Merge branch 'staging' into fix/logs-files

This commit is contained in:
Vikhyath Mondreti
2026-02-06 20:20:14 -08:00
43 changed files with 1936 additions and 356 deletions

View File

@@ -5462,3 +5462,24 @@ export function EnrichSoIcon(props: SVGProps<SVGSVGElement>) {
</svg>
)
}
export function AgentSkillsIcon(props: SVGProps<SVGSVGElement>) {
return (
<svg
{...props}
xmlns='http://www.w3.org/2000/svg'
width='16'
height='16'
viewBox='0 0 16 16'
fill='none'
>
<path
d='M8 1L14.0622 4.5V11.5L8 15L1.93782 11.5V4.5L8 1Z'
stroke='currentColor'
strokeWidth='1.5'
fill='none'
/>
<path d='M8 4.5L11 6.25V9.75L8 11.5L5 9.75V6.25L8 4.5Z' fill='currentColor' />
</svg>
)
}

View File

@@ -18,7 +18,9 @@ This means you can attach many skills to an agent without bloating its context w
## Creating Skills
Go to **Settings** (gear icon) and select **Skills** under the Tools section.
Go to **Settings** and select **Skills** under the Tools section.
![Manage Skills](/static/skills/manage-skills.png)
Click **Add** to create a new skill with three fields:
@@ -52,11 +54,22 @@ Use when the user asks you to write, optimize, or debug SQL queries.
...
```
**Recommended structure:**
- **When to use** — Specific triggers and scenarios
- **Instructions** — Step-by-step guidance with numbered lists
- **Examples** — Input/output samples showing expected behavior
- **Common Patterns** — Reusable approaches for frequent tasks
- **Edge Cases** — Gotchas and special considerations
Keep skills focused and under 500 lines. If a skill grows too large, split it into multiple specialized skills.
## Adding Skills to an Agent
Open any **Agent** block and find the **Skills** dropdown below the tools section. Select the skills you want the agent to have access to.
Selected skills appear as chips that you can click to edit or remove.
![Add Skill](/static/skills/add-skill.png)
Selected skills appear as cards that you can click to edit or remove.
### What Happens at Runtime
@@ -69,12 +82,50 @@ When the workflow runs:
This works across all supported LLM providers — the `load_skill` tool uses standard tool-calling, so no provider-specific configuration is needed.
## Tips
## Common Use Cases
- **Keep descriptions actionable** — Instead of "Helps with SQL", write "Write optimized SQL queries for PostgreSQL, MySQL, and SQLite, including index recommendations and query plan analysis"
Skills are most valuable when agents need specialized knowledge or multi-step workflows:
**Domain Expertise**
- `api-integration-expert` — Best practices for calling specific APIs (authentication, rate limiting, error handling)
- `data-transformation` — ETL patterns, data cleaning, and validation rules
- `code-reviewer` — Code review guidelines specific to your team's standards
**Workflow Templates**
- `bug-investigation` — Step-by-step debugging methodology (reproduce → isolate → test → fix)
- `feature-implementation` — Development workflow from requirements to deployment
- `document-generator` — Templates and formatting rules for technical documentation
**Company-Specific Knowledge**
- `our-architecture` — System architecture diagrams, service dependencies, and deployment processes
- `style-guide` — Brand guidelines, writing tone, UI/UX patterns
- `customer-onboarding` — Standard procedures and common customer questions
**When to use skills vs. agent instructions:**
- Use **skills** for knowledge that applies across multiple workflows or changes frequently
- Use **agent instructions** for task-specific context that's unique to a single agent
## Best Practices
**Writing Effective Descriptions**
- **Be specific and keyword-rich** — Instead of "Helps with SQL", write "Write optimized SQL queries for PostgreSQL, MySQL, and SQLite, including index recommendations and query plan analysis"
- **Include activation triggers** — Mention specific words or phrases that should prompt the skill (e.g., "Use when the user mentions PDFs, forms, or document extraction")
- **Keep it under 200 words** — Agents scan descriptions quickly; make every word count
**Skill Scope and Organization**
- **One skill per domain** — A focused `sql-expert` skill works better than a broad `database-everything` skill
- **Use markdown structure** — Headers, lists, and code blocks help the agent parse and follow instructions
- **Test iteratively** — Run your workflow and check if the agent activates the skill when expected
- **Limit to 5-10 skills per agent** — More skills = more decision overhead; start small and add as needed
- **Split large skills** — If a skill exceeds 500 lines, break it into focused sub-skills
**Content Structure**
- **Use markdown formatting** — Headers, lists, and code blocks help agents parse and follow instructions
- **Provide examples** — Show input/output pairs so agents understand expected behavior
- **Be explicit about edge cases** — Don't assume agents will infer special handling
**Testing and Iteration**
- **Test activation** — Run your workflow and verify the agent loads the skill when expected
- **Check for false positives** — Make sure skills aren't activating when they shouldn't
- **Refine descriptions** — If a skill isn't loading when needed, add more keywords to the description
## Learn More

View File

@@ -10,6 +10,21 @@ import { BlockInfoCard } from "@/components/ui/block-info-card"
color="#6366F1"
/>
{/* MANUAL-CONTENT-START:intro */}
[Airweave](https://airweave.ai/) is an AI-powered semantic search platform that helps you discover and retrieve knowledge across all your synced data sources. Built for modern teams, Airweave enables fast, relevant search results using neural, hybrid, or keyword-based strategies tailored to your needs.
With Airweave, you can:
- **Search smarter**: Use natural language queries to uncover information stored across your connected tools and databases
- **Unify your data**: Seamlessly access content from sources like code, docs, chat, emails, cloud files, and more
- **Customize retrieval**: Select between hybrid (semantic + keyword), neural, or keyword search strategies for optimal results
- **Boost recall**: Expand search queries with AI to find more comprehensive answers
- **Rerank results using AI**: Prioritize the most relevant answers with powerful language models
- **Get instant answers**: Generate clear, AI-powered responses synthesized from your data
In Sim, the Airweave integration empowers your agents to search, summarize, and extract insights from all your organizations data via a single tool. Use Airweave to drive rich, contextual knowledge retrieval within your workflows—whether answering questions, generating summaries, or supporting dynamic decision-making.
{/* MANUAL-CONTENT-END */}
## Usage Instructions
Search across your synced data sources using Airweave. Supports semantic search with hybrid, neural, or keyword retrieval strategies. Optionally generate AI-powered answers from search results.

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

View File

@@ -285,6 +285,14 @@ export async function POST(req: NextRequest) {
apiVersion: 'preview',
endpoint: env.AZURE_OPENAI_ENDPOINT,
}
} else if (providerEnv === 'azure-anthropic') {
providerConfig = {
provider: 'azure-anthropic',
model: envModel,
apiKey: env.AZURE_ANTHROPIC_API_KEY,
apiVersion: env.AZURE_ANTHROPIC_API_VERSION,
endpoint: env.AZURE_ANTHROPIC_ENDPOINT,
}
} else if (providerEnv === 'vertex') {
providerConfig = {
provider: 'vertex',

View File

@@ -845,6 +845,8 @@ export async function POST(req: NextRequest) {
contextVariables,
timeoutMs: timeout,
requestId,
ownerKey: `user:${auth.userId}`,
ownerWeight: 1,
})
const executionTime = Date.now() - startTime

View File

@@ -23,7 +23,16 @@ export async function POST(request: NextRequest) {
topK,
model,
apiKey,
azureEndpoint,
azureApiVersion,
vertexProject,
vertexLocation,
vertexCredential,
bedrockAccessKeyId,
bedrockSecretKey,
bedrockRegion,
workflowId,
workspaceId,
piiEntityTypes,
piiMode,
piiLanguage,
@@ -110,7 +119,18 @@ export async function POST(request: NextRequest) {
topK,
model,
apiKey,
{
azureEndpoint,
azureApiVersion,
vertexProject,
vertexLocation,
vertexCredential,
bedrockAccessKeyId,
bedrockSecretKey,
bedrockRegion,
},
workflowId,
workspaceId,
piiEntityTypes,
piiMode,
piiLanguage,
@@ -178,7 +198,18 @@ async function executeValidation(
topK: string | undefined,
model: string,
apiKey: string | undefined,
providerCredentials: {
azureEndpoint?: string
azureApiVersion?: string
vertexProject?: string
vertexLocation?: string
vertexCredential?: string
bedrockAccessKeyId?: string
bedrockSecretKey?: string
bedrockRegion?: string
},
workflowId: string | undefined,
workspaceId: string | undefined,
piiEntityTypes: string[] | undefined,
piiMode: string | undefined,
piiLanguage: string | undefined,
@@ -219,7 +250,9 @@ async function executeValidation(
topK: topK ? Number.parseInt(topK) : 10, // Default topK is 10
model: model,
apiKey,
providerCredentials,
workflowId,
workspaceId,
requestId,
})
}

View File

@@ -325,6 +325,11 @@ export async function POST(req: NextRequest, { params }: { params: Promise<{ id:
requestId
)
// Client-side sessions and personal API keys bill/permission-check the
// authenticated user, not the workspace billed account.
const useAuthenticatedUserAsActor =
isClientSession || (auth.authType === 'api_key' && auth.apiKeyType === 'personal')
const preprocessResult = await preprocessExecution({
workflowId,
userId,
@@ -334,6 +339,7 @@ export async function POST(req: NextRequest, { params }: { params: Promise<{ id:
checkDeployment: !shouldUseDraftState,
loggingSession,
useDraftState: shouldUseDraftState,
useAuthenticatedUserAsActor,
})
if (!preprocessResult.success) {

View File

@@ -130,39 +130,52 @@ export function SkillInput({
onOpenChange={setOpen}
/>
{selectedSkills.length > 0 && (
<div className='flex flex-wrap gap-[4px]'>
{selectedSkills.map((stored) => {
const fullSkill = workspaceSkills.find((s) => s.id === stored.skillId)
return (
{selectedSkills.length > 0 &&
selectedSkills.map((stored) => {
const fullSkill = workspaceSkills.find((s) => s.id === stored.skillId)
return (
<div
key={stored.skillId}
className='group relative flex flex-col overflow-hidden rounded-[4px] border border-[var(--border-1)] transition-all duration-200 ease-in-out'
>
<div
key={stored.skillId}
className='flex cursor-pointer items-center gap-[4px] rounded-[4px] border border-[var(--border-1)] bg-[var(--surface-5)] px-[6px] py-[2px] font-medium text-[12px] text-[var(--text-secondary)] hover:bg-[var(--surface-6)]'
className='flex cursor-pointer items-center justify-between gap-[8px] rounded-t-[4px] bg-[var(--surface-4)] px-[8px] py-[6.5px]'
onClick={() => {
if (fullSkill && !disabled && !isPreview) {
setEditingSkill(fullSkill)
}
}}
>
<AgentSkillsIcon className='h-[10px] w-[10px] text-[var(--text-tertiary)]' />
<span className='max-w-[140px] truncate'>{resolveSkillName(stored)}</span>
{!disabled && !isPreview && (
<button
type='button'
onClick={(e) => {
e.stopPropagation()
handleRemove(stored.skillId)
}}
className='ml-[2px] rounded-[2px] p-[1px] text-[var(--text-tertiary)] hover:bg-[var(--surface-7)] hover:text-[var(--text-secondary)]'
<div className='flex min-w-0 flex-1 items-center gap-[8px]'>
<div
className='flex h-[16px] w-[16px] flex-shrink-0 items-center justify-center rounded-[4px]'
style={{ backgroundColor: '#e0e0e0' }}
>
<XIcon className='h-[10px] w-[10px]' />
</button>
)}
<AgentSkillsIcon className='h-[10px] w-[10px] text-[#333]' />
</div>
<span className='truncate font-medium text-[13px] text-[var(--text-primary)]'>
{resolveSkillName(stored)}
</span>
</div>
<div className='flex flex-shrink-0 items-center gap-[8px]'>
{!disabled && !isPreview && (
<button
type='button'
onClick={(e) => {
e.stopPropagation()
handleRemove(stored.skillId)
}}
className='flex items-center justify-center text-[var(--text-tertiary)] transition-colors hover:text-[var(--text-primary)]'
aria-label='Remove skill'
>
<XIcon className='h-[13px] w-[13px]' />
</button>
)}
</div>
</div>
)
})}
</div>
)}
</div>
)
})}
</div>
<SkillModal

View File

@@ -6,6 +6,7 @@ import {
isSubBlockVisibleForMode,
} from '@/lib/workflows/subblocks/visibility'
import type { BlockConfig, SubBlockConfig, SubBlockType } from '@/blocks/types'
import { usePermissionConfig } from '@/hooks/use-permission-config'
import { useWorkflowDiffStore } from '@/stores/workflow-diff'
import { mergeSubblockState } from '@/stores/workflows/utils'
import { useWorkflowStore } from '@/stores/workflows/workflow/store'
@@ -35,6 +36,7 @@ export function useEditorSubblockLayout(
const blockDataFromStore = useWorkflowStore(
useCallback((state) => state.blocks?.[blockId]?.data, [blockId])
)
const { config: permissionConfig } = usePermissionConfig()
return useMemo(() => {
// Guard against missing config or block selection
@@ -100,6 +102,9 @@ export function useEditorSubblockLayout(
const visibleSubBlocks = (config.subBlocks || []).filter((block) => {
if (block.hidden) return false
// Hide skill-input subblock when skills are disabled via permissions
if (block.type === 'skill-input' && permissionConfig.disableSkills) return false
// Check required feature if specified - declarative feature gating
if (!isSubBlockFeatureEnabled(block)) return false
@@ -149,5 +154,6 @@ export function useEditorSubblockLayout(
activeWorkflowId,
isSnapshotView,
blockDataFromStore,
permissionConfig.disableSkills,
])
}

View File

@@ -40,6 +40,7 @@ import { useCustomTools } from '@/hooks/queries/custom-tools'
import { useMcpServers, useMcpToolsQuery } from '@/hooks/queries/mcp'
import { useCredentialName } from '@/hooks/queries/oauth-credentials'
import { useReactivateSchedule, useScheduleInfo } from '@/hooks/queries/schedules'
import { useSkills } from '@/hooks/queries/skills'
import { useDeployChildWorkflow } from '@/hooks/queries/workflows'
import { useSelectorDisplayName } from '@/hooks/use-selector-display-name'
import { useVariablesStore } from '@/stores/panel'
@@ -618,6 +619,48 @@ const SubBlockRow = memo(function SubBlockRow({
return `${toolNames[0]}, ${toolNames[1]} +${toolNames.length - 2}`
}, [subBlock?.type, rawValue, customTools, workspaceId])
/**
* Hydrates skill references to display names.
* Resolves skill IDs to their current names from the skills query.
*/
const { data: workspaceSkills = [] } = useSkills(workspaceId || '')
const skillsDisplayValue = useMemo(() => {
if (subBlock?.type !== 'skill-input' || !Array.isArray(rawValue) || rawValue.length === 0) {
return null
}
interface StoredSkill {
skillId: string
name?: string
}
const skillNames = rawValue
.map((skill: StoredSkill) => {
if (!skill || typeof skill !== 'object') return null
// Priority 1: Resolve skill name from the skills query (fresh data)
if (skill.skillId) {
const foundSkill = workspaceSkills.find((s) => s.id === skill.skillId)
if (foundSkill?.name) return foundSkill.name
}
// Priority 2: Fall back to stored name (for deleted skills)
if (skill.name && typeof skill.name === 'string') return skill.name
// Priority 3: Use skillId as last resort
if (skill.skillId) return skill.skillId
return null
})
.filter((name): name is string => !!name)
if (skillNames.length === 0) return null
if (skillNames.length === 1) return skillNames[0]
if (skillNames.length === 2) return `${skillNames[0]}, ${skillNames[1]}`
return `${skillNames[0]}, ${skillNames[1]} +${skillNames.length - 2}`
}, [subBlock?.type, rawValue, workspaceSkills])
const isPasswordField = subBlock?.password === true
const maskedValue = isPasswordField && value && value !== '-' ? '•••' : null
@@ -627,6 +670,7 @@ const SubBlockRow = memo(function SubBlockRow({
dropdownLabel ||
variablesDisplayValue ||
toolsDisplayValue ||
skillsDisplayValue ||
knowledgeBaseDisplayName ||
workflowSelectionName ||
mcpServerDisplayName ||

View File

@@ -27,6 +27,13 @@ interface SkillModalProps {
const KEBAB_CASE_REGEX = /^[a-z0-9]+(-[a-z0-9]+)*$/
interface FieldErrors {
name?: string
description?: string
content?: string
general?: string
}
export function SkillModal({
open,
onOpenChange,
@@ -43,7 +50,7 @@ export function SkillModal({
const [name, setName] = useState('')
const [description, setDescription] = useState('')
const [content, setContent] = useState('')
const [formError, setFormError] = useState('')
const [errors, setErrors] = useState<FieldErrors>({})
const [saving, setSaving] = useState(false)
useEffect(() => {
@@ -57,7 +64,7 @@ export function SkillModal({
setDescription('')
setContent('')
}
setFormError('')
setErrors({})
}
}, [open, initialValues])
@@ -71,24 +78,26 @@ export function SkillModal({
}, [name, description, content, initialValues])
const handleSave = async () => {
const newErrors: FieldErrors = {}
if (!name.trim()) {
setFormError('Name is required')
return
}
if (name.length > 64) {
setFormError('Name must be 64 characters or less')
return
}
if (!KEBAB_CASE_REGEX.test(name)) {
setFormError('Name must be kebab-case (e.g. my-skill)')
return
newErrors.name = 'Name is required'
} else if (name.length > 64) {
newErrors.name = 'Name must be 64 characters or less'
} else if (!KEBAB_CASE_REGEX.test(name)) {
newErrors.name = 'Name must be kebab-case (e.g. my-skill)'
}
if (!description.trim()) {
setFormError('Description is required')
return
newErrors.description = 'Description is required'
}
if (!content.trim()) {
setFormError('Content is required')
newErrors.content = 'Content is required'
}
if (Object.keys(newErrors).length > 0) {
setErrors(newErrors)
return
}
@@ -113,7 +122,7 @@ export function SkillModal({
error instanceof Error && error.message.includes('already exists')
? error.message
: 'Failed to save skill. Please try again.'
setFormError(message)
setErrors({ general: message })
} finally {
setSaving(false)
}
@@ -135,12 +144,17 @@ export function SkillModal({
value={name}
onChange={(e) => {
setName(e.target.value)
if (formError) setFormError('')
if (errors.name || errors.general)
setErrors((prev) => ({ ...prev, name: undefined, general: undefined }))
}}
/>
<span className='text-[11px] text-[var(--text-muted)]'>
Lowercase letters, numbers, and hyphens (e.g. my-skill)
</span>
{errors.name ? (
<p className='text-[12px] text-[var(--text-error)]'>{errors.name}</p>
) : (
<span className='text-[11px] text-[var(--text-muted)]'>
Lowercase letters, numbers, and hyphens (e.g. my-skill)
</span>
)}
</div>
<div className='flex flex-col gap-[4px]'>
@@ -153,10 +167,14 @@ export function SkillModal({
value={description}
onChange={(e) => {
setDescription(e.target.value)
if (formError) setFormError('')
if (errors.description || errors.general)
setErrors((prev) => ({ ...prev, description: undefined, general: undefined }))
}}
maxLength={1024}
/>
{errors.description && (
<p className='text-[12px] text-[var(--text-error)]'>{errors.description}</p>
)}
</div>
<div className='flex flex-col gap-[4px]'>
@@ -169,13 +187,19 @@ export function SkillModal({
value={content}
onChange={(e: ChangeEvent<HTMLTextAreaElement>) => {
setContent(e.target.value)
if (formError) setFormError('')
if (errors.content || errors.general)
setErrors((prev) => ({ ...prev, content: undefined, general: undefined }))
}}
className='min-h-[200px] resize-y font-mono text-[13px]'
/>
{errors.content && (
<p className='text-[12px] text-[var(--text-error)]'>{errors.content}</p>
)}
</div>
{formError && <span className='text-[11px] text-[var(--text-error)]'>{formError}</span>}
{errors.general && (
<p className='text-[12px] text-[var(--text-error)]'>{errors.general}</p>
)}
</div>
</ModalBody>
<ModalFooter className='items-center justify-between'>

View File

@@ -333,11 +333,11 @@ Return ONLY the JSON array.`,
id: 'azureApiVersion',
title: 'Azure API Version',
type: 'short-input',
placeholder: '2024-07-01-preview',
placeholder: 'Enter API version',
connectionDroppable: false,
condition: {
field: 'model',
value: providers['azure-openai'].models,
value: [...providers['azure-openai'].models, ...providers['azure-anthropic'].models],
},
},
{
@@ -715,7 +715,7 @@ Example 3 (Array Input):
},
model: { type: 'string', description: 'AI model to use' },
apiKey: { type: 'string', description: 'Provider API key' },
azureEndpoint: { type: 'string', description: 'Azure OpenAI endpoint URL' },
azureEndpoint: { type: 'string', description: 'Azure endpoint URL' },
azureApiVersion: { type: 'string', description: 'Azure API version' },
vertexProject: { type: 'string', description: 'Google Cloud project ID for Vertex AI' },
vertexLocation: { type: 'string', description: 'Google Cloud location for Vertex AI' },

View File

@@ -76,8 +76,9 @@ export const TranslateBlock: BlockConfig = {
vertexProject: params.vertexProject,
vertexLocation: params.vertexLocation,
vertexCredential: params.vertexCredential,
bedrockRegion: params.bedrockRegion,
bedrockAccessKeyId: params.bedrockAccessKeyId,
bedrockSecretKey: params.bedrockSecretKey,
bedrockRegion: params.bedrockRegion,
}),
},
},

View File

@@ -80,7 +80,7 @@ export function getApiKeyCondition() {
/**
* Returns the standard provider credential subblocks used by LLM-based blocks.
* This includes: Vertex AI OAuth, API Key, Azure OpenAI, Vertex AI config, and Bedrock config.
* This includes: Vertex AI OAuth, API Key, Azure (OpenAI + Anthropic), Vertex AI config, and Bedrock config.
*
* Usage: Spread into your block's subBlocks array after block-specific fields
*/
@@ -111,25 +111,25 @@ export function getProviderCredentialSubBlocks(): SubBlockConfig[] {
},
{
id: 'azureEndpoint',
title: 'Azure OpenAI Endpoint',
title: 'Azure Endpoint',
type: 'short-input',
password: true,
placeholder: 'https://your-resource.openai.azure.com',
placeholder: 'https://your-resource.services.ai.azure.com',
connectionDroppable: false,
condition: {
field: 'model',
value: providers['azure-openai'].models,
value: [...providers['azure-openai'].models, ...providers['azure-anthropic'].models],
},
},
{
id: 'azureApiVersion',
title: 'Azure API Version',
type: 'short-input',
placeholder: '2024-07-01-preview',
placeholder: 'Enter API version',
connectionDroppable: false,
condition: {
field: 'model',
value: providers['azure-openai'].models,
value: [...providers['azure-openai'].models, ...providers['azure-anthropic'].models],
},
},
{
@@ -202,7 +202,7 @@ export function getProviderCredentialSubBlocks(): SubBlockConfig[] {
*/
export const PROVIDER_CREDENTIAL_INPUTS = {
apiKey: { type: 'string', description: 'Provider API key' },
azureEndpoint: { type: 'string', description: 'Azure OpenAI endpoint URL' },
azureEndpoint: { type: 'string', description: 'Azure endpoint URL' },
azureApiVersion: { type: 'string', description: 'Azure API version' },
vertexProject: { type: 'string', description: 'Google Cloud project ID for Vertex AI' },
vertexLocation: { type: 'string', description: 'Google Cloud location for Vertex AI' },

View File

@@ -5468,18 +5468,18 @@ export function AgentSkillsIcon(props: SVGProps<SVGSVGElement>) {
<svg
{...props}
xmlns='http://www.w3.org/2000/svg'
width='24'
height='24'
viewBox='0 0 32 32'
width='16'
height='16'
viewBox='0 0 16 16'
fill='none'
>
<path d='M16 0.5L29.4234 8.25V23.75L16 31.5L2.57661 23.75V8.25L16 0.5Z' fill='currentColor' />
<path
d='M16 6L24.6603 11V21L16 26L7.33975 21V11L16 6Z'
fill='currentColor'
stroke='var(--background, white)'
strokeWidth='3'
d='M8 1L14.0622 4.5V11.5L8 15L1.93782 11.5V4.5L8 1Z'
stroke='currentColor'
strokeWidth='1.5'
fill='none'
/>
<path d='M8 4.5L11 6.25V9.75L8 11.5L5 9.75V6.25L8 4.5Z' fill='currentColor' />
</svg>
)
}

View File

@@ -326,6 +326,7 @@ export class AgentBlockHandler implements BlockHandler {
_context: {
workflowId: ctx.workflowId,
workspaceId: ctx.workspaceId,
userId: ctx.userId,
isDeployedContext: ctx.isDeployedContext,
},
},

View File

@@ -72,6 +72,7 @@ export class ApiBlockHandler implements BlockHandler {
workflowId: ctx.workflowId,
workspaceId: ctx.workspaceId,
executionId: ctx.executionId,
userId: ctx.userId,
isDeployedContext: ctx.isDeployedContext,
},
},

View File

@@ -48,6 +48,7 @@ export async function evaluateConditionExpression(
_context: {
workflowId: ctx.workflowId,
workspaceId: ctx.workspaceId,
userId: ctx.userId,
isDeployedContext: ctx.isDeployedContext,
},
},

View File

@@ -121,26 +121,17 @@ export class EvaluatorBlockHandler implements BlockHandler {
temperature: EVALUATOR.DEFAULT_TEMPERATURE,
apiKey: finalApiKey,
azureEndpoint: inputs.azureEndpoint,
azureApiVersion: inputs.azureApiVersion,
vertexProject: evaluatorConfig.vertexProject,
vertexLocation: evaluatorConfig.vertexLocation,
bedrockAccessKeyId: evaluatorConfig.bedrockAccessKeyId,
bedrockSecretKey: evaluatorConfig.bedrockSecretKey,
bedrockRegion: evaluatorConfig.bedrockRegion,
workflowId: ctx.workflowId,
workspaceId: ctx.workspaceId,
}
if (providerId === 'vertex') {
providerRequest.vertexProject = evaluatorConfig.vertexProject
providerRequest.vertexLocation = evaluatorConfig.vertexLocation
}
if (providerId === 'azure-openai') {
providerRequest.azureEndpoint = inputs.azureEndpoint
providerRequest.azureApiVersion = inputs.azureApiVersion
}
if (providerId === 'bedrock') {
providerRequest.bedrockAccessKeyId = evaluatorConfig.bedrockAccessKeyId
providerRequest.bedrockSecretKey = evaluatorConfig.bedrockSecretKey
providerRequest.bedrockRegion = evaluatorConfig.bedrockRegion
}
const response = await fetch(url.toString(), {
method: 'POST',
headers: await buildAuthHeaders(),

View File

@@ -39,6 +39,7 @@ export class FunctionBlockHandler implements BlockHandler {
_context: {
workflowId: ctx.workflowId,
workspaceId: ctx.workspaceId,
userId: ctx.userId,
isDeployedContext: ctx.isDeployedContext,
},
},

View File

@@ -66,6 +66,7 @@ export class GenericBlockHandler implements BlockHandler {
workflowId: ctx.workflowId,
workspaceId: ctx.workspaceId,
executionId: ctx.executionId,
userId: ctx.userId,
isDeployedContext: ctx.isDeployedContext,
},
},

View File

@@ -605,6 +605,7 @@ export class HumanInTheLoopBlockHandler implements BlockHandler {
_context: {
workflowId: ctx.workflowId,
workspaceId: ctx.workspaceId,
userId: ctx.userId,
isDeployedContext: ctx.isDeployedContext,
},
blockData: blockDataWithPause,

View File

@@ -96,26 +96,17 @@ export class RouterBlockHandler implements BlockHandler {
context: JSON.stringify(messages),
temperature: ROUTER.INFERENCE_TEMPERATURE,
apiKey: finalApiKey,
azureEndpoint: inputs.azureEndpoint,
azureApiVersion: inputs.azureApiVersion,
vertexProject: routerConfig.vertexProject,
vertexLocation: routerConfig.vertexLocation,
bedrockAccessKeyId: routerConfig.bedrockAccessKeyId,
bedrockSecretKey: routerConfig.bedrockSecretKey,
bedrockRegion: routerConfig.bedrockRegion,
workflowId: ctx.workflowId,
workspaceId: ctx.workspaceId,
}
if (providerId === 'vertex') {
providerRequest.vertexProject = routerConfig.vertexProject
providerRequest.vertexLocation = routerConfig.vertexLocation
}
if (providerId === 'azure-openai') {
providerRequest.azureEndpoint = inputs.azureEndpoint
providerRequest.azureApiVersion = inputs.azureApiVersion
}
if (providerId === 'bedrock') {
providerRequest.bedrockAccessKeyId = routerConfig.bedrockAccessKeyId
providerRequest.bedrockSecretKey = routerConfig.bedrockSecretKey
providerRequest.bedrockRegion = routerConfig.bedrockRegion
}
const response = await fetch(url.toString(), {
method: 'POST',
headers: await buildAuthHeaders(),
@@ -234,6 +225,13 @@ export class RouterBlockHandler implements BlockHandler {
context: JSON.stringify(messages),
temperature: ROUTER.INFERENCE_TEMPERATURE,
apiKey: finalApiKey,
azureEndpoint: inputs.azureEndpoint,
azureApiVersion: inputs.azureApiVersion,
vertexProject: routerConfig.vertexProject,
vertexLocation: routerConfig.vertexLocation,
bedrockAccessKeyId: routerConfig.bedrockAccessKeyId,
bedrockSecretKey: routerConfig.bedrockSecretKey,
bedrockRegion: routerConfig.bedrockRegion,
workflowId: ctx.workflowId,
workspaceId: ctx.workspaceId,
responseFormat: {
@@ -257,22 +255,6 @@ export class RouterBlockHandler implements BlockHandler {
},
}
if (providerId === 'vertex') {
providerRequest.vertexProject = routerConfig.vertexProject
providerRequest.vertexLocation = routerConfig.vertexLocation
}
if (providerId === 'azure-openai') {
providerRequest.azureEndpoint = inputs.azureEndpoint
providerRequest.azureApiVersion = inputs.azureApiVersion
}
if (providerId === 'bedrock') {
providerRequest.bedrockAccessKeyId = routerConfig.bedrockAccessKeyId
providerRequest.bedrockSecretKey = routerConfig.bedrockSecretKey
providerRequest.bedrockRegion = routerConfig.bedrockRegion
}
const response = await fetch(url.toString(), {
method: 'POST',
headers: await buildAuthHeaders(),

View File

@@ -511,6 +511,8 @@ export class LoopOrchestrator {
contextVariables: {},
timeoutMs: LOOP_CONDITION_TIMEOUT_MS,
requestId,
ownerKey: `user:${ctx.userId}`,
ownerWeight: 1,
})
if (vmResult.error) {

View File

@@ -1,7 +1,4 @@
import { db } from '@sim/db'
import { workflow } from '@sim/db/schema'
import { createLogger } from '@sim/logger'
import { eq } from 'drizzle-orm'
import type { NextRequest } from 'next/server'
import { authenticateApiKeyFromHeader, updateApiKeyLastUsed } from '@/lib/api-key/service'
import { getSession } from '@/lib/auth'
@@ -13,35 +10,33 @@ export interface AuthResult {
success: boolean
userId?: string
authType?: 'session' | 'api_key' | 'internal_jwt'
apiKeyType?: 'personal' | 'workspace'
error?: string
}
/**
* Resolves userId from a verified internal JWT token.
* Extracts workflowId/userId from URL params or POST body, then looks up userId if needed.
* Extracts userId from the JWT payload, URL search params, or POST body.
*/
async function resolveUserFromJwt(
request: NextRequest,
verificationUserId: string | null,
options: { requireWorkflowId?: boolean }
): Promise<AuthResult> {
let workflowId: string | null = null
let userId: string | null = verificationUserId
const { searchParams } = new URL(request.url)
workflowId = searchParams.get('workflowId')
if (!userId) {
const { searchParams } = new URL(request.url)
userId = searchParams.get('userId')
}
if (!workflowId && !userId && request.method === 'POST') {
if (!userId && request.method === 'POST') {
try {
const clonedRequest = request.clone()
const bodyText = await clonedRequest.text()
if (bodyText) {
const body = JSON.parse(bodyText)
workflowId = body.workflowId || body._context?.workflowId
userId = userId || body.userId || body._context?.userId
userId = body.userId || body._context?.userId || null
}
} catch {
// Ignore JSON parse errors
@@ -52,22 +47,8 @@ async function resolveUserFromJwt(
return { success: true, userId, authType: 'internal_jwt' }
}
if (workflowId) {
const [workflowData] = await db
.select({ userId: workflow.userId })
.from(workflow)
.where(eq(workflow.id, workflowId))
.limit(1)
if (!workflowData) {
return { success: false, error: 'Workflow not found' }
}
return { success: true, userId: workflowData.userId, authType: 'internal_jwt' }
}
if (options.requireWorkflowId !== false) {
return { success: false, error: 'workflowId or userId required for internal JWT calls' }
return { success: false, error: 'userId required for internal JWT calls' }
}
return { success: true, authType: 'internal_jwt' }
@@ -222,6 +203,7 @@ export async function checkHybridAuth(
success: true,
userId: result.userId!,
authType: 'api_key',
apiKeyType: result.keyType,
}
}

View File

@@ -12,6 +12,7 @@ const VALID_PROVIDER_IDS: readonly ProviderId[] = [
'openai',
'azure-openai',
'anthropic',
'azure-anthropic',
'google',
'deepseek',
'xai',

View File

@@ -147,6 +147,13 @@ export type CopilotProviderConfig =
apiVersion?: string
endpoint?: string
}
| {
provider: 'azure-anthropic'
model: string
apiKey?: string
apiVersion?: string
endpoint?: string
}
| {
provider: 'vertex'
model: string
@@ -155,7 +162,7 @@ export type CopilotProviderConfig =
vertexLocation?: string
}
| {
provider: Exclude<ProviderId, 'azure-openai' | 'vertex'>
provider: Exclude<ProviderId, 'azure-openai' | 'azure-anthropic' | 'vertex'>
model?: string
apiKey?: string
}

View File

@@ -95,6 +95,9 @@ export const env = createEnv({
AZURE_OPENAI_ENDPOINT: z.string().url().optional(), // Shared Azure OpenAI service endpoint
AZURE_OPENAI_API_VERSION: z.string().optional(), // Shared Azure OpenAI API version
AZURE_OPENAI_API_KEY: z.string().min(1).optional(), // Shared Azure OpenAI API key
AZURE_ANTHROPIC_ENDPOINT: z.string().url().optional(), // Azure Anthropic service endpoint
AZURE_ANTHROPIC_API_KEY: z.string().min(1).optional(), // Azure Anthropic API key
AZURE_ANTHROPIC_API_VERSION: z.string().min(1).optional(), // Azure Anthropic API version (e.g. 2023-06-01)
KB_OPENAI_MODEL_NAME: z.string().optional(), // Knowledge base OpenAI model name (works with both regular OpenAI and Azure OpenAI)
WAND_OPENAI_MODEL_NAME: z.string().optional(), // Wand generation OpenAI model name (works with both regular OpenAI and Azure OpenAI)
OCR_AZURE_ENDPOINT: z.string().url().optional(), // Azure Mistral OCR service endpoint
@@ -180,6 +183,24 @@ export const env = createEnv({
EXECUTION_TIMEOUT_ASYNC_TEAM: z.string().optional().default('5400'), // 90 minutes
EXECUTION_TIMEOUT_ASYNC_ENTERPRISE: z.string().optional().default('5400'), // 90 minutes
// Isolated-VM Worker Pool Configuration
IVM_POOL_SIZE: z.string().optional().default('4'), // Max worker processes in pool
IVM_MAX_CONCURRENT: z.string().optional().default('10000'), // Max concurrent executions globally
IVM_MAX_PER_WORKER: z.string().optional().default('2500'), // Max concurrent executions per worker
IVM_WORKER_IDLE_TIMEOUT_MS: z.string().optional().default('60000'), // Worker idle cleanup timeout (ms)
IVM_MAX_QUEUE_SIZE: z.string().optional().default('10000'), // Max pending queued executions in memory
IVM_MAX_FETCH_RESPONSE_BYTES: z.string().optional().default('8388608'),// Max bytes read from sandbox fetch responses
IVM_MAX_FETCH_RESPONSE_CHARS: z.string().optional().default('4000000'),// Max chars returned to sandbox from fetch body
IVM_MAX_FETCH_OPTIONS_JSON_CHARS: z.string().optional().default('262144'), // Max JSON payload size for sandbox fetch options
IVM_MAX_FETCH_URL_LENGTH: z.string().optional().default('8192'), // Max URL length accepted by sandbox fetch
IVM_MAX_STDOUT_CHARS: z.string().optional().default('200000'), // Max captured stdout characters per execution
IVM_MAX_ACTIVE_PER_OWNER: z.string().optional().default('200'), // Max active executions per owner (per process)
IVM_MAX_QUEUED_PER_OWNER: z.string().optional().default('2000'), // Max queued executions per owner (per process)
IVM_MAX_OWNER_WEIGHT: z.string().optional().default('5'), // Max accepted weight for weighted owner scheduling
IVM_DISTRIBUTED_MAX_INFLIGHT_PER_OWNER:z.string().optional().default('2200'), // Max owner in-flight leases across replicas
IVM_DISTRIBUTED_LEASE_MIN_TTL_MS: z.string().optional().default('120000'), // Min TTL for distributed in-flight leases (ms)
IVM_QUEUE_TIMEOUT_MS: z.string().optional().default('300000'), // Max queue wait before rejection (ms)
// Knowledge Base Processing Configuration - Shared across all processing methods
KB_CONFIG_MAX_DURATION: z.number().optional().default(600), // Max processing duration in seconds (10 minutes)
KB_CONFIG_MAX_ATTEMPTS: z.number().optional().default(3), // Max retry attempts

View File

@@ -103,6 +103,7 @@ export interface SecureFetchOptions {
body?: string | Buffer | Uint8Array
timeout?: number
maxRedirects?: number
maxResponseBytes?: number
}
export class SecureFetchHeaders {
@@ -165,6 +166,7 @@ export async function secureFetchWithPinnedIP(
redirectCount = 0
): Promise<SecureFetchResponse> {
const maxRedirects = options.maxRedirects ?? DEFAULT_MAX_REDIRECTS
const maxResponseBytes = options.maxResponseBytes
return new Promise((resolve, reject) => {
const parsed = new URL(url)
@@ -237,14 +239,32 @@ export async function secureFetchWithPinnedIP(
}
const chunks: Buffer[] = []
let totalBytes = 0
let responseTerminated = false
res.on('data', (chunk: Buffer) => chunks.push(chunk))
res.on('data', (chunk: Buffer) => {
if (responseTerminated) return
totalBytes += chunk.length
if (
typeof maxResponseBytes === 'number' &&
maxResponseBytes > 0 &&
totalBytes > maxResponseBytes
) {
responseTerminated = true
res.destroy(new Error(`Response exceeded maximum size of ${maxResponseBytes} bytes`))
return
}
chunks.push(chunk)
})
res.on('error', (error) => {
reject(error)
})
res.on('end', () => {
if (responseTerminated) return
const bodyBuffer = Buffer.concat(chunks)
const body = bodyBuffer.toString('utf-8')
const headersRecord: Record<string, string> = {}

View File

@@ -9,6 +9,21 @@ const USER_CODE_START_LINE = 4
const pendingFetches = new Map()
let fetchIdCounter = 0
const FETCH_TIMEOUT_MS = 300000 // 5 minutes
const MAX_STDOUT_CHARS = Number.parseInt(process.env.IVM_MAX_STDOUT_CHARS || '', 10) || 200000
const MAX_FETCH_OPTIONS_JSON_CHARS =
Number.parseInt(process.env.IVM_MAX_FETCH_OPTIONS_JSON_CHARS || '', 10) || 256 * 1024
function stringifyLogValue(value) {
if (typeof value !== 'object' || value === null) {
return String(value)
}
try {
return JSON.stringify(value)
} catch {
return '[unserializable]'
}
}
/**
* Extract line and column from error stack or message
@@ -101,8 +116,32 @@ function convertToCompatibleError(errorInfo, userCode) {
async function executeCode(request) {
const { code, params, envVars, contextVariables, timeoutMs, requestId } = request
const stdoutChunks = []
let stdoutLength = 0
let stdoutTruncated = false
let isolate = null
const appendStdout = (line) => {
if (stdoutTruncated || !line) return
const remaining = MAX_STDOUT_CHARS - stdoutLength
if (remaining <= 0) {
stdoutTruncated = true
stdoutChunks.push('[stdout truncated]\n')
return
}
if (line.length <= remaining) {
stdoutChunks.push(line)
stdoutLength += line.length
return
}
stdoutChunks.push(line.slice(0, remaining))
stdoutChunks.push('\n[stdout truncated]\n')
stdoutLength = MAX_STDOUT_CHARS
stdoutTruncated = true
}
try {
isolate = new ivm.Isolate({ memoryLimit: 128 })
const context = await isolate.createContext()
@@ -111,18 +150,14 @@ async function executeCode(request) {
await jail.set('global', jail.derefInto())
const logCallback = new ivm.Callback((...args) => {
const message = args
.map((arg) => (typeof arg === 'object' ? JSON.stringify(arg) : String(arg)))
.join(' ')
stdoutChunks.push(`${message}\n`)
const message = args.map((arg) => stringifyLogValue(arg)).join(' ')
appendStdout(`${message}\n`)
})
await jail.set('__log', logCallback)
const errorCallback = new ivm.Callback((...args) => {
const message = args
.map((arg) => (typeof arg === 'object' ? JSON.stringify(arg) : String(arg)))
.join(' ')
stdoutChunks.push(`ERROR: ${message}\n`)
const message = args.map((arg) => stringifyLogValue(arg)).join(' ')
appendStdout(`ERROR: ${message}\n`)
})
await jail.set('__error', errorCallback)
@@ -178,6 +213,9 @@ async function executeCode(request) {
} catch {
throw new Error('fetch options must be JSON-serializable');
}
if (optionsJson.length > ${MAX_FETCH_OPTIONS_JSON_CHARS}) {
throw new Error('fetch options exceed maximum payload size');
}
}
const resultJson = await __fetchRef.apply(undefined, [url, optionsJson], { result: { promise: true } });
let result;

View File

@@ -0,0 +1,500 @@
import { EventEmitter } from 'node:events'
import { afterEach, describe, expect, it, vi } from 'vitest'
type MockProc = EventEmitter & {
connected: boolean
stderr: EventEmitter
send: (message: unknown) => boolean
kill: () => boolean
}
type SpawnFactory = () => MockProc
type RedisEval = (...args: any[]) => unknown | Promise<unknown>
type SecureFetchImpl = (...args: any[]) => unknown | Promise<unknown>
function createBaseProc(): MockProc {
const proc = new EventEmitter() as MockProc
proc.connected = true
proc.stderr = new EventEmitter()
proc.send = () => true
proc.kill = () => {
if (!proc.connected) return true
proc.connected = false
setImmediate(() => proc.emit('exit', 0))
return true
}
return proc
}
function createStartupFailureProc(): MockProc {
const proc = createBaseProc()
setImmediate(() => {
proc.connected = false
proc.emit('exit', 1)
})
return proc
}
function createReadyProc(result: unknown): MockProc {
const proc = createBaseProc()
proc.send = (message: unknown) => {
const msg = message as { type?: string; executionId?: number }
if (msg.type === 'execute') {
setImmediate(() => {
proc.emit('message', {
type: 'result',
executionId: msg.executionId,
result: { result, stdout: '' },
})
})
}
return true
}
setImmediate(() => proc.emit('message', { type: 'ready' }))
return proc
}
function createReadyProcWithDelay(delayMs: number): MockProc {
const proc = createBaseProc()
proc.send = (message: unknown) => {
const msg = message as { type?: string; executionId?: number; request?: { requestId?: string } }
if (msg.type === 'execute') {
setTimeout(() => {
proc.emit('message', {
type: 'result',
executionId: msg.executionId,
result: { result: msg.request?.requestId ?? 'unknown', stdout: '' },
})
}, delayMs)
}
return true
}
setImmediate(() => proc.emit('message', { type: 'ready' }))
return proc
}
function createReadyFetchProxyProc(fetchMessage: { url: string; optionsJson?: string }): MockProc {
const proc = createBaseProc()
let currentExecutionId = 0
proc.send = (message: unknown) => {
const msg = message as { type?: string; executionId?: number; request?: { requestId?: string } }
if (msg.type === 'execute') {
currentExecutionId = msg.executionId ?? 0
setImmediate(() => {
proc.emit('message', {
type: 'fetch',
fetchId: 1,
requestId: msg.request?.requestId ?? 'fetch-test',
url: fetchMessage.url,
optionsJson: fetchMessage.optionsJson,
})
})
return true
}
if (msg.type === 'fetchResponse') {
const fetchResponse = message as { response?: string }
setImmediate(() => {
proc.emit('message', {
type: 'result',
executionId: currentExecutionId,
result: { result: fetchResponse.response ?? '', stdout: '' },
})
})
return true
}
return true
}
setImmediate(() => proc.emit('message', { type: 'ready' }))
return proc
}
async function loadExecutionModule(options: {
envOverrides?: Record<string, string>
spawns: SpawnFactory[]
redisEvalImpl?: RedisEval
secureFetchImpl?: SecureFetchImpl
}) {
vi.resetModules()
const spawnQueue = [...options.spawns]
const spawnMock = vi.fn(() => {
const next = spawnQueue.shift()
if (!next) {
throw new Error('No mock spawn factory configured')
}
return next() as any
})
vi.doMock('@sim/logger', () => ({
createLogger: () => ({
info: vi.fn(),
warn: vi.fn(),
error: vi.fn(),
}),
}))
const secureFetchMock = vi.fn(
options.secureFetchImpl ??
(async () => ({
ok: true,
status: 200,
statusText: 'OK',
headers: new Map<string, string>(),
text: async () => '',
json: async () => ({}),
arrayBuffer: async () => new ArrayBuffer(0),
}))
)
vi.doMock('@/lib/core/security/input-validation.server', () => ({
secureFetchWithValidation: secureFetchMock,
}))
vi.doMock('@/lib/core/config/env', () => ({
env: {
IVM_POOL_SIZE: '1',
IVM_MAX_CONCURRENT: '100',
IVM_MAX_PER_WORKER: '100',
IVM_WORKER_IDLE_TIMEOUT_MS: '60000',
IVM_MAX_QUEUE_SIZE: '10',
IVM_MAX_ACTIVE_PER_OWNER: '100',
IVM_MAX_QUEUED_PER_OWNER: '10',
IVM_MAX_OWNER_WEIGHT: '5',
IVM_DISTRIBUTED_MAX_INFLIGHT_PER_OWNER: '100',
IVM_DISTRIBUTED_LEASE_MIN_TTL_MS: '1000',
IVM_QUEUE_TIMEOUT_MS: '1000',
...(options.envOverrides ?? {}),
},
}))
const redisEval = options.redisEvalImpl ? vi.fn(options.redisEvalImpl) : undefined
vi.doMock('@/lib/core/config/redis', () => ({
getRedisClient: vi.fn(() =>
redisEval
? ({
eval: redisEval,
} as any)
: null
),
}))
vi.doMock('node:child_process', () => ({
execSync: vi.fn(() => Buffer.from('v23.11.0')),
spawn: spawnMock,
}))
const mod = await import('./isolated-vm')
return { ...mod, spawnMock, secureFetchMock }
}
describe('isolated-vm scheduler', () => {
afterEach(() => {
vi.restoreAllMocks()
vi.resetModules()
})
it('recovers from an initial spawn failure and drains queued work', async () => {
const { executeInIsolatedVM, spawnMock } = await loadExecutionModule({
spawns: [createStartupFailureProc, () => createReadyProc('ok')],
})
const result = await executeInIsolatedVM({
code: 'return "ok"',
params: {},
envVars: {},
contextVariables: {},
timeoutMs: 100,
requestId: 'req-1',
})
expect(result.error).toBeUndefined()
expect(result.result).toBe('ok')
expect(spawnMock).toHaveBeenCalledTimes(2)
})
it('rejects new requests when the queue is full', async () => {
const { executeInIsolatedVM } = await loadExecutionModule({
envOverrides: {
IVM_MAX_QUEUE_SIZE: '1',
IVM_QUEUE_TIMEOUT_MS: '200',
},
spawns: [createStartupFailureProc, createStartupFailureProc, createStartupFailureProc],
})
const firstPromise = executeInIsolatedVM({
code: 'return 1',
params: {},
envVars: {},
contextVariables: {},
timeoutMs: 100,
requestId: 'req-2',
ownerKey: 'user:a',
})
await new Promise((resolve) => setTimeout(resolve, 25))
const second = await executeInIsolatedVM({
code: 'return 2',
params: {},
envVars: {},
contextVariables: {},
timeoutMs: 100,
requestId: 'req-3',
ownerKey: 'user:b',
})
expect(second.error?.message).toContain('at capacity')
const first = await firstPromise
expect(first.error?.message).toContain('timed out waiting')
})
it('enforces per-owner queued limit', async () => {
const { executeInIsolatedVM } = await loadExecutionModule({
envOverrides: {
IVM_MAX_QUEUED_PER_OWNER: '1',
IVM_QUEUE_TIMEOUT_MS: '200',
},
spawns: [createStartupFailureProc, createStartupFailureProc, createStartupFailureProc],
})
const firstPromise = executeInIsolatedVM({
code: 'return 1',
params: {},
envVars: {},
contextVariables: {},
timeoutMs: 100,
requestId: 'req-4',
ownerKey: 'user:hog',
})
await new Promise((resolve) => setTimeout(resolve, 25))
const second = await executeInIsolatedVM({
code: 'return 2',
params: {},
envVars: {},
contextVariables: {},
timeoutMs: 100,
requestId: 'req-5',
ownerKey: 'user:hog',
})
expect(second.error?.message).toContain('Too many concurrent')
const first = await firstPromise
expect(first.error?.message).toContain('timed out waiting')
})
it('enforces distributed owner in-flight lease limit when Redis is configured', async () => {
const { executeInIsolatedVM } = await loadExecutionModule({
envOverrides: {
IVM_DISTRIBUTED_MAX_INFLIGHT_PER_OWNER: '1',
REDIS_URL: 'redis://localhost:6379',
},
spawns: [() => createReadyProc('ok')],
redisEvalImpl: (...args: any[]) => {
const script = String(args[0] ?? '')
if (script.includes('ZREMRANGEBYSCORE')) {
return 0
}
return 1
},
})
const result = await executeInIsolatedVM({
code: 'return "blocked"',
params: {},
envVars: {},
contextVariables: {},
timeoutMs: 100,
requestId: 'req-6',
ownerKey: 'user:distributed',
})
expect(result.error?.message).toContain('Too many concurrent')
})
it('fails closed when Redis is configured but unavailable', async () => {
const { executeInIsolatedVM } = await loadExecutionModule({
envOverrides: {
REDIS_URL: 'redis://localhost:6379',
},
spawns: [() => createReadyProc('ok')],
})
const result = await executeInIsolatedVM({
code: 'return "blocked"',
params: {},
envVars: {},
contextVariables: {},
timeoutMs: 100,
requestId: 'req-7',
ownerKey: 'user:redis-down',
})
expect(result.error?.message).toContain('temporarily unavailable')
})
it('fails closed when Redis lease evaluation errors', async () => {
const { executeInIsolatedVM } = await loadExecutionModule({
envOverrides: {
REDIS_URL: 'redis://localhost:6379',
},
spawns: [() => createReadyProc('ok')],
redisEvalImpl: (...args: any[]) => {
const script = String(args[0] ?? '')
if (script.includes('ZREMRANGEBYSCORE')) {
throw new Error('redis timeout')
}
return 1
},
})
const result = await executeInIsolatedVM({
code: 'return "blocked"',
params: {},
envVars: {},
contextVariables: {},
timeoutMs: 100,
requestId: 'req-8',
ownerKey: 'user:redis-error',
})
expect(result.error?.message).toContain('temporarily unavailable')
})
it('applies weighted owner scheduling when draining queued executions', async () => {
const { executeInIsolatedVM } = await loadExecutionModule({
envOverrides: {
IVM_MAX_PER_WORKER: '1',
},
spawns: [() => createReadyProcWithDelay(10)],
})
const completionOrder: string[] = []
const pushCompletion = (label: string) => (res: { result: unknown }) => {
completionOrder.push(String(res.result ?? label))
return res
}
const p1 = executeInIsolatedVM({
code: 'return 1',
params: {},
envVars: {},
contextVariables: {},
timeoutMs: 500,
requestId: 'a-1',
ownerKey: 'user:a',
ownerWeight: 2,
}).then(pushCompletion('a-1'))
const p2 = executeInIsolatedVM({
code: 'return 2',
params: {},
envVars: {},
contextVariables: {},
timeoutMs: 500,
requestId: 'a-2',
ownerKey: 'user:a',
ownerWeight: 2,
}).then(pushCompletion('a-2'))
const p3 = executeInIsolatedVM({
code: 'return 3',
params: {},
envVars: {},
contextVariables: {},
timeoutMs: 500,
requestId: 'b-1',
ownerKey: 'user:b',
ownerWeight: 1,
}).then(pushCompletion('b-1'))
const p4 = executeInIsolatedVM({
code: 'return 4',
params: {},
envVars: {},
contextVariables: {},
timeoutMs: 500,
requestId: 'b-2',
ownerKey: 'user:b',
ownerWeight: 1,
}).then(pushCompletion('b-2'))
const p5 = executeInIsolatedVM({
code: 'return 5',
params: {},
envVars: {},
contextVariables: {},
timeoutMs: 500,
requestId: 'a-3',
ownerKey: 'user:a',
ownerWeight: 2,
}).then(pushCompletion('a-3'))
await Promise.all([p1, p2, p3, p4, p5])
expect(completionOrder.slice(0, 3)).toEqual(['a-1', 'a-2', 'a-3'])
expect(completionOrder).toEqual(['a-1', 'a-2', 'a-3', 'b-1', 'b-2'])
})
it('rejects oversized fetch options payloads before outbound call', async () => {
const { executeInIsolatedVM, secureFetchMock } = await loadExecutionModule({
envOverrides: {
IVM_MAX_FETCH_OPTIONS_JSON_CHARS: '50',
},
spawns: [
() =>
createReadyFetchProxyProc({
url: 'https://example.com',
optionsJson: 'x'.repeat(100),
}),
],
})
const result = await executeInIsolatedVM({
code: 'return "fetch-options"',
params: {},
envVars: {},
contextVariables: {},
timeoutMs: 100,
requestId: 'req-fetch-options',
})
const payload = JSON.parse(String(result.result))
expect(payload.error).toContain('Fetch options exceed maximum payload size')
expect(secureFetchMock).not.toHaveBeenCalled()
})
it('rejects overly long fetch URLs before outbound call', async () => {
const { executeInIsolatedVM, secureFetchMock } = await loadExecutionModule({
envOverrides: {
IVM_MAX_FETCH_URL_LENGTH: '30',
},
spawns: [
() =>
createReadyFetchProxyProc({
url: 'https://example.com/path/to/a/very/long/resource',
}),
],
})
const result = await executeInIsolatedVM({
code: 'return "fetch-url"',
params: {},
envVars: {},
contextVariables: {},
timeoutMs: 100,
requestId: 'req-fetch-url',
})
const payload = JSON.parse(String(result.result))
expect(payload.error).toContain('fetch URL exceeds maximum length')
expect(secureFetchMock).not.toHaveBeenCalled()
})
})

File diff suppressed because it is too large Load Diff

View File

@@ -124,6 +124,7 @@ export interface PreprocessExecutionOptions {
workspaceId?: string // If known, used for billing resolution
loggingSession?: LoggingSession // If provided, will be used for error logging
isResumeContext?: boolean // If true, allows fallback billing on resolution failure (for paused workflow resumes)
useAuthenticatedUserAsActor?: boolean // If true, use the authenticated userId as actorUserId (for client-side executions and personal API keys)
/** @deprecated No longer used - background/async executions always use deployed state */
useDraftState?: boolean
}
@@ -170,6 +171,7 @@ export async function preprocessExecution(
workspaceId: providedWorkspaceId,
loggingSession: providedLoggingSession,
isResumeContext = false,
useAuthenticatedUserAsActor = false,
} = options
logger.info(`[${requestId}] Starting execution preprocessing`, {
@@ -257,7 +259,14 @@ export async function preprocessExecution(
let actorUserId: string | null = null
try {
if (workspaceId) {
// For client-side executions and personal API keys, the authenticated
// user is the billing and permission actor — not the workspace owner.
if (useAuthenticatedUserAsActor && userId) {
actorUserId = userId
logger.info(`[${requestId}] Using authenticated user as actor: ${actorUserId}`)
}
if (!actorUserId && workspaceId) {
actorUserId = await getWorkspaceBilledAccountUserId(workspaceId)
if (actorUserId) {
logger.info(`[${requestId}] Using workspace billed account: ${actorUserId}`)

View File

@@ -1,7 +1,11 @@
import { db } from '@sim/db'
import { account } from '@sim/db/schema'
import { createLogger } from '@sim/logger'
import { eq } from 'drizzle-orm'
import { getBaseUrl } from '@/lib/core/utils/urls'
import { refreshTokenIfNeeded } from '@/app/api/auth/oauth/utils'
import { executeProviderRequest } from '@/providers'
import { getApiKey, getProviderFromModel } from '@/providers/utils'
import { getProviderFromModel } from '@/providers/utils'
const logger = createLogger('HallucinationValidator')
@@ -19,7 +23,18 @@ export interface HallucinationValidationInput {
topK: number // Number of chunks to retrieve, default 10
model: string
apiKey?: string
providerCredentials?: {
azureEndpoint?: string
azureApiVersion?: string
vertexProject?: string
vertexLocation?: string
vertexCredential?: string
bedrockAccessKeyId?: string
bedrockSecretKey?: string
bedrockRegion?: string
}
workflowId?: string
workspaceId?: string
requestId: string
}
@@ -89,7 +104,9 @@ async function scoreHallucinationWithLLM(
userInput: string,
ragContext: string[],
model: string,
apiKey: string,
apiKey: string | undefined,
providerCredentials: HallucinationValidationInput['providerCredentials'],
workspaceId: string | undefined,
requestId: string
): Promise<{ score: number; reasoning: string }> {
try {
@@ -127,6 +144,23 @@ Evaluate the consistency and provide your score and reasoning in JSON format.`
const providerId = getProviderFromModel(model)
let finalApiKey: string | undefined = apiKey
if (providerId === 'vertex' && providerCredentials?.vertexCredential) {
const credential = await db.query.account.findFirst({
where: eq(account.id, providerCredentials.vertexCredential),
})
if (credential) {
const { accessToken } = await refreshTokenIfNeeded(
requestId,
credential,
providerCredentials.vertexCredential
)
if (accessToken) {
finalApiKey = accessToken
}
}
}
const response = await executeProviderRequest(providerId, {
model,
systemPrompt,
@@ -137,7 +171,15 @@ Evaluate the consistency and provide your score and reasoning in JSON format.`
},
],
temperature: 0.1, // Low temperature for consistent scoring
apiKey,
apiKey: finalApiKey,
azureEndpoint: providerCredentials?.azureEndpoint,
azureApiVersion: providerCredentials?.azureApiVersion,
vertexProject: providerCredentials?.vertexProject,
vertexLocation: providerCredentials?.vertexLocation,
bedrockAccessKeyId: providerCredentials?.bedrockAccessKeyId,
bedrockSecretKey: providerCredentials?.bedrockSecretKey,
bedrockRegion: providerCredentials?.bedrockRegion,
workspaceId,
})
if (response instanceof ReadableStream || ('stream' in response && 'execution' in response)) {
@@ -184,8 +226,18 @@ Evaluate the consistency and provide your score and reasoning in JSON format.`
export async function validateHallucination(
input: HallucinationValidationInput
): Promise<HallucinationValidationResult> {
const { userInput, knowledgeBaseId, threshold, topK, model, apiKey, workflowId, requestId } =
input
const {
userInput,
knowledgeBaseId,
threshold,
topK,
model,
apiKey,
providerCredentials,
workflowId,
workspaceId,
requestId,
} = input
try {
if (!userInput || userInput.trim().length === 0) {
@@ -202,17 +254,6 @@ export async function validateHallucination(
}
}
let finalApiKey: string
try {
const providerId = getProviderFromModel(model)
finalApiKey = getApiKey(providerId, model, apiKey)
} catch (error: any) {
return {
passed: false,
error: `API key error: ${error.message}`,
}
}
// Step 1: Query knowledge base with RAG
const ragContext = await queryKnowledgeBase(
knowledgeBaseId,
@@ -234,7 +275,9 @@ export async function validateHallucination(
userInput,
ragContext,
model,
finalApiKey,
apiKey,
providerCredentials,
workspaceId,
requestId
)

View File

@@ -21,6 +21,11 @@ export const TOKENIZATION_CONFIG = {
confidence: 'high',
supportedMethods: ['heuristic', 'fallback'],
},
'azure-anthropic': {
avgCharsPerToken: 4.5,
confidence: 'high',
supportedMethods: ['heuristic', 'fallback'],
},
google: {
avgCharsPerToken: 5,
confidence: 'medium',

View File

@@ -204,6 +204,7 @@ export function estimateTokenCount(text: string, providerId?: string): TokenEsti
estimatedTokens = estimateOpenAITokens(text)
break
case 'anthropic':
case 'azure-anthropic':
estimatedTokens = estimateAnthropicTokens(text)
break
case 'google':

View File

@@ -35,6 +35,8 @@ export const azureAnthropicProvider: ProviderConfig = {
// The SDK appends /v1/messages automatically
const baseURL = `${request.azureEndpoint.replace(/\/$/, '')}/anthropic`
const anthropicVersion = request.azureApiVersion || '2023-06-01'
return executeAnthropicProviderRequest(
{
...request,
@@ -49,7 +51,7 @@ export const azureAnthropicProvider: ProviderConfig = {
apiKey,
defaultHeaders: {
'api-key': apiKey,
'anthropic-version': '2023-06-01',
'anthropic-version': anthropicVersion,
...(useNativeStructuredOutputs
? { 'anthropic-beta': 'structured-outputs-2025-11-13' }
: {}),

View File

@@ -9,6 +9,14 @@ export interface GuardrailsValidateInput {
topK?: string
model?: string
apiKey?: string
azureEndpoint?: string
azureApiVersion?: string
vertexProject?: string
vertexLocation?: string
vertexCredential?: string
bedrockAccessKeyId?: string
bedrockSecretKey?: string
bedrockRegion?: string
piiEntityTypes?: string[]
piiMode?: string
piiLanguage?: string
@@ -166,6 +174,14 @@ export const guardrailsValidateTool: ToolConfig<GuardrailsValidateInput, Guardra
topK: params.topK,
model: params.model,
apiKey: params.apiKey,
azureEndpoint: params.azureEndpoint,
azureApiVersion: params.azureApiVersion,
vertexProject: params.vertexProject,
vertexLocation: params.vertexLocation,
vertexCredential: params.vertexCredential,
bedrockAccessKeyId: params.bedrockAccessKeyId,
bedrockSecretKey: params.bedrockSecretKey,
bedrockRegion: params.bedrockRegion,
piiEntityTypes: params.piiEntityTypes,
piiMode: params.piiMode,
piiLanguage: params.piiLanguage,

View File

@@ -247,7 +247,8 @@ export async function executeTool(
// If it's a custom tool, use the async version with workflowId
if (isCustomTool(normalizedToolId)) {
const workflowId = params._context?.workflowId
tool = await getToolAsync(normalizedToolId, workflowId)
const userId = params._context?.userId
tool = await getToolAsync(normalizedToolId, workflowId, userId)
if (!tool) {
logger.error(`[${requestId}] Custom tool not found: ${normalizedToolId}`)
}
@@ -286,26 +287,25 @@ export async function executeTool(
try {
const baseUrl = getBaseUrl()
const workflowId = contextParams._context?.workflowId
const userId = contextParams._context?.userId
const tokenPayload: OAuthTokenPayload = {
credentialId: contextParams.credential as string,
}
// Add workflowId if it exists in params, context, or executionContext
const workflowId =
contextParams.workflowId ||
contextParams._context?.workflowId ||
executionContext?.workflowId
if (workflowId) {
tokenPayload.workflowId = workflowId
}
logger.info(`[${requestId}] Fetching access token from ${baseUrl}/api/auth/oauth/token`)
// Build token URL and also include workflowId in query so server auth can read it
const tokenUrlObj = new URL('/api/auth/oauth/token', baseUrl)
if (workflowId) {
tokenUrlObj.searchParams.set('workflowId', workflowId)
}
if (userId) {
tokenUrlObj.searchParams.set('userId', userId)
}
// Always send Content-Type; add internal auth on server-side runs
const tokenHeaders: Record<string, string> = { 'Content-Type': 'application/json' }
@@ -609,6 +609,10 @@ async function executeToolRequest(
if (workflowId) {
fullUrlObj.searchParams.set('workflowId', workflowId)
}
const userId = params._context?.userId
if (userId) {
fullUrlObj.searchParams.set('userId', userId)
}
}
const fullUrl = fullUrlObj.toString()

View File

@@ -311,7 +311,8 @@ export function getTool(toolId: string): ToolConfig | undefined {
// Get a tool by its ID asynchronously (supports server-side)
export async function getToolAsync(
toolId: string,
workflowId?: string
workflowId?: string,
userId?: string
): Promise<ToolConfig | undefined> {
// Check for built-in tools
const builtInTool = tools[toolId]
@@ -319,7 +320,7 @@ export async function getToolAsync(
// Check if it's a custom tool
if (isCustomTool(toolId)) {
return fetchCustomToolFromAPI(toolId, workflowId)
return fetchCustomToolFromAPI(toolId, workflowId, userId)
}
return undefined
@@ -366,7 +367,8 @@ function createToolConfig(customTool: any, customToolId: string): ToolConfig {
// Create a tool config from a custom tool definition by fetching from API
async function fetchCustomToolFromAPI(
customToolId: string,
workflowId?: string
workflowId?: string,
userId?: string
): Promise<ToolConfig | undefined> {
const identifier = customToolId.replace('custom_', '')
@@ -374,10 +376,12 @@ async function fetchCustomToolFromAPI(
const baseUrl = getBaseUrl()
const url = new URL('/api/tools/custom', baseUrl)
// Add workflowId as a query parameter if available
if (workflowId) {
url.searchParams.append('workflowId', workflowId)
}
if (userId) {
url.searchParams.append('userId', userId)
}
// For server-side calls (during workflow execution), use internal JWT token
const headers: Record<string, string> = {}

View File

@@ -139,7 +139,25 @@ app:
EXECUTION_TIMEOUT_ASYNC_PRO: "5400" # Pro tier async timeout (90 minutes)
EXECUTION_TIMEOUT_ASYNC_TEAM: "5400" # Team tier async timeout (90 minutes)
EXECUTION_TIMEOUT_ASYNC_ENTERPRISE: "5400" # Enterprise tier async timeout (90 minutes)
# Isolated-VM Worker Pool Configuration
IVM_POOL_SIZE: "4" # Max worker processes in pool
IVM_MAX_CONCURRENT: "10000" # Max concurrent executions globally
IVM_MAX_PER_WORKER: "2500" # Max concurrent executions per worker
IVM_WORKER_IDLE_TIMEOUT_MS: "60000" # Worker idle cleanup timeout (ms)
IVM_QUEUE_TIMEOUT_MS: "300000" # Max queue wait before rejection (ms)
IVM_MAX_QUEUE_SIZE: "10000" # Max queued executions globally
IVM_MAX_ACTIVE_PER_OWNER: "200" # Max concurrent executions per user
IVM_MAX_QUEUED_PER_OWNER: "2000" # Max queued executions per user
IVM_MAX_OWNER_WEIGHT: "5" # Max scheduling weight per user
IVM_DISTRIBUTED_MAX_INFLIGHT_PER_OWNER: "2200" # Max in-flight per user across instances (Redis)
IVM_DISTRIBUTED_LEASE_MIN_TTL_MS: "120000" # Min distributed lease TTL (ms)
IVM_MAX_FETCH_RESPONSE_BYTES: "8388608" # Max fetch response size (8MB)
IVM_MAX_FETCH_RESPONSE_CHARS: "4000000" # Max fetch response chars
IVM_MAX_FETCH_URL_LENGTH: "8192" # Max fetch URL length
IVM_MAX_FETCH_OPTIONS_JSON_CHARS: "262144" # Max fetch options payload (256KB)
IVM_MAX_STDOUT_CHARS: "200000" # Max stdout capture per execution
# UI Branding & Whitelabeling Configuration
NEXT_PUBLIC_BRAND_NAME: "Sim" # Custom brand name
NEXT_PUBLIC_BRAND_LOGO_URL: "" # Custom logo URL (leave empty for default)