mirror of
https://github.com/paradigmxyz/reth.git
synced 2026-01-29 17:18:08 -05:00
feat(trie): stored nibbles (#2182)
This commit is contained in:
1
Cargo.lock
generated
1
Cargo.lock
generated
@@ -5317,6 +5317,7 @@ dependencies = [
|
||||
name = "reth-trie"
|
||||
version = "0.1.0"
|
||||
dependencies = [
|
||||
"derive_more",
|
||||
"hex",
|
||||
"proptest",
|
||||
"reth-primitives",
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
//! Collection of trie related types.
|
||||
|
||||
mod nibbles;
|
||||
pub use nibbles::Nibbles;
|
||||
pub use nibbles::{StoredNibbles, StoredNibblesSubKey};
|
||||
|
||||
mod branch_node;
|
||||
pub use branch_node::BranchNodeCompact;
|
||||
|
||||
@@ -1,296 +1,48 @@
|
||||
use derive_more::{Deref, DerefMut, From, Index};
|
||||
use reth_rlp::RlpEncodableWrapper;
|
||||
use crate::Bytes;
|
||||
use derive_more::Deref;
|
||||
use reth_codecs::{main_codec, Compact};
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
/// Structure representing a sequence of nibbles.
|
||||
///
|
||||
/// A nibble is a 4-bit value, and this structure is used to store
|
||||
/// the nibble sequence representing the keys in a Merkle Patricia Trie (MPT).
|
||||
/// Using nibbles simplifies trie operations and enables consistent key
|
||||
/// representation in the MPT.
|
||||
///
|
||||
/// The `hex_data` field is a `Vec<u8>` that stores the nibbles, with each
|
||||
/// `u8` value containing a single nibble. This means that each byte in
|
||||
/// `hex_data` has its upper 4 bits set to zero and the lower 4 bits
|
||||
/// representing the nibble value.
|
||||
#[derive(
|
||||
Default,
|
||||
Clone,
|
||||
Eq,
|
||||
PartialEq,
|
||||
RlpEncodableWrapper,
|
||||
PartialOrd,
|
||||
Ord,
|
||||
Index,
|
||||
From,
|
||||
Deref,
|
||||
DerefMut,
|
||||
)]
|
||||
pub struct Nibbles {
|
||||
/// The inner representation of the nibble sequence.
|
||||
pub hex_data: Vec<u8>,
|
||||
/// The nibbles are the keys for the AccountsTrie and the subkeys for the StorageTrie.
|
||||
#[main_codec]
|
||||
#[derive(Debug, Default, Clone, PartialEq, Eq, PartialOrd, Ord)]
|
||||
pub struct StoredNibbles {
|
||||
/// The inner nibble bytes
|
||||
pub inner: Bytes,
|
||||
}
|
||||
|
||||
impl From<&[u8]> for Nibbles {
|
||||
fn from(slice: &[u8]) -> Self {
|
||||
Nibbles::from_hex(slice.to_vec())
|
||||
impl From<Vec<u8>> for StoredNibbles {
|
||||
fn from(inner: Vec<u8>) -> Self {
|
||||
Self { inner: inner.into() }
|
||||
}
|
||||
}
|
||||
|
||||
impl<const N: usize> From<&[u8; N]> for Nibbles {
|
||||
fn from(arr: &[u8; N]) -> Self {
|
||||
Nibbles::from_hex(arr.to_vec())
|
||||
/// The representation of nibbles of the merkle trie stored in the database.
|
||||
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, PartialOrd, Ord, Deref)]
|
||||
pub struct StoredNibblesSubKey(StoredNibbles);
|
||||
|
||||
impl From<Vec<u8>> for StoredNibblesSubKey {
|
||||
fn from(inner: Vec<u8>) -> Self {
|
||||
Self(StoredNibbles { inner: inner.into() })
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for Nibbles {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("Nibbles").field("hex_data", &hex::encode(&self.hex_data)).finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl Nibbles {
|
||||
/// Creates a new [Nibbles] instance from bytes.
|
||||
pub fn from_hex(hex: Vec<u8>) -> Self {
|
||||
Nibbles { hex_data: hex }
|
||||
}
|
||||
|
||||
/// Take a byte array (slice or vector) as input and convert it into a [Nibbles] struct
|
||||
/// containing the nibbles (half-bytes or 4 bits) that make up the input byte data.
|
||||
pub fn unpack<T: AsRef<[u8]>>(data: T) -> Self {
|
||||
Nibbles { hex_data: data.as_ref().iter().flat_map(|item| [item / 16, item % 16]).collect() }
|
||||
}
|
||||
|
||||
/// Packs the nibbles stored in the struct into a byte vector.
|
||||
///
|
||||
/// This method combines each pair of consecutive nibbles into a single byte,
|
||||
/// effectively reducing the size of the data by a factor of two.
|
||||
/// If the number of nibbles is odd, the last nibble is shifted left by 4 bits and
|
||||
/// added to the packed byte vector.
|
||||
pub fn pack(&self) -> Vec<u8> {
|
||||
let length = (self.len() + 1) / 2;
|
||||
if length == 0 {
|
||||
Vec::default()
|
||||
} else {
|
||||
self.iter()
|
||||
.enumerate()
|
||||
.filter_map(|(index, nibble)| {
|
||||
if index % 2 == 0 {
|
||||
let next_nibble = self.get(index + 1).unwrap_or(&0);
|
||||
Some((*nibble << 4) + *next_nibble)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
|
||||
/// Encodes a given path leaf as a compact array of bytes, where each byte represents two
|
||||
/// "nibbles" (half-bytes or 4 bits) of the original hex data, along with additional information
|
||||
/// about the leaf itself.
|
||||
///
|
||||
/// The method takes the following input:
|
||||
/// `is_leaf`: A boolean value indicating whether the current node is a leaf node or not.
|
||||
///
|
||||
/// The first byte of the encoded vector is set based on the `is_leaf` flag and the parity of
|
||||
/// the hex data length (even or odd number of nibbles).
|
||||
/// - If the node is an extension with even length, the header byte is `0x00`.
|
||||
/// - If the node is an extension with odd length, the header byte is `0x10 + <first nibble>`.
|
||||
/// - If the node is a leaf with even length, the header byte is `0x20`.
|
||||
/// - If the node is a leaf with odd length, the header byte is `0x30 + <first nibble>`.
|
||||
///
|
||||
/// If there is an odd number of nibbles, store the first nibble in the lower 4 bits of the
|
||||
/// first byte of encoded.
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// A `Vec<u8>` containing the compact byte representation of the nibble sequence, including the
|
||||
/// header byte.
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// ```
|
||||
/// # use reth_primitives::trie::Nibbles;
|
||||
///
|
||||
/// // Extension node with an even path length:
|
||||
/// let nibbles = Nibbles::from_hex(vec![0x0A, 0x0B, 0x0C, 0x0D]);
|
||||
/// assert_eq!(nibbles.encode_path_leaf(false), vec![0x00, 0xAB, 0xCD]);
|
||||
///
|
||||
/// // Extension node with an odd path length:
|
||||
/// let nibbles = Nibbles::from_hex(vec![0x0A, 0x0B, 0x0C]);
|
||||
/// assert_eq!(nibbles.encode_path_leaf(false), vec![0x1A, 0xBC]);
|
||||
///
|
||||
/// // Leaf node with an even path length:
|
||||
/// let nibbles = Nibbles::from_hex(vec![0x0A, 0x0B, 0x0C, 0x0D]);
|
||||
/// assert_eq!(nibbles.encode_path_leaf(true), vec![0x20, 0xAB, 0xCD]);
|
||||
///
|
||||
/// // Leaf node with an odd path length:
|
||||
/// let nibbles = Nibbles::from_hex(vec![0x0A, 0x0B, 0x0C]);
|
||||
/// assert_eq!(nibbles.encode_path_leaf(true), vec![0x3A, 0xBC]);
|
||||
/// ```
|
||||
pub fn encode_path_leaf(&self, is_leaf: bool) -> Vec<u8> {
|
||||
let mut encoded = vec![0u8; self.len() / 2 + 1];
|
||||
let odd_nibbles = self.len() % 2 != 0;
|
||||
|
||||
// Set the first byte of the encoded vector.
|
||||
encoded[0] = match (is_leaf, odd_nibbles) {
|
||||
(true, true) => 0x30 | self[0],
|
||||
(true, false) => 0x20,
|
||||
(false, true) => 0x10 | self[0],
|
||||
(false, false) => 0x00,
|
||||
};
|
||||
|
||||
let mut nibble_idx = if odd_nibbles { 1 } else { 0 };
|
||||
for byte in encoded.iter_mut().skip(1) {
|
||||
*byte = (self[nibble_idx] << 4) + self[nibble_idx + 1];
|
||||
nibble_idx += 2;
|
||||
}
|
||||
|
||||
encoded
|
||||
}
|
||||
|
||||
/// Increments the nibble sequence by one.
|
||||
pub fn increment(&self) -> Option<Nibbles> {
|
||||
let mut incremented = self.hex_data.clone();
|
||||
|
||||
for nibble in incremented.iter_mut().rev() {
|
||||
assert!(*nibble < 0x10);
|
||||
if *nibble < 0xf {
|
||||
*nibble += 1;
|
||||
return Some(Nibbles::from(incremented))
|
||||
} else {
|
||||
*nibble = 0;
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
/// The last element of the hex vector is used to determine whether the nibble sequence
|
||||
/// represents a leaf or an extension node. If the last element is 0x10 (16), then it's a leaf.
|
||||
pub fn is_leaf(&self) -> bool {
|
||||
self.hex_data[self.hex_data.len() - 1] == 16
|
||||
}
|
||||
|
||||
/// Returns `true` if the current nibble sequence starts with the given prefix.
|
||||
pub fn has_prefix(&self, other: &Self) -> bool {
|
||||
self.starts_with(other)
|
||||
}
|
||||
|
||||
/// Returns the nibble at the given index.
|
||||
pub fn at(&self, i: usize) -> usize {
|
||||
self.hex_data[i] as usize
|
||||
}
|
||||
|
||||
/// Returns the last nibble of the current nibble sequence.
|
||||
pub fn last(&self) -> Option<u8> {
|
||||
self.hex_data.last().copied()
|
||||
}
|
||||
|
||||
/// Returns the length of the common prefix between the current nibble sequence and the given.
|
||||
pub fn common_prefix_length(&self, other: &Nibbles) -> usize {
|
||||
let len = std::cmp::min(self.len(), other.len());
|
||||
for i in 0..len {
|
||||
if self[i] != other[i] {
|
||||
return i
|
||||
}
|
||||
}
|
||||
len
|
||||
}
|
||||
|
||||
/// Slice the current nibbles from the given start index to the end.
|
||||
pub fn slice_from(&self, index: usize) -> Nibbles {
|
||||
self.slice(index, self.hex_data.len())
|
||||
}
|
||||
|
||||
/// Slice the current nibbles within the provided index range.
|
||||
pub fn slice(&self, start: usize, end: usize) -> Nibbles {
|
||||
Nibbles::from_hex(self.hex_data[start..end].to_vec())
|
||||
}
|
||||
|
||||
/// Join two nibbles together.
|
||||
pub fn join(&self, b: &Nibbles) -> Nibbles {
|
||||
let mut hex_data = Vec::with_capacity(self.len() + b.len());
|
||||
hex_data.extend_from_slice(self);
|
||||
hex_data.extend_from_slice(b);
|
||||
Nibbles::from_hex(hex_data)
|
||||
}
|
||||
|
||||
/// Extend the current nibbles with another nibbles.
|
||||
pub fn extend(&mut self, b: &Nibbles) {
|
||||
self.hex_data.extend_from_slice(b);
|
||||
}
|
||||
|
||||
/// Truncate the current nibbles to the given length.
|
||||
pub fn truncate(&mut self, len: usize) {
|
||||
self.hex_data.truncate(len)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use proptest::prelude::*;
|
||||
|
||||
#[test]
|
||||
fn hashed_regression() {
|
||||
let nibbles = hex::decode("05010406040a040203030f010805020b050c04070003070e0909070f010b0a0805020301070c0a0902040b0f000f0006040a04050f020b090701000a0a040b").unwrap();
|
||||
let nibbles = Nibbles::from(nibbles);
|
||||
let path = nibbles.encode_path_leaf(true);
|
||||
let expected =
|
||||
hex::decode("351464a4233f1852b5c47037e997f1ba852317ca924bf0f064a45f2b9710aa4b")
|
||||
.unwrap();
|
||||
assert_eq!(path, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn pack_nibbles() {
|
||||
for (input, expected) in [
|
||||
(vec![], vec![]),
|
||||
(vec![0xa], vec![0xa0]),
|
||||
(vec![0xa, 0xb], vec![0xab]),
|
||||
(vec![0xa, 0xb, 0x2], vec![0xab, 0x20]),
|
||||
(vec![0xa, 0xb, 0x2, 0x0], vec![0xab, 0x20]),
|
||||
(vec![0xa, 0xb, 0x2, 0x7], vec![0xab, 0x27]),
|
||||
] {
|
||||
let nibbles = Nibbles::from(input);
|
||||
let encoded = nibbles.pack();
|
||||
assert_eq!(encoded, expected);
|
||||
}
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#[test]
|
||||
fn pack_unpack_roundtrip(input in any::<Vec<u8>>()) {
|
||||
let nibbles = Nibbles::unpack(&input);
|
||||
let packed = nibbles.pack();
|
||||
prop_assert_eq!(packed, input);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn encode_path_first_byte(input in any::<Vec<u8>>()) {
|
||||
prop_assume!(!input.is_empty());
|
||||
let input = Nibbles::unpack(input);
|
||||
let input_is_odd = input.len() % 2 == 1;
|
||||
|
||||
let compact_leaf = input.encode_path_leaf(true);
|
||||
let leaf_flag = compact_leaf[0];
|
||||
// Check flag
|
||||
assert_ne!(leaf_flag & 0x20, 0);
|
||||
assert_eq!(input_is_odd, (leaf_flag & 0x10) != 0);
|
||||
if input_is_odd {
|
||||
assert_eq!(leaf_flag & 0x0f, *input.first().unwrap());
|
||||
}
|
||||
|
||||
|
||||
let compact_extension = input.encode_path_leaf(false);
|
||||
let extension_flag = compact_extension[0];
|
||||
// Check first byte
|
||||
assert_eq!(extension_flag & 0x20, 0);
|
||||
assert_eq!(input_is_odd, (extension_flag & 0x10) != 0);
|
||||
if input_is_odd {
|
||||
assert_eq!(extension_flag & 0x0f, *input.first().unwrap());
|
||||
}
|
||||
}
|
||||
impl Compact for StoredNibblesSubKey {
|
||||
fn to_compact(self, buf: &mut impl bytes::BufMut) -> usize {
|
||||
assert!(self.inner.len() <= 64);
|
||||
let mut padded = vec![0; 64];
|
||||
padded[..self.inner.len()].copy_from_slice(&self.inner[..]);
|
||||
buf.put_slice(&padded);
|
||||
buf.put_u8(self.inner.len() as u8);
|
||||
64 + 1
|
||||
}
|
||||
|
||||
fn from_compact(buf: &[u8], _len: usize) -> (Self, &[u8])
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
let len = buf[64] as usize;
|
||||
let inner = Vec::from(&buf[..len]).into();
|
||||
(Self(StoredNibbles { inner }), &buf[65..])
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4,7 +4,10 @@ use crate::{
|
||||
Error,
|
||||
};
|
||||
use reth_codecs::{main_codec, Compact};
|
||||
use reth_primitives::*;
|
||||
use reth_primitives::{
|
||||
trie::{StoredNibbles, StoredNibblesSubKey},
|
||||
*,
|
||||
};
|
||||
|
||||
/// Implements compression for Compact type.
|
||||
macro_rules! impl_compression_for_compact {
|
||||
@@ -40,6 +43,8 @@ impl_compression_for_compact!(
|
||||
Receipt,
|
||||
TxType,
|
||||
StorageEntry,
|
||||
StoredNibbles,
|
||||
StoredNibblesSubKey,
|
||||
StorageTrieEntry,
|
||||
StoredBlockBodyIndices,
|
||||
StoredBlockOmmers,
|
||||
|
||||
@@ -1,4 +1,13 @@
|
||||
//! Implements data structures specific to the database
|
||||
use crate::{
|
||||
table::{Decode, Encode},
|
||||
Error,
|
||||
};
|
||||
use reth_codecs::Compact;
|
||||
use reth_primitives::{
|
||||
trie::{StoredNibbles, StoredNibblesSubKey},
|
||||
Address, H256,
|
||||
};
|
||||
|
||||
pub mod accounts;
|
||||
pub mod blocks;
|
||||
@@ -10,12 +19,6 @@ pub use accounts::*;
|
||||
pub use blocks::*;
|
||||
pub use sharded_key::ShardedKey;
|
||||
|
||||
use crate::{
|
||||
table::{Decode, Encode},
|
||||
Error,
|
||||
};
|
||||
use reth_primitives::{Address, H256};
|
||||
|
||||
/// Macro that implements [`Encode`] and [`Decode`] for uint types.
|
||||
macro_rules! impl_uints {
|
||||
($($name:tt),+) => {
|
||||
@@ -95,3 +98,39 @@ impl Decode for String {
|
||||
String::from_utf8(value.as_ref().to_vec()).map_err(|_| Error::DecodeError)
|
||||
}
|
||||
}
|
||||
|
||||
impl Encode for StoredNibbles {
|
||||
type Encoded = Vec<u8>;
|
||||
|
||||
// Delegate to the Compact implementation
|
||||
fn encode(self) -> Self::Encoded {
|
||||
let mut buf = Vec::with_capacity(self.inner.len());
|
||||
self.to_compact(&mut buf);
|
||||
buf
|
||||
}
|
||||
}
|
||||
|
||||
impl Decode for StoredNibbles {
|
||||
fn decode<B: AsRef<[u8]>>(value: B) -> Result<Self, Error> {
|
||||
let buf = value.as_ref();
|
||||
Ok(Self::from_compact(buf, buf.len()).0)
|
||||
}
|
||||
}
|
||||
|
||||
impl Encode for StoredNibblesSubKey {
|
||||
type Encoded = Vec<u8>;
|
||||
|
||||
// Delegate to the Compact implementation
|
||||
fn encode(self) -> Self::Encoded {
|
||||
let mut buf = Vec::with_capacity(65);
|
||||
self.to_compact(&mut buf);
|
||||
buf
|
||||
}
|
||||
}
|
||||
|
||||
impl Decode for StoredNibblesSubKey {
|
||||
fn decode<B: AsRef<[u8]>>(value: B) -> Result<Self, Error> {
|
||||
let buf = value.as_ref();
|
||||
Ok(Self::from_compact(buf, buf.len()).0)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -22,6 +22,7 @@ tracing = "0.1"
|
||||
|
||||
# misc
|
||||
hex = "0.4"
|
||||
derive_more = "0.99"
|
||||
|
||||
[dev-dependencies]
|
||||
# reth
|
||||
|
||||
@@ -1,8 +1,11 @@
|
||||
use crate::nodes::{rlp_hash, BranchNode, ExtensionNode, LeafNode};
|
||||
use crate::{
|
||||
nodes::{rlp_hash, BranchNode, ExtensionNode, LeafNode},
|
||||
Nibbles,
|
||||
};
|
||||
use reth_primitives::{
|
||||
keccak256,
|
||||
proofs::EMPTY_ROOT,
|
||||
trie::{BranchNodeCompact, Nibbles, TrieMask},
|
||||
trie::{BranchNodeCompact, TrieMask},
|
||||
H256,
|
||||
};
|
||||
use std::fmt::Debug;
|
||||
@@ -358,7 +361,7 @@ impl HashBuilder {
|
||||
mod tests {
|
||||
use super::*;
|
||||
use proptest::prelude::*;
|
||||
use reth_primitives::{hex_literal::hex, proofs::KeccakHasher, trie::Nibbles, H256, U256};
|
||||
use reth_primitives::{hex_literal::hex, proofs::KeccakHasher, H256, U256};
|
||||
use std::collections::{BTreeMap, HashMap};
|
||||
use tokio::sync::mpsc::unbounded_channel;
|
||||
use tokio_stream::{wrappers::UnboundedReceiverStream, StreamExt};
|
||||
|
||||
@@ -9,6 +9,12 @@
|
||||
//! authenticated radix trie that is used to store key-value bindings.
|
||||
//! <https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/>
|
||||
|
||||
mod nibbles;
|
||||
pub use nibbles::Nibbles;
|
||||
|
||||
/// The Ethereum account as represented in the trie.
|
||||
pub mod account;
|
||||
|
||||
/// Various branch nodes producde by the hash builder.
|
||||
pub mod nodes;
|
||||
|
||||
|
||||
296
crates/trie/src/nibbles.rs
Normal file
296
crates/trie/src/nibbles.rs
Normal file
@@ -0,0 +1,296 @@
|
||||
use derive_more::{Deref, DerefMut, From, Index};
|
||||
use reth_rlp::RlpEncodableWrapper;
|
||||
|
||||
/// Structure representing a sequence of nibbles.
|
||||
///
|
||||
/// A nibble is a 4-bit value, and this structure is used to store
|
||||
/// the nibble sequence representing the keys in a Merkle Patricia Trie (MPT).
|
||||
/// Using nibbles simplifies trie operations and enables consistent key
|
||||
/// representation in the MPT.
|
||||
///
|
||||
/// The `hex_data` field is a `Vec<u8>` that stores the nibbles, with each
|
||||
/// `u8` value containing a single nibble. This means that each byte in
|
||||
/// `hex_data` has its upper 4 bits set to zero and the lower 4 bits
|
||||
/// representing the nibble value.
|
||||
#[derive(
|
||||
Default,
|
||||
Clone,
|
||||
Eq,
|
||||
PartialEq,
|
||||
RlpEncodableWrapper,
|
||||
PartialOrd,
|
||||
Ord,
|
||||
Index,
|
||||
From,
|
||||
Deref,
|
||||
DerefMut,
|
||||
)]
|
||||
pub struct Nibbles {
|
||||
/// The inner representation of the nibble sequence.
|
||||
pub hex_data: Vec<u8>,
|
||||
}
|
||||
|
||||
impl From<&[u8]> for Nibbles {
|
||||
fn from(slice: &[u8]) -> Self {
|
||||
Nibbles::from_hex(slice.to_vec())
|
||||
}
|
||||
}
|
||||
|
||||
impl<const N: usize> From<&[u8; N]> for Nibbles {
|
||||
fn from(arr: &[u8; N]) -> Self {
|
||||
Nibbles::from_hex(arr.to_vec())
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for Nibbles {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("Nibbles").field("hex_data", &hex::encode(&self.hex_data)).finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl Nibbles {
|
||||
/// Creates a new [Nibbles] instance from bytes.
|
||||
pub fn from_hex(hex: Vec<u8>) -> Self {
|
||||
Nibbles { hex_data: hex }
|
||||
}
|
||||
|
||||
/// Take a byte array (slice or vector) as input and convert it into a [Nibbles] struct
|
||||
/// containing the nibbles (half-bytes or 4 bits) that make up the input byte data.
|
||||
pub fn unpack<T: AsRef<[u8]>>(data: T) -> Self {
|
||||
Nibbles { hex_data: data.as_ref().iter().flat_map(|item| [item / 16, item % 16]).collect() }
|
||||
}
|
||||
|
||||
/// Packs the nibbles stored in the struct into a byte vector.
|
||||
///
|
||||
/// This method combines each pair of consecutive nibbles into a single byte,
|
||||
/// effectively reducing the size of the data by a factor of two.
|
||||
/// If the number of nibbles is odd, the last nibble is shifted left by 4 bits and
|
||||
/// added to the packed byte vector.
|
||||
pub fn pack(&self) -> Vec<u8> {
|
||||
let length = (self.len() + 1) / 2;
|
||||
if length == 0 {
|
||||
Vec::new()
|
||||
} else {
|
||||
self.iter()
|
||||
.enumerate()
|
||||
.filter_map(|(index, nibble)| {
|
||||
if index % 2 == 0 {
|
||||
let next_nibble = self.get(index + 1).unwrap_or(&0);
|
||||
Some((*nibble << 4) + *next_nibble)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
|
||||
/// Encodes a given path leaf as a compact array of bytes, where each byte represents two
|
||||
/// "nibbles" (half-bytes or 4 bits) of the original hex data, along with additional information
|
||||
/// about the leaf itself.
|
||||
///
|
||||
/// The method takes the following input:
|
||||
/// `is_leaf`: A boolean value indicating whether the current node is a leaf node or not.
|
||||
///
|
||||
/// The first byte of the encoded vector is set based on the `is_leaf` flag and the parity of
|
||||
/// the hex data length (even or odd number of nibbles).
|
||||
/// - If the node is an extension with even length, the header byte is `0x00`.
|
||||
/// - If the node is an extension with odd length, the header byte is `0x10 + <first nibble>`.
|
||||
/// - If the node is a leaf with even length, the header byte is `0x20`.
|
||||
/// - If the node is a leaf with odd length, the header byte is `0x30 + <first nibble>`.
|
||||
///
|
||||
/// If there is an odd number of nibbles, store the first nibble in the lower 4 bits of the
|
||||
/// first byte of encoded.
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// A `Vec<u8>` containing the compact byte representation of the nibble sequence, including the
|
||||
/// header byte.
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// ```
|
||||
/// # use reth_trie::Nibbles;
|
||||
///
|
||||
/// // Extension node with an even path length:
|
||||
/// let nibbles = Nibbles::from_hex(vec![0x0A, 0x0B, 0x0C, 0x0D]);
|
||||
/// assert_eq!(nibbles.encode_path_leaf(false), vec![0x00, 0xAB, 0xCD]);
|
||||
///
|
||||
/// // Extension node with an odd path length:
|
||||
/// let nibbles = Nibbles::from_hex(vec![0x0A, 0x0B, 0x0C]);
|
||||
/// assert_eq!(nibbles.encode_path_leaf(false), vec![0x1A, 0xBC]);
|
||||
///
|
||||
/// // Leaf node with an even path length:
|
||||
/// let nibbles = Nibbles::from_hex(vec![0x0A, 0x0B, 0x0C, 0x0D]);
|
||||
/// assert_eq!(nibbles.encode_path_leaf(true), vec![0x20, 0xAB, 0xCD]);
|
||||
///
|
||||
/// // Leaf node with an odd path length:
|
||||
/// let nibbles = Nibbles::from_hex(vec![0x0A, 0x0B, 0x0C]);
|
||||
/// assert_eq!(nibbles.encode_path_leaf(true), vec![0x3A, 0xBC]);
|
||||
/// ```
|
||||
pub fn encode_path_leaf(&self, is_leaf: bool) -> Vec<u8> {
|
||||
let mut encoded = vec![0u8; self.len() / 2 + 1];
|
||||
let odd_nibbles = self.len() % 2 != 0;
|
||||
|
||||
// Set the first byte of the encoded vector.
|
||||
encoded[0] = match (is_leaf, odd_nibbles) {
|
||||
(true, true) => 0x30 | self[0],
|
||||
(true, false) => 0x20,
|
||||
(false, true) => 0x10 | self[0],
|
||||
(false, false) => 0x00,
|
||||
};
|
||||
|
||||
let mut nibble_idx = if odd_nibbles { 1 } else { 0 };
|
||||
for byte in encoded.iter_mut().skip(1) {
|
||||
*byte = (self[nibble_idx] << 4) + self[nibble_idx + 1];
|
||||
nibble_idx += 2;
|
||||
}
|
||||
|
||||
encoded
|
||||
}
|
||||
|
||||
/// Increments the nibble sequence by one.
|
||||
pub fn increment(&self) -> Option<Nibbles> {
|
||||
let mut incremented = self.hex_data.clone();
|
||||
|
||||
for nibble in incremented.iter_mut().rev() {
|
||||
assert!(*nibble < 0x10);
|
||||
if *nibble < 0xf {
|
||||
*nibble += 1;
|
||||
return Some(Nibbles::from(incremented))
|
||||
} else {
|
||||
*nibble = 0;
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
/// The last element of the hex vector is used to determine whether the nibble sequence
|
||||
/// represents a leaf or an extension node. If the last element is 0x10 (16), then it's a leaf.
|
||||
pub fn is_leaf(&self) -> bool {
|
||||
self.hex_data[self.hex_data.len() - 1] == 16
|
||||
}
|
||||
|
||||
/// Returns `true` if the current nibble sequence starts with the given prefix.
|
||||
pub fn has_prefix(&self, other: &Self) -> bool {
|
||||
self.starts_with(other)
|
||||
}
|
||||
|
||||
/// Returns the nibble at the given index.
|
||||
pub fn at(&self, i: usize) -> usize {
|
||||
self.hex_data[i] as usize
|
||||
}
|
||||
|
||||
/// Returns the last nibble of the current nibble sequence.
|
||||
pub fn last(&self) -> Option<u8> {
|
||||
self.hex_data.last().copied()
|
||||
}
|
||||
|
||||
/// Returns the length of the common prefix between the current nibble sequence and the given.
|
||||
pub fn common_prefix_length(&self, other: &Nibbles) -> usize {
|
||||
let len = std::cmp::min(self.len(), other.len());
|
||||
for i in 0..len {
|
||||
if self[i] != other[i] {
|
||||
return i
|
||||
}
|
||||
}
|
||||
len
|
||||
}
|
||||
|
||||
/// Slice the current nibbles from the given start index to the end.
|
||||
pub fn slice_from(&self, index: usize) -> Nibbles {
|
||||
self.slice(index, self.hex_data.len())
|
||||
}
|
||||
|
||||
/// Slice the current nibbles within the provided index range.
|
||||
pub fn slice(&self, start: usize, end: usize) -> Nibbles {
|
||||
Nibbles::from_hex(self.hex_data[start..end].to_vec())
|
||||
}
|
||||
|
||||
/// Join two nibbles together.
|
||||
pub fn join(&self, b: &Nibbles) -> Nibbles {
|
||||
let mut hex_data = Vec::with_capacity(self.len() + b.len());
|
||||
hex_data.extend_from_slice(self);
|
||||
hex_data.extend_from_slice(b);
|
||||
Nibbles::from_hex(hex_data)
|
||||
}
|
||||
|
||||
/// Extend the current nibbles with another nibbles.
|
||||
pub fn extend(&mut self, b: &Nibbles) {
|
||||
self.hex_data.extend_from_slice(b);
|
||||
}
|
||||
|
||||
/// Truncate the current nibbles to the given length.
|
||||
pub fn truncate(&mut self, len: usize) {
|
||||
self.hex_data.truncate(len)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use proptest::prelude::*;
|
||||
|
||||
#[test]
|
||||
fn hashed_regression() {
|
||||
let nibbles = hex::decode("05010406040a040203030f010805020b050c04070003070e0909070f010b0a0805020301070c0a0902040b0f000f0006040a04050f020b090701000a0a040b").unwrap();
|
||||
let nibbles = Nibbles::from(nibbles);
|
||||
let path = nibbles.encode_path_leaf(true);
|
||||
let expected =
|
||||
hex::decode("351464a4233f1852b5c47037e997f1ba852317ca924bf0f064a45f2b9710aa4b")
|
||||
.unwrap();
|
||||
assert_eq!(path, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn pack_nibbles() {
|
||||
for (input, expected) in [
|
||||
(vec![], vec![]),
|
||||
(vec![0xa], vec![0xa0]),
|
||||
(vec![0xa, 0xb], vec![0xab]),
|
||||
(vec![0xa, 0xb, 0x2], vec![0xab, 0x20]),
|
||||
(vec![0xa, 0xb, 0x2, 0x0], vec![0xab, 0x20]),
|
||||
(vec![0xa, 0xb, 0x2, 0x7], vec![0xab, 0x27]),
|
||||
] {
|
||||
let nibbles = Nibbles::from(input);
|
||||
let encoded = nibbles.pack();
|
||||
assert_eq!(encoded, expected);
|
||||
}
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#[test]
|
||||
fn pack_unpack_roundtrip(input in any::<Vec<u8>>()) {
|
||||
let nibbles = Nibbles::unpack(&input);
|
||||
let packed = nibbles.pack();
|
||||
prop_assert_eq!(packed, input);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn encode_path_first_byte(input in any::<Vec<u8>>()) {
|
||||
prop_assume!(!input.is_empty());
|
||||
let input = Nibbles::unpack(input);
|
||||
let input_is_odd = input.len() % 2 == 1;
|
||||
|
||||
let compact_leaf = input.encode_path_leaf(true);
|
||||
let leaf_flag = compact_leaf[0];
|
||||
// Check flag
|
||||
assert_ne!(leaf_flag & 0x20, 0);
|
||||
assert_eq!(input_is_odd, (leaf_flag & 0x10) != 0);
|
||||
if input_is_odd {
|
||||
assert_eq!(leaf_flag & 0x0f, *input.first().unwrap());
|
||||
}
|
||||
|
||||
|
||||
let compact_extension = input.encode_path_leaf(false);
|
||||
let extension_flag = compact_extension[0];
|
||||
// Check first byte
|
||||
assert_eq!(extension_flag & 0x20, 0);
|
||||
assert_eq!(input_is_odd, (extension_flag & 0x10) != 0);
|
||||
if input_is_odd {
|
||||
assert_eq!(extension_flag & 0x0f, *input.first().unwrap());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,5 +1,6 @@
|
||||
use super::rlp_node;
|
||||
use reth_primitives::{bytes::BytesMut, trie::Nibbles};
|
||||
use crate::Nibbles;
|
||||
use reth_primitives::bytes::BytesMut;
|
||||
use reth_rlp::{BufMut, Encodable};
|
||||
|
||||
/// An intermediate node that exists solely to compress the trie's paths. It contains a path segment
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
use super::rlp_node;
|
||||
use reth_primitives::{bytes::BytesMut, trie::Nibbles};
|
||||
use crate::Nibbles;
|
||||
use reth_primitives::bytes::BytesMut;
|
||||
use reth_rlp::{BufMut, Encodable};
|
||||
|
||||
/// A leaf node represents the endpoint or terminal node in the trie. In other words, a leaf node is
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
use crate::Nibbles;
|
||||
use std::collections::BTreeSet;
|
||||
|
||||
use reth_primitives::trie::Nibbles;
|
||||
|
||||
/// A container for efficiently storing and checking for the presence of key prefixes.
|
||||
///
|
||||
/// This data structure stores a set of `Nibbles` and provides methods to insert
|
||||
|
||||
Reference in New Issue
Block a user