Merge pull request #3193 from olaservo/add-tasks-support

feat(everything): add SEP-1686 Tasks support
This commit is contained in:
Cliff Hall
2026-01-22 12:44:55 -05:00
committed by GitHub
8 changed files with 896 additions and 5 deletions

View File

@@ -22,7 +22,10 @@
- `trigger-long-running-operation` (tools/trigger-trigger-long-running-operation.ts): Simulates a multi-step operation over a given `duration` and number of `steps`; reports progress via `notifications/progress` when a `progressToken` is provided by the client.
- `toggle-simulated-logging` (tools/toggle-simulated-logging.ts): Starts or stops simulated, randomleveled logging for the invoking session. Respects the clients selected minimum logging level.
- `toggle-subscriber-updates` (tools/toggle-subscriber-updates.ts): Starts or stops simulated resource update notifications for URIs the invoking session has subscribed to.
- `trigger-sampling-request` (tools/trigger-sampling-request.ts): Issues a `sampling/createMessage` request to the client/LLM using provided `prompt` and optional generation controls; returns the LLMs response payload.
- `trigger-sampling-request` (tools/trigger-sampling-request.ts): Issues a `sampling/createMessage` request to the client/LLM using provided `prompt` and optional generation controls; returns the LLM's response payload.
- `simulate-research-query` (tools/simulate-research-query.ts): Demonstrates MCP Tasks (SEP-1686) with a simulated multi-stage research operation. Accepts `topic` and `ambiguous` parameters. Returns a task that progresses through stages with status updates. If `ambiguous` is true and client supports elicitation, sends an elicitation request directly to gather clarification before completing.
- `trigger-sampling-request-async` (tools/trigger-sampling-request-async.ts): Demonstrates bidirectional tasks where the server sends a sampling request that the client executes as a background task. Server polls for status and retrieves the LLM result when complete. Requires client to support `tasks.requests.sampling.createMessage`.
- `trigger-elicitation-request-async` (tools/trigger-elicitation-request-async.ts): Demonstrates bidirectional tasks where the server sends an elicitation request that the client executes as a background task. Server polls while waiting for user input. Requires client to support `tasks.requests.elicitation.create`.
## Prompts
@@ -50,3 +53,50 @@
- Simulated logging is available but off by default.
- Use the `toggle-simulated-logging` tool to start/stop periodic log messages of varying levels (debug, info, notice, warning, error, critical, alert, emergency) per session.
- Clients can control the minimum level they receive via the standard MCP `logging/setLevel` request.
## Tasks (SEP-1686)
The server advertises support for MCP Tasks, enabling long-running operations with status tracking:
- **Capabilities advertised**: `tasks.list`, `tasks.cancel`, `tasks.requests.tools.call`
- **Task Store**: Uses `InMemoryTaskStore` from SDK experimental for task lifecycle management
- **Message Queue**: Uses `InMemoryTaskMessageQueue` for task-related messaging
### Task Lifecycle
1. Client calls `tools/call` with `task: true` parameter
2. Server returns `CreateTaskResult` with `taskId` instead of immediate result
3. Client polls `tasks/get` to check status and receive `statusMessage` updates
4. When status is `completed`, client calls `tasks/result` to retrieve the final result
### Task Statuses
- `working`: Task is actively processing
- `input_required`: Task needs additional input (server sends elicitation request directly)
- `completed`: Task finished successfully
- `failed`: Task encountered an error
- `cancelled`: Task was cancelled by client
### Demo Tools
**Server-side tasks (client calls server):**
Use the `simulate-research-query` tool to exercise the full task lifecycle. Set `ambiguous: true` to trigger elicitation - the server will send an `elicitation/create` request directly and await the response before completing.
**Client-side tasks (server calls client):**
Use `trigger-sampling-request-async` or `trigger-elicitation-request-async` to demonstrate bidirectional tasks where the server sends requests that the client executes as background tasks. These require the client to advertise `tasks.requests.sampling.createMessage` or `tasks.requests.elicitation.create` capabilities respectively.
### Bidirectional Task Flow
MCP Tasks are bidirectional - both server and client can be task executors:
| Direction | Request Type | Task Executor | Demo Tool |
|-----------|--------------|---------------|-----------|
| Client -> Server | `tools/call` | Server | `simulate-research-query` |
| Server -> Client | `sampling/createMessage` | Client | `trigger-sampling-request-async` |
| Server -> Client | `elicitation/create` | Client | `trigger-elicitation-request-async` |
For client-side tasks:
1. Server sends request with task metadata (e.g., `params.task.ttl`)
2. Client creates task and returns `CreateTaskResult` with `taskId`
3. Server polls `tasks/get` for status updates
4. When complete, server calls `tasks/result` to retrieve the result

View File

@@ -1,4 +1,8 @@
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import {
InMemoryTaskStore,
InMemoryTaskMessageQueue,
} from "@modelcontextprotocol/sdk/experimental/tasks";
import {
setSubscriptionHandlers,
stopSimulatedResourceUpdates,
@@ -32,6 +36,10 @@ export const createServer: () => ServerFactoryResponse = () => {
// Read the server instructions
const instructions = readInstructions();
// Create task store and message queue for task support
const taskStore = new InMemoryTaskStore();
const taskMessageQueue = new InMemoryTaskMessageQueue();
// Create the server
const server = new McpServer(
{
@@ -52,8 +60,19 @@ export const createServer: () => ServerFactoryResponse = () => {
listChanged: true,
},
logging: {},
tasks: {
list: {},
cancel: {},
requests: {
tools: {
call: {},
},
},
},
},
instructions,
taskStore,
taskMessageQueue,
}
);
@@ -89,6 +108,8 @@ export const createServer: () => ServerFactoryResponse = () => {
// Stop any simulated logging or resource updates that may have been initiated.
stopSimulatedLogging(sessionId);
stopSimulatedResourceUpdates(sessionId);
// Clean up task store timers
taskStore.cleanup();
},
} satisfies ServerFactoryResponse;
};

View File

@@ -14,6 +14,9 @@ import { registerToggleSubscriberUpdatesTool } from "./toggle-subscriber-updates
import { registerTriggerElicitationRequestTool } from "./trigger-elicitation-request.js";
import { registerTriggerLongRunningOperationTool } from "./trigger-long-running-operation.js";
import { registerTriggerSamplingRequestTool } from "./trigger-sampling-request.js";
import { registerTriggerSamplingRequestAsyncTool } from "./trigger-sampling-request-async.js";
import { registerTriggerElicitationRequestAsyncTool } from "./trigger-elicitation-request-async.js";
import { registerSimulateResearchQueryTool } from "./simulate-research-query.js";
/**
* Register the tools with the MCP server.
@@ -42,4 +45,9 @@ export const registerConditionalTools = (server: McpServer) => {
registerGetRootsListTool(server);
registerTriggerElicitationRequestTool(server);
registerTriggerSamplingRequestTool(server);
// Task-based research tool (uses experimental tasks API)
registerSimulateResearchQueryTool(server);
// Bidirectional task tools - server sends requests that client executes as tasks
registerTriggerSamplingRequestAsyncTool(server);
registerTriggerElicitationRequestAsyncTool(server);
};

View File

@@ -0,0 +1,336 @@
import { z } from "zod";
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import {
CallToolResult,
GetTaskResult,
Task,
ElicitResult,
ElicitResultSchema,
} from "@modelcontextprotocol/sdk/types.js";
import { CreateTaskResult } from "@modelcontextprotocol/sdk/experimental/tasks";
// Tool input schema
const SimulateResearchQuerySchema = z.object({
topic: z.string().describe("The research topic to investigate"),
ambiguous: z
.boolean()
.default(false)
.describe(
"Simulate an ambiguous query that requires clarification (triggers input_required status)"
),
});
// Research stages
const STAGES = [
"Gathering sources",
"Analyzing content",
"Synthesizing findings",
"Generating report",
];
// Duration per stage in milliseconds
const STAGE_DURATION = 1000;
// Internal state for tracking research tasks
interface ResearchState {
topic: string;
ambiguous: boolean;
currentStage: number;
clarification?: string;
completed: boolean;
result?: CallToolResult;
}
// Map to store research state per task
const researchStates = new Map<string, ResearchState>();
/**
* Runs the background research process.
* Updates task status as it progresses through stages.
* If clarification is needed, attempts elicitation via sendRequest.
*
* Note: Elicitation only works on STDIO transport. On HTTP transport,
* sendRequest will fail and the task will use a default interpretation.
* Full HTTP support requires SDK PR #1210's elicitInputStream API.
*/
async function runResearchProcess(
taskId: string,
args: z.infer<typeof SimulateResearchQuerySchema>,
taskStore: {
updateTaskStatus: (
taskId: string,
status: Task["status"],
message?: string
) => Promise<void>;
storeTaskResult: (
taskId: string,
status: "completed" | "failed",
result: CallToolResult
) => Promise<void>;
},
// eslint-disable-next-line @typescript-eslint/no-explicit-any
sendRequest: any
): Promise<void> {
const state = researchStates.get(taskId);
if (!state) return;
// Process each stage
for (let i = state.currentStage; i < STAGES.length; i++) {
state.currentStage = i;
// Check if task was cancelled externally
if (state.completed) return;
// Update status message for current stage
await taskStore.updateTaskStatus(taskId, "working", `${STAGES[i]}...`);
// At synthesis stage (index 2), check if clarification is needed
if (i === 2 && state.ambiguous && !state.clarification) {
// Update status to show we're requesting input (spec SHOULD)
await taskStore.updateTaskStatus(
taskId,
"input_required",
`Found multiple interpretations for "${state.topic}". Requesting clarification...`
);
try {
// Try elicitation via sendRequest (works on STDIO, fails on HTTP)
const elicitResult: ElicitResult = await sendRequest(
{
method: "elicitation/create",
params: {
message: `The research query "${state.topic}" could have multiple interpretations. Please clarify what you're looking for:`,
requestedSchema: {
type: "object",
properties: {
interpretation: {
type: "string",
title: "Clarification",
description: "Which interpretation of the topic do you mean?",
oneOf: getInterpretationsForTopic(state.topic),
},
},
required: ["interpretation"],
},
},
},
ElicitResultSchema
);
// Process elicitation response
if (elicitResult.action === "accept" && elicitResult.content) {
state.clarification =
(elicitResult.content as { interpretation?: string })
.interpretation || "User accepted without selection";
} else if (elicitResult.action === "decline") {
state.clarification = "User declined - using default interpretation";
} else {
state.clarification = "User cancelled - using default interpretation";
}
} catch (error) {
// Elicitation failed (likely HTTP transport without streaming support)
// Use default interpretation and continue - task should still complete
console.warn(
`Elicitation failed for task ${taskId} (HTTP transport?):`,
error instanceof Error ? error.message : String(error)
);
state.clarification =
"technical (default - elicitation unavailable on HTTP)";
}
// Resume with working status (spec SHOULD)
await taskStore.updateTaskStatus(
taskId,
"working",
`Continuing with interpretation: "${state.clarification}"...`
);
// Continue processing (no return - just keep going through the loop)
}
// Simulate work for this stage
await new Promise((resolve) => setTimeout(resolve, STAGE_DURATION));
}
// All stages complete - generate result
state.completed = true;
const result = generateResearchReport(state);
state.result = result;
await taskStore.storeTaskResult(taskId, "completed", result);
}
/**
* Generates the final research report with educational content about tasks.
*/
function generateResearchReport(state: ResearchState): CallToolResult {
const topic = state.clarification
? `${state.topic} (${state.clarification})`
: state.topic;
const report = `# Research Report: ${topic}
## Research Parameters
- **Topic**: ${state.topic}
${state.clarification ? `- **Clarification**: ${state.clarification}` : ""}
## Synthesis
This research query was processed through ${STAGES.length} stages:
${STAGES.map((s, i) => `- Stage ${i + 1}: ${s}`).join("\n")}
---
## About This Demo (SEP-1686: Tasks)
This tool demonstrates MCP's task-based execution pattern for long-running operations:
**Task Lifecycle Demonstrated:**
1. \`tools/call\` with \`task\` parameter → Server returns \`CreateTaskResult\` (not the final result)
2. Client polls \`tasks/get\` → Server returns current status and \`statusMessage\`
3. Status progressed: \`working\`${state.clarification ? `\`input_required\`\`working\`` : ""}\`completed\`
4. Client calls \`tasks/result\` → Server returns this final result
${state.clarification ? `**Elicitation Flow:**
When the query was ambiguous, the server sent an \`elicitation/create\` request
to the client. The task status changed to \`input_required\` while awaiting user input.
${state.clarification.includes("unavailable on HTTP") ? `
**Note:** Elicitation was skipped because this server is running over HTTP transport.
The current SDK's \`sendRequest\` only works over STDIO. Full HTTP elicitation support
requires SDK PR #1210's streaming \`elicitInputStream\` API.
` : `After receiving clarification ("${state.clarification}"), the task resumed processing and completed.`}
` : ""}
**Key Concepts:**
- Tasks enable "call now, fetch later" patterns
- \`statusMessage\` provides human-readable progress updates
- Tasks have TTL (time-to-live) for automatic cleanup
- \`pollInterval\` suggests how often to check status
- Elicitation requests can be sent directly during task execution
*This is a simulated research report from the Everything MCP Server.*
`;
return {
content: [
{
type: "text",
text: report,
},
],
};
}
/**
* Registers the 'simulate-research-query' tool as a task-based tool.
*
* This tool demonstrates the MCP Tasks feature (SEP-1686) with a real-world scenario:
* a research tool that gathers and synthesizes information from multiple sources.
* If the query is ambiguous, it pauses to ask for clarification before completing.
*
* @param {McpServer} server - The McpServer instance where the tool will be registered.
*/
export const registerSimulateResearchQueryTool = (server: McpServer) => {
// Check if client supports elicitation (needed for input_required flow)
const clientCapabilities = server.server.getClientCapabilities() || {};
const clientSupportsElicitation: boolean =
clientCapabilities.elicitation !== undefined;
server.experimental.tasks.registerToolTask(
"simulate-research-query",
{
title: "Simulate Research Query",
description:
"Simulates a deep research operation that gathers, analyzes, and synthesizes information. " +
"Demonstrates MCP task-based operations with progress through multiple stages. " +
"If 'ambiguous' is true and client supports elicitation, sends an elicitation request for clarification.",
inputSchema: SimulateResearchQuerySchema,
execution: { taskSupport: "required" },
},
{
/**
* Creates a new research task and starts background processing.
*/
createTask: async (args, extra): Promise<CreateTaskResult> => {
const validatedArgs = SimulateResearchQuerySchema.parse(args);
// Create the task in the store
const task = await extra.taskStore.createTask({
ttl: 300000, // 5 minutes
pollInterval: 1000,
});
// Initialize research state
const state: ResearchState = {
topic: validatedArgs.topic,
ambiguous: validatedArgs.ambiguous && clientSupportsElicitation,
currentStage: 0,
completed: false,
};
researchStates.set(task.taskId, state);
// Start background research (don't await - runs asynchronously)
// Pass sendRequest for elicitation (works on STDIO, gracefully degrades on HTTP)
runResearchProcess(
task.taskId,
validatedArgs,
extra.taskStore,
extra.sendRequest
).catch((error) => {
console.error(`Research task ${task.taskId} failed:`, error);
extra.taskStore
.updateTaskStatus(task.taskId, "failed", String(error))
.catch(console.error);
});
return { task };
},
/**
* Returns the current status of the research task.
*/
getTask: async (args, extra): Promise<GetTaskResult> => {
const task = await extra.taskStore.getTask(extra.taskId);
// The SDK's RequestTaskStore.getTask throws if not found, so task is always defined
return task;
},
/**
* Returns the task result.
* Elicitation is now handled directly in the background process.
*/
getTaskResult: async (args, extra): Promise<CallToolResult> => {
// Return the stored result
const result = await extra.taskStore.getTaskResult(extra.taskId);
// Clean up state
researchStates.delete(extra.taskId);
return result as CallToolResult;
},
}
);
};
/**
* Returns contextual interpretation options based on the topic.
*/
function getInterpretationsForTopic(
topic: string
): Array<{ const: string; title: string }> {
const lowerTopic = topic.toLowerCase();
// Example: contextual interpretations for "python"
if (lowerTopic.includes("python")) {
return [
{ const: "programming", title: "Python programming language" },
{ const: "snake", title: "Python snake species" },
{ const: "comedy", title: "Monty Python comedy group" },
];
}
// Default generic interpretations
return [
{ const: "technical", title: "Technical/scientific perspective" },
{ const: "historical", title: "Historical perspective" },
{ const: "current", title: "Current events/news perspective" },
];
}

View File

@@ -0,0 +1,239 @@
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { CallToolResult } from "@modelcontextprotocol/sdk/types.js";
import { z } from "zod";
// Tool configuration
const name = "trigger-elicitation-request-async";
const config = {
title: "Trigger Async Elicitation Request Tool",
description:
"Trigger an async elicitation request that the CLIENT executes as a background task. " +
"Demonstrates bidirectional MCP tasks where the server sends an elicitation request and " +
"the client handles user input asynchronously, allowing the server to poll for completion.",
inputSchema: {},
};
// Poll interval in milliseconds
const POLL_INTERVAL = 1000;
// Maximum poll attempts before timeout (10 minutes for user input)
const MAX_POLL_ATTEMPTS = 600;
/**
* Registers the 'trigger-elicitation-request-async' tool.
*
* This tool demonstrates bidirectional MCP tasks for elicitation:
* - Server sends elicitation request to client with task metadata
* - Client creates a task and returns CreateTaskResult
* - Client prompts user for input (task status: input_required)
* - Server polls client's tasks/get endpoint for status
* - Server fetches final result from client's tasks/result endpoint
*
* @param {McpServer} server - The McpServer instance where the tool will be registered.
*/
export const registerTriggerElicitationRequestAsyncTool = (server: McpServer) => {
// Check client capabilities
const clientCapabilities = server.server.getClientCapabilities() || {};
// Client must support elicitation AND tasks.requests.elicitation
const clientSupportsElicitation = clientCapabilities.elicitation !== undefined;
const clientTasksCapability = clientCapabilities.tasks as {
requests?: { elicitation?: { create?: object } };
} | undefined;
const clientSupportsAsyncElicitation =
clientTasksCapability?.requests?.elicitation?.create !== undefined;
if (clientSupportsElicitation && clientSupportsAsyncElicitation) {
server.registerTool(
name,
config,
async (args, extra): Promise<CallToolResult> => {
// Create the elicitation request WITH task metadata
// Using z.any() schema to avoid complex type matching with _meta
const request = {
method: "elicitation/create" as const,
params: {
task: {
ttl: 600000, // 10 minutes (user input may take a while)
},
message: "Please provide inputs for the following fields (async task demo):",
requestedSchema: {
type: "object" as const,
properties: {
name: {
title: "Your Name",
type: "string" as const,
description: "Your full name",
},
favoriteColor: {
title: "Favorite Color",
type: "string" as const,
description: "What is your favorite color?",
enum: ["Red", "Blue", "Green", "Yellow", "Purple"],
},
agreeToTerms: {
title: "Terms Agreement",
type: "boolean" as const,
description: "Do you agree to the terms and conditions?",
},
},
required: ["name"],
},
},
};
// Send the elicitation request
// Client may return either:
// - ElicitResult (synchronous execution)
// - CreateTaskResult (task-based execution with { task } object)
const elicitResponse = await extra.sendRequest(
request as Parameters<typeof extra.sendRequest>[0],
z.union([
// CreateTaskResult - client created a task
z.object({
task: z.object({
taskId: z.string(),
status: z.string(),
pollInterval: z.number().optional(),
statusMessage: z.string().optional(),
}),
}),
// ElicitResult - synchronous execution
z.object({
action: z.string(),
content: z.any().optional(),
}),
])
);
// Check if client returned CreateTaskResult (has task object)
const isTaskResult = 'task' in elicitResponse && elicitResponse.task;
if (!isTaskResult) {
// Client executed synchronously - return the direct response
return {
content: [
{
type: "text",
text: `[SYNC] Client executed synchronously:\n${JSON.stringify(elicitResponse, null, 2)}`,
},
],
};
}
const taskId = elicitResponse.task.taskId;
const statusMessages: string[] = [];
statusMessages.push(`Task created: ${taskId}`);
// Poll for task completion
let attempts = 0;
let taskStatus = elicitResponse.task.status;
let taskStatusMessage: string | undefined;
while (
taskStatus !== "completed" &&
taskStatus !== "failed" &&
taskStatus !== "cancelled" &&
attempts < MAX_POLL_ATTEMPTS
) {
// Wait before polling
await new Promise((resolve) => setTimeout(resolve, POLL_INTERVAL));
attempts++;
// Get task status from client
const pollResult = await extra.sendRequest(
{
method: "tasks/get",
params: { taskId },
},
z.object({
status: z.string(),
statusMessage: z.string().optional(),
}).passthrough()
);
taskStatus = pollResult.status;
taskStatusMessage = pollResult.statusMessage;
// Only log status changes or every 10 polls to avoid spam
if (attempts === 1 || attempts % 10 === 0 || taskStatus !== "input_required") {
statusMessages.push(
`Poll ${attempts}: ${taskStatus}${taskStatusMessage ? ` - ${taskStatusMessage}` : ""}`
);
}
}
// Check for timeout
if (attempts >= MAX_POLL_ATTEMPTS) {
return {
content: [
{
type: "text",
text: `[TIMEOUT] Task timed out after ${MAX_POLL_ATTEMPTS} poll attempts\n\nProgress:\n${statusMessages.join("\n")}`,
},
],
};
}
// Check for failure/cancellation
if (taskStatus === "failed" || taskStatus === "cancelled") {
return {
content: [
{
type: "text",
text: `[${taskStatus.toUpperCase()}] ${taskStatusMessage || "No message"}\n\nProgress:\n${statusMessages.join("\n")}`,
},
],
};
}
// Fetch the final result
const result = await extra.sendRequest(
{
method: "tasks/result",
params: { taskId },
},
z.any()
);
// Format the elicitation result
const content: CallToolResult["content"] = [];
if (result.action === "accept" && result.content) {
content.push({
type: "text",
text: `[COMPLETED] User provided the requested information!`,
});
const userData = result.content as Record<string, unknown>;
const lines = [];
if (userData.name) lines.push(`- Name: ${userData.name}`);
if (userData.favoriteColor) lines.push(`- Favorite Color: ${userData.favoriteColor}`);
if (userData.agreeToTerms !== undefined) lines.push(`- Agreed to terms: ${userData.agreeToTerms}`);
content.push({
type: "text",
text: `User inputs:\n${lines.join("\n")}`,
});
} else if (result.action === "decline") {
content.push({
type: "text",
text: `[DECLINED] User declined to provide the requested information.`,
});
} else if (result.action === "cancel") {
content.push({
type: "text",
text: `[CANCELLED] User cancelled the elicitation dialog.`,
});
}
// Include progress and raw result for debugging
content.push({
type: "text",
text: `\nProgress:\n${statusMessages.join("\n")}\n\nRaw result: ${JSON.stringify(result, null, 2)}`,
});
return { content };
}
);
}
};

View File

@@ -1,6 +1,5 @@
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { ElicitResultSchema } from "@modelcontextprotocol/sdk/types.js";
import { CallToolResult } from "@modelcontextprotocol/sdk/types.js";
import { ElicitResultSchema, CallToolResult } from "@modelcontextprotocol/sdk/types.js";
// Tool configuration
const name = "trigger-elicitation-request";

View File

@@ -0,0 +1,211 @@
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import {
CallToolResult,
CreateMessageRequest,
} from "@modelcontextprotocol/sdk/types.js";
import { z } from "zod";
// Tool input schema
const TriggerSamplingRequestAsyncSchema = z.object({
prompt: z.string().describe("The prompt to send to the LLM"),
maxTokens: z
.number()
.default(100)
.describe("Maximum number of tokens to generate"),
});
// Tool configuration
const name = "trigger-sampling-request-async";
const config = {
title: "Trigger Async Sampling Request Tool",
description:
"Trigger an async sampling request that the CLIENT executes as a background task. " +
"Demonstrates bidirectional MCP tasks where the server sends a request and the client " +
"executes it asynchronously, allowing the server to poll for progress and results.",
inputSchema: TriggerSamplingRequestAsyncSchema,
};
// Poll interval in milliseconds
const POLL_INTERVAL = 1000;
// Maximum poll attempts before timeout
const MAX_POLL_ATTEMPTS = 60;
/**
* Registers the 'trigger-sampling-request-async' tool.
*
* This tool demonstrates bidirectional MCP tasks:
* - Server sends sampling request to client with task metadata
* - Client creates a task and returns CreateTaskResult
* - Server polls client's tasks/get endpoint for status
* - Server fetches final result from client's tasks/result endpoint
*
* @param {McpServer} server - The McpServer instance where the tool will be registered.
*/
export const registerTriggerSamplingRequestAsyncTool = (server: McpServer) => {
// Check client capabilities
const clientCapabilities = server.server.getClientCapabilities() || {};
// Client must support sampling AND tasks.requests.sampling
const clientSupportsSampling = clientCapabilities.sampling !== undefined;
const clientTasksCapability = clientCapabilities.tasks as {
requests?: { sampling?: { createMessage?: object } };
} | undefined;
const clientSupportsAsyncSampling =
clientTasksCapability?.requests?.sampling?.createMessage !== undefined;
if (clientSupportsSampling && clientSupportsAsyncSampling) {
server.registerTool(
name,
config,
async (args, extra): Promise<CallToolResult> => {
const validatedArgs = TriggerSamplingRequestAsyncSchema.parse(args);
const { prompt, maxTokens } = validatedArgs;
// Create the sampling request WITH task metadata
// The params.task field signals to the client that this should be executed as a task
const request: CreateMessageRequest & { params: { task?: { ttl: number } } } = {
method: "sampling/createMessage",
params: {
task: {
ttl: 300000, // 5 minutes
},
messages: [
{
role: "user",
content: {
type: "text",
text: `Resource ${name} context: ${prompt}`,
},
},
],
systemPrompt: "You are a helpful test server.",
maxTokens,
temperature: 0.7,
},
};
// Send the sampling request
// Client may return either:
// - CreateMessageResult (synchronous execution)
// - CreateTaskResult (task-based execution with { task } object)
const samplingResponse = await extra.sendRequest(
request,
z.union([
// CreateTaskResult - client created a task
z.object({
task: z.object({
taskId: z.string(),
status: z.string(),
pollInterval: z.number().optional(),
statusMessage: z.string().optional(),
}),
}),
// CreateMessageResult - synchronous execution
z.object({
role: z.string(),
content: z.any(),
model: z.string(),
stopReason: z.string().optional(),
}),
])
);
// Check if client returned CreateTaskResult (has task object)
const isTaskResult = 'task' in samplingResponse && samplingResponse.task;
if (!isTaskResult) {
// Client executed synchronously - return the direct response
return {
content: [
{
type: "text",
text: `[SYNC] Client executed synchronously:\n${JSON.stringify(samplingResponse, null, 2)}`,
},
],
};
}
const taskId = samplingResponse.task.taskId;
const statusMessages: string[] = [];
statusMessages.push(`Task created: ${taskId}`);
// Poll for task completion
let attempts = 0;
let taskStatus = samplingResponse.task.status;
let taskStatusMessage: string | undefined;
while (
taskStatus !== "completed" &&
taskStatus !== "failed" &&
taskStatus !== "cancelled" &&
attempts < MAX_POLL_ATTEMPTS
) {
// Wait before polling
await new Promise((resolve) => setTimeout(resolve, POLL_INTERVAL));
attempts++;
// Get task status from client
const pollResult = await extra.sendRequest(
{
method: "tasks/get",
params: { taskId },
},
z.object({
status: z.string(),
statusMessage: z.string().optional(),
}).passthrough()
);
taskStatus = pollResult.status;
taskStatusMessage = pollResult.statusMessage;
statusMessages.push(
`Poll ${attempts}: ${taskStatus}${taskStatusMessage ? ` - ${taskStatusMessage}` : ""}`
);
}
// Check for timeout
if (attempts >= MAX_POLL_ATTEMPTS) {
return {
content: [
{
type: "text",
text: `[TIMEOUT] Task timed out after ${MAX_POLL_ATTEMPTS} poll attempts\n\nProgress:\n${statusMessages.join("\n")}`,
},
],
};
}
// Check for failure/cancellation
if (taskStatus === "failed" || taskStatus === "cancelled") {
return {
content: [
{
type: "text",
text: `[${taskStatus.toUpperCase()}] ${taskStatusMessage || "No message"}\n\nProgress:\n${statusMessages.join("\n")}`,
},
],
};
}
// Fetch the final result
const result = await extra.sendRequest(
{
method: "tasks/result",
params: { taskId },
},
z.any()
);
// Return the result with status history
return {
content: [
{
type: "text",
text: `[COMPLETED] Async sampling completed!\n\n**Progress:**\n${statusMessages.join("\n")}\n\n**Result:**\n${JSON.stringify(result, null, 2)}`,
},
],
};
}
);
}
};

View File

@@ -1,10 +1,37 @@
import { StreamableHTTPServerTransport } from "@modelcontextprotocol/sdk/server/streamableHttp.js";
import { InMemoryEventStore } from "@modelcontextprotocol/sdk/examples/shared/inMemoryEventStore.js";
import { StreamableHTTPServerTransport, EventStore } from "@modelcontextprotocol/sdk/server/streamableHttp.js";
import express, { Request, Response } from "express";
import { createServer } from "../server/index.js";
import { randomUUID } from "node:crypto";
import cors from "cors";
// Simple in-memory event store for SSE resumability
class InMemoryEventStore implements EventStore {
private events: Map<string, { streamId: string; message: unknown }> = new Map();
async storeEvent(streamId: string, message: unknown): Promise<string> {
const eventId = randomUUID();
this.events.set(eventId, { streamId, message });
return eventId;
}
async replayEventsAfter(
lastEventId: string,
{ send }: { send: (eventId: string, message: unknown) => Promise<void> }
): Promise<string> {
const entries = Array.from(this.events.entries());
const startIndex = entries.findIndex(([id]) => id === lastEventId);
if (startIndex === -1) return lastEventId;
let lastId: string = lastEventId;
for (let i = startIndex + 1; i < entries.length; i++) {
const [eventId, { message }] = entries[i];
await send(eventId, message);
lastId = eventId;
}
return lastId;
}
}
console.log("Starting Streamable HTTP server...");
// Express app with permissive CORS for testing with Inspector direct connect mode