Files
shiny/R/render-plot.R
2018-06-18 16:25:35 -05:00

1203 lines
43 KiB
R

#' Plot Output
#'
#' Renders a reactive plot that is suitable for assigning to an \code{output}
#' slot.
#'
#' The corresponding HTML output tag should be \code{div} or \code{img} and have
#' the CSS class name \code{shiny-plot-output}.
#'
#' @section Interactive plots:
#'
#' With ggplot2 graphics, the code in \code{renderPlot} should return a ggplot
#' object; if instead the code prints the ggplot2 object with something like
#' \code{print(p)}, then the coordinates for interactive graphics will not be
#' properly scaled to the data space.
#'
#' See \code{\link{plotOutput}} for more information about interactive plots.
#'
#' @seealso For the corresponding client-side output function, and example
#' usage, see \code{\link{plotOutput}}. For more details on how the plots are
#' generated, and how to control the output, see \code{\link{plotPNG}}.
#'
#' @param expr An expression that generates a plot.
#' @param width,height The width/height of the rendered plot, in pixels; or
#' \code{'auto'} to use the \code{offsetWidth}/\code{offsetHeight} of the HTML
#' element that is bound to this plot. You can also pass in a function that
#' returns the width/height in pixels or \code{'auto'}; in the body of the
#' function you may reference reactive values and functions. When rendering an
#' inline plot, you must provide numeric values (in pixels) to both
#' \code{width} and \code{height}.
#' @param res Resolution of resulting plot, in pixels per inch. This value is
#' passed to \code{\link[grDevices]{png}}. Note that this affects the resolution of PNG
#' rendering in R; it won't change the actual ppi of the browser.
#' @param ... Arguments to be passed through to \code{\link[grDevices]{png}}.
#' These can be used to set the width, height, background color, etc.
#' @param env The environment in which to evaluate \code{expr}.
#' @param quoted Is \code{expr} a quoted expression (with \code{quote()})? This
#' is useful if you want to save an expression in a variable.
#' @param execOnResize If \code{FALSE} (the default), then when a plot is
#' resized, Shiny will \emph{replay} the plot drawing commands with
#' \code{\link[grDevices]{replayPlot}()} instead of re-executing \code{expr}.
#' This can result in faster plot redrawing, but there may be rare cases where
#' it is undesirable. If you encounter problems when resizing a plot, you can
#' have Shiny re-execute the code on resize by setting this to \code{TRUE}.
#' @param outputArgs A list of arguments to be passed through to the implicit
#' call to \code{\link{plotOutput}} when \code{renderPlot} is used in an
#' interactive R Markdown document.
#' @export
renderPlot <- function(expr, width='auto', height='auto', res=72, ...,
env=parent.frame(), quoted=FALSE,
execOnResize=FALSE, outputArgs=list()
) {
# This ..stacktraceon is matched by a ..stacktraceoff.. when plotFunc
# is called
installExprFunction(expr, "func", env, quoted, ..stacktraceon = TRUE)
args <- list(...)
if (is.reactive(width))
widthWrapper <- width
else if (is.function(width))
widthWrapper <- reactive({ width() })
else
widthWrapper <- function() { width }
if (is.reactive(height))
heightWrapper <- height
else if (is.function(height))
heightWrapper <- reactive({ height() })
else
heightWrapper <- function() { height }
getDims <- function() {
width <- widthWrapper()
height <- heightWrapper()
# Note that these are reactive calls. A change to the width and height
# will inherently cause a reactive plot to redraw (unless width and
# height were explicitly specified).
if (width == 'auto')
width <- session$clientData[[paste0('output_', outputName, '_width')]]
if (height == 'auto')
height <- session$clientData[[paste0('output_', outputName, '_height')]]
list(width = width, height = height)
}
# Vars to store session and output, so that they can be accessed from
# the plotObj() reactive.
session <- NULL
outputName <- NULL
# Calls drawPlot, invoking the user-provided `func` (which may or may not
# return a promise). The idea is that the (cached) return value from this
# reactive can be used for varying width/heights, as it includes the
# displaylist, which is resolution independent.
drawReactive <- reactive(label = "plotObj", {
hybrid_chain(
{
# If !execOnResize, don't invalidate when width/height changes.
dims <- if (execOnResize) getDims() else isolate(getDims())
pixelratio <- session$clientData$pixelratio %OR% 1
do.call("drawPlot", c(
list(
name = outputName,
session = session,
func = func,
width = dims$width,
height = dims$height,
pixelratio = pixelratio,
res = res
), args))
},
catch = function(reason) {
# Non-isolating read. A common reason for errors in plotting is because
# the dimensions are too small. By taking a dependency on width/height,
# we can try again if the plot output element changes size.
getDims()
# Propagate the error
stop(reason)
}
)
})
# This function is the one that's returned from renderPlot(), and gets
# wrapped in an observer when the output value is assigned.
renderFunc <- function(shinysession, name, ...) {
outputName <<- name
session <<- shinysession
hybrid_chain(
drawReactive(),
function(result) {
dims <- getDims()
pixelratio <- session$clientData$pixelratio %OR% 1
do.call("resizeSavedPlot", c(
list(name, shinysession, result, dims$width, dims$height, pixelratio, res),
args
))
}
)
}
# If renderPlot isn't going to adapt to the height of the div, then the
# div needs to adapt to the height of renderPlot. By default, plotOutput
# sets the height to 400px, so to make it adapt we need to override it
# with NULL.
outputFunc <- plotOutput
if (!identical(height, 'auto')) formals(outputFunc)['height'] <- list(NULL)
markRenderFunction(outputFunc, renderFunc, outputArgs = outputArgs)
}
resizeSavedPlot <- function(name, session, result, width, height, pixelratio, res, ...) {
if (result$img$width == width && result$img$height == height &&
result$pixelratio == pixelratio && result$res == res) {
return(result$img)
}
coordmap <- NULL
outfile <- plotPNG(function() {
grDevices::replayPlot(result$recordedPlot)
coordmap <<- getCoordmap(result$plotResult, width, height, pixelratio, res)
}, width = width*pixelratio, height = height*pixelratio, res = res*pixelratio, ...)
on.exit(unlink(outfile), add = TRUE)
img <- list(
src = session$fileUrl(name, outfile, contentType = "image/png"),
width = width,
height = height,
coordmap = coordmap,
error = attr(coordmap, "error", exact = TRUE)
)
}
drawPlot <- function(name, session, func, width, height, pixelratio, res, ...) {
# 1. Start PNG
# 2. Enable displaylist recording
# 3. Call user-defined func
# 4. Print/save result, if visible
# 5. Snapshot displaylist
# 6. Form coordmap
# 7. End PNG (in finally)
# 8. Form img tag
# 9. Return img, value, displaylist, coordmap
# 10. On error, take width and height dependency
outfile <- tempfile(fileext='.png') # If startPNG throws, this could leak. Shrug.
device <- startPNG(outfile, width*pixelratio, height*pixelratio, res = res*pixelratio, ...)
domain <- createGraphicsDevicePromiseDomain(device)
grDevices::dev.control(displaylist = "enable")
hybrid_chain(
hybrid_chain(
promises::with_promise_domain(domain, {
hybrid_chain(
func(),
function(value, .visible) {
if (.visible) {
# A modified version of print.ggplot which returns the built ggplot object
# as well as the gtable grob. This overrides the ggplot::print.ggplot
# method, but only within the context of renderPlot. The reason this needs
# to be a (pseudo) S3 method is so that, if an object has a class in
# addition to ggplot, and there's a print method for that class, that we
# won't override that method. https://github.com/rstudio/shiny/issues/841
print.ggplot <- custom_print.ggplot
# Use capture.output to squelch printing to the actual console; we
# are only interested in plot output
utils::capture.output({
# This ..stacktraceon.. negates the ..stacktraceoff.. that wraps
# the call to plotFunc. The value needs to be printed just in case
# it's an object that requires printing to generate plot output,
# similar to ggplot2. But for base graphics, it would already have
# been rendered when func was called above, and the print should
# have no effect.
result <- ..stacktraceon..(print(value))
# TODO jcheng 2017-04-11: Verify above ..stacktraceon..
})
result
} else {
# Not necessary, but I wanted to make it explicit
NULL
}
},
function(value) {
list(
plotResult = value,
recordedPlot = grDevices::recordPlot(),
coordmap = getCoordmap(value, width, height, pixelratio, res),
pixelratio = pixelratio,
res = res
)
}
)
}),
finally = function() {
grDevices::dev.off(device)
}
),
function(result) {
result$img <- dropNulls(list(
src = session$fileUrl(name, outfile, contentType='image/png'),
width = width,
height = height,
coordmap = result$coordmap,
# Get coordmap error message if present
error = attr(result$coordmap, "error", exact = TRUE)
))
result
},
finally = function() {
unlink(outfile)
}
)
}
# A modified version of print.ggplot which returns the built ggplot object
# as well as the gtable grob. This overrides the ggplot::print.ggplot
# method, but only within the context of renderPlot. The reason this needs
# to be a (pseudo) S3 method is so that, if an object has a class in
# addition to ggplot, and there's a print method for that class, that we
# won't override that method. https://github.com/rstudio/shiny/issues/841
custom_print.ggplot <- function(x) {
grid::grid.newpage()
build <- ggplot2::ggplot_build(x)
gtable <- ggplot2::ggplot_gtable(build)
grid::grid.draw(gtable)
structure(list(
build = build,
gtable = gtable
), class = "ggplot_build_gtable")
}
# The coordmap extraction functions below return something like the examples
# below. For base graphics:
# plot(mtcars$wt, mtcars$mpg)
# str(getPrevPlotCoordmap(400, 300))
# List of 1
# $ :List of 4
# ..$ domain :List of 4
# .. ..$ left : num 1.36
# .. ..$ right : num 5.58
# .. ..$ bottom: num 9.46
# .. ..$ top : num 34.8
# ..$ range :List of 4
# .. ..$ left : num 50.4
# .. ..$ right : num 373
# .. ..$ bottom: num 199
# .. ..$ top : num 79.6
# ..$ log :List of 2
# .. ..$ x: NULL
# .. ..$ y: NULL
# ..$ mapping: Named list()
#
# For ggplot2, first you need to define the print.ggplot function from inside
# renderPlot, then use it to print the plot:
# print.ggplot <- function(x) {
# grid::grid.newpage()
#
# build <- ggplot2::ggplot_build(x)
#
# gtable <- ggplot2::ggplot_gtable(build)
# grid::grid.draw(gtable)
#
# structure(list(
# build = build,
# gtable = gtable
# ), class = "ggplot_build_gtable")
# }
#
# p <- print(ggplot(mtcars, aes(wt, mpg)) + geom_point())
# str(getGgplotCoordmap(p, 1, 72))
# List of 1
# $ :List of 10
# ..$ panel : int 1
# ..$ row : int 1
# ..$ col : int 1
# ..$ panel_vars: Named list()
# ..$ log :List of 2
# .. ..$ x: NULL
# .. ..$ y: NULL
# ..$ domain :List of 4
# .. ..$ left : num 1.32
# .. ..$ right : num 5.62
# .. ..$ bottom: num 9.22
# .. ..$ top : num 35.1
# ..$ mapping :List of 2
# .. ..$ x: chr "wt"
# .. ..$ y: chr "mpg"
# ..$ range :List of 4
# .. ..$ left : num 40.8
# .. ..$ right : num 446
# .. ..$ bottom: num 263
# .. ..$ top : num 14.4
#
# With a faceted ggplot2 plot, the outer list contains two objects, each of
# which represents one panel. In this example, there is one panelvar, but there
# can be up to two of them.
# mtc <- mtcars
# mtc$am <- factor(mtc$am)
# p <- print(ggplot(mtc, aes(wt, mpg)) + geom_point() + facet_wrap(~ am))
# str(getGgplotCoordmap(p, 1, 72))
# List of 2
# $ :List of 10
# ..$ panel : int 1
# ..$ row : int 1
# ..$ col : int 1
# ..$ panel_vars:List of 1
# .. ..$ panelvar1: Factor w/ 2 levels "0","1": 1
# ..$ log :List of 2
# .. ..$ x: NULL
# .. ..$ y: NULL
# ..$ domain :List of 4
# .. ..$ left : num 1.32
# .. ..$ right : num 5.62
# .. ..$ bottom: num 9.22
# .. ..$ top : num 35.1
# ..$ mapping :List of 3
# .. ..$ x : chr "wt"
# .. ..$ y : chr "mpg"
# .. ..$ panelvar1: chr "am"
# ..$ range :List of 4
# .. ..$ left : num 45.6
# .. ..$ right : num 317
# .. ..$ bottom: num 251
# .. ..$ top : num 35.7
# $ :List of 10
# ..$ panel : int 2
# ..$ row : int 1
# ..$ col : int 2
# ..$ panel_vars:List of 1
# .. ..$ panelvar1: Factor w/ 2 levels "0","1": 2
# ..$ log :List of 2
# .. ..$ x: NULL
# .. ..$ y: NULL
# ..$ domain :List of 4
# .. ..$ left : num 1.32
# .. ..$ right : num 5.62
# .. ..$ bottom: num 9.22
# .. ..$ top : num 35.1
# ..$ mapping :List of 3
# .. ..$ x : chr "wt"
# .. ..$ y : chr "mpg"
# .. ..$ panelvar1: chr "am"
# ..$ range :List of 4
# .. ..$ left : num 322
# .. ..$ right : num 594
# .. ..$ bottom: num 251
# .. ..$ top : num 35.7
getCoordmap <- function(x, width, height, pixelratio, res) {
if (inherits(x, "ggplot_build_gtable")) {
getGgplotCoordmap(x, pixelratio, res)
} else {
getPrevPlotCoordmap(width, height)
}
}
# Get a coordmap for the previous plot made with base graphics.
# Requires width and height of output image, in pixels.
# Must be called before the graphics device is closed.
getPrevPlotCoordmap <- function(width, height) {
usrCoords <- graphics::par('usr')
usrBounds <- usrCoords
if (graphics::par('xlog')) {
usrBounds[c(1,2)] <- 10 ^ usrBounds[c(1,2)]
}
if (graphics::par('ylog')) {
usrBounds[c(3,4)] <- 10 ^ usrBounds[c(3,4)]
}
# Wrapped in double list because other types of plots can have multiple panels.
list(list(
# Bounds of the plot area, in data space
domain = list(
left = usrCoords[1],
right = usrCoords[2],
bottom = usrCoords[3],
top = usrCoords[4]
),
# The bounds of the plot area, in DOM pixels
range = list(
left = graphics::grconvertX(usrBounds[1], 'user', 'nfc') * width,
right = graphics::grconvertX(usrBounds[2], 'user', 'nfc') * width,
bottom = (1-graphics::grconvertY(usrBounds[3], 'user', 'nfc')) * height - 1,
top = (1-graphics::grconvertY(usrBounds[4], 'user', 'nfc')) * height - 1
),
log = list(
x = if (graphics::par('xlog')) 10 else NULL,
y = if (graphics::par('ylog')) 10 else NULL
),
# We can't extract the original variable names from a base graphic.
# `mapping` is an empty _named_ list, so that it is converted to an object
# (not an array) in JSON.
mapping = list(x = NULL)[0]
))
}
# Given a ggplot_build_gtable object, return a coordmap for it.
getGgplotCoordmap <- function(p, pixelratio, res) {
if (!inherits(p, "ggplot_build_gtable"))
return(NULL)
tryCatch({
# Get info from built ggplot object
info <- find_panel_info(p$build)
# Get ranges from gtable - it's possible for this to return more elements than
# info, because it calculates positions even for panels that aren't present.
# This can happen with facet_wrap.
ranges <- find_panel_ranges(p$gtable, pixelratio, res)
for (i in seq_along(info)) {
info[[i]]$range <- ranges[[i]]
}
return(info)
}, error = function(e) {
# If there was an error extracting info from the ggplot object, just return
# a list with the error message.
return(structure(list(), error = e$message))
})
}
find_panel_info <- function(b) {
# Structure of ggplot objects changed after 2.1.0. After 2.2.1, there was a
# an API for extracting the necessary information.
ggplot_ver <- utils::packageVersion("ggplot2")
if (ggplot_ver > "2.2.1") {
find_panel_info_api(b)
} else if (ggplot_ver > "2.1.0") {
find_panel_info_non_api(b, ggplot_format = "new")
} else {
find_panel_info_non_api(b, ggplot_format = "old")
}
}
# This is for ggplot2>2.2.1, after an API was introduced for extracting
# information about the plot object.
find_panel_info_api <- function(b) {
# Workaround for check NOTE, until ggplot2 >2.2.1 is released
colon_colon <- `::`
# Given a built ggplot object, return x and y domains (data space coords) for
# each panel.
layout <- colon_colon("ggplot2", "summarise_layout")(b)
coord <- colon_colon("ggplot2", "summarise_coord")(b)
layers <- colon_colon("ggplot2", "summarise_layers")(b)
# Given x and y scale objects and a coord object, return a list that has
# the bases of log transformations for x and y, or NULL if it's not a
# log transform.
get_log_bases <- function(xscale, yscale, coord) {
# Given a transform object, find the log base; if the transform object is
# NULL, or if it's not a log transform, return NA.
get_log_base <- function(trans) {
if (!is.null(trans) && grepl("^log-", trans$name)) {
environment(trans$transform)$base
} else {
NA_real_
}
}
# First look for log base in scale, then coord; otherwise NULL.
list(
x = get_log_base(xscale$trans) %OR% coord$xlog %OR% NULL,
y = get_log_base(yscale$trans) %OR% coord$ylog %OR% NULL
)
}
# Given x/y min/max, and the x/y scale objects, create a list that
# represents the domain. Note that the x/y min/max should be taken from
# the layout summary table, not the scale objects.
get_domain <- function(xmin, xmax, ymin, ymax, xscale, yscale) {
is_reverse <- function(scale) {
identical(scale$trans$name, "reverse")
}
domain <- list(
left = xmin,
right = xmax,
bottom = ymin,
top = ymax
)
if (is_reverse(xscale)) {
domain$left <- -domain$left
domain$right <- -domain$right
}
if (is_reverse(yscale)) {
domain$top <- -domain$top
domain$bottom <- -domain$bottom
}
domain
}
# Rename the items in vars to have names like panelvar1, panelvar2.
rename_panel_vars <- function(vars) {
for (i in seq_along(vars)) {
names(vars)[i] <- paste0("panelvar", i)
}
vars
}
get_mappings <- function(layers, layout, coord) {
# For simplicity, we'll just use the mapping from the first layer of the
# ggplot object. The original uses quoted expressions; convert to
# character.
mapping <- layers$mapping[[1]]
# In ggplot2 <=2.2.1, the mappings are expressions. In later versions, they
# are quosures. `deparse(quo_squash(x))` will handle both cases.
# as.character results in unexpected behavior for expressions like `wt/2`,
# which is why we use deparse.
mapping <- lapply(mapping, function(x) deparse(rlang::quo_squash(x)))
# If either x or y is not present, give it a NULL entry.
mapping <- mergeVectors(list(x = NULL, y = NULL), mapping)
# The names (not values) of panel vars are the same across all panels,
# so just look at the first one. Also, the order of panel vars needs
# to be reversed.
vars <- rev(layout$vars[[1]])
for (i in seq_along(vars)) {
mapping[[paste0("panelvar", i)]] <- names(vars)[i]
}
if (isTRUE(coord$flip)) {
mapping[c("x", "y")] <- mapping[c("y", "x")]
}
mapping
}
# Mapping is constant across all panels, so get it here and reuse later.
mapping <- get_mappings(layers, layout, coord)
# If coord_flip is used, these need to be swapped
flip_xy <- function(layout) {
l <- layout
l$xscale <- layout$yscale
l$yscale <- layout$xscale
l$xmin <- layout$ymin
l$xmax <- layout$ymax
l$ymin <- layout$xmin
l$ymax <- layout$xmax
l
}
if (coord$flip) {
layout <- flip_xy(layout)
}
# Iterate over each row in the layout data frame
lapply(seq_len(nrow(layout)), function(i) {
# Slice out one row, use it as a list. The (former) list-cols are still
# in lists, so we need to unwrap them.
l <- as.list(layout[i, ])
l$vars <- l$vars[[1]]
l$xscale <- l$xscale[[1]]
l$yscale <- l$yscale[[1]]
list(
panel = as.numeric(l$panel),
row = l$row,
col = l$col,
# Rename panel vars. They must also be in reversed order.
panel_vars = rename_panel_vars(rev(l$vars)),
log = get_log_bases(l$xscale, l$yscale, coord),
domain = get_domain(l$xmin, l$xmax, l$ymin, l$ymax, l$xscale, l$yscale),
mapping = mapping
)
})
}
# This is for ggplot2<=2.2.1, before an API was introduced for extracting
# information about the plot object. The "old" format was used before 2.1.0.
# The "new" format was used after 2.1.0, up to 2.2.1. The reason these two
# formats are mixed together in a single function is historical, and it's not
# worthwhile to separate them at this point.
find_panel_info_non_api <- function(b, ggplot_format) {
# Given a single range object (representing the data domain) from a built
# ggplot object, return the domain.
find_panel_domain <- function(b, panel_num, scalex_num = 1, scaley_num = 1) {
if (ggplot_format == "new") {
range <- b$layout$panel_ranges[[panel_num]]
} else {
range <- b$panel$ranges[[panel_num]]
}
domain <- list(
left = range$x.range[1],
right = range$x.range[2],
bottom = range$y.range[1],
top = range$y.range[2]
)
# Check for reversed scales
if (ggplot_format == "new") {
xscale <- b$layout$panel_scales$x[[scalex_num]]
yscale <- b$layout$panel_scales$y[[scaley_num]]
} else {
xscale <- b$panel$x_scales[[scalex_num]]
yscale <- b$panel$y_scales[[scaley_num]]
}
if (!is.null(xscale$trans) && xscale$trans$name == "reverse") {
domain$left <- -domain$left
domain$right <- -domain$right
}
if (!is.null(yscale$trans) && yscale$trans$name == "reverse") {
domain$top <- -domain$top
domain$bottom <- -domain$bottom
}
domain
}
# Given built ggplot object, return object with the log base for x and y if
# there are log scales or coord transforms.
check_log_scales <- function(b, scalex_num = 1, scaley_num = 1) {
# Given a vector of transformation names like c("log-10", "identity"),
# return the first log base, like 10. If none are present, return NULL.
extract_log_base <- function(names) {
names <- names[grepl("^log-", names)]
if (length(names) == 0)
return(NULL)
names <- names[1]
as.numeric(sub("^log-", "", names))
}
# Look for log scales and log coord transforms. People shouldn't use both.
x_names <- character(0)
y_names <- character(0)
# Continuous scales have a trans; discrete ones don't
if (ggplot_format == "new") {
if (!is.null(b$layout$panel_scales$x[[scalex_num]]$trans))
x_names <- b$layout$panel_scales$x[[scalex_num]]$trans$name
if (!is.null(b$layout$panel_scales$y[[scaley_num]]$trans))
y_names <- b$layout$panel_scales$y[[scaley_num]]$trans$name
} else {
if (!is.null(b$panel$x_scales[[scalex_num]]$trans))
x_names <- b$panel$x_scales[[scalex_num]]$trans$name
if (!is.null(b$panel$y_scales[[scaley_num]]$trans))
y_names <- b$panel$y_scales[[scaley_num]]$trans$name
}
coords <- b$plot$coordinates
if (!is.null(coords$trans)) {
if (!is.null(coords$trans$x))
x_names <- c(x_names, coords$trans$x$name)
if (!is.null(coords$trans$y))
y_names <- c(y_names, coords$trans$y$name)
}
# Keep only scale/trans names that start with "log-"
x_names <- x_names[grepl("^log-", x_names)]
y_names <- y_names[grepl("^log-", y_names)]
# Extract the log base from the trans name -- a string like "log-10".
list(
x = extract_log_base(x_names),
y = extract_log_base(y_names)
)
}
# Given a built ggplot object, return a named list of variables mapped to x
# and y. This function will be called for each panel, but in practice the
# result is always the same across panels, so we'll cache the result.
mappings_cache <- NULL
find_plot_mappings <- function(b) {
if (!is.null(mappings_cache))
return(mappings_cache)
# lapply'ing as.character results in unexpected behavior for expressions
# like `wt/2`. This works better.
mappings <- as.list(as.character(b$plot$mapping))
# If x or y mapping is missing, look in each layer for mappings and return
# the first one.
missing_mappings <- setdiff(c("x", "y"), names(mappings))
if (length(missing_mappings) != 0) {
# Grab mappings for each layer
layer_mappings <- lapply(b$plot$layers, function(layer) {
lapply(layer$mapping, as.character)
})
# Get just the first x or y value in the combined list of plot and layer
# mappings.
mappings <- c(list(mappings), layer_mappings)
mappings <- Reduce(x = mappings, init = list(x = NULL, y = NULL),
function(init, m) {
# Can't use m$x/m$y; you get a partial match with xintercept/yintercept
if (is.null(init[["x"]]) && !is.null(m[["x"]])) init$x <- m[["x"]]
if (is.null(init[["y"]]) && !is.null(m[["y"]])) init$y <- m[["y"]]
init
}
)
}
# Look for CoordFlip
if (inherits(b$plot$coordinates, "CoordFlip")) {
mappings[c("x", "y")] <- mappings[c("y", "x")]
}
mappings_cache <<- mappings
mappings
}
if (ggplot_format == "new") {
layout <- b$layout$panel_layout
} else {
layout <- b$panel$layout
}
# Convert factor to numbers
layout$PANEL <- as.integer(as.character(layout$PANEL))
# Names of facets
facet_vars <- NULL
if (ggplot_format == "new") {
facet <- b$layout$facet
if (inherits(facet, "FacetGrid")) {
facet_vars <- vapply(c(facet$params$cols, facet$params$rows), as.character, character(1))
} else if (inherits(facet, "FacetWrap")) {
facet_vars <- vapply(facet$params$facets, as.character, character(1))
}
} else {
facet <- b$plot$facet
if (inherits(facet, "grid")) {
facet_vars <- vapply(c(facet$cols, facet$rows), as.character, character(1))
} else if (inherits(facet, "wrap")) {
facet_vars <- vapply(facet$facets, as.character, character(1))
}
}
# Iterate over each row in the layout data frame
lapply(seq_len(nrow(layout)), function(i) {
# Slice out one row
l <- layout[i, ]
scale_x <- l$SCALE_X
scale_y <- l$SCALE_Y
mapping <- find_plot_mappings(b)
# For each of the faceting variables, get the value of that variable in
# the current panel. Default to empty _named_ list so that it's sent as a
# JSON object, not array.
panel_vars <- list(a = NULL)[0]
for (i in seq_along(facet_vars)) {
var_name <- facet_vars[[i]]
vname <- paste0("panelvar", i)
mapping[[vname]] <- var_name
panel_vars[[vname]] <- l[[var_name]]
}
list(
panel = l$PANEL,
row = l$ROW,
col = l$COL,
panel_vars = panel_vars,
scale_x = scale_x,
scale_y = scale_x,
log = check_log_scales(b, scale_x, scale_y),
domain = find_panel_domain(b, l$PANEL, scale_x, scale_y),
mapping = mapping
)
})
}
# Given a gtable object, return the x and y ranges (in pixel dimensions)
find_panel_ranges <- function(g, pixelratio, res) {
# Given a vector of unit objects, return logical vector indicating which ones
# are "null" units. These units use the remaining available width/height --
# that is, the space not occupied by elements that have an absolute size.
is_null_unit <- function(x) {
# A vector of units can be either a list of individual units (a unit.list
# object), each with their own set of attributes, or an atomic vector with
# one set of attributes. ggplot2 switched from the former (in version
# 1.0.1) to the latter. We need to make sure that we get the correct
# result in both cases.
if (inherits(x, "unit.list")) {
# For ggplot2 <= 1.0.1
vapply(x, FUN.VALUE = logical(1), function(u) {
isTRUE(attr(u, "unit", exact = TRUE) == "null")
})
} else {
# For later versions of ggplot2
attr(x, "unit", exact = TRUE) == "null"
}
}
# Workaround for a bug in the quartz device. If you have a 400x400 image and
# run `convertWidth(unit(1, "npc"), "native")`, the result will depend on
# res setting of the device. If res=72, then it returns 400 (as expected),
# but if, e.g., res=96, it will return 300, which is incorrect.
devScaleFactor <- 1
if (grepl("quartz", names(grDevices::dev.cur()), fixed = TRUE)) {
devScaleFactor <- res / 72
}
# Convert a unit (or vector of units) to a numeric vector of pixel sizes
h_px <- function(x) {
devScaleFactor * grid::convertHeight(x, "native", valueOnly = TRUE)
}
w_px <- function(x) {
devScaleFactor * grid::convertWidth(x, "native", valueOnly = TRUE)
}
# Given a vector of relative sizes (in grid units), and a function for
# converting grid units to numeric pixels, return a list with: known pixel
# dimensions, scalable dimensions, and the overall space for the scalable
# objects.
find_size_info <- function(rel_sizes, unit_to_px) {
# Total pixels (in height or width)
total_px <- unit_to_px(grid::unit(1, "npc"))
# Calculate size of all panel(s) together. Panels (and only panels) have
# null size.
null_idx <- is_null_unit(rel_sizes)
# All the absolute heights. At this point, null heights are 0. We need to
# calculate them separately and add them in later.
px_sizes <- unit_to_px(rel_sizes)
# Mark the null heights as NA.
px_sizes[null_idx] <- NA_real_
# The plotting panels all are 'null' units.
null_sizes <- rep(NA_real_, length(rel_sizes))
null_sizes[null_idx] <- as.numeric(rel_sizes[null_idx])
# Total size allocated for panels is the total image size minus absolute
# (non-panel) elements.
panel_px_total <- total_px - sum(px_sizes, na.rm = TRUE)
# Size of a 1null unit
null_px <- abs(panel_px_total / sum(null_sizes, na.rm = TRUE))
# This returned list contains:
# * px_sizes: A vector of known pixel dimensions. The values that were
# null units will be assigned NA. The null units are ones that scale
# when the plotting area is resized.
# * null_sizes: A vector of the null units. All others will be assigned
# NA. The null units often are 1, but they may be any value, especially
# when using coord_fixed.
# * null_px: The size (in pixels) of a 1null unit.
# * null_px_scaled: The size (in pixels) of a 1null unit when scaled to
# fit a smaller dimension (used for plots with coord_fixed).
list(
px_sizes = abs(px_sizes),
null_sizes = null_sizes,
null_px = null_px,
null_px_scaled = null_px
)
}
# Given a size_info, return absolute pixel positions
size_info_to_px <- function(info) {
px_sizes <- info$px_sizes
null_idx <- !is.na(info$null_sizes)
px_sizes[null_idx] <- info$null_sizes[null_idx] * info$null_px_scaled
# If this direction is scaled down because of coord_fixed, we need to add an
# offset so that the pixel locations are centered.
offset <- (info$null_px - info$null_px_scaled) *
sum(info$null_sizes, na.rm = TRUE) / 2
# Get absolute pixel positions
cumsum(px_sizes) + offset
}
heights_info <- find_size_info(g$heights, h_px)
widths_info <- find_size_info(g$widths, w_px)
if (g$respect) {
# This is a plot with coord_fixed. The grid 'respect' option means to use
# the same pixel value for 1null, for width and height. We want the
# smaller of the two values -- that's what makes the plot fit in the
# viewport.
null_px_min <- min(heights_info$null_px, widths_info$null_px)
heights_info$null_px_scaled <- null_px_min
widths_info$null_px_scaled <- null_px_min
}
# Convert to absolute pixel positions
y_pos <- size_info_to_px(heights_info)
x_pos <- size_info_to_px(widths_info)
# Match up the pixel dimensions to panels
layout <- g$layout
# For panels:
# * For facet_wrap, they'll be named "panel-1", "panel-2", etc.
# * For no facet or facet_grid, they'll just be named "panel". For
# facet_grid, we need to re-order the layout table. Assume that panel
# numbers go from left to right, then next row.
# Assign a number to each panel, corresponding to PANEl in the built ggplot
# object.
layout <- layout[grepl("^panel", layout$name), ]
layout <- layout[order(layout$t, layout$l), ]
layout$panel <- seq_len(nrow(layout))
# When using a HiDPI client on a Linux server, the pixel
# dimensions are doubled, so we have to divide the dimensions by
# `pixelratio`. When a HiDPI client is used on a Mac server (with
# the quartz device), the pixel dimensions _aren't_ doubled, even though
# the image has double size. In the latter case we don't have to scale the
# numbers down.
pix_ratio <- 1
if (!grepl("^quartz", names(grDevices::dev.cur()))) {
pix_ratio <- pixelratio
}
# Return list of lists, where each inner list has left, right, top, bottom
# values for a panel
lapply(seq_len(nrow(layout)), function(i) {
p <- layout[i, , drop = FALSE]
list(
left = x_pos[p$l - 1] / pix_ratio,
right = x_pos[p$r] / pix_ratio,
bottom = y_pos[p$b] / pix_ratio,
top = y_pos[p$t - 1] / pix_ratio
)
})
}
#' Disk-based plot cache
#'
#' Creates a read-through cache for plots. The plotting logic is provided as
#' \code{plotFunc}, a function that can have any number/combination of
#' arguments; the return value of \code{plotCache()} is a function that should
#' be used in the place of plotFunc. Each unique combination of inputs will be
#' cached to disk in the location specified by \code{cacheDir}.
#'
#' \code{invalidationExpr} is an expression that uses reactive values like
#' \code{input$click} and/or reactive expressions like \code{data()}. Whenever
#' it changes value, the cache is invalidated (the contents are erased). You
#' typically want to invalidate the cache when a plot made with the same input
#' variables would have a different result. For example, if the plot is a
#' scatter plot and the data set originally had 100 rows, and then changes to
#' have 200 rows, you would want to invalidate the cache so that the plots would
#' be redrawn display the new, larger data set. The \code{invalidationExpr}
#' parameter works just like the \code{eventExpr} parameter of
#' \code{\link{observeEvent}}.
#'
#' Another way to use \code{invalidationExpr} is to have it invalidate the cache
#' at a fixed time interval. For example, you might want to have invalidate the
#' cache once per hour, or once per day. See below for an example.
#'
#' @section Cache scoping:
#'
#' There are a number of different ways you may want to scope the cache. For
#' example, you may want each user session to have their own plot cache, or
#' you may want each run of the application to have a cache (shared among
#' possibly multiple simultaneous user sessions), or you may want to have a
#' cache that persists even after the application is shut down and started
#' again.
#'
#' The cache can be scoped automatically, based on where you call
#' \code{plotCache()}. If automatic scoping is used, the cache will be
#' automatically deleted when the scope exits. For example if it is scoped to
#' a session, then the cache will be deleted when the session exits.
#'
#' \describe{
#' \item{1}{To scope the cache to one session, call \code{plotCache()} inside
#' of the server function.}
#' \item{2}{To scope the cache to one run of a Shiny application (shared
#' among possibly multiple user sessions), call \code{plotCache()} in your
#' application, but outside of the server function.}
#' \item{3}{To scope the cache to a single R process (possibly across multiple
#' runs of applications), call \code{plotCache()} somewhere outside of
#' code that is run by \code{runApp()}. (This is an uncommon use case, but
#' can happen during local application development when running code in the
#' console.)}
#' }
#'
#' If you want to set the scope of the cache manually, use the
#' \code{cacheDir} parameter. This can be useful if you want the cache to
#' persist across R processes or even system reboots.
#'
#' \describe{
#' \item{4}{To have the cache persist across different R processes, use
#' \code{cacheDir=file.path(dirname(tempdir()), "my_cache_id")}.
#' This will create a subdirectory in your system temp directory named
#' \code{my_cache_id} (where \code{my_cache_id} is replaced with a unique
#' name of your choosing).}
#' \item{5}{To have the cache persist even across system reboots, you can set
#' \code{cacheDir} to a location outside of the temp directory.}
#' }
#'
#'
#'
#' @param invalidationExpr Any expression or block of code that accesses any
#' reactives whose invalidation should cause cache invalidation. Use
#' \code{NULL} if you don't want to cause cache invalidation.
#' @param plotFunc Plotting logic, provided as a function that takes zero or
#' more arguments. Don't worry about setting up a graphics device or creating
#' a PNG; just write to the graphics device (you must call \code{print()} on
#' ggplot2 objects).
#' @param baseWidth A base value for the width of the cached plot.
#' @param aspectRatioRate A multiplier for different possible aspect ratios.
#' @param growthRate A multiplier for different cached image sizes. For
#' example, with a \code{width} of 400 and a \code{growth_rate} of 1.25, there
#' will be possible cached images of widths 256, 320, 400, 500, 625, and so
#' on, both smaller and larger.
#' @param res The resolution of the PNG, in pixels per inch.
#' @param cacheDir The location on disk where the cache will be stored. If
#' \code{NULL} (the default), it uses a temp directory which will be cleaned
#' up when the cache scope exits. See the Cache Scoping section for more
#' information.
#' @param invalidation.env The environment where the \code{invalidationExpr} is
#' evaluated.
#' @param invalidation.quoted Is \code{invalidationExpr} expression quoted? By
#' default, this is FALSE. This is useful when you want to use an expression
#' that is stored in a variable; to do so, it must be quoted with
#' \code{quote()}.
#'
#' @export
plotCache <- function(invalidationExpr, plotFunc,
baseWidth = 400, aspectRatioRate = 1.25, growthRate = 1.25, res = 72,
cacheDir = NULL,
invalidation.env = parent.frame(),
invalidation.quoted = FALSE,
session = getDefaultReactiveDomain()
) {
# If user didn't supply cacheDir, automatically determine it.
if (is.null(cacheDir)) {
if (!is.null(session)) {
# Case 1: scope to session
cacheScopePath <- file.path(tempdir(), paste0("shinysession-", session$token))
} else if (!is.null(getShinyOption("appToken"))) {
# Case 2: scope to app
cacheScopePath <- file.path(tempdir(), paste0("shinyapp-", getShinyOption("appToken")))
} else {
# Case 3: scope to current R process
cacheScopePath <- file.path(tempdir(), "shiny")
}
cacheDir <- file.path(cacheScopePath, createUniqueId(8))
# Remove the cache directory when it's no longer needed.
reg.finalizer(environment(), function(e) {
unlink(cacheDir, recursive = TRUE)
# If cacheScopePath is empty, remove it.
siblingPaths <- setdiff(dir(cacheScopePath, all.files = TRUE), c(".", ".."))
if (length(siblingPaths) == 0) {
file.remove(cacheScopePath)
}
})
}
if (!dirExists(cacheDir)) {
dir.create(cacheDir, recursive = TRUE, mode = "0700")
}
if (!invalidation.quoted) {
invalidationExpr <- substitute(invalidationExpr)
}
possible_dims <- all_possible_dims(baseWidth, aspectRatioRate, growthRate)
# Delete the cacheDir at the appropriate time. Use ignoreInit=TRUE because we don't
# want it to happen right in the beginning, especially when cacheDir is provided
# by the user and it might need to persist across R processes.
observeEvent(invalidationExpr, event.env = invalidation.env, event.quoted = TRUE,
ignoreInit = TRUE,
{
if (dirExists(cacheDir)) {
unlink(cacheDir, recursive = TRUE)
}
dir.create(cacheDir, recursive = TRUE, mode = "0700")
}
)
function(...) {
output_info <- getCurrentOutputInfo()
if (is.null(output_info)) {
stop("This must be run in a Shiny output.")
}
session <- getDefaultReactiveDomain()
if (is.null(session)) {
stop("This must be run from a Shiny session.")
}
target_width <- output_info$width()
target_height <- output_info$height()
dims <- find_smallest_containing_rect(target_width, target_height, possible_dims)
pixelratio <- session$clientData$pixelratio
args <- list(...)
# TODO: What if the args include weird objects like environments or reactive expressions?
key <- paste0(digest::digest(c(args, width = dims$width, height = dims$height, res = res, pixelratio = pixelratio)), ".png")
filePath <- file.path(cacheDir, key)
if (!file.exists(filePath)) {
plotPNG(
filename = filePath,
width = dims$width * pixelratio,
height = dims$height * pixelratio,
res = res * pixelratio,
function() {
do.call("plotFunc", args)
}
)
}
filePath
}
}
# Given a target rectangle with `width` and `height`, and data frame `dims` of possible
# dimensions, with column `width` and `height, find the smallest possible width x
# height pair from `dims` that fully contains `width` and `height.`
find_smallest_containing_rect <- function(width, height, dims) {
fit_rows <- width <= dims$width & height <= dims$height
if (sum(fit_rows) == 0) {
# TODO: handle case where width x height is larger than all dims
}
# Drop all the rows where width x height won't fit
dims <- dims[fit_rows, ]
# Find the possible rectangle with the smallest area
dims$area <- dims$width * dims$height
min_row <- which.min(dims$area)
list(
width = dims$width[min_row],
height = dims$height[min_row]
)
}
# Returns a data frame with all possible width-height combinations. This could
# use some fine-tuning in the future.
all_possible_dims <- function(base_width = 400, aspect_ratio_rate = 1.25, growth_rate = 1.25) {
aspect_ratios <- aspect_ratio_rate ^ (-3:3)
dims <- expand.grid(width = base_width * (growth_rate ^ (-6:6)), ratio = aspect_ratios)
dims$height <- dims$width * dims$ratio
dims$width <- round(dims$width)
dims$height <- round(dims$height)
dims
}