mirror of
https://github.com/simstudioai/sim.git
synced 2026-01-26 07:18:38 -05:00
* docs(sdk): update README to reflect new interface * improvement(docs): add quick reference page and update SDK documentation * docs(copilot): update copilot documentation with all features
529 lines
13 KiB
Markdown
529 lines
13 KiB
Markdown
# Sim Python SDK
|
|
|
|
The official Python SDK for [Sim](https://sim.ai), allowing you to execute workflows programmatically from your Python applications.
|
|
|
|
## Installation
|
|
|
|
```bash
|
|
pip install simstudio-sdk
|
|
```
|
|
|
|
## Quick Start
|
|
|
|
```python
|
|
import os
|
|
from simstudio import SimStudioClient
|
|
|
|
# Initialize the client
|
|
client = SimStudioClient(
|
|
api_key=os.getenv("SIM_API_KEY", "your-api-key-here"),
|
|
base_url="https://sim.ai" # optional, defaults to https://sim.ai
|
|
)
|
|
|
|
# Execute a workflow
|
|
try:
|
|
result = client.execute_workflow("workflow-id")
|
|
print("Workflow executed successfully:", result)
|
|
except Exception as error:
|
|
print("Workflow execution failed:", error)
|
|
```
|
|
|
|
## API Reference
|
|
|
|
### SimStudioClient
|
|
|
|
#### Constructor
|
|
|
|
```python
|
|
SimStudioClient(api_key: str, base_url: str = "https://sim.ai")
|
|
```
|
|
|
|
- `api_key` (str): Your Sim API key
|
|
- `base_url` (str, optional): Base URL for the Sim API (defaults to `https://sim.ai`)
|
|
|
|
#### Methods
|
|
|
|
##### execute_workflow(workflow_id, input=None, *, timeout=30.0, stream=None, selected_outputs=None, async_execution=None)
|
|
|
|
Execute a workflow with optional input data.
|
|
|
|
```python
|
|
# With dict input (spread at root level of request body)
|
|
result = client.execute_workflow("workflow-id", {"message": "Hello, world!"})
|
|
|
|
# With primitive input (wrapped as { input: value })
|
|
result = client.execute_workflow("workflow-id", "NVDA")
|
|
|
|
# With options (keyword-only arguments)
|
|
result = client.execute_workflow("workflow-id", {"message": "Hello"}, timeout=60.0)
|
|
```
|
|
|
|
**Parameters:**
|
|
- `workflow_id` (str): The ID of the workflow to execute
|
|
- `input` (any, optional): Input data to pass to the workflow. Dicts are spread at the root level, primitives/lists are wrapped in `{ input: value }`. File objects are automatically converted to base64.
|
|
- `timeout` (float, keyword-only): Timeout in seconds (default: 30.0)
|
|
- `stream` (bool, keyword-only): Enable streaming responses
|
|
- `selected_outputs` (list, keyword-only): Block outputs to stream (e.g., `["agent1.content"]`)
|
|
- `async_execution` (bool, keyword-only): Execute asynchronously and return execution ID
|
|
|
|
**Returns:** `WorkflowExecutionResult` or `AsyncExecutionResult`
|
|
|
|
##### get_workflow_status(workflow_id)
|
|
|
|
Get the status of a workflow (deployment status, etc.).
|
|
|
|
```python
|
|
status = client.get_workflow_status("workflow-id")
|
|
print("Is deployed:", status.is_deployed)
|
|
```
|
|
|
|
**Parameters:**
|
|
- `workflow_id` (str): The ID of the workflow
|
|
|
|
**Returns:** `WorkflowStatus`
|
|
|
|
##### validate_workflow(workflow_id)
|
|
|
|
Validate that a workflow is ready for execution.
|
|
|
|
```python
|
|
is_ready = client.validate_workflow("workflow-id")
|
|
if is_ready:
|
|
# Workflow is deployed and ready
|
|
pass
|
|
```
|
|
|
|
**Parameters:**
|
|
- `workflow_id` (str): The ID of the workflow
|
|
|
|
**Returns:** `bool`
|
|
|
|
##### execute_workflow_sync(workflow_id, input=None, *, timeout=30.0, stream=None, selected_outputs=None)
|
|
|
|
Execute a workflow synchronously (ensures non-async mode).
|
|
|
|
```python
|
|
result = client.execute_workflow_sync("workflow-id", {"data": "some input"}, timeout=60.0)
|
|
```
|
|
|
|
**Parameters:**
|
|
- `workflow_id` (str): The ID of the workflow to execute
|
|
- `input` (any, optional): Input data to pass to the workflow
|
|
- `timeout` (float, keyword-only): Timeout in seconds (default: 30.0)
|
|
- `stream` (bool, keyword-only): Enable streaming responses
|
|
- `selected_outputs` (list, keyword-only): Block outputs to stream (e.g., `["agent1.content"]`)
|
|
|
|
**Returns:** `WorkflowExecutionResult`
|
|
|
|
##### get_job_status(task_id)
|
|
|
|
Get the status of an async job.
|
|
|
|
```python
|
|
status = client.get_job_status("task-id-from-async-execution")
|
|
print("Job status:", status)
|
|
```
|
|
|
|
**Parameters:**
|
|
- `task_id` (str): The task ID returned from async execution
|
|
|
|
**Returns:** `dict`
|
|
|
|
##### execute_with_retry(workflow_id, input=None, *, timeout=30.0, stream=None, selected_outputs=None, async_execution=None, max_retries=3, initial_delay=1.0, max_delay=30.0, backoff_multiplier=2.0)
|
|
|
|
Execute a workflow with automatic retry on rate limit errors.
|
|
|
|
```python
|
|
result = client.execute_with_retry(
|
|
"workflow-id",
|
|
{"message": "Hello"},
|
|
timeout=30.0,
|
|
max_retries=3,
|
|
initial_delay=1.0,
|
|
max_delay=30.0,
|
|
backoff_multiplier=2.0
|
|
)
|
|
```
|
|
|
|
**Parameters:**
|
|
- `workflow_id` (str): The ID of the workflow to execute
|
|
- `input` (any, optional): Input data to pass to the workflow
|
|
- `timeout` (float, keyword-only): Timeout in seconds (default: 30.0)
|
|
- `stream` (bool, keyword-only): Enable streaming responses
|
|
- `selected_outputs` (list, keyword-only): Block outputs to stream
|
|
- `async_execution` (bool, keyword-only): Execute asynchronously
|
|
- `max_retries` (int, keyword-only): Maximum retry attempts (default: 3)
|
|
- `initial_delay` (float, keyword-only): Initial delay in seconds (default: 1.0)
|
|
- `max_delay` (float, keyword-only): Maximum delay in seconds (default: 30.0)
|
|
- `backoff_multiplier` (float, keyword-only): Backoff multiplier (default: 2.0)
|
|
|
|
**Returns:** `WorkflowExecutionResult` or `AsyncExecutionResult`
|
|
|
|
##### get_rate_limit_info()
|
|
|
|
Get current rate limit information from the last API response.
|
|
|
|
```python
|
|
rate_info = client.get_rate_limit_info()
|
|
if rate_info:
|
|
print("Remaining requests:", rate_info.remaining)
|
|
```
|
|
|
|
**Returns:** `RateLimitInfo` or `None`
|
|
|
|
##### get_usage_limits()
|
|
|
|
Get current usage limits and quota information.
|
|
|
|
```python
|
|
limits = client.get_usage_limits()
|
|
print("Current usage:", limits.usage)
|
|
```
|
|
|
|
**Returns:** `UsageLimits`
|
|
|
|
##### set_api_key(api_key)
|
|
|
|
Update the API key.
|
|
|
|
```python
|
|
client.set_api_key("new-api-key")
|
|
```
|
|
|
|
##### set_base_url(base_url)
|
|
|
|
Update the base URL.
|
|
|
|
```python
|
|
client.set_base_url("https://my-custom-domain.com")
|
|
```
|
|
|
|
##### close()
|
|
|
|
Close the underlying HTTP session.
|
|
|
|
```python
|
|
client.close()
|
|
```
|
|
|
|
## Data Classes
|
|
|
|
### WorkflowExecutionResult
|
|
|
|
```python
|
|
@dataclass
|
|
class WorkflowExecutionResult:
|
|
success: bool
|
|
output: Optional[Any] = None
|
|
error: Optional[str] = None
|
|
logs: Optional[list] = None
|
|
metadata: Optional[Dict[str, Any]] = None
|
|
trace_spans: Optional[list] = None
|
|
total_duration: Optional[float] = None
|
|
```
|
|
|
|
### WorkflowStatus
|
|
|
|
```python
|
|
@dataclass
|
|
class WorkflowStatus:
|
|
is_deployed: bool
|
|
deployed_at: Optional[str] = None
|
|
needs_redeployment: bool = False
|
|
```
|
|
|
|
### SimStudioError
|
|
|
|
```python
|
|
class SimStudioError(Exception):
|
|
def __init__(self, message: str, code: Optional[str] = None, status: Optional[int] = None):
|
|
super().__init__(message)
|
|
self.code = code
|
|
self.status = status
|
|
```
|
|
|
|
### AsyncExecutionResult
|
|
|
|
```python
|
|
@dataclass
|
|
class AsyncExecutionResult:
|
|
success: bool
|
|
task_id: str
|
|
status: str # 'queued'
|
|
created_at: str
|
|
links: Dict[str, str]
|
|
```
|
|
|
|
### RateLimitInfo
|
|
|
|
```python
|
|
@dataclass
|
|
class RateLimitInfo:
|
|
limit: int
|
|
remaining: int
|
|
reset: int
|
|
retry_after: Optional[int] = None
|
|
```
|
|
|
|
### UsageLimits
|
|
|
|
```python
|
|
@dataclass
|
|
class UsageLimits:
|
|
success: bool
|
|
rate_limit: Dict[str, Any]
|
|
usage: Dict[str, Any]
|
|
```
|
|
|
|
## Examples
|
|
|
|
### Basic Workflow Execution
|
|
|
|
```python
|
|
import os
|
|
from simstudio import SimStudioClient
|
|
|
|
client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))
|
|
|
|
def run_workflow():
|
|
try:
|
|
# Check if workflow is ready
|
|
is_ready = client.validate_workflow("my-workflow-id")
|
|
if not is_ready:
|
|
raise Exception("Workflow is not deployed or ready")
|
|
|
|
# Execute the workflow
|
|
result = client.execute_workflow(
|
|
"my-workflow-id",
|
|
{
|
|
"message": "Process this data",
|
|
"user_id": "12345"
|
|
}
|
|
)
|
|
|
|
if result.success:
|
|
print("Output:", result.output)
|
|
print("Duration:", result.metadata.get("duration") if result.metadata else None)
|
|
else:
|
|
print("Workflow failed:", result.error)
|
|
|
|
except Exception as error:
|
|
print("Error:", error)
|
|
|
|
run_workflow()
|
|
```
|
|
|
|
### Error Handling
|
|
|
|
```python
|
|
from simstudio import SimStudioClient, SimStudioError
|
|
import os
|
|
|
|
client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))
|
|
|
|
def execute_with_error_handling():
|
|
try:
|
|
result = client.execute_workflow("workflow-id")
|
|
return result
|
|
except SimStudioError as error:
|
|
if error.code == "UNAUTHORIZED":
|
|
print("Invalid API key")
|
|
elif error.code == "TIMEOUT":
|
|
print("Workflow execution timed out")
|
|
elif error.code == "USAGE_LIMIT_EXCEEDED":
|
|
print("Usage limit exceeded")
|
|
elif error.code == "INVALID_JSON":
|
|
print("Invalid JSON in request body")
|
|
else:
|
|
print(f"Workflow error: {error}")
|
|
raise
|
|
except Exception as error:
|
|
print(f"Unexpected error: {error}")
|
|
raise
|
|
```
|
|
|
|
### Context Manager Usage
|
|
|
|
```python
|
|
from simstudio import SimStudioClient
|
|
import os
|
|
|
|
# Using context manager to automatically close the session
|
|
with SimStudioClient(api_key=os.getenv("SIM_API_KEY")) as client:
|
|
result = client.execute_workflow("workflow-id")
|
|
print("Result:", result)
|
|
# Session is automatically closed here
|
|
```
|
|
|
|
### Environment Configuration
|
|
|
|
```python
|
|
import os
|
|
from simstudio import SimStudioClient
|
|
|
|
# Using environment variables
|
|
client = SimStudioClient(
|
|
api_key=os.getenv("SIM_API_KEY"),
|
|
base_url=os.getenv("SIM_BASE_URL", "https://sim.ai")
|
|
)
|
|
```
|
|
|
|
### File Upload
|
|
|
|
File objects are automatically detected and converted to base64 format. Include them in your input under the field name matching your workflow's API trigger input format:
|
|
|
|
The SDK converts file objects to this format:
|
|
```python
|
|
{
|
|
'type': 'file',
|
|
'data': 'data:mime/type;base64,base64data',
|
|
'name': 'filename',
|
|
'mime': 'mime/type'
|
|
}
|
|
```
|
|
|
|
Alternatively, you can manually provide files using the URL format:
|
|
```python
|
|
{
|
|
'type': 'url',
|
|
'data': 'https://example.com/file.pdf',
|
|
'name': 'file.pdf',
|
|
'mime': 'application/pdf'
|
|
}
|
|
```
|
|
|
|
```python
|
|
from simstudio import SimStudioClient
|
|
import os
|
|
|
|
client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))
|
|
|
|
# Upload a single file - include it under the field name from your API trigger
|
|
with open('document.pdf', 'rb') as f:
|
|
result = client.execute_workflow(
|
|
'workflow-id',
|
|
{
|
|
'documents': [f], # Must match your workflow's "files" field name
|
|
'instructions': 'Analyze this document'
|
|
}
|
|
)
|
|
|
|
# Upload multiple files
|
|
with open('doc1.pdf', 'rb') as f1, open('doc2.pdf', 'rb') as f2:
|
|
result = client.execute_workflow(
|
|
'workflow-id',
|
|
{
|
|
'attachments': [f1, f2], # Must match your workflow's "files" field name
|
|
'query': 'Compare these documents'
|
|
}
|
|
)
|
|
```
|
|
|
|
### Batch Workflow Execution
|
|
|
|
```python
|
|
from simstudio import SimStudioClient
|
|
import os
|
|
|
|
client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))
|
|
|
|
def execute_workflows_batch(workflow_data_pairs):
|
|
"""Execute multiple workflows with different input data."""
|
|
results = []
|
|
|
|
for workflow_id, workflow_input in workflow_data_pairs:
|
|
try:
|
|
# Validate workflow before execution
|
|
if not client.validate_workflow(workflow_id):
|
|
print(f"Skipping {workflow_id}: not deployed")
|
|
continue
|
|
|
|
result = client.execute_workflow(workflow_id, workflow_input)
|
|
results.append({
|
|
"workflow_id": workflow_id,
|
|
"success": result.success,
|
|
"output": result.output,
|
|
"error": result.error
|
|
})
|
|
|
|
except Exception as error:
|
|
results.append({
|
|
"workflow_id": workflow_id,
|
|
"success": False,
|
|
"error": str(error)
|
|
})
|
|
|
|
return results
|
|
|
|
# Example usage
|
|
workflows = [
|
|
("workflow-1", {"type": "analysis", "data": "sample1"}),
|
|
("workflow-2", {"type": "processing", "data": "sample2"}),
|
|
]
|
|
|
|
results = execute_workflows_batch(workflows)
|
|
for result in results:
|
|
print(f"Workflow {result['workflow_id']}: {'Success' if result['success'] else 'Failed'}")
|
|
```
|
|
|
|
## Getting Your API Key
|
|
|
|
1. Log in to your [Sim](https://sim.ai) account
|
|
2. Navigate to your workflow
|
|
3. Click on "Deploy" to deploy your workflow
|
|
4. Select or create an API key during the deployment process
|
|
5. Copy the API key to use in your application
|
|
|
|
## Development
|
|
|
|
### Running Tests
|
|
|
|
To run the tests locally:
|
|
|
|
1. Clone the repository and navigate to the Python SDK directory:
|
|
```bash
|
|
cd packages/python-sdk
|
|
```
|
|
|
|
2. Create and activate a virtual environment:
|
|
```bash
|
|
python3 -m venv venv
|
|
source venv/bin/activate # On Windows: venv\Scripts\activate
|
|
```
|
|
|
|
3. Install the package in development mode with test dependencies:
|
|
```bash
|
|
pip install -e ".[dev]"
|
|
```
|
|
|
|
4. Run the tests:
|
|
```bash
|
|
pytest tests/ -v
|
|
```
|
|
|
|
### Code Quality
|
|
|
|
Run code quality checks:
|
|
|
|
```bash
|
|
# Code formatting
|
|
black simstudio/
|
|
|
|
# Linting
|
|
flake8 simstudio/ --max-line-length=100
|
|
|
|
# Type checking
|
|
mypy simstudio/
|
|
|
|
# Import sorting
|
|
isort simstudio/
|
|
```
|
|
|
|
## Requirements
|
|
|
|
- Python 3.8+
|
|
- requests >= 2.25.0
|
|
|
|
## License
|
|
|
|
Apache-2.0 |