feat(everything): add SEP-1686 Tasks support

- Add tasks capability with list, cancel, and requests.tools.call
- Add InMemoryTaskStore and InMemoryTaskMessageQueue from SDK experimental
- Add simulate-research-query tool demonstrating task lifecycle
- Task demonstrates working -> input_required -> completed status flow
- Uses elicitation for ambiguous queries when client supports it

Closes #3037

🦉 Generated with [Claude Code](https://claude.ai/code)
This commit is contained in:
olaservo
2026-01-09 05:58:49 -07:00
parent 9691b958ec
commit 0208e93f85
4 changed files with 389 additions and 1 deletions

View File

@@ -22,7 +22,8 @@
- `trigger-long-running-operation` (tools/trigger-trigger-long-running-operation.ts): Simulates a multi-step operation over a given `duration` and number of `steps`; reports progress via `notifications/progress` when a `progressToken` is provided by the client.
- `toggle-simulated-logging` (tools/toggle-simulated-logging.ts): Starts or stops simulated, randomleveled logging for the invoking session. Respects the clients selected minimum logging level.
- `toggle-subscriber-updates` (tools/toggle-subscriber-updates.ts): Starts or stops simulated resource update notifications for URIs the invoking session has subscribed to.
- `trigger-sampling-request` (tools/trigger-sampling-request.ts): Issues a `sampling/createMessage` request to the client/LLM using provided `prompt` and optional generation controls; returns the LLMs response payload.
- `trigger-sampling-request` (tools/trigger-sampling-request.ts): Issues a `sampling/createMessage` request to the client/LLM using provided `prompt` and optional generation controls; returns the LLM's response payload.
- `simulate-research-query` (tools/simulate-research-query.ts): Demonstrates MCP Tasks (SEP-1686) with a simulated multi-stage research operation. Accepts `topic` and `ambiguous` parameters. Returns a task that progresses through stages with status updates. If `ambiguous` is true and client supports elicitation, pauses with `input_required` status to gather clarification.
## Prompts
@@ -50,3 +51,30 @@
- Simulated logging is available but off by default.
- Use the `toggle-simulated-logging` tool to start/stop periodic log messages of varying levels (debug, info, notice, warning, error, critical, alert, emergency) per session.
- Clients can control the minimum level they receive via the standard MCP `logging/setLevel` request.
## Tasks (SEP-1686)
The server advertises support for MCP Tasks, enabling long-running operations with status tracking:
- **Capabilities advertised**: `tasks.list`, `tasks.cancel`, `tasks.requests.tools.call`
- **Task Store**: Uses `InMemoryTaskStore` from SDK experimental for task lifecycle management
- **Message Queue**: Uses `InMemoryTaskMessageQueue` for task-related messaging
### Task Lifecycle
1. Client calls `tools/call` with `task: true` parameter
2. Server returns `CreateTaskResult` with `taskId` instead of immediate result
3. Client polls `tasks/get` to check status and receive `statusMessage` updates
4. When status is `completed`, client calls `tasks/result` to retrieve the final result
### Task Statuses
- `working`: Task is actively processing
- `input_required`: Task needs additional input (demonstrated via elicitation side-channel)
- `completed`: Task finished successfully
- `failed`: Task encountered an error
- `cancelled`: Task was cancelled by client
### Demo Tool
Use the `simulate-research-query` tool to exercise the full task lifecycle. Set `ambiguous: true` to trigger the `input_required` flow with elicitation.

View File

@@ -1,4 +1,8 @@
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import {
InMemoryTaskStore,
InMemoryTaskMessageQueue,
} from "@modelcontextprotocol/sdk/experimental";
import {
setSubscriptionHandlers,
stopSimulatedResourceUpdates,
@@ -32,6 +36,10 @@ export const createServer: () => ServerFactoryResponse = () => {
// Read the server instructions
const instructions = readInstructions();
// Create task store and message queue for task support
const taskStore = new InMemoryTaskStore();
const taskMessageQueue = new InMemoryTaskMessageQueue();
// Create the server
const server = new McpServer(
{
@@ -52,8 +60,19 @@ export const createServer: () => ServerFactoryResponse = () => {
listChanged: true,
},
logging: {},
tasks: {
list: {},
cancel: {},
requests: {
tools: {
call: {},
},
},
},
},
instructions,
taskStore,
taskMessageQueue,
}
);
@@ -89,6 +108,8 @@ export const createServer: () => ServerFactoryResponse = () => {
// Stop any simulated logging or resource updates that may have been initiated.
stopSimulatedLogging(sessionId);
stopSimulatedResourceUpdates(sessionId);
// Clean up task store timers
taskStore.cleanup();
},
} satisfies ServerFactoryResponse;
};

View File

@@ -14,6 +14,7 @@ import { registerToggleSubscriberUpdatesTool } from "./toggle-subscriber-updates
import { registerTriggerElicitationRequestTool } from "./trigger-elicitation-request.js";
import { registerTriggerLongRunningOperationTool } from "./trigger-long-running-operation.js";
import { registerTriggerSamplingRequestTool } from "./trigger-sampling-request.js";
import { registerSimulateResearchQueryTool } from "./simulate-research-query.js";
/**
* Register the tools with the MCP server.
@@ -42,4 +43,6 @@ export const registerConditionalTools = (server: McpServer) => {
registerGetRootsListTool(server);
registerTriggerElicitationRequestTool(server);
registerTriggerSamplingRequestTool(server);
// Task-based research tool (uses experimental tasks API)
registerSimulateResearchQueryTool(server);
};

View File

@@ -0,0 +1,336 @@
import { z } from "zod";
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import {
CallToolResult,
GetTaskResult,
Task,
ElicitResultSchema,
} from "@modelcontextprotocol/sdk/types.js";
import { CreateTaskResult } from "@modelcontextprotocol/sdk/experimental";
// Tool input schema
const SimulateResearchQuerySchema = z.object({
topic: z.string().describe("The research topic to investigate"),
ambiguous: z
.boolean()
.default(false)
.describe(
"Simulate an ambiguous query that requires clarification (triggers input_required status)"
),
});
// Research stages
const STAGES = [
"Gathering sources",
"Analyzing content",
"Synthesizing findings",
"Generating report",
];
// Duration per stage in milliseconds
const STAGE_DURATION = 1000;
// Internal state for tracking research tasks
interface ResearchState {
topic: string;
ambiguous: boolean;
currentStage: number;
clarification?: string;
waitingForClarification: boolean;
completed: boolean;
result?: CallToolResult;
}
// Map to store research state per task
const researchStates = new Map<string, ResearchState>();
/**
* Runs the background research process.
* Updates task status as it progresses through stages.
*/
async function runResearchProcess(
taskId: string,
args: z.infer<typeof SimulateResearchQuerySchema>,
taskStore: {
updateTaskStatus: (
taskId: string,
status: Task["status"],
message?: string
) => Promise<void>;
storeTaskResult: (
taskId: string,
status: "completed" | "failed",
result: CallToolResult
) => Promise<void>;
}
): Promise<void> {
const state = researchStates.get(taskId);
if (!state) return;
// Process each stage
for (let i = state.currentStage; i < STAGES.length; i++) {
state.currentStage = i;
// Check if task was cancelled externally
if (state.completed) return;
// Update status message for current stage
await taskStore.updateTaskStatus(taskId, "working", `${STAGES[i]}...`);
// At synthesis stage (index 2), check if clarification is needed
if (i === 2 && state.ambiguous && !state.clarification) {
state.waitingForClarification = true;
await taskStore.updateTaskStatus(
taskId,
"input_required",
`Found multiple interpretations for "${state.topic}". Please clarify your intent.`
);
// Wait for clarification - the getTaskResult handler will resume this
return;
}
// Simulate work for this stage
await new Promise((resolve) => setTimeout(resolve, STAGE_DURATION));
}
// All stages complete - generate result
state.completed = true;
const result = generateResearchReport(state);
state.result = result;
await taskStore.storeTaskResult(taskId, "completed", result);
}
/**
* Generates the final research report with educational content about tasks.
*/
function generateResearchReport(state: ResearchState): CallToolResult {
const topic = state.clarification
? `${state.topic} (${state.clarification})`
: state.topic;
const report = `# Research Report: ${topic}
## Research Parameters
- **Topic**: ${state.topic}
${state.clarification ? `- **Clarification**: ${state.clarification}` : ""}
## Synthesis
This research query was processed through ${STAGES.length} stages:
${STAGES.map((s, i) => `- Stage ${i + 1}: ${s}`).join("\n")}
---
## About This Demo (SEP-1686: Tasks)
This tool demonstrates MCP's task-based execution pattern for long-running operations:
**Task Lifecycle Demonstrated:**
1. \`tools/call\` with \`task\` parameter → Server returns \`CreateTaskResult\` (not the final result)
2. Client polls \`tasks/get\` → Server returns current status and \`statusMessage\`
3. Status progressed: \`working\`${state.clarification ? `\`input_required\`\`working\`` : ""}\`completed\`
4. Client calls \`tasks/result\` → Server returns this final result
${state.clarification ? `**input_required Flow:**
When the query was ambiguous, the task paused with \`input_required\` status.
The client called \`tasks/result\` prematurely, which triggered an elicitation
request via the side-channel. After receiving clarification ("${state.clarification}"),
the task resumed processing.
` : ""}
**Key Concepts:**
- Tasks enable "call now, fetch later" patterns
- \`statusMessage\` provides human-readable progress updates
- Tasks have TTL (time-to-live) for automatic cleanup
- \`pollInterval\` suggests how often to check status
*This is a simulated research report from the Everything MCP Server.*
`;
return {
content: [
{
type: "text",
text: report,
},
],
};
}
/**
* Registers the 'simulate-research-query' tool as a task-based tool.
*
* This tool demonstrates the MCP Tasks feature (SEP-1686) with a real-world scenario:
* a research tool that gathers and synthesizes information from multiple sources.
* If the query is ambiguous, it pauses to ask for clarification before completing.
*
* @param {McpServer} server - The McpServer instance where the tool will be registered.
*/
export const registerSimulateResearchQueryTool = (server: McpServer) => {
// Check if client supports elicitation (needed for input_required flow)
const clientCapabilities = server.server.getClientCapabilities() || {};
const clientSupportsElicitation: boolean =
clientCapabilities.elicitation !== undefined;
server.experimental.tasks.registerToolTask(
"simulate-research-query",
{
title: "Simulate Research Query",
description:
"Simulates a deep research operation that gathers, analyzes, and synthesizes information. " +
"Demonstrates MCP task-based operations with progress through multiple stages. " +
"If 'ambiguous' is true and client supports elicitation, pauses for clarification (input_required status).",
inputSchema: SimulateResearchQuerySchema,
execution: { taskSupport: "required" },
},
{
/**
* Creates a new research task and starts background processing.
*/
createTask: async (args, extra): Promise<CreateTaskResult> => {
const validatedArgs = SimulateResearchQuerySchema.parse(args);
// Create the task in the store
const task = await extra.taskStore.createTask({
ttl: 300000, // 5 minutes
pollInterval: 1000,
});
// Initialize research state
const state: ResearchState = {
topic: validatedArgs.topic,
ambiguous: validatedArgs.ambiguous && clientSupportsElicitation,
currentStage: 0,
waitingForClarification: false,
completed: false,
};
researchStates.set(task.taskId, state);
// Start background research (don't await - runs asynchronously)
runResearchProcess(task.taskId, validatedArgs, extra.taskStore).catch(
(error) => {
console.error(`Research task ${task.taskId} failed:`, error);
extra.taskStore
.updateTaskStatus(task.taskId, "failed", String(error))
.catch(console.error);
}
);
return { task };
},
/**
* Returns the current status of the research task.
*/
getTask: async (args, extra): Promise<GetTaskResult> => {
const task = await extra.taskStore.getTask(extra.taskId);
// The SDK's RequestTaskStore.getTask throws if not found, so task is always defined
return task;
},
/**
* Returns the task result, or handles input_required via elicitation side-channel.
*/
getTaskResult: async (args, extra): Promise<CallToolResult> => {
const task = await extra.taskStore.getTask(extra.taskId);
const state = researchStates.get(extra.taskId);
// Handle input_required - use tasks/result as side-channel for elicitation
if (task?.status === "input_required" && state?.waitingForClarification) {
// Send elicitation request through the side-channel
const elicitationResult = await extra.sendRequest(
{
method: "elicitation/create",
params: {
message: `The research query "${state.topic}" could have multiple interpretations. Please clarify what you're looking for:`,
requestedSchema: {
type: "object",
properties: {
interpretation: {
type: "string",
title: "Clarification",
description: "Which interpretation of the topic do you mean?",
oneOf: getInterpretationsForTopic(state.topic),
},
},
required: ["interpretation"],
},
},
},
ElicitResultSchema,
{ timeout: 5 * 60 * 1000 /* 5 minutes */ }
);
// Process elicitation response
if (
elicitationResult.action === "accept" &&
elicitationResult.content
) {
state.clarification =
(elicitationResult.content as { interpretation?: string })
.interpretation || "User accepted without selection";
} else if (elicitationResult.action === "decline") {
state.clarification = "User declined - using default interpretation";
} else {
state.clarification = "User cancelled - using default interpretation";
}
state.waitingForClarification = false;
// Resume background processing from current stage
runResearchProcess(extra.taskId, {
topic: state.topic,
ambiguous: false, // Don't ask again
}, extra.taskStore).catch((error) => {
console.error(`Research task ${extra.taskId} failed:`, error);
extra.taskStore
.updateTaskStatus(extra.taskId, "failed", String(error))
.catch(console.error);
});
// Return indication that work is resuming (client should poll again)
return {
content: [
{
type: "text",
text: `Resuming research with clarification: "${state.clarification}"`,
},
],
};
}
// Normal case: return the stored result
const result = await extra.taskStore.getTaskResult(extra.taskId);
// Clean up state
researchStates.delete(extra.taskId);
return result as CallToolResult;
},
}
);
};
/**
* Returns contextual interpretation options based on the topic.
*/
function getInterpretationsForTopic(
topic: string
): Array<{ const: string; title: string }> {
const lowerTopic = topic.toLowerCase();
// Example: contextual interpretations for "python"
if (lowerTopic.includes("python")) {
return [
{ const: "programming", title: "Python programming language" },
{ const: "snake", title: "Python snake species" },
{ const: "comedy", title: "Monty Python comedy group" },
];
}
// Default generic interpretations
return [
{ const: "technical", title: "Technical/scientific perspective" },
{ const: "historical", title: "Historical perspective" },
{ const: "current", title: "Current events/news perspective" },
];
}