v0.4.7: blog
14
apps/sim/app/(landing)/building/layout.tsx
Normal file
@@ -0,0 +1,14 @@
|
||||
import { Footer, Nav } from '@/app/(landing)/components'
|
||||
|
||||
/**
|
||||
* Layout for the building/blog section with navigation and footer
|
||||
*/
|
||||
export default function BuildingLayout({ children }: { children: React.ReactNode }) {
|
||||
return (
|
||||
<>
|
||||
<Nav hideAuthButtons={false} variant='landing' />
|
||||
<main className='relative'>{children}</main>
|
||||
<Footer />
|
||||
</>
|
||||
)
|
||||
}
|
||||
@@ -0,0 +1,789 @@
|
||||
import Image from 'next/image'
|
||||
import { soehne } from '@/app/fonts/soehne/soehne'
|
||||
|
||||
/**
|
||||
* Blog post component comparing OpenAI AgentKit, n8n, and Sim workflow builders for building AI agents.
|
||||
* Layout inspired by Anthropic's engineering blog posts.
|
||||
* Includes structured data (JSON-LD) for enhanced SEO and LLM discoverability.
|
||||
*/
|
||||
export default function OpenAiN8nSim() {
|
||||
const baseUrl = 'https://sim.ai'
|
||||
const articleUrl = `${baseUrl}/building/openai-vs-n8n-vs-sim`
|
||||
|
||||
const articleStructuredData = {
|
||||
'@context': 'https://schema.org',
|
||||
'@type': 'TechArticle',
|
||||
headline: 'OpenAI AgentKit vs n8n vs Sim: AI Agent Workflow Builder Comparison',
|
||||
description:
|
||||
'Compare OpenAI AgentKit, n8n, and Sim for building AI agent workflows. Explore key differences in capabilities, integrations, collaboration, and which platform best fits your production AI agent needs.',
|
||||
image: `${baseUrl}/building/openai-vs-n8n-vs-sim/workflow.png`,
|
||||
datePublished: '2025-10-06T00:00:00.000Z',
|
||||
dateModified: '2025-10-06T00:00:00.000Z',
|
||||
author: {
|
||||
'@type': 'Person',
|
||||
name: 'Emir Karabeg',
|
||||
url: 'https://x.com/karabegemir',
|
||||
sameAs: ['https://x.com/karabegemir'],
|
||||
},
|
||||
publisher: {
|
||||
'@type': 'Organization',
|
||||
name: 'Sim',
|
||||
logo: {
|
||||
'@type': 'ImageObject',
|
||||
url: `${baseUrl}/logo/sim-logo.png`,
|
||||
},
|
||||
url: baseUrl,
|
||||
},
|
||||
mainEntityOfPage: {
|
||||
'@type': 'WebPage',
|
||||
'@id': articleUrl,
|
||||
},
|
||||
keywords:
|
||||
'AI agents, OpenAI AgentKit, n8n, Sim, workflow automation, AI agent development, RAG, MCP protocol, agentic workflows, ChatKit, AI Copilot',
|
||||
articleSection: 'Technology',
|
||||
inLanguage: 'en-US',
|
||||
about: [
|
||||
{
|
||||
'@type': 'Thing',
|
||||
name: 'Artificial Intelligence',
|
||||
},
|
||||
{
|
||||
'@type': 'Thing',
|
||||
name: 'Workflow Automation',
|
||||
},
|
||||
{
|
||||
'@type': 'SoftwareApplication',
|
||||
name: 'OpenAI AgentKit',
|
||||
},
|
||||
{
|
||||
'@type': 'SoftwareApplication',
|
||||
name: 'n8n',
|
||||
},
|
||||
{
|
||||
'@type': 'SoftwareApplication',
|
||||
name: 'Sim',
|
||||
},
|
||||
],
|
||||
}
|
||||
|
||||
const breadcrumbStructuredData = {
|
||||
'@context': 'https://schema.org',
|
||||
'@type': 'BreadcrumbList',
|
||||
itemListElement: [
|
||||
{
|
||||
'@type': 'ListItem',
|
||||
position: 1,
|
||||
name: 'Home',
|
||||
item: baseUrl,
|
||||
},
|
||||
{
|
||||
'@type': 'ListItem',
|
||||
position: 2,
|
||||
name: 'Building',
|
||||
item: `${baseUrl}/building`,
|
||||
},
|
||||
{
|
||||
'@type': 'ListItem',
|
||||
position: 3,
|
||||
name: 'OpenAI AgentKit vs n8n vs Sim',
|
||||
item: articleUrl,
|
||||
},
|
||||
],
|
||||
}
|
||||
|
||||
return (
|
||||
<>
|
||||
{/* Structured Data for SEO */}
|
||||
<script
|
||||
type='application/ld+json'
|
||||
dangerouslySetInnerHTML={{
|
||||
__html: JSON.stringify(articleStructuredData),
|
||||
}}
|
||||
/>
|
||||
<script
|
||||
type='application/ld+json'
|
||||
dangerouslySetInnerHTML={{
|
||||
__html: JSON.stringify(breadcrumbStructuredData),
|
||||
}}
|
||||
/>
|
||||
|
||||
<article
|
||||
className={`${soehne.className} w-full`}
|
||||
itemScope
|
||||
itemType='https://schema.org/TechArticle'
|
||||
>
|
||||
{/* Header Section with Image and Title */}
|
||||
<header className='mx-auto max-w-[1450px] px-6 pt-8 sm:px-8 sm:pt-12 md:px-12 md:pt-16'>
|
||||
<div className='flex flex-col gap-8 md:flex-row md:gap-12'>
|
||||
{/* Large Image on Left */}
|
||||
<div className='h-[180px] w-full flex-shrink-0 sm:h-[200px] md:h-auto md:w-[300px]'>
|
||||
<div className='relative h-full w-full overflow-hidden rounded-lg md:aspect-[5/4]'>
|
||||
<Image
|
||||
src='/building/openai-vs-n8n-vs-sim/workflow.png'
|
||||
alt='Sim AI agent workflow builder interface'
|
||||
width={300}
|
||||
height={240}
|
||||
className='h-full w-full object-cover'
|
||||
priority
|
||||
itemProp='image'
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{/* Main Title - Taking up 80% */}
|
||||
<div className='flex flex-1 flex-col justify-between'>
|
||||
<h1
|
||||
className='font-medium text-[36px] leading-tight tracking-tight sm:text-[48px] md:text-[56px] lg:text-[64px]'
|
||||
itemProp='headline'
|
||||
>
|
||||
OpenAI AgentKit vs n8n vs Sim: AI Agent Workflow Builder Comparison
|
||||
</h1>
|
||||
<div className='mt-4 hidden items-center justify-end gap-2 sm:flex'>
|
||||
<Image
|
||||
src='/building/openai-vs-n8n-vs-sim/emir-karabeg.png'
|
||||
alt='Emir Karabeg'
|
||||
width={24}
|
||||
height={24}
|
||||
className='rounded-full'
|
||||
/>
|
||||
<p className='text-[14px] text-gray-600 leading-[1.5] sm:text-[16px]'>
|
||||
Written by{' '}
|
||||
<a
|
||||
href='https://x.com/karabegemir'
|
||||
target='_blank'
|
||||
rel='noopener noreferrer author'
|
||||
className='text-gray-600 hover:text-gray-900'
|
||||
itemProp='author'
|
||||
itemScope
|
||||
itemType='https://schema.org/Person'
|
||||
>
|
||||
<span itemProp='name'>Emir Karabeg</span>
|
||||
</a>
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{/* Horizontal Line Separator */}
|
||||
<hr className='mt-8 border-gray-200 border-t sm:mt-12' />
|
||||
|
||||
{/* Publish Date and Subtitle */}
|
||||
<div className='flex flex-col gap-6 py-8 sm:flex-row sm:items-start sm:justify-between sm:gap-8 sm:py-10'>
|
||||
{/* Publish Date and Author */}
|
||||
<div className='flex flex-shrink-0 items-center justify-between gap-4 sm:gap-0'>
|
||||
<time
|
||||
className='block text-[14px] text-gray-600 leading-[1.5] sm:text-[16px]'
|
||||
dateTime='2025-10-06T00:00:00.000Z'
|
||||
itemProp='datePublished'
|
||||
>
|
||||
Published Oct 6, 2025
|
||||
</time>
|
||||
<meta itemProp='dateModified' content='2025-10-06T00:00:00.000Z' />
|
||||
<div className='flex items-center gap-2 sm:hidden'>
|
||||
<Image
|
||||
src='/building/openai-vs-n8n-vs-sim/emir-karabeg.png'
|
||||
alt='Emir Karabeg'
|
||||
width={24}
|
||||
height={24}
|
||||
className='rounded-full'
|
||||
/>
|
||||
<p className='text-[14px] text-gray-600 leading-[1.5]'>
|
||||
Written by{' '}
|
||||
<a
|
||||
href='https://x.com/karabegemir'
|
||||
target='_blank'
|
||||
rel='noopener noreferrer author'
|
||||
className='text-gray-600 hover:text-gray-900'
|
||||
>
|
||||
Emir Karabeg
|
||||
</a>
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{/* Subtitle on Right */}
|
||||
<div className='flex-1'>
|
||||
<p
|
||||
className='m-0 block translate-y-[-4px] font-[400] text-[18px] leading-[1.5] sm:text-[20px] md:text-[26px]'
|
||||
itemProp='description'
|
||||
>
|
||||
OpenAI just released AgentKit for building AI agents. How does it compare to
|
||||
workflow automation platforms like n8n and purpose-built AI agent builders like Sim?
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
</header>
|
||||
|
||||
{/* Main Content Area - Medium-style centered with padding */}
|
||||
<div className='mx-auto max-w-[800px] px-6 pb-20 sm:px-8 md:px-12' itemProp='articleBody'>
|
||||
<div className='prose prose-lg max-w-none'>
|
||||
{/* Introduction */}
|
||||
<section className='mb-12'>
|
||||
<p className='text-[20px] text-gray-800 leading-relaxed'>
|
||||
When building AI agent workflows, developers often evaluate multiple platforms to
|
||||
find the right fit for their needs. Three platforms frequently come up in these
|
||||
discussions: OpenAI's new AgentKit, the established workflow automation tool n8n,
|
||||
and Sim, a purpose-built AI agent workflow builder. While all three enable AI agent
|
||||
development, they take fundamentally different approaches, each with distinct
|
||||
strengths and ideal use cases.
|
||||
</p>
|
||||
</section>
|
||||
|
||||
{/* Section 1: OpenAI AgentKit */}
|
||||
<section className='mb-12'>
|
||||
<h2 className='mb-4 font-medium text-[28px] leading-tight sm:text-[32px]'>
|
||||
What is OpenAI AgentKit?
|
||||
</h2>
|
||||
<p className='mb-6 text-[19px] text-gray-800 leading-relaxed'>
|
||||
OpenAI AgentKit is a set of building blocks designed to help developers take AI
|
||||
agents from prototype to production. Built on top of the OpenAI Responses API, it
|
||||
provides a structured approach to building and deploying intelligent agents.
|
||||
</p>
|
||||
|
||||
<figure className='my-8 overflow-hidden rounded-lg'>
|
||||
<Image
|
||||
src='/building/openai-vs-n8n-vs-sim/openai.png'
|
||||
alt='OpenAI AgentKit workflow interface'
|
||||
width={800}
|
||||
height={450}
|
||||
className='w-full'
|
||||
/>
|
||||
<figcaption className='sr-only'>
|
||||
OpenAI AgentKit visual workflow builder interface
|
||||
</figcaption>
|
||||
</figure>
|
||||
|
||||
<h3 className='mt-6 mb-3 font-medium text-[22px] leading-tight'>Core Features</h3>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Agent Builder Canvas
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
AgentKit provides a visual canvas where developers can design and build agents. This
|
||||
interface allows you to model complex workflows visually, making it easier to
|
||||
understand and iterate on agent behavior. The builder is powered by OpenAI's
|
||||
Responses API.
|
||||
</p>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
ChatKit for Embedded Interfaces
|
||||
</h4>
|
||||
<p className='mb-6 text-[19px] text-gray-800 leading-relaxed'>
|
||||
ChatKit enables developers to embed chat interfaces to run workflows directly within
|
||||
their applications. It includes custom widgets that you can create and integrate,
|
||||
with the ability to preview interfaces right in the workflow builder before
|
||||
deployment.
|
||||
</p>
|
||||
|
||||
<figure className='my-8 overflow-hidden rounded-lg'>
|
||||
<Image
|
||||
src='/building/openai-vs-n8n-vs-sim/widgets.png'
|
||||
alt='OpenAI AgentKit custom widgets interface'
|
||||
width={800}
|
||||
height={450}
|
||||
className='w-full'
|
||||
/>
|
||||
<figcaption className='sr-only'>
|
||||
OpenAI AgentKit ChatKit custom widgets preview
|
||||
</figcaption>
|
||||
</figure>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Comprehensive Evaluation System
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
AgentKit includes out-of-the-box evaluation capabilities to measure agent
|
||||
performance. Features include datasets to assess agent nodes, prompt optimization
|
||||
tools, and the ability to run evaluations on external models beyond OpenAI's
|
||||
ecosystem.
|
||||
</p>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Connectors and Integrations
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
The platform provides connectors to integrate with both internal tools and external
|
||||
services, enabling agents to interact with your existing tech stack.
|
||||
</p>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>API Publishing</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
Once your agent is ready, the publish feature allows you to integrate it as an API
|
||||
inside your codebase, making deployment straightforward.
|
||||
</p>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Built-in Guardrails
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
AgentKit comes with guardrails out of the box, helping ensure agent behavior stays
|
||||
within defined boundaries and safety parameters.
|
||||
</p>
|
||||
|
||||
<h3 className='mt-6 mb-3 font-medium text-[22px] leading-tight'>
|
||||
What AgentKit Doesn't Offer
|
||||
</h3>
|
||||
<p className='mb-2 text-[19px] text-gray-800 leading-relaxed'>
|
||||
While AgentKit is powerful for building agents, it has some limitations:
|
||||
</p>
|
||||
<ul className='mb-4 ml-6 list-disc text-[19px] text-gray-800 leading-relaxed'>
|
||||
<li className='mb-2'>
|
||||
Only able to run OpenAI models—no support for other AI providers
|
||||
</li>
|
||||
<li className='mb-2'>
|
||||
Cannot make generic API requests in workflows—limited to MCP (Model Context
|
||||
Protocol) integrations only
|
||||
</li>
|
||||
<li className='mb-2'>Not an open-source platform</li>
|
||||
<li className='mb-2'>No workflow templates to accelerate development</li>
|
||||
<li className='mb-2'>
|
||||
No execution logs or detailed monitoring for debugging and observability
|
||||
</li>
|
||||
<li className='mb-2'>No ability to trigger workflows via external integrations</li>
|
||||
<li className='mb-2'>
|
||||
Limited out-of-the-box integration options compared to dedicated workflow
|
||||
automation platforms
|
||||
</li>
|
||||
</ul>
|
||||
</section>
|
||||
|
||||
{/* Section 2: n8n */}
|
||||
<section className='mb-12'>
|
||||
<h2 className='mb-4 font-medium text-[28px] leading-tight sm:text-[32px]'>
|
||||
What is n8n?
|
||||
</h2>
|
||||
<p className='mb-6 text-[19px] text-gray-800 leading-relaxed'>
|
||||
n8n is a workflow automation platform that excels at connecting various services and
|
||||
APIs together. While it started as a general automation tool, n8n has evolved to
|
||||
support AI agent workflows alongside its traditional integration capabilities.
|
||||
</p>
|
||||
|
||||
<figure className='my-8 overflow-hidden rounded-lg'>
|
||||
<Image
|
||||
src='/building/openai-vs-n8n-vs-sim/n8n.png'
|
||||
alt='n8n workflow automation interface'
|
||||
width={800}
|
||||
height={450}
|
||||
className='w-full'
|
||||
/>
|
||||
<figcaption className='sr-only'>
|
||||
n8n node-based visual workflow automation platform
|
||||
</figcaption>
|
||||
</figure>
|
||||
|
||||
<h3 className='mt-6 mb-3 font-medium text-[22px] leading-tight'>Core Capabilities</h3>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Extensive Integration Library
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
n8n's primary strength lies in its vast library of pre-built integrations. With
|
||||
hundreds of connectors for popular services, it makes it easy to connect disparate
|
||||
systems without writing custom code.
|
||||
</p>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Visual Workflow Builder
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
The platform provides a node-based visual interface for building workflows. Users
|
||||
can drag and drop nodes representing different services and configure how data flows
|
||||
between them.
|
||||
</p>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Flexible Triggering Options
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
n8n supports various ways to trigger workflows, including webhooks, scheduled
|
||||
executions, and manual triggers, making it versatile for different automation
|
||||
scenarios.
|
||||
</p>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
AI and LLM Integration
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
More recently, n8n has added support for AI models and agent-like capabilities,
|
||||
allowing users to incorporate language models into their automation workflows.
|
||||
</p>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Self-Hosting Options
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
n8n offers both cloud-hosted and self-hosted deployment options, giving
|
||||
organizations control over their data and infrastructure.
|
||||
</p>
|
||||
|
||||
<h3 className='mt-6 mb-3 font-medium text-[22px] leading-tight'>Primary Use Cases</h3>
|
||||
<p className='mb-2 text-[19px] text-gray-800 leading-relaxed'>
|
||||
n8n is best suited for:
|
||||
</p>
|
||||
<ul className='mb-4 ml-6 list-disc text-[19px] text-gray-800 leading-relaxed'>
|
||||
<li className='mb-2'>Traditional workflow automation and service integration</li>
|
||||
<li className='mb-2'>Data synchronization between business tools</li>
|
||||
<li className='mb-2'>Event-driven automation workflows</li>
|
||||
<li className='mb-2'>Simple AI-enhanced automations</li>
|
||||
</ul>
|
||||
|
||||
<h3 className='mt-6 mb-3 font-medium text-[22px] leading-tight'>
|
||||
What n8n Doesn't Offer
|
||||
</h3>
|
||||
<p className='mb-2 text-[19px] text-gray-800 leading-relaxed'>
|
||||
While n8n is excellent for traditional automation, it has some limitations for AI
|
||||
agent development:
|
||||
</p>
|
||||
<ul className='mb-4 ml-6 list-disc text-[19px] text-gray-800 leading-relaxed'>
|
||||
<li className='mb-2'>
|
||||
No SDK to build workflows programmatically—limited to visual builder only
|
||||
</li>
|
||||
<li className='mb-2'>
|
||||
Not fully open source but fair-use licensed, with some restrictions
|
||||
</li>
|
||||
<li className='mb-2'>
|
||||
Free trial limited to 14 days, after which paid plans are required
|
||||
</li>
|
||||
<li className='mb-2'>Limited/complex parallel execution handling</li>
|
||||
</ul>
|
||||
</section>
|
||||
|
||||
{/* Section 3: Sim */}
|
||||
<section className='mb-12'>
|
||||
<h2 className='mb-4 font-medium text-[28px] leading-tight sm:text-[32px]'>
|
||||
What is Sim?
|
||||
</h2>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
Sim is a fully open-source platform (Apache 2.0 license) specifically designed for
|
||||
AI agent development. Unlike platforms that added AI capabilities as an
|
||||
afterthought, Sim was created from the ground up to address the unique challenges of
|
||||
building, testing, and deploying production-ready AI agents.
|
||||
</p>
|
||||
|
||||
<h3 className='mt-6 mb-3 font-medium text-[22px] leading-tight'>
|
||||
Comprehensive AI Agent Platform
|
||||
</h3>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Visual AI Workflow Builder
|
||||
</h4>
|
||||
<p className='mb-6 text-[19px] text-gray-800 leading-relaxed'>
|
||||
Sim provides an intuitive drag-and-drop canvas where developers can build complex AI
|
||||
agent workflows visually. The platform supports sophisticated agent architectures,
|
||||
including multi-agent systems, conditional logic, loops, and parallel execution
|
||||
paths. Additionally, Sim's built-in AI Copilot can assist you directly in the
|
||||
editor, helping you build and modify workflows faster with intelligent suggestions
|
||||
and explanations.
|
||||
</p>
|
||||
|
||||
<figure className='my-8 overflow-hidden rounded-lg'>
|
||||
<Image
|
||||
src='/building/openai-vs-n8n-vs-sim/sim.png'
|
||||
alt='Sim visual workflow builder with AI agent blocks'
|
||||
width={800}
|
||||
height={450}
|
||||
className='w-full'
|
||||
/>
|
||||
<figcaption className='sr-only'>
|
||||
Sim drag-and-drop AI agent workflow builder canvas
|
||||
</figcaption>
|
||||
</figure>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
AI Copilot for Workflow Building
|
||||
</h4>
|
||||
<p className='mb-6 text-[19px] text-gray-800 leading-relaxed'>
|
||||
Sim includes an intelligent in-editor AI assistant that helps you build and edit
|
||||
workflows faster. Copilot can explain complex concepts, suggest best practices, and
|
||||
even make changes to your workflow when you approve them. Using the @ context menu,
|
||||
you can reference workflows, blocks, knowledge bases, documentation, templates, and
|
||||
execution logs—giving Copilot the full context it needs to provide accurate,
|
||||
relevant assistance. This dramatically accelerates workflow development compared to
|
||||
building from scratch.
|
||||
</p>
|
||||
|
||||
<figure className='my-8 overflow-hidden rounded-lg'>
|
||||
<Image
|
||||
src='/building/openai-vs-n8n-vs-sim/copilot.png'
|
||||
alt='Sim AI Copilot assisting with workflow development'
|
||||
width={800}
|
||||
height={450}
|
||||
className='w-full'
|
||||
/>
|
||||
<figcaption className='sr-only'>
|
||||
Sim AI Copilot in-editor assistant for workflow building
|
||||
</figcaption>
|
||||
</figure>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Pre-Built Workflow Templates
|
||||
</h4>
|
||||
<p className='mb-6 text-[19px] text-gray-800 leading-relaxed'>
|
||||
Get started quickly with Sim's extensive library of pre-built workflow templates.
|
||||
Browse templates across categories like Marketing, Sales, Finance, Support, and
|
||||
Artificial Intelligence. Each template is a production-ready workflow you can
|
||||
customize for your needs, saving hours of development time. Templates are created by
|
||||
the Sim team and community members, with popularity ratings and integration counts
|
||||
to help you find the right starting point.
|
||||
</p>
|
||||
|
||||
<figure className='my-8 overflow-hidden rounded-lg'>
|
||||
<Image
|
||||
src='/building/openai-vs-n8n-vs-sim/templates.png'
|
||||
alt='Sim workflow templates gallery'
|
||||
width={800}
|
||||
height={450}
|
||||
className='w-full'
|
||||
/>
|
||||
<figcaption className='sr-only'>
|
||||
Sim pre-built workflow templates library
|
||||
</figcaption>
|
||||
</figure>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
80+ Built-in Integrations
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
Out of the box, Sim connects with 80+ services including multiple AI providers
|
||||
(OpenAI, Anthropic, Google, Groq, Cerebras, local Ollama models), communication
|
||||
tools (Gmail, Slack, Teams, Telegram, WhatsApp), productivity apps (Notion, Google
|
||||
Sheets, Airtable, Monday.com), and developer tools (GitHub, GitLab).
|
||||
</p>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Multiple Trigger Options
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
Unlike AgentKit, Sim workflows can be triggered in multiple ways: chat interfaces,
|
||||
REST APIs, webhooks, scheduled jobs, or external events from integrated services
|
||||
like Slack and GitHub. This flexibility ensures your agents can be activated however
|
||||
your use case demands.
|
||||
</p>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Real-Time Team Collaboration
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
Sim enables multiple team members to work simultaneously on the same workflow with
|
||||
real-time editing, commenting, and comprehensive permissions management. This makes
|
||||
it ideal for teams building complex agent systems together.
|
||||
</p>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Advanced Agent Capabilities
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
The platform includes specialized blocks for AI agents, RAG (Retrieval-Augmented
|
||||
Generation) systems, function calling, code execution, data processing, and
|
||||
evaluation. These purpose-built components enable developers to create sophisticated
|
||||
agentic workflows without custom coding.
|
||||
</p>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Intelligent Knowledge Base with Vector Search
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
Sim's native knowledge base goes far beyond simple document storage. Powered by
|
||||
pgvector, it provides semantic search that understands meaning and context, not just
|
||||
keywords. Upload documents in multiple formats (PDF, Word, Excel, Markdown, and
|
||||
more), and Sim automatically processes them with intelligent chunking, generates
|
||||
vector embeddings, and makes them instantly searchable. The knowledge base supports
|
||||
natural language queries, concept-based retrieval, multi-language understanding, and
|
||||
configurable chunk sizes (100-4,000 characters). This makes building RAG agents
|
||||
straightforward—your AI can search through your organization's knowledge with
|
||||
context-aware precision.
|
||||
</p>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Comprehensive Execution Logging and Monitoring
|
||||
</h4>
|
||||
<p className='mb-6 text-[19px] text-gray-800 leading-relaxed'>
|
||||
Sim provides enterprise-grade logging that captures every detail of workflow
|
||||
execution. Track workflow runs with execution IDs, view block-level logs with
|
||||
precise timing and duration metrics, monitor token usage and costs per execution,
|
||||
and debug failures with detailed error traces and trace spans. The logging system
|
||||
integrates with Copilot—you can reference execution logs directly in your Copilot
|
||||
conversations to understand what happened and troubleshoot issues. This level of
|
||||
observability is essential for production AI agents where understanding behavior and
|
||||
debugging issues quickly is critical.
|
||||
</p>
|
||||
|
||||
<figure className='my-8 overflow-hidden rounded-lg'>
|
||||
<Image
|
||||
src='/building/openai-vs-n8n-vs-sim/logs.png'
|
||||
alt='Sim execution logs and monitoring dashboard'
|
||||
width={800}
|
||||
height={450}
|
||||
className='w-full'
|
||||
/>
|
||||
<figcaption className='sr-only'>
|
||||
Sim execution logs dashboard with detailed workflow monitoring
|
||||
</figcaption>
|
||||
</figure>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Custom Integrations via MCP Protocol
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
Beyond the 80+ built-in integrations, Sim supports the Model Context Protocol (MCP),
|
||||
allowing developers to create custom integrations for proprietary systems or
|
||||
specialized tools.
|
||||
</p>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Flexible Deployment Options
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
Sim offers both cloud-hosted and self-hosted deployment options. Organizations can
|
||||
run Sim on their own infrastructure for complete control, or use the managed cloud
|
||||
service for simplicity. The platform is SOC2 and HIPAA compliant, ensuring
|
||||
enterprise-level security.
|
||||
</p>
|
||||
|
||||
<h4 className='mt-4 mb-2 font-medium text-[19px] leading-tight'>
|
||||
Production-Ready Infrastructure
|
||||
</h4>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
The platform includes everything needed for production deployments: background job
|
||||
processing, webhook handling, monitoring, and API management. Workflows can be
|
||||
published as REST API endpoints, embedded via SDKs, or run through chat interfaces.
|
||||
</p>
|
||||
|
||||
<h3 className='mt-6 mb-3 font-medium text-[22px] leading-tight'>
|
||||
What You Can Build with Sim
|
||||
</h3>
|
||||
<ul className='mb-4 ml-6 list-disc text-[19px] text-gray-800 leading-relaxed'>
|
||||
<li className='mb-2'>
|
||||
<strong>AI Assistants & Chatbots:</strong> Intelligent agents that search the web,
|
||||
access calendars, send emails, and interact with business tools
|
||||
</li>
|
||||
<li className='mb-2'>
|
||||
<strong>Business Process Automation:</strong> Automate repetitive tasks like data
|
||||
entry, report generation, customer support, and content creation
|
||||
</li>
|
||||
<li className='mb-2'>
|
||||
<strong>Data Processing & Analysis:</strong> Extract insights from documents,
|
||||
analyze datasets, generate reports, and sync data between systems
|
||||
</li>
|
||||
<li className='mb-2'>
|
||||
<strong>API Integration Workflows:</strong> Connect multiple services into unified
|
||||
endpoints and orchestrate complex business logic
|
||||
</li>
|
||||
<li className='mb-2'>
|
||||
<strong>RAG Systems:</strong> Build sophisticated retrieval-augmented generation
|
||||
pipelines with custom knowledge bases
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
<h3 className='mt-6 mb-3 font-medium text-[22px] leading-tight'>
|
||||
Drawbacks to Consider
|
||||
</h3>
|
||||
<p className='mb-2 text-[19px] text-gray-800 leading-relaxed'>
|
||||
While Sim excels at AI agent workflows, there are some tradeoffs:
|
||||
</p>
|
||||
<ul className='mb-4 ml-6 list-disc text-[19px] text-gray-800 leading-relaxed'>
|
||||
<li className='mb-2'>
|
||||
Fewer pre-built integrations compared to n8n's extensive library—though Sim's 80+
|
||||
integrations cover most AI agent use cases and MCP protocol enables custom
|
||||
integrations
|
||||
</li>
|
||||
</ul>
|
||||
</section>
|
||||
|
||||
{/* Comparison Section */}
|
||||
<section className='mb-12'>
|
||||
<h2 className='mb-4 font-medium text-[28px] leading-tight sm:text-[32px]'>
|
||||
Key Differences
|
||||
</h2>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
While all three platforms enable AI agent development, they excel in different
|
||||
areas:
|
||||
</p>
|
||||
|
||||
<h3 className='mt-6 mb-3 font-medium text-[22px] leading-tight'>OpenAI AgentKit</h3>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
<strong>Best for:</strong> Teams deeply invested in the OpenAI ecosystem who
|
||||
prioritize evaluation and testing capabilities. Ideal when you need tight
|
||||
integration with OpenAI's latest models and want built-in prompt optimization and
|
||||
evaluation tools.
|
||||
</p>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
<strong>Limitations:</strong> Locked into OpenAI models only, not open-source, no
|
||||
workflow templates or execution logs, limited triggering options, and fewer
|
||||
out-of-the-box integrations.
|
||||
</p>
|
||||
|
||||
<h3 className='mt-6 mb-3 font-medium text-[22px] leading-tight'>n8n</h3>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
<strong>Best for:</strong> Traditional workflow automation with some AI enhancement.
|
||||
Excellent when your primary need is connecting business tools and services, with AI
|
||||
as a complementary feature rather than the core focus.
|
||||
</p>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
<strong>Limitations:</strong> No SDK for programmatic workflow building, fair-use
|
||||
licensing (not fully open source), 14-day trial limitation, and AI agent
|
||||
capabilities are newer and less mature compared to its traditional automation
|
||||
features.
|
||||
</p>
|
||||
|
||||
<h3 className='mt-6 mb-3 font-medium text-[22px] leading-tight'>Sim</h3>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
<strong>Best for:</strong> Building production-ready AI agent workflows that require
|
||||
flexibility, collaboration, and comprehensive tooling. Ideal for teams that need AI
|
||||
Copilot assistance, advanced knowledge base features, detailed logging, and the
|
||||
ability to work across multiple AI providers with purpose-built agentic workflow
|
||||
tools.
|
||||
</p>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
<strong>Limitations:</strong> Fewer integrations than n8n's extensive library,
|
||||
though the 80+ built-in integrations and MCP protocol support cover most AI agent
|
||||
needs.
|
||||
</p>
|
||||
</section>
|
||||
|
||||
{/* Conclusion */}
|
||||
<section className='mb-12'>
|
||||
<h2 className='mb-4 font-medium text-[28px] leading-tight sm:text-[32px]'>
|
||||
Which Should You Choose?
|
||||
</h2>
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
The right platform depends on your specific needs and context:
|
||||
</p>
|
||||
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
Choose <strong>OpenAI AgentKit</strong> if you're exclusively using OpenAI models
|
||||
and want to build chat interfaces with the ChatKit. It's a solid choice for teams
|
||||
that want to stay within OpenAI's ecosystem and prioritize testing capabilities.
|
||||
</p>
|
||||
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
Choose <strong>n8n</strong> if your primary use case is traditional workflow
|
||||
automation between business tools, with occasional AI enhancement. It's ideal for
|
||||
organizations already familiar with n8n who want to add some AI capabilities to
|
||||
existing automations.
|
||||
</p>
|
||||
|
||||
<p className='mb-4 text-[19px] text-gray-800 leading-relaxed'>
|
||||
Choose <strong>Sim</strong> if you're building AI agents as your primary objective
|
||||
and need a platform purpose-built for that use case. Sim provides the most
|
||||
comprehensive feature set for agentic workflows, with AI Copilot to accelerate
|
||||
development, parallel execution handling, intelligent knowledge base for RAG
|
||||
applications, detailed execution logging for production monitoring, flexibility
|
||||
across AI providers, extensive integrations, team collaboration, and deployment
|
||||
options that scale from prototype to production.
|
||||
</p>
|
||||
</section>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{/* Publisher information for schema */}
|
||||
<meta itemProp='publisher' content='Sim' />
|
||||
<meta itemProp='inLanguage' content='en-US' />
|
||||
<meta
|
||||
itemProp='keywords'
|
||||
content='AI agents, OpenAI AgentKit, n8n, Sim, workflow automation'
|
||||
/>
|
||||
</article>
|
||||
</>
|
||||
)
|
||||
}
|
||||
139
apps/sim/app/(landing)/building/openai-vs-n8n-vs-sim/page.tsx
Normal file
@@ -0,0 +1,139 @@
|
||||
import type { Metadata } from 'next'
|
||||
import OpenAiN8nSim from './openai-n8n-sim'
|
||||
|
||||
const baseUrl = 'https://sim.ai'
|
||||
const canonicalUrl = `${baseUrl}/building/openai-vs-n8n-vs-sim`
|
||||
|
||||
export const metadata: Metadata = {
|
||||
title: 'OpenAI AgentKit vs n8n vs Sim: AI Agent Workflow Builder Comparison | Sim',
|
||||
description:
|
||||
'Compare OpenAI AgentKit, n8n, and Sim for building AI agent workflows. Explore key differences in capabilities, integrations, collaboration, and which platform best fits your production AI agent needs.',
|
||||
keywords: [
|
||||
'AgentKit',
|
||||
'AI agents',
|
||||
'AI agent development',
|
||||
'agents',
|
||||
'workflow builder',
|
||||
'visual workflow builder',
|
||||
'workflows',
|
||||
'OpenAI AgentKit',
|
||||
'OpenAI',
|
||||
'OpenAI Responses API',
|
||||
'n8n',
|
||||
'n8n workflow automation',
|
||||
'AI workflow automation',
|
||||
'workflow automation platform',
|
||||
'Sim',
|
||||
'agent builder comparison',
|
||||
'RAG agents',
|
||||
'RAG systems',
|
||||
'retrieval augmented generation',
|
||||
'ChatKit',
|
||||
'agent evaluation',
|
||||
'prompt optimization',
|
||||
'multi-agent systems',
|
||||
'team collaboration workflows',
|
||||
'production AI agents',
|
||||
'AI guardrails',
|
||||
'workflow integrations',
|
||||
'self-hosted AI agents',
|
||||
'cloud AI agent platform',
|
||||
'MCP protocol',
|
||||
'Model Context Protocol',
|
||||
'knowledge base integration',
|
||||
'vector embeddings',
|
||||
'AI agent canvas',
|
||||
'agentic workflows',
|
||||
'AI agent API',
|
||||
'AI chatbot workflows',
|
||||
'business process automation',
|
||||
'AI Copilot',
|
||||
'workflow copilot',
|
||||
'AI assistant for workflows',
|
||||
'vector search',
|
||||
'semantic search',
|
||||
'pgvector',
|
||||
'knowledge base AI',
|
||||
'document embeddings',
|
||||
'execution logging',
|
||||
'workflow monitoring',
|
||||
'AI agent observability',
|
||||
'workflow debugging',
|
||||
'execution traces',
|
||||
'AI workflow logs',
|
||||
'intelligent chunking',
|
||||
'context-aware search',
|
||||
],
|
||||
authors: [{ name: 'Emir Karabeg', url: 'https://x.com/karabegemir' }],
|
||||
creator: 'Emir Karabeg',
|
||||
publisher: 'Sim',
|
||||
robots: {
|
||||
index: true,
|
||||
follow: true,
|
||||
googleBot: {
|
||||
index: true,
|
||||
follow: true,
|
||||
'max-video-preview': -1,
|
||||
'max-image-preview': 'large',
|
||||
'max-snippet': -1,
|
||||
},
|
||||
},
|
||||
alternates: {
|
||||
canonical: canonicalUrl,
|
||||
},
|
||||
openGraph: {
|
||||
title: 'OpenAI AgentKit vs n8n vs Sim: AI Agent Workflow Builder Comparison',
|
||||
description:
|
||||
'Compare OpenAI AgentKit, n8n, and Sim for building AI agent workflows. Explore key differences in capabilities, integrations, and which platform fits your production needs.',
|
||||
url: canonicalUrl,
|
||||
siteName: 'Sim',
|
||||
locale: 'en_US',
|
||||
type: 'article',
|
||||
publishedTime: '2025-10-06T00:00:00.000Z',
|
||||
modifiedTime: '2025-10-06T00:00:00.000Z',
|
||||
authors: ['Emir Karabeg'],
|
||||
section: 'Technology',
|
||||
tags: [
|
||||
'AI Agents',
|
||||
'Workflow Automation',
|
||||
'OpenAI AgentKit',
|
||||
'n8n',
|
||||
'Sim',
|
||||
'AgentKit',
|
||||
'AI Development',
|
||||
'RAG',
|
||||
'MCP Protocol',
|
||||
],
|
||||
images: [
|
||||
{
|
||||
url: `${baseUrl}/building/openai-vs-n8n-vs-sim/workflow.png`,
|
||||
width: 1200,
|
||||
height: 630,
|
||||
alt: 'Sim AI agent workflow builder interface comparison',
|
||||
},
|
||||
],
|
||||
},
|
||||
twitter: {
|
||||
card: 'summary_large_image',
|
||||
title: 'OpenAI AgentKit vs n8n vs Sim: AI Agent Workflow Builder Comparison',
|
||||
description:
|
||||
'Compare OpenAI AgentKit, n8n, and Sim for building AI agent workflows. Explore key differences in capabilities, integrations, and which platform fits your production needs.',
|
||||
images: ['/building/openai-vs-n8n-vs-sim/workflow.png'],
|
||||
creator: '@karabegemir',
|
||||
site: '@simai',
|
||||
},
|
||||
other: {
|
||||
'article:published_time': '2025-10-06T00:00:00.000Z',
|
||||
'article:modified_time': '2025-10-06T00:00:00.000Z',
|
||||
'article:author': 'Emir Karabeg',
|
||||
'article:section': 'Technology',
|
||||
},
|
||||
}
|
||||
|
||||
/**
|
||||
* Blog post page comparing OpenAI AgentKit, n8n, and Sim workflow builders for AI agents.
|
||||
* Optimized for SEO with structured data, canonical URLs, and comprehensive metadata.
|
||||
*/
|
||||
export default function Page() {
|
||||
return <OpenAiN8nSim />
|
||||
}
|
||||
8
apps/sim/app/(landing)/building/page.tsx
Normal file
@@ -0,0 +1,8 @@
|
||||
import { redirect } from 'next/navigation'
|
||||
|
||||
/**
|
||||
* Redirects /building to the latest blog post
|
||||
*/
|
||||
export default function BuildingPage() {
|
||||
redirect('/building/openai-vs-n8n-vs-sim')
|
||||
}
|
||||
@@ -20,7 +20,7 @@ interface NavProps {
|
||||
}
|
||||
|
||||
export default function Nav({ hideAuthButtons = false, variant = 'landing' }: NavProps = {}) {
|
||||
const [githubStars, setGithubStars] = useState('15.4k')
|
||||
const [githubStars, setGithubStars] = useState('16.3k')
|
||||
const [isHovered, setIsHovered] = useState(false)
|
||||
const [isLoginHovered, setIsLoginHovered] = useState(false)
|
||||
const router = useRouter()
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
import { Analytics } from '@vercel/analytics/next'
|
||||
import type { Metadata, Viewport } from 'next'
|
||||
import { PublicEnvScript } from 'next-runtime-env'
|
||||
import { BrandedLayout } from '@/components/branded-layout'
|
||||
import { generateThemeCSS } from '@/lib/branding/inject-theme'
|
||||
import { generateBrandedMetadata, generateStructuredData } from '@/lib/branding/metadata'
|
||||
import { isHosted } from '@/lib/environment'
|
||||
import { createLogger } from '@/lib/logs/console/logger'
|
||||
import { PostHogProvider } from '@/lib/posthog/provider'
|
||||
import '@/app/globals.css'
|
||||
|
||||
import { SessionProvider } from '@/lib/session/session-context'
|
||||
@@ -55,7 +54,6 @@ export const viewport: Viewport = {
|
||||
],
|
||||
}
|
||||
|
||||
// Generate dynamic metadata based on brand configuration
|
||||
export const metadata: Metadata = generateBrandedMetadata()
|
||||
|
||||
export default function RootLayout({ children }: { children: React.ReactNode }) {
|
||||
@@ -91,19 +89,16 @@ export default function RootLayout({ children }: { children: React.ReactNode })
|
||||
<PublicEnvScript />
|
||||
</head>
|
||||
<body suppressHydrationWarning>
|
||||
<ThemeProvider>
|
||||
<SessionProvider>
|
||||
<BrandedLayout>
|
||||
<ZoomPrevention />
|
||||
{children}
|
||||
{isHosted && (
|
||||
<>
|
||||
<Analytics />
|
||||
</>
|
||||
)}
|
||||
</BrandedLayout>
|
||||
</SessionProvider>
|
||||
</ThemeProvider>
|
||||
<PostHogProvider>
|
||||
<ThemeProvider>
|
||||
<SessionProvider>
|
||||
<BrandedLayout>
|
||||
<ZoomPrevention />
|
||||
{children}
|
||||
</BrandedLayout>
|
||||
</SessionProvider>
|
||||
</ThemeProvider>
|
||||
</PostHogProvider>
|
||||
</body>
|
||||
</html>
|
||||
)
|
||||
|
||||
@@ -37,8 +37,18 @@ export default function sitemap(): MetadataRoute.Sitemap {
|
||||
},
|
||||
]
|
||||
|
||||
// Blog posts and content pages
|
||||
const blogPages = [
|
||||
{
|
||||
url: `${baseUrl}/building/openai-vs-n8n-vs-sim`,
|
||||
lastModified: new Date('2025-10-06'),
|
||||
changeFrequency: 'monthly' as const,
|
||||
priority: 0.9,
|
||||
},
|
||||
]
|
||||
|
||||
// You can add dynamic pages here by fetching from database
|
||||
// const dynamicPages = await fetchDynamicPages()
|
||||
|
||||
return [...staticPages]
|
||||
return [...staticPages, ...blogPages]
|
||||
}
|
||||
|
||||
@@ -5,34 +5,7 @@
|
||||
* It respects the user's telemetry preferences stored in localStorage.
|
||||
*
|
||||
*/
|
||||
import posthog from 'posthog-js'
|
||||
import { env, getEnv, isTruthy } from './lib/env'
|
||||
|
||||
// Initialize PostHog only if explicitly enabled
|
||||
if (isTruthy(getEnv('NEXT_PUBLIC_POSTHOG_ENABLED')) && getEnv('NEXT_PUBLIC_POSTHOG_KEY')) {
|
||||
posthog.init(getEnv('NEXT_PUBLIC_POSTHOG_KEY')!, {
|
||||
api_host: '/ingest',
|
||||
ui_host: 'https://us.posthog.com',
|
||||
person_profiles: 'identified_only',
|
||||
capture_pageview: true,
|
||||
capture_pageleave: true,
|
||||
capture_performance: true,
|
||||
session_recording: {
|
||||
maskAllInputs: false,
|
||||
maskInputOptions: {
|
||||
password: true,
|
||||
email: false,
|
||||
},
|
||||
recordCrossOriginIframes: false,
|
||||
recordHeaders: true,
|
||||
recordBody: true,
|
||||
},
|
||||
autocapture: true,
|
||||
capture_dead_clicks: true,
|
||||
persistence: 'localStorage+cookie',
|
||||
enable_heatmaps: true,
|
||||
})
|
||||
}
|
||||
import { env } from './lib/env'
|
||||
|
||||
if (typeof window !== 'undefined') {
|
||||
const TELEMETRY_STATUS_KEY = 'simstudio-telemetry-status'
|
||||
|
||||
41
apps/sim/lib/posthog/provider.tsx
Normal file
@@ -0,0 +1,41 @@
|
||||
'use client'
|
||||
|
||||
import { useEffect } from 'react'
|
||||
import posthog from 'posthog-js'
|
||||
import { PostHogProvider as PHProvider } from 'posthog-js/react'
|
||||
import { getEnv, isTruthy } from '../env'
|
||||
|
||||
export function PostHogProvider({ children }: { children: React.ReactNode }) {
|
||||
useEffect(() => {
|
||||
const posthogEnabled = getEnv('NEXT_PUBLIC_POSTHOG_ENABLED')
|
||||
const posthogKey = getEnv('NEXT_PUBLIC_POSTHOG_KEY')
|
||||
|
||||
if (isTruthy(posthogEnabled) && posthogKey && !posthog.__loaded) {
|
||||
posthog.init(posthogKey, {
|
||||
api_host: '/ingest',
|
||||
ui_host: 'https://us.posthog.com',
|
||||
defaults: '2025-05-24',
|
||||
person_profiles: 'identified_only',
|
||||
capture_pageview: true,
|
||||
capture_pageleave: true,
|
||||
capture_performance: true,
|
||||
session_recording: {
|
||||
maskAllInputs: false,
|
||||
maskInputOptions: {
|
||||
password: true,
|
||||
email: false,
|
||||
},
|
||||
recordCrossOriginIframes: false,
|
||||
recordHeaders: true,
|
||||
recordBody: true,
|
||||
},
|
||||
autocapture: true,
|
||||
capture_dead_clicks: true,
|
||||
persistence: 'localStorage+cookie',
|
||||
enable_heatmaps: true,
|
||||
})
|
||||
}
|
||||
}, [])
|
||||
|
||||
return <PHProvider client={posthog}>{children}</PHProvider>
|
||||
}
|
||||
BIN
apps/sim/public/building/openai-vs-n8n-vs-sim/copilot.png
Normal file
|
After Width: | Height: | Size: 487 KiB |
BIN
apps/sim/public/building/openai-vs-n8n-vs-sim/emir-karabeg.png
Normal file
|
After Width: | Height: | Size: 2.0 MiB |
BIN
apps/sim/public/building/openai-vs-n8n-vs-sim/logs.png
Normal file
|
After Width: | Height: | Size: 234 KiB |
BIN
apps/sim/public/building/openai-vs-n8n-vs-sim/n8n.png
Normal file
|
After Width: | Height: | Size: 657 KiB |
BIN
apps/sim/public/building/openai-vs-n8n-vs-sim/openai.png
Normal file
|
After Width: | Height: | Size: 148 KiB |
BIN
apps/sim/public/building/openai-vs-n8n-vs-sim/sim.png
Normal file
|
After Width: | Height: | Size: 301 KiB |
BIN
apps/sim/public/building/openai-vs-n8n-vs-sim/templates.png
Normal file
|
After Width: | Height: | Size: 338 KiB |
BIN
apps/sim/public/building/openai-vs-n8n-vs-sim/widgets.png
Normal file
|
After Width: | Height: | Size: 863 KiB |
BIN
apps/sim/public/building/openai-vs-n8n-vs-sim/workflow.png
Normal file
|
After Width: | Height: | Size: 325 KiB |