRoot
}
v, h, err := getStateVersionAndPayload(preState)
if err != nil {
return err
}
preVersionAndHeaders[i] = &versionAndHeader{
version: v,
header: h,
}
set, preState, err = transition.ExecuteStateTransitionNoVerifyAnySig(ctx, preState, b)
if err != nil {
return invalidBlock{error: err}
}
// Save potential boundary states.
if slots.IsEpochStart(preState.Slot()) {
boundaries[b.Root()] = preState.Copy()
}
jCheckpoints[i] = preState.CurrentJustifiedCheckpoint()
fCheckpoints[i] = preState.FinalizedCheckpoint()
v, h, err = getStateVersionAndPayload(preState)
if err != nil {
return err
}
postVersionAndHeaders[i] = &versionAndHeader{
version: v,
header: h,
}
sigSet.Join(set)
}
var verify bool
if features.Get().EnableVerboseSigVerification {
verify, err = sigSet.VerifyVerbosely()
} else {
verify, err = sigSet.Verify()
}
if err != nil {
return invalidBlock{error: err}
}
if !verify {
return errors.New("batch block signature verification failed")
}
// blocks have been verified, save them and call the engine
pendingNodes := make([]*forkchoicetypes.BlockAndCheckpoints, len(blks))
var isValidPayload bool
for i, b := range blks {
root := b.Root()
isValidPayload, err = s.notifyNewPayload(ctx,
postVersionAndHeaders[i].version,
postVersionAndHeaders[i].header, b)
if err != nil {
return s.handleInvalidExecutionError(ctx, err, root, b.Block().ParentRoot())
}
if isValidPayload {
if err := s.validateMergeTransitionBlock(ctx, preVersionAndHeaders[i].version,
preVersionAndHeaders[i].header, b); err != nil {
return err
}
}
if err := s.areSidecarsAvailable(ctx, avs, b); err != nil {
return errors.Wrapf(err, "could not validate sidecar availability for block %#x at slot %d", b.Root(), b.Block().Slot())
}
args := &forkchoicetypes.BlockAndCheckpoints{Block: b,
JustifiedCheckpoint: jCheckpoints[i],
FinalizedCheckpoint: fCheckpoints[i]}
pendingNodes[i] = args
if err := s.saveInitSyncBlock(ctx, root, b); err != nil {
tracing.AnnotateError(span, err)
return err
}
if err := s.cfg.BeaconDB.SaveStateSummary(ctx, &ethpb.StateSummary{
Slot: b.Block().Slot(),
Root: root[:],
}); err != nil {
tracing.AnnotateError(span, err)
return err
}
if i > 0 && jCheckpoints[i].Epoch > jCheckpoints[i-1].Epoch {
if err := s.cfg.BeaconDB.SaveJustifiedCheckpoint(ctx, jCheckpoints[i]); err != nil {
tracing.AnnotateError(span, err)
return err
}
}
if i > 0 && fCheckpoints[i].Epoch > fCheckpoints[i-1].Epoch {
if err := s.updateFinalized(ctx, fCheckpoints[i]); err != nil {
tracing.AnnotateError(span, err)
return err
}
}
}
// Save boundary states that will be useful for forkchoice
for r, st := range boundaries {
if err := s.cfg.StateGen.SaveState(ctx, r, st); err != nil {
return err
}
}
lastB := blks[len(blks)-1]
lastBR := lastB.Root()
// Also saves the last post state which to be used as pre state for the next batch.
if err := s.cfg.StateGen.SaveState(ctx, lastBR, preState); err != nil {
return err
}
// Insert all nodes to forkchoice
if err := s.cfg.ForkChoiceStore.InsertChain(ctx, pendingNodes); err != nil {
return errors.Wrap(err, "could not insert batch to forkchoice")
}
// Set their optimistic status
if isValidPayload {
if err := s.cfg.ForkChoiceStore.SetOptimisticToValid(ctx, lastBR); err != nil {
return errors.Wrap(err, "could not set optimistic block to valid")
}
}
arg := &fcuConfig{
headState: preState,
headRoot: lastBR,
headBlock: lastB,
}
if _, err := s.notifyForkchoiceUpdate(ctx, arg); err != nil {
return err
}
return s.saveHeadNoDB(ctx, lastB, lastBR, preState, !isValidPayload)
}
func (s *Service) areSidecarsAvailable(ctx context.Context, avs das.AvailabilityStore, roBlock consensusblocks.ROBlock) error {
blockVersion := roBlock.Version()
block := roBlock.Block()
slot := block.Slot()
if blockVersion >= version.Fulu {
if err := s.areDataColumnsAvailable(ctx, roBlock.Root(), block); err != nil {
return errors.Wrapf(err, "are data columns available for block %#x with slot %d", roBlock.Root(), slot)
}
return nil
}
if blockVersion >= version.Deneb {
if err := avs.IsDataAvailable(ctx, s.CurrentSlot(), roBlock); err != nil {
return errors.Wrapf(err, "could not validate sidecar availability at slot %d", slot)
}
return nil
}
return nil
}
func (s *Service) updateEpochBoundaryCaches(ctx context.Context, st state.BeaconState) error {
e := coreTime.CurrentEpoch(st)
if err := helpers.UpdateCommitteeCache(ctx, st, e); err != nil {
return errors.Wrap(err, "could not update committee cache")
}
if err := helpers.UpdateProposerIndicesInCache(ctx, st, e); err != nil {
return errors.Wrap(err, "could not update proposer index cache")
}
go func(ep primitives.Epoch) {
// Use a custom deadline here, since this method runs asynchronously.
// We ignore the parent method's context and instead create a new one
// with a custom deadline, therefore using the background context instead.
slotCtx, cancel := context.WithTimeout(context.Background(), slotDeadline)
defer cancel()
if err := helpers.UpdateCommitteeCache(slotCtx, st, ep+1); err != nil {
log.WithError(err).Warn("Could not update committee cache")
}
}(e)
// The latest block header is from the previous epoch
r, err := st.LatestBlockHeader().HashTreeRoot()
if err != nil {
log.WithError(err).Error("Could not update proposer index state-root map")
return nil
}
// The proposer indices cache takes the target root for the previous
// epoch as key
if e > 0 {
e = e - 1
}
target, err := s.cfg.ForkChoiceStore.TargetRootForEpoch(r, e)
if err != nil {
log.WithError(err).Error("Could not update proposer index state-root map")
return nil
}
err = helpers.UpdateCachedCheckpointToStateRoot(st, &forkchoicetypes.Checkpoint{Epoch: e, Root: target})
if err != nil {
log.WithError(err).Error("Could not update proposer index state-root map")
}
return nil
}
// Epoch boundary tasks: it copies the headState and updates the epoch boundary
// caches.
func (s *Service) handleEpochBoundary(ctx context.Context, slot primitives.Slot, headState state.BeaconState, blockRoot []byte) error {
ctx, span := trace.StartSpan(ctx, "blockChain.handleEpochBoundary")
defer span.End()
// return early if we are advancing to a past epoch
if slot < headState.Slot() {
return nil
}
if !slots.IsEpochEnd(slot) {
return nil
}
copied := headState.Copy()
copied, err := transition.ProcessSlotsUsingNextSlotCache(ctx, copied, blockRoot, slot+1)
if err != nil {
return err
}
return s.updateEpochBoundaryCaches(ctx, copied)
}
// This feeds in the attestations included in the block to fork choice store. It's allows fork choice store
// to gain information on the most current chain.
func (s *Service) handleBlockAttestations(ctx context.Context, blk interfaces.ReadOnlyBeaconBlock, st state.BeaconState) error {
// Feed in block's attestations to fork choice store.
for _, a := range blk.Body().Attestations() {
committees, err := helpers.AttestationCommitteesFromState(ctx, st, a)
if err != nil {
return err
}
indices, err := attestation.AttestingIndices(a, committees...)
if err != nil {
return err
}
r := bytesutil.ToBytes32(a.GetData().BeaconBlockRoot)
if s.cfg.ForkChoiceStore.HasNode(r) {
s.cfg.ForkChoiceStore.ProcessAttestation(ctx, indices, r, a.GetData().Target.Epoch)
} else if features.Get().EnableExperimentalAttestationPool {
if err = s.cfg.AttestationCache.Add(a); err != nil {
return err
}
} else if err = s.cfg.AttPool.SaveBlockAttestation(a); err != nil {
return err
}
}
return nil
}
// InsertSlashingsToForkChoiceStore inserts attester slashing indices to fork choice store.
// To call this function, it's caller's responsibility to ensure the slashing object is valid.
// This function requires a write lock on forkchoice.
func (s *Service) InsertSlashingsToForkChoiceStore(ctx context.Context, slashings []ethpb.AttSlashing) {
for _, slashing := range slashings {
indices := blocks.SlashableAttesterIndices(slashing)
for _, index := range indices {
s.cfg.ForkChoiceStore.InsertSlashedIndex(ctx, primitives.ValidatorIndex(index))
}
}
}
// This saves post state info to DB or cache. This also saves post state info to fork choice store.
// Post state info consists of processed block and state. Do not call this method unless the block and state are verified.
func (s *Service) savePostStateInfo(ctx context.Context, r [32]byte, b interfaces.ReadOnlySignedBeaconBlock, st state.BeaconState) error {
ctx, span := trace.StartSpan(ctx, "blockChain.savePostStateInfo")
defer span.End()
if err := s.cfg.BeaconDB.SaveBlock(ctx, b); err != nil {
return errors.Wrapf(err, "could not save block from slot %d", b.Block().Slot())
}
if err := s.cfg.StateGen.SaveState(ctx, r, st); err != nil {
// Do not use parent context in the event it deadlined
ctx = trace.NewContext(context.Background(), span)
s.rollbackBlock(ctx, r)
return errors.Wrap(err, "could not save state")
}
return nil
}
// pruneAttsFromPool removes these attestations from the attestation pool
// which are covered by attestations from the received block.
func (s *Service) pruneAttsFromPool(ctx context.Context, headState state.BeaconState, headBlock interfaces.ReadOnlySignedBeaconBlock) {
for _, att := range headBlock.Block().Body().Attestations() {
if err := s.pruneCoveredAttsFromPool(ctx, headState, att); err != nil {
log.WithError(err).Warn("Could not prune attestations covered by a received block's attestation")
}
}
}
func (s *Service) pruneCoveredAttsFromPool(ctx context.Context, headState state.BeaconState, att ethpb.Att) error {
switch {
case !att.IsAggregated():
return s.cfg.AttPool.DeleteUnaggregatedAttestation(att)
case att.Version() == version.Phase0:
if features.Get().EnableExperimentalAttestationPool {
return errors.Wrap(s.cfg.AttestationCache.DeleteCovered(att), "could not delete covered attestation")
}
return errors.Wrap(s.cfg.AttPool.DeleteAggregatedAttestation(att), "could not delete aggregated attestation")
default:
return s.pruneCoveredElectraAttsFromPool(ctx, headState, att)
}
}
// pruneCoveredElectraAttsFromPool handles removing aggregated Electra attestations from the pool after receiving a block.
// Because in Electra block attestations can combine aggregates for multiple committees, comparing attestation bits
// of a block attestation with attestations bits of an aggregate can cause unexpected results, leading to covered
// aggregates not being removed from the pool.
//
// To make sure aggregates are removed, we decompose the block attestation into dummy aggregates, with each
// aggregate accounting for one committee. This allows us to compare aggregates in the same way it's done for
// Phase0. Even though we can't provide a valid signature for the dummy aggregate, it does not matter because
// signatures play no part in pruning attestations.
func (s *Service) pruneCoveredElectraAttsFromPool(ctx context.Context, headState state.BeaconState, att ethpb.Att) error {
if att.Version() == version.Phase0 {
log.Error("Called pruneCoveredElectraAttsFromPool with a Phase0 attestation")
return nil
}
// We don't want to recompute committees. If they are not cached already,
// we allow attestations to stay in the pool. If these attestations are
// included in a later block, they will be redundant. But given that
// they were not cached in the first place, it's unlikely that they
// will be chosen into a block.
ok, committees, err := helpers.AttestationCommitteesFromCache(ctx, headState, att)
if err != nil {
return errors.Wrap(err, "could not get attestation committees")
}
if !ok {
log.Debug("Attestation committees are not cached. Skipping attestation pruning.")
return nil
}
committeeIndices := att.CommitteeBitsVal().BitIndices()
offset := uint64(0)
// Sanity check as this should never happen
if len(committeeIndices) != len(committees) {
return errors.New("committee indices and committees have different lengths")
}
for i, c := range committees {
ab := bitfield.NewBitlist(uint64(len(c)))
for j := uint64(0); j < uint64(len(c)); j++ {
ab.SetBitAt(j, att.GetAggregationBits().BitAt(j+offset))
}
cb := primitives.NewAttestationCommitteeBits()
cb.SetBitAt(uint64(committeeIndices[i]), true)
a := &ethpb.AttestationElectra{
AggregationBits: ab,
Data: att.GetData(),
CommitteeBits: cb,
Signature: make([]byte, fieldparams.BLSSignatureLength),
}
if features.Get().EnableExperimentalAttestationPool {
if err = s.cfg.AttestationCache.DeleteCovered(a); err != nil {
return errors.Wrap(err, "could not delete covered attestation")
}
} else if !a.IsAggregated() {
if err = s.cfg.AttPool.DeleteUnaggregatedAttestation(a); err != nil {
return errors.Wrap(err, "could not delete unaggregated attestation")
}
} else if err = s.cfg.AttPool.DeleteAggregatedAttestation(a); err != nil {
return errors.Wrap(err, "could not delete aggregated attestation")
}
offset += uint64(len(c))
}
return nil
}
// validateMergeTransitionBlock validates the merge transition block.
func (s *Service) validateMergeTransitionBlock(ctx context.Context, stateVersion int, stateHeader interfaces.ExecutionData, blk interfaces.ReadOnlySignedBeaconBlock) error {
// Skip validation if block is older than Bellatrix.
if blocks.IsPreBellatrixVersion(blk.Block().Version()) {
return nil
}
// Skip validation if block has an empty payload.
payload, err := blk.Block().Body().Execution()
if err != nil {
return invalidBlock{error: err}
}
isEmpty, err := consensusblocks.IsEmptyExecutionData(payload)
if err != nil {
return err
}
if isEmpty {
return nil
}
// Handle case where pre-state is Altair but block contains payload.
// To reach here, the block must have contained a valid payload.
if blocks.IsPreBellatrixVersion(stateVersion) {
return s.validateMergeBlock(ctx, blk)
}
// Skip validation if the block is not a merge transition block.
// To reach here. The payload must be non-empty. If the state header is empty then it's at transition.
empty, err := consensusblocks.IsEmptyExecutionData(stateHeader)
if err != nil {
return err
}
if !empty {
return nil
}
return s.validateMergeBlock(ctx, blk)
}
// This routine checks if there is a cached proposer payload ID available for the next slot proposer.
// If there is not, it will call forkchoice updated with the correct payload attribute then cache the payload ID.
func (s *Service) runLateBlockTasks() {
if err := s.waitForSync(); err != nil {
log.WithError(err).Error("Failed to wait for initial sync")
return
}
attThreshold := params.BeaconConfig().SecondsPerSlot / 3
ticker := slots.NewSlotTickerWithOffset(s.genesisTime, time.Duration(attThreshold)*time.Second, params.BeaconConfig().SecondsPerSlot)
for {
select {
case <-ticker.C():
s.lateBlockTasks(s.ctx)
case <-s.ctx.Done():
log.Debug("Context closed, exiting routine")
return
}
}
}
// missingBlobIndices uses the expected commitments from the block to determine
// which BlobSidecar indices would need to be in the database for DA success.
// It returns a map where each key represents a missing BlobSidecar index.
// An empty map means we have all indices; a non-empty map can be used to compare incoming
// BlobSidecars against the set of known missing sidecars.
func missingBlobIndices(store *filesystem.BlobStorage, root [fieldparams.RootLength]byte, expected [][]byte, slot primitives.Slot) (map[uint64]bool, error) {
maxBlobsPerBlock := params.BeaconConfig().MaxBlobsPerBlock(slot)
if len(expected) == 0 {
return nil, nil
}
if len(expected) > maxBlobsPerBlock {
return nil, errMaxBlobsExceeded
}
indices := store.Summary(root)
missing := make(map[uint64]bool, len(expected))
for i := range expected {
if len(expected[i]) > 0 && !indices.HasIndex(uint64(i)) {
missing[uint64(i)] = true
}
}
return missing, nil
}
// missingDataColumnIndices uses the expected data columns from the block to determine
// which DataColumnSidecar indices would need to be in the database for DA success.
// It returns a map where each key represents a missing DataColumnSidecar index.
// An empty map means we have all indices; a non-empty map can be used to compare incoming
// DataColumns against the set of known missing sidecars.
func missingDataColumnIndices(store *filesystem.DataColumnStorage, root [fieldparams.RootLength]byte, expected map[uint64]bool) (map[uint64]bool, error) {
if len(expected) == 0 {
return nil, nil
}
if len(expected) > fieldparams.NumberOfColumns {
return nil, errMaxDataColumnsExceeded
}
// Get a summary of the data columns stored in the database.
summary := store.Summary(root)
// Check all expected data columns against the summary.
missing := make(map[uint64]bool)
for column := range expected {
if !summary.HasIndex(column) {
missing[column] = true
}
}
return missing, nil
}
// isDataAvailable blocks until all sidecars committed to in the block are available,
// or an error or context cancellation occurs. A nil result means that the data availability check is successful.
// The function will first check the database to see if all sidecars have been persisted. If any
// sidecars are missing, it will then read from the sidecar notifier channel for the given root until the channel is
// closed, the context hits cancellation/timeout, or notifications have been received for all the missing sidecars.
func (s *Service) isDataAvailable(
ctx context.Context,
roBlock consensusblocks.ROBlock,
) error {
block := roBlock.Block()
if block == nil {
return errors.New("invalid nil beacon block")
}
root := roBlock.Root()
blockVersion := block.Version()
if blockVersion >= version.Fulu {
return s.areDataColumnsAvailable(ctx, root, block)
}
if blockVersion >= version.Deneb {
return s.areBlobsAvailable(ctx, root, block)
}
return nil
}
// areDataColumnsAvailable blocks until all data columns committed to in the block are available,
// or an error or context cancellation occurs. A nil result means that the data availability check is successful.
func (s *Service) areDataColumnsAvailable(
ctx context.Context,
root [fieldparams.RootLength]byte,
block interfaces.ReadOnlyBeaconBlock,
) error {
// We are only required to check within MIN_EPOCHS_FOR_DATA_COLUMN_SIDECARS_REQUESTS
blockSlot, currentSlot := block.Slot(), s.CurrentSlot()
blockEpoch, currentEpoch := slots.ToEpoch(blockSlot), slots.ToEpoch(currentSlot)
if !params.WithinDAPeriod(blockEpoch, currentEpoch) {
return nil
}
body := block.Body()
if body == nil {
return errors.New("invalid nil beacon block body")
}
kzgCommitments, err := body.BlobKzgCommitments()
if err != nil {
return errors.Wrap(err, "blob KZG commitments")
}
// If block has not commitments there is nothing to wait for.
if len(kzgCommitments) == 0 {
return nil
}
// All columns to sample need to be available for the block to be considered available.
nodeID := s.cfg.P2P.NodeID()
// Get the custody group sampling size for the node.
custodyGroupCount, err := s.cfg.P2P.CustodyGroupCount(ctx)
if err != nil {
return errors.Wrap(err, "custody group count")
}
// Compute the sampling size.
// https://github.com/ethereum/consensus-specs/blob/master/specs/fulu/das-core.md#custody-sampling
samplesPerSlot := params.BeaconConfig().SamplesPerSlot
samplingSize := max(samplesPerSlot, custodyGroupCount)
// Get the peer info for the node.
peerInfo, _, err := peerdas.Info(nodeID, samplingSize)
if err != nil {
return errors.Wrap(err, "peer info")
}
// Subscribe to newly data columns stored in the database.
subscription, identsChan := s.dataColumnStorage.Subscribe()
defer subscription.Unsubscribe()
// Get the count of data columns we already have in the store.
summary := s.dataColumnStorage.Summary(root)
storedDataColumnsCount := summary.Count()
minimumColumnCountToReconstruct := peerdas.MinimumColumnCountToReconstruct()
// As soon as we have enough data column sidecars, we can reconstruct the missing ones.
// We don't need to wait for the rest of the data columns to declare the block as available.
if storedDataColumnsCount >= minimumColumnCountToReconstruct {
return nil
}
// Get a map of data column indices that are not currently available.
missing, err := missingDataColumnIndices(s.dataColumnStorage, root, peerInfo.CustodyColumns)
if err != nil {
return errors.Wrap(err, "missing data columns")
}
// If there are no missing indices, all data column sidecars are available.
// This is the happy path.
if len(missing) == 0 {
return nil
}
if s.startWaitingDataColumnSidecars != nil {
s.startWaitingDataColumnSidecars <- true
}
// Log for DA checks that cross over into the next slot; helpful for debugging.
nextSlot, err := slots.StartTime(s.genesisTime, block.Slot()+1)
if err != nil {
return fmt.Errorf("unable to determine slot start time: %w", err)
}
// Avoid logging if DA check is called after next slot start.
if nextSlot.After(time.Now()) {
timer := time.AfterFunc(time.Until(nextSlot), func() {
missingCount := uint64(len(missing))
if missingCount == 0 {
return
}
log.WithFields(logrus.Fields{
"slot": block.Slot(),
"root": fmt.Sprintf("%#x", root),
"columnsExpected": helpers.SortedPrettySliceFromMap(peerInfo.CustodyColumns),
"columnsWaiting": helpers.SortedPrettySliceFromMap(missing),
}).Warning("Data columns still missing at slot end")
})
defer timer.Stop()
}
for {
select {
case idents := <-identsChan:
if idents.Root != root {
// This is not the root we are looking for.
continue
}
for _, index := range idents.Indices {
// This is a data column we are expecting.
if _, ok := missing[index]; ok {
storedDataColumnsCount++
}
// As soon as we have more than half of the data columns, we can reconstruct the missing ones.
// We don't need to wait for the rest of the data columns to declare the block as available.
if storedDataColumnsCount >= minimumColumnCountToReconstruct {
return nil
}
// Remove the index from the missing map.
delete(missing, index)
// Return if there is no more missing data columns.
if len(missing) == 0 {
return nil
}
}
case <-ctx.Done():
var missingIndices any = "all"
missingIndicesCount := len(missing)
if missingIndicesCount < fieldparams.NumberOfColumns {
missingIndices = helpers.SortedPrettySliceFromMap(missing)
}
return errors.Wrapf(ctx.Err(), "data column sidecars slot: %d, BlockRoot: %#x, missing: %v", block.Slot(), root, missingIndices)
}
}
}
// areBlobsAvailable blocks until all BlobSidecars committed to in the block are available,
// or an error or context cancellation occurs. A nil result means that the data availability check is successful.
func (s *Service) areBlobsAvailable(ctx context.Context, root [fieldparams.RootLength]byte, block interfaces.ReadOnlyBeaconBlock) error {
blockSlot := block.Slot()
// We are only required to check within MIN_EPOCHS_FOR_BLOB_SIDECARS_REQUESTS
if !params.WithinDAPeriod(slots.ToEpoch(block.Slot()), slots.ToEpoch(s.CurrentSlot())) {
return nil
}
body := block.Body()
if body == nil {
return errors.New("invalid nil beacon block body")
}
kzgCommitments, err := body.BlobKzgCommitments()
if err != nil {
return errors.Wrap(err, "could not get KZG commitments")
}
// expected is the number of kzg commitments observed in the block.
expected := len(kzgCommitments)
if expected == 0 {
return nil
}
// get a map of BlobSidecar indices that are not currently available.
missing, err := missingBlobIndices(s.blobStorage, root, kzgCommitments, block.Slot())
if err != nil {
return errors.Wrap(err, "missing indices")
}
// If there are no missing indices, all BlobSidecars are available.
if len(missing) == 0 {
return nil
}
// The gossip handler for blobs writes the index of each verified blob referencing the given
// root to the channel returned by blobNotifiers.forRoot.
nc := s.blobNotifiers.forRoot(root, block.Slot())
// Log for DA checks that cross over into the next slot; helpful for debugging.
nextSlot, err := slots.StartTime(s.genesisTime, block.Slot()+1)
if err != nil {
return fmt.Errorf("unable to determine slot start time: %w", err)
}
// Avoid logging if DA check is called after next slot start.
if nextSlot.After(time.Now()) {
nst := time.AfterFunc(time.Until(nextSlot), func() {
if len(missing) == 0 {
return
}
log.WithFields(logrus.Fields{
"slot": blockSlot,
"root": fmt.Sprintf("%#x", root),
"blobsExpected": expected,
"blobsWaiting": len(missing),
}).Error("Still waiting for blobs DA check at slot end.")
})
defer nst.Stop()
}
for {
select {
case idx := <-nc:
// Delete each index seen in the notification channel.
delete(missing, idx)
// Read from the channel until there are no more missing sidecars.
if len(missing) > 0 {
continue
}
// Once all sidecars have been observed, clean up the notification channel.
s.blobNotifiers.delete(root)
return nil
case <-ctx.Done():
return errors.Wrapf(ctx.Err(), "context deadline waiting for blob sidecars slot: %d, BlockRoot: %#x", block.Slot(), root)
}
}
}
// lateBlockTasks is called 4 seconds into the slot and performs tasks
// related to late blocks. It emits a MissedSlot state feed event.
// It calls FCU and sets the right attributes if we are proposing next slot
// it also updates the next slot cache and the proposer index cache to deal with skipped slots.
func (s *Service) lateBlockTasks(ctx context.Context) {
currentSlot := s.CurrentSlot()
if currentSlot == s.HeadSlot() {
return
}
s.cfg.ForkChoiceStore.RLock()
defer s.cfg.ForkChoiceStore.RUnlock()
// return early if we are in init sync
if !s.inRegularSync() {
return
}
s.headLock.RLock()
headRoot := s.headRoot()
headState := s.headState(ctx)
s.headLock.RUnlock()
lastRoot, lastState := transition.LastCachedState()
if lastState == nil {
lastRoot, lastState = headRoot[:], headState
}
// Copy all the field tries in our cached state in the event of late
// blocks.
lastState.CopyAllTries()
if err := transition.UpdateNextSlotCache(ctx, lastRoot, lastState); err != nil {
log.WithError(err).Debug("Could not update next slot state cache")
}
if err := s.handleEpochBoundary(ctx, currentSlot, headState, headRoot[:]); err != nil {
log.WithError(err).Error("Could not update epoch boundary caches")
}
// return early if we already started building a block for the current
// head root
_, has := s.cfg.PayloadIDCache.PayloadID(s.CurrentSlot()+1, headRoot)
if has {
return
}
attribute := s.getPayloadAttribute(ctx, headState, s.CurrentSlot()+1, headRoot[:])
// return early if we are not proposing next slot
if attribute.IsEmpty() {
return
}
s.headLock.RLock()
headBlock, err := s.headBlock()
if err != nil {
s.headLock.RUnlock()
log.WithError(err).Debug("could not perform late block tasks: failed to retrieve head block")
return
}
s.headLock.RUnlock()
fcuArgs := &fcuConfig{
headState: headState,
headRoot: headRoot,
headBlock: headBlock,
attributes: attribute,
}
_, err = s.notifyForkchoiceUpdate(ctx, fcuArgs)
if err != nil {
log.WithError(err).Debug("could not perform late block tasks: failed to update forkchoice with engine")
}
}
// waitForSync blocks until the node is synced to the head.
func (s *Service) waitForSync() error {
select {
case <-s.syncComplete:
return nil
case <-s.ctx.Done():
return errors.New("context closed, exiting goroutine")
}
}
func (s *Service) handleInvalidExecutionError(ctx context.Context, err error, blockRoot, parentRoot [fieldparams.RootLength]byte) error {
if IsInvalidBlock(err) && InvalidBlockLVH(err) != [32]byte{} {
return s.pruneInvalidBlock(ctx, blockRoot, parentRoot, InvalidBlockLVH(err))
}
return err
}
// In the event of an issue processing a block we rollback changes done to the db and our caches
// to always ensure that the node's internal state is consistent.
func (s *Service) rollbackBlock(ctx context.Context, blockRoot [32]byte) {
log.Warnf("Rolling back insertion of block with root %#x due to processing error", blockRoot)
if err := s.cfg.StateGen.DeleteStateFromCaches(ctx, blockRoot); err != nil {
log.WithError(err).Errorf("Could not delete state from caches with block root %#x", blockRoot)
}
if err := s.cfg.BeaconDB.DeleteBlock(ctx, blockRoot); err != nil {
log.WithError(err).Errorf("Could not delete block with block root %#x", blockRoot)
}
}