mirror of
https://github.com/personaelabs/spartan-ecdsa.git
synced 2026-01-09 14:07:54 -05:00
Merge main
This commit is contained in:
42
.github/workflows/publish.yaml
vendored
Normal file
42
.github/workflows/publish.yaml
vendored
Normal file
@@ -0,0 +1,42 @@
|
||||
name: Publish Package to npmjs
|
||||
on:
|
||||
release:
|
||||
types: [published]
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
publish:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
ref: ${{ github.ref_name }}
|
||||
# Setup Node.js
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 18
|
||||
registry-url: "https://registry.npmjs.org"
|
||||
# Setup Rust
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2022-10-31
|
||||
- run: rustup component add rust-src --toolchain nightly-2022-10-31-x86_64-unknown-linux-gnu
|
||||
- run: rustup target add x86_64-apple-darwin
|
||||
# Install circom-secq
|
||||
- uses: GuillaumeFalourd/clone-github-repo-action@v2
|
||||
with:
|
||||
owner: "DanTehrani"
|
||||
repository: "circom-secq"
|
||||
- run: cd circom-secq && cargo build --release && cargo install --path circom
|
||||
# Install wasm-pack
|
||||
- uses: jetli/wasm-pack-action@v0.4.0
|
||||
with:
|
||||
version: "0.10.3"
|
||||
- run: cargo test --release
|
||||
- run: yarn
|
||||
- run: yarn build
|
||||
- run: yarn test
|
||||
- run: npm publish
|
||||
working-directory: ./packages/lib
|
||||
env:
|
||||
NODE_AUTH_TOKEN: ${{ secrets.NPM_TOKEN }}
|
||||
@@ -5,4 +5,7 @@ members = [
|
||||
# "packages/poseidon",
|
||||
"packages/hoplite",
|
||||
"packages/hoplite_circuit",
|
||||
"packages/poseidon",
|
||||
"packages/Spartan-secq",
|
||||
"packages/circuit_reader",
|
||||
]
|
||||
@@ -6,7 +6,8 @@
|
||||
"repository": "https://github.com/DanTehrani/spartan-wasm.git",
|
||||
"author": "Daniel Tehrani <contact@dantehrani.com>",
|
||||
"scripts": {
|
||||
"build": "sh ./scripts/build.sh && lerna run build"
|
||||
"build": "sh ./scripts/build.sh && lerna run build",
|
||||
"test": "sh ./scripts/test.sh"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/jest": "^29.2.4",
|
||||
|
||||
9
packages/Spartan-secq/CODE_OF_CONDUCT.md
Normal file
9
packages/Spartan-secq/CODE_OF_CONDUCT.md
Normal file
@@ -0,0 +1,9 @@
|
||||
# Microsoft Open Source Code of Conduct
|
||||
|
||||
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
|
||||
|
||||
Resources:
|
||||
|
||||
- [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
|
||||
- [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
|
||||
- Contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with questions or concerns
|
||||
12
packages/Spartan-secq/CONTRIBUTING.md
Normal file
12
packages/Spartan-secq/CONTRIBUTING.md
Normal file
@@ -0,0 +1,12 @@
|
||||
This project welcomes contributions and suggestions. Most contributions require you to
|
||||
agree to a Contributor License Agreement (CLA) declaring that you have the right to,
|
||||
and actually do, grant us the rights to use your contribution. For details, visit
|
||||
https://cla.microsoft.com.
|
||||
|
||||
When you submit a pull request, a CLA-bot will automatically determine whether you need
|
||||
to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the
|
||||
instructions provided by the bot. You will only need to do this once across all repositories using our CLA.
|
||||
|
||||
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
|
||||
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
|
||||
or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
|
||||
57
packages/Spartan-secq/Cargo.toml
Normal file
57
packages/Spartan-secq/Cargo.toml
Normal file
@@ -0,0 +1,57 @@
|
||||
[package]
|
||||
name = "spartan"
|
||||
version = "0.7.1"
|
||||
authors = ["Srinath Setty <srinath@microsoft.com>"]
|
||||
edition = "2021"
|
||||
description = "High-speed zkSNARKs without trusted setup"
|
||||
documentation = "https://docs.rs/spartan/"
|
||||
readme = "README.md"
|
||||
repository = "https://github.com/microsoft/Spartan"
|
||||
license-file = "LICENSE"
|
||||
keywords = ["zkSNARKs", "cryptography", "proofs"]
|
||||
|
||||
[dependencies]
|
||||
num-bigint-dig = "^0.7"
|
||||
secq256k1 = { path = "../secq256k1" }
|
||||
merlin = "3.0.0"
|
||||
rand = "0.7.3"
|
||||
digest = "0.8.1"
|
||||
sha3 = "0.8.2"
|
||||
byteorder = "1.3.4"
|
||||
rayon = { version = "1.3.0", optional = true }
|
||||
serde = { version = "1.0.106", features = ["derive"] }
|
||||
bincode = "1.2.1"
|
||||
subtle = { version = "2.4", default-features = false }
|
||||
rand_core = { version = "0.6", default-features = false }
|
||||
zeroize = { version = "1", default-features = false }
|
||||
itertools = "0.10.0"
|
||||
colored = "2.0.0"
|
||||
flate2 = "1.0.14"
|
||||
thiserror = "1.0"
|
||||
num-traits = "0.2.15"
|
||||
hex-literal = { version = "0.3" }
|
||||
multiexp = "0.2.2"
|
||||
|
||||
[dev-dependencies]
|
||||
criterion = "0.3.1"
|
||||
|
||||
[lib]
|
||||
name = "libspartan"
|
||||
path = "src/lib.rs"
|
||||
crate-type = ["cdylib", "rlib"]
|
||||
|
||||
[[bin]]
|
||||
name = "snark"
|
||||
path = "profiler/snark.rs"
|
||||
|
||||
[[bin]]
|
||||
name = "nizk"
|
||||
path = "profiler/nizk.rs"
|
||||
|
||||
[[bench]]
|
||||
name = "snark"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "nizk"
|
||||
harness = false
|
||||
21
packages/Spartan-secq/LICENSE
Normal file
21
packages/Spartan-secq/LICENSE
Normal file
@@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) Microsoft Corporation.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE
|
||||
10
packages/Spartan-secq/README.md
Normal file
10
packages/Spartan-secq/README.md
Normal file
@@ -0,0 +1,10 @@
|
||||
## Fork of [Spartan](https://github.com/microsoft/Spartan)
|
||||
_This fork is still under development._
|
||||
|
||||
Modify Spartan to operate over the **base field** of secp256k1.
|
||||
|
||||
### Changes from the original Spartan
|
||||
- Use the secq256k1 crate instead of curve25519-dalek
|
||||
- Modify values in scalar.rs (originally ristretto255.rs)
|
||||
|
||||
Please refer to [spartan-ecdsa](https://github.com/personaelabs/spartan-ecdsa) for development status.
|
||||
41
packages/Spartan-secq/SECURITY.md
Normal file
41
packages/Spartan-secq/SECURITY.md
Normal file
@@ -0,0 +1,41 @@
|
||||
<!-- BEGIN MICROSOFT SECURITY.MD V0.0.3 BLOCK -->
|
||||
|
||||
## Security
|
||||
|
||||
Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), and [our GitHub organizations](https://opensource.microsoft.com/).
|
||||
|
||||
If you believe you have found a security vulnerability in any Microsoft-owned repository that meets Microsoft's [Microsoft's definition of a security vulnerability](https://docs.microsoft.com/en-us/previous-versions/tn-archive/cc751383(v=technet.10)) of a security vulnerability, please report it to us as described below.
|
||||
|
||||
## Reporting Security Issues
|
||||
|
||||
**Please do not report security vulnerabilities through public GitHub issues.**
|
||||
|
||||
Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://msrc.microsoft.com/create-report).
|
||||
|
||||
If you prefer to submit without logging in, send email to [secure@microsoft.com](mailto:secure@microsoft.com). If possible, encrypt your message with our PGP key; please download it from the the [Microsoft Security Response Center PGP Key page](https://www.microsoft.com/en-us/msrc/pgp-key-msrc).
|
||||
|
||||
You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc).
|
||||
|
||||
Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
|
||||
|
||||
* Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
|
||||
* Full paths of source file(s) related to the manifestation of the issue
|
||||
* The location of the affected source code (tag/branch/commit or direct URL)
|
||||
* Any special configuration required to reproduce the issue
|
||||
* Step-by-step instructions to reproduce the issue
|
||||
* Proof-of-concept or exploit code (if possible)
|
||||
* Impact of the issue, including how an attacker might exploit the issue
|
||||
|
||||
This information will help us triage your report more quickly.
|
||||
|
||||
If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://microsoft.com/msrc/bounty) page for more details about our active programs.
|
||||
|
||||
## Preferred Languages
|
||||
|
||||
We prefer all communications to be in English.
|
||||
|
||||
## Policy
|
||||
|
||||
Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://www.microsoft.com/en-us/msrc/cvd).
|
||||
|
||||
<!-- END MICROSOFT SECURITY.MD BLOCK -->
|
||||
92
packages/Spartan-secq/benches/nizk.rs
Normal file
92
packages/Spartan-secq/benches/nizk.rs
Normal file
@@ -0,0 +1,92 @@
|
||||
#![allow(clippy::assertions_on_result_states)]
|
||||
extern crate byteorder;
|
||||
extern crate core;
|
||||
extern crate criterion;
|
||||
extern crate digest;
|
||||
extern crate libspartan;
|
||||
extern crate merlin;
|
||||
extern crate rand;
|
||||
extern crate sha3;
|
||||
|
||||
use libspartan::{Instance, NIZKGens, NIZK};
|
||||
use merlin::Transcript;
|
||||
|
||||
use criterion::*;
|
||||
|
||||
fn nizk_prove_benchmark(c: &mut Criterion) {
|
||||
for &s in [10, 12, 16].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("NIZK_prove_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let num_vars = (2_usize).pow(s as u32);
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
|
||||
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
|
||||
let gens = NIZKGens::new(num_cons, num_vars, num_inputs);
|
||||
|
||||
let name = format!("NIZK_prove_{}", num_vars);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| {
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
NIZK::prove(
|
||||
black_box(&inst),
|
||||
black_box(vars.clone()),
|
||||
black_box(&inputs),
|
||||
black_box(&gens),
|
||||
black_box(&mut prover_transcript),
|
||||
);
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn nizk_verify_benchmark(c: &mut Criterion) {
|
||||
for &s in [10, 12, 16].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("NIZK_verify_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let num_vars = (2_usize).pow(s as u32);
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
|
||||
let gens = NIZKGens::new(num_cons, num_vars, num_inputs);
|
||||
|
||||
// produce a proof of satisfiability
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let proof = NIZK::prove(&inst, vars, &inputs, &gens, &mut prover_transcript);
|
||||
|
||||
let name = format!("NIZK_verify_{}", num_cons);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| {
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(
|
||||
black_box(&inst),
|
||||
black_box(&inputs),
|
||||
black_box(&mut verifier_transcript),
|
||||
black_box(&gens)
|
||||
)
|
||||
.is_ok());
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn set_duration() -> Criterion {
|
||||
Criterion::default().sample_size(10)
|
||||
}
|
||||
|
||||
criterion_group! {
|
||||
name = benches_nizk;
|
||||
config = set_duration();
|
||||
targets = nizk_prove_benchmark, nizk_verify_benchmark
|
||||
}
|
||||
|
||||
criterion_main!(benches_nizk);
|
||||
131
packages/Spartan-secq/benches/snark.rs
Normal file
131
packages/Spartan-secq/benches/snark.rs
Normal file
@@ -0,0 +1,131 @@
|
||||
#![allow(clippy::assertions_on_result_states)]
|
||||
extern crate libspartan;
|
||||
extern crate merlin;
|
||||
|
||||
use libspartan::{Instance, SNARKGens, SNARK};
|
||||
use merlin::Transcript;
|
||||
|
||||
use criterion::*;
|
||||
|
||||
fn snark_encode_benchmark(c: &mut Criterion) {
|
||||
for &s in [10, 12, 16].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("SNARK_encode_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let num_vars = (2_usize).pow(s as u32);
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
let (inst, _vars, _inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
|
||||
// produce public parameters
|
||||
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_cons);
|
||||
|
||||
// produce a commitment to R1CS instance
|
||||
let name = format!("SNARK_encode_{}", num_cons);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| {
|
||||
SNARK::encode(black_box(&inst), black_box(&gens));
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn snark_prove_benchmark(c: &mut Criterion) {
|
||||
for &s in [10, 12, 16].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("SNARK_prove_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let num_vars = (2_usize).pow(s as u32);
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
|
||||
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
|
||||
// produce public parameters
|
||||
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_cons);
|
||||
|
||||
// produce a commitment to R1CS instance
|
||||
let (comm, decomm) = SNARK::encode(&inst, &gens);
|
||||
|
||||
// produce a proof
|
||||
let name = format!("SNARK_prove_{}", num_cons);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| {
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
SNARK::prove(
|
||||
black_box(&inst),
|
||||
black_box(&comm),
|
||||
black_box(&decomm),
|
||||
black_box(vars.clone()),
|
||||
black_box(&inputs),
|
||||
black_box(&gens),
|
||||
black_box(&mut prover_transcript),
|
||||
);
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn snark_verify_benchmark(c: &mut Criterion) {
|
||||
for &s in [10, 12, 16].iter() {
|
||||
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
|
||||
let mut group = c.benchmark_group("SNARK_verify_benchmark");
|
||||
group.plot_config(plot_config);
|
||||
|
||||
let num_vars = (2_usize).pow(s as u32);
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
|
||||
// produce public parameters
|
||||
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_cons);
|
||||
|
||||
// produce a commitment to R1CS instance
|
||||
let (comm, decomm) = SNARK::encode(&inst, &gens);
|
||||
|
||||
// produce a proof of satisfiability
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let proof = SNARK::prove(
|
||||
&inst,
|
||||
&comm,
|
||||
&decomm,
|
||||
vars,
|
||||
&inputs,
|
||||
&gens,
|
||||
&mut prover_transcript,
|
||||
);
|
||||
|
||||
// verify the proof
|
||||
let name = format!("SNARK_verify_{}", num_cons);
|
||||
group.bench_function(&name, move |b| {
|
||||
b.iter(|| {
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(
|
||||
black_box(&comm),
|
||||
black_box(&inputs),
|
||||
black_box(&mut verifier_transcript),
|
||||
black_box(&gens)
|
||||
)
|
||||
.is_ok());
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
}
|
||||
|
||||
fn set_duration() -> Criterion {
|
||||
Criterion::default().sample_size(10)
|
||||
}
|
||||
|
||||
criterion_group! {
|
||||
name = benches_snark;
|
||||
config = set_duration();
|
||||
targets = snark_encode_benchmark, snark_prove_benchmark, snark_verify_benchmark
|
||||
}
|
||||
|
||||
criterion_main!(benches_snark);
|
||||
147
packages/Spartan-secq/examples/cubic.rs
Normal file
147
packages/Spartan-secq/examples/cubic.rs
Normal file
@@ -0,0 +1,147 @@
|
||||
//! Demonstrates how to produces a proof for canonical cubic equation: `x^3 + x + 5 = y`.
|
||||
//! The example is described in detail [here].
|
||||
//!
|
||||
//! The R1CS for this problem consists of the following 4 constraints:
|
||||
//! `Z0 * Z0 - Z1 = 0`
|
||||
//! `Z1 * Z0 - Z2 = 0`
|
||||
//! `(Z2 + Z0) * 1 - Z3 = 0`
|
||||
//! `(Z3 + 5) * 1 - I0 = 0`
|
||||
//!
|
||||
//! [here]: https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
|
||||
#![allow(clippy::assertions_on_result_states)]
|
||||
use libspartan::{InputsAssignment, Instance, SNARKGens, VarsAssignment, SNARK};
|
||||
use merlin::Transcript;
|
||||
use rand_core::OsRng;
|
||||
use secq256k1::elliptic_curve::Field;
|
||||
use secq256k1::Scalar;
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn produce_r1cs() -> (
|
||||
usize,
|
||||
usize,
|
||||
usize,
|
||||
usize,
|
||||
Instance,
|
||||
VarsAssignment,
|
||||
InputsAssignment,
|
||||
) {
|
||||
// parameters of the R1CS instance
|
||||
let num_cons = 4;
|
||||
let num_vars = 4;
|
||||
let num_inputs = 1;
|
||||
let num_non_zero_entries = 8;
|
||||
|
||||
// We will encode the above constraints into three matrices, where
|
||||
// the coefficients in the matrix are in the little-endian byte order
|
||||
let mut A: Vec<(usize, usize, [u8; 32])> = Vec::new();
|
||||
let mut B: Vec<(usize, usize, [u8; 32])> = Vec::new();
|
||||
let mut C: Vec<(usize, usize, [u8; 32])> = Vec::new();
|
||||
|
||||
let one: [u8; 32] = Scalar::ONE.to_bytes().into();
|
||||
|
||||
// R1CS is a set of three sparse matrices A B C, where is a row for every
|
||||
// constraint and a column for every entry in z = (vars, 1, inputs)
|
||||
// An R1CS instance is satisfiable iff:
|
||||
// Az \circ Bz = Cz, where z = (vars, 1, inputs)
|
||||
|
||||
// constraint 0 entries in (A,B,C)
|
||||
// constraint 0 is Z0 * Z0 - Z1 = 0.
|
||||
A.push((0, 0, one));
|
||||
B.push((0, 0, one));
|
||||
C.push((0, 1, one));
|
||||
|
||||
// constraint 1 entries in (A,B,C)
|
||||
// constraint 1 is Z1 * Z0 - Z2 = 0.
|
||||
A.push((1, 1, one));
|
||||
B.push((1, 0, one));
|
||||
C.push((1, 2, one));
|
||||
|
||||
// constraint 2 entries in (A,B,C)
|
||||
// constraint 2 is (Z2 + Z0) * 1 - Z3 = 0.
|
||||
A.push((2, 2, one));
|
||||
A.push((2, 0, one));
|
||||
B.push((2, num_vars, one));
|
||||
C.push((2, 3, one));
|
||||
|
||||
// constraint 3 entries in (A,B,C)
|
||||
// constraint 3 is (Z3 + 5) * 1 - I0 = 0.
|
||||
A.push((3, 3, one));
|
||||
A.push((3, num_vars, Scalar::from(5u32).to_bytes().into()));
|
||||
B.push((3, num_vars, one));
|
||||
C.push((3, num_vars + 1, one));
|
||||
|
||||
let inst = Instance::new(num_cons, num_vars, num_inputs, &A, &B, &C).unwrap();
|
||||
|
||||
// compute a satisfying assignment
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let z0 = Scalar::random(&mut csprng);
|
||||
let z1 = z0 * z0; // constraint 0
|
||||
let z2 = z1 * z0; // constraint 1
|
||||
let z3 = z2 + z0; // constraint 2
|
||||
let i0 = z3 + Scalar::from(5u32); // constraint 3
|
||||
|
||||
// create a VarsAssignment
|
||||
let mut vars: Vec<[u8; 32]> = vec![Scalar::ZERO.to_bytes().into(); num_vars];
|
||||
vars[0] = z0.to_bytes().into();
|
||||
vars[1] = z1.to_bytes().into();
|
||||
vars[2] = z2.to_bytes().into();
|
||||
vars[3] = z3.to_bytes().into();
|
||||
let assignment_vars = VarsAssignment::new(&vars).unwrap();
|
||||
|
||||
// create an InputsAssignment
|
||||
let mut inputs: Vec<[u8; 32]> = vec![Scalar::ZERO.to_bytes().into(); num_inputs];
|
||||
inputs[0] = i0.to_bytes().into();
|
||||
let assignment_inputs = InputsAssignment::new(&inputs).unwrap();
|
||||
|
||||
// check if the instance we created is satisfiable
|
||||
let res = inst.is_sat(&assignment_vars, &assignment_inputs);
|
||||
assert!(res.unwrap(), "should be satisfied");
|
||||
|
||||
(
|
||||
num_cons,
|
||||
num_vars,
|
||||
num_inputs,
|
||||
num_non_zero_entries,
|
||||
inst,
|
||||
assignment_vars,
|
||||
assignment_inputs,
|
||||
)
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// produce an R1CS instance
|
||||
let (
|
||||
num_cons,
|
||||
num_vars,
|
||||
num_inputs,
|
||||
num_non_zero_entries,
|
||||
inst,
|
||||
assignment_vars,
|
||||
assignment_inputs,
|
||||
) = produce_r1cs();
|
||||
|
||||
// produce public parameters
|
||||
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_non_zero_entries);
|
||||
|
||||
// create a commitment to the R1CS instance
|
||||
let (comm, decomm) = SNARK::encode(&inst, &gens);
|
||||
|
||||
// produce a proof of satisfiability
|
||||
let mut prover_transcript = Transcript::new(b"snark_example");
|
||||
let proof = SNARK::prove(
|
||||
&inst,
|
||||
&comm,
|
||||
&decomm,
|
||||
assignment_vars,
|
||||
&assignment_inputs,
|
||||
&gens,
|
||||
&mut prover_transcript,
|
||||
);
|
||||
|
||||
// verify the proof of satisfiability
|
||||
let mut verifier_transcript = Transcript::new(b"snark_example");
|
||||
assert!(proof
|
||||
.verify(&comm, &assignment_inputs, &mut verifier_transcript, &gens)
|
||||
.is_ok());
|
||||
println!("proof verification successful!");
|
||||
}
|
||||
52
packages/Spartan-secq/profiler/nizk.rs
Normal file
52
packages/Spartan-secq/profiler/nizk.rs
Normal file
@@ -0,0 +1,52 @@
|
||||
#![allow(non_snake_case)]
|
||||
#![allow(clippy::assertions_on_result_states)]
|
||||
|
||||
extern crate flate2;
|
||||
extern crate libspartan;
|
||||
extern crate merlin;
|
||||
extern crate rand;
|
||||
|
||||
use flate2::{write::ZlibEncoder, Compression};
|
||||
use libspartan::{Instance, NIZKGens, NIZK};
|
||||
use merlin::Transcript;
|
||||
|
||||
fn print(msg: &str) {
|
||||
let star = "* ";
|
||||
println!("{:indent$}{}{}", "", star, msg, indent = 2);
|
||||
}
|
||||
|
||||
pub fn main() {
|
||||
// the list of number of variables (and constraints) in an R1CS instance
|
||||
let inst_sizes = vec![10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20];
|
||||
|
||||
println!("Profiler:: NIZK");
|
||||
for &s in inst_sizes.iter() {
|
||||
let num_vars = (2_usize).pow(s as u32);
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
|
||||
// produce a synthetic R1CSInstance
|
||||
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
|
||||
// produce public generators
|
||||
let gens = NIZKGens::new(num_cons, num_vars, num_inputs);
|
||||
|
||||
// produce a proof of satisfiability
|
||||
let mut prover_transcript = Transcript::new(b"nizk_example");
|
||||
let proof = NIZK::prove(&inst, vars, &inputs, &gens, &mut prover_transcript);
|
||||
|
||||
let mut encoder = ZlibEncoder::new(Vec::new(), Compression::default());
|
||||
bincode::serialize_into(&mut encoder, &proof).unwrap();
|
||||
let proof_encoded = encoder.finish().unwrap();
|
||||
let msg_proof_len = format!("NIZK::proof_compressed_len {:?}", proof_encoded.len());
|
||||
print(&msg_proof_len);
|
||||
|
||||
// verify the proof of satisfiability
|
||||
let mut verifier_transcript = Transcript::new(b"nizk_example");
|
||||
assert!(proof
|
||||
.verify(&inst, &inputs, &mut verifier_transcript, &gens)
|
||||
.is_ok());
|
||||
|
||||
println!();
|
||||
}
|
||||
}
|
||||
62
packages/Spartan-secq/profiler/snark.rs
Normal file
62
packages/Spartan-secq/profiler/snark.rs
Normal file
@@ -0,0 +1,62 @@
|
||||
#![allow(non_snake_case)]
|
||||
#![allow(clippy::assertions_on_result_states)]
|
||||
|
||||
extern crate flate2;
|
||||
extern crate libspartan;
|
||||
extern crate merlin;
|
||||
|
||||
use flate2::{write::ZlibEncoder, Compression};
|
||||
use libspartan::{Instance, SNARKGens, SNARK};
|
||||
use merlin::Transcript;
|
||||
|
||||
fn print(msg: &str) {
|
||||
let star = "* ";
|
||||
println!("{:indent$}{}{}", "", star, msg, indent = 2);
|
||||
}
|
||||
|
||||
pub fn main() {
|
||||
// the list of number of variables (and constraints) in an R1CS instance
|
||||
let inst_sizes = vec![10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20];
|
||||
|
||||
println!("Profiler:: SNARK");
|
||||
for &s in inst_sizes.iter() {
|
||||
let num_vars = (2_usize).pow(s as u32);
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
|
||||
// produce a synthetic R1CSInstance
|
||||
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
|
||||
// produce public generators
|
||||
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_cons);
|
||||
|
||||
// create a commitment to R1CSInstance
|
||||
let (comm, decomm) = SNARK::encode(&inst, &gens);
|
||||
|
||||
// produce a proof of satisfiability
|
||||
let mut prover_transcript = Transcript::new(b"snark_example");
|
||||
let proof = SNARK::prove(
|
||||
&inst,
|
||||
&comm,
|
||||
&decomm,
|
||||
vars,
|
||||
&inputs,
|
||||
&gens,
|
||||
&mut prover_transcript,
|
||||
);
|
||||
|
||||
let mut encoder = ZlibEncoder::new(Vec::new(), Compression::default());
|
||||
bincode::serialize_into(&mut encoder, &proof).unwrap();
|
||||
let proof_encoded = encoder.finish().unwrap();
|
||||
let msg_proof_len = format!("SNARK::proof_compressed_len {:?}", proof_encoded.len());
|
||||
print(&msg_proof_len);
|
||||
|
||||
// verify the proof of satisfiability
|
||||
let mut verifier_transcript = Transcript::new(b"snark_example");
|
||||
assert!(proof
|
||||
.verify(&comm, &inputs, &mut verifier_transcript, &gens)
|
||||
.is_ok());
|
||||
|
||||
println!();
|
||||
}
|
||||
}
|
||||
4
packages/Spartan-secq/rustfmt.toml
Normal file
4
packages/Spartan-secq/rustfmt.toml
Normal file
@@ -0,0 +1,4 @@
|
||||
edition = "2018"
|
||||
tab_spaces = 2
|
||||
newline_style = "Unix"
|
||||
use_try_shorthand = true
|
||||
54
packages/Spartan-secq/src/bin/mont_params.rs
Normal file
54
packages/Spartan-secq/src/bin/mont_params.rs
Normal file
@@ -0,0 +1,54 @@
|
||||
use hex_literal::hex;
|
||||
use num_bigint_dig::{BigInt, BigUint, ModInverse, ToBigInt};
|
||||
use num_traits::{FromPrimitive, ToPrimitive};
|
||||
use std::ops::Neg;
|
||||
|
||||
fn get_words(n: &BigUint) -> [u64; 4] {
|
||||
let mut words = [0u64; 4];
|
||||
for i in 0..4 {
|
||||
let word = n.clone() >> (64 * i) & BigUint::from(0xffffffffffffffffu64);
|
||||
words[i] = word.to_u64().unwrap();
|
||||
}
|
||||
words
|
||||
}
|
||||
|
||||
fn render_hex(label: String, words: &[u64; 4]) {
|
||||
println!("// {}", label);
|
||||
for word in words {
|
||||
println!("0x{:016x},", word);
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let modulus = BigUint::from_bytes_be(&hex!(
|
||||
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"
|
||||
));
|
||||
|
||||
let r = BigUint::from_u8(2)
|
||||
.unwrap()
|
||||
.modpow(&BigUint::from_u64(256).unwrap(), &modulus);
|
||||
|
||||
let r2 = BigUint::from_u8(2)
|
||||
.unwrap()
|
||||
.modpow(&BigUint::from_u64(512).unwrap(), &modulus);
|
||||
|
||||
let r3 = BigUint::from_u8(2)
|
||||
.unwrap()
|
||||
.modpow(&BigUint::from_u64(768).unwrap(), &modulus);
|
||||
|
||||
let two_pow_64 = BigUint::from_u128(18446744073709551616u128).unwrap();
|
||||
let one = BigInt::from_u8(1).unwrap();
|
||||
|
||||
let inv = modulus
|
||||
.clone()
|
||||
.mod_inverse(&two_pow_64)
|
||||
.unwrap()
|
||||
.neg()
|
||||
.modpow(&one, &two_pow_64.to_bigint().unwrap());
|
||||
|
||||
render_hex("Modulus".to_string(), &get_words(&modulus));
|
||||
render_hex("R".to_string(), &get_words(&r));
|
||||
render_hex("R2".to_string(), &get_words(&r2));
|
||||
render_hex("R3".to_string(), &get_words(&r3));
|
||||
render_hex("INV".to_string(), &get_words(&inv.to_biguint().unwrap()));
|
||||
}
|
||||
96
packages/Spartan-secq/src/commitments.rs
Normal file
96
packages/Spartan-secq/src/commitments.rs
Normal file
@@ -0,0 +1,96 @@
|
||||
use super::group::{GroupElement, VartimeMultiscalarMul};
|
||||
use super::scalar::Scalar;
|
||||
use digest::{ExtendableOutput, Input};
|
||||
use secq256k1::AffinePoint;
|
||||
use sha3::Shake256;
|
||||
use std::io::Read;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct MultiCommitGens {
|
||||
pub n: usize,
|
||||
pub G: Vec<GroupElement>,
|
||||
pub h: GroupElement,
|
||||
}
|
||||
|
||||
impl MultiCommitGens {
|
||||
pub fn new(n: usize, label: &[u8]) -> Self {
|
||||
let mut shake = Shake256::default();
|
||||
shake.input(label);
|
||||
shake.input(AffinePoint::generator().compress().as_bytes());
|
||||
|
||||
let mut reader = shake.xof_result();
|
||||
let mut gens: Vec<GroupElement> = Vec::new();
|
||||
let mut uniform_bytes = [0u8; 128];
|
||||
for _ in 0..n + 1 {
|
||||
reader.read_exact(&mut uniform_bytes).unwrap();
|
||||
gens.push(AffinePoint::from_uniform_bytes(&uniform_bytes));
|
||||
}
|
||||
|
||||
MultiCommitGens {
|
||||
n,
|
||||
G: gens[..n].to_vec(),
|
||||
h: gens[n],
|
||||
}
|
||||
}
|
||||
|
||||
pub fn clone(&self) -> MultiCommitGens {
|
||||
MultiCommitGens {
|
||||
n: self.n,
|
||||
h: self.h,
|
||||
G: self.G.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn scale(&self, s: &Scalar) -> MultiCommitGens {
|
||||
MultiCommitGens {
|
||||
n: self.n,
|
||||
h: self.h,
|
||||
G: (0..self.n).map(|i| s * self.G[i]).collect(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn split_at(&self, mid: usize) -> (MultiCommitGens, MultiCommitGens) {
|
||||
let (G1, G2) = self.G.split_at(mid);
|
||||
|
||||
(
|
||||
MultiCommitGens {
|
||||
n: G1.len(),
|
||||
G: G1.to_vec(),
|
||||
h: self.h,
|
||||
},
|
||||
MultiCommitGens {
|
||||
n: G2.len(),
|
||||
G: G2.to_vec(),
|
||||
h: self.h,
|
||||
},
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Commitments {
|
||||
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement;
|
||||
}
|
||||
|
||||
impl Commitments for Scalar {
|
||||
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
|
||||
assert_eq!(gens_n.n, 1);
|
||||
GroupElement::vartime_multiscalar_mul(
|
||||
[*self, *blind].to_vec(),
|
||||
[gens_n.G[0], gens_n.h].to_vec(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl Commitments for Vec<Scalar> {
|
||||
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
|
||||
assert_eq!(gens_n.n, self.len());
|
||||
GroupElement::vartime_multiscalar_mul((*self).clone(), gens_n.G.clone()) + blind * gens_n.h
|
||||
}
|
||||
}
|
||||
|
||||
impl Commitments for [Scalar] {
|
||||
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
|
||||
assert_eq!(gens_n.n, self.len());
|
||||
GroupElement::vartime_multiscalar_mul(self.to_vec(), gens_n.G.clone()) + blind * gens_n.h
|
||||
}
|
||||
}
|
||||
602
packages/Spartan-secq/src/dense_mlpoly.rs
Normal file
602
packages/Spartan-secq/src/dense_mlpoly.rs
Normal file
@@ -0,0 +1,602 @@
|
||||
#![allow(clippy::too_many_arguments)]
|
||||
use super::commitments::{Commitments, MultiCommitGens};
|
||||
use super::errors::ProofVerifyError;
|
||||
use super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
|
||||
use super::math::Math;
|
||||
use super::nizk::{DotProductProofGens, DotProductProofLog};
|
||||
use super::random::RandomTape;
|
||||
use super::scalar::Scalar;
|
||||
use super::transcript::{AppendToTranscript, ProofTranscript};
|
||||
use crate::group::DecompressEncodedPoint;
|
||||
use core::ops::Index;
|
||||
use merlin::Transcript;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
#[cfg(feature = "multicore")]
|
||||
use rayon::prelude::*;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct DensePolynomial {
|
||||
num_vars: usize, // the number of variables in the multilinear polynomial
|
||||
len: usize,
|
||||
Z: Vec<Scalar>, // evaluations of the polynomial in all the 2^num_vars Boolean inputs
|
||||
}
|
||||
|
||||
pub struct PolyCommitmentGens {
|
||||
pub gens: DotProductProofGens,
|
||||
}
|
||||
|
||||
impl PolyCommitmentGens {
|
||||
// the number of variables in the multilinear polynomial
|
||||
pub fn new(num_vars: usize, label: &'static [u8]) -> PolyCommitmentGens {
|
||||
let (_left, right) = EqPolynomial::compute_factored_lens(num_vars);
|
||||
let gens = DotProductProofGens::new(right.pow2(), label);
|
||||
PolyCommitmentGens { gens }
|
||||
}
|
||||
}
|
||||
|
||||
pub struct PolyCommitmentBlinds {
|
||||
blinds: Vec<Scalar>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct PolyCommitment {
|
||||
C: Vec<CompressedGroup>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct ConstPolyCommitment {
|
||||
C: CompressedGroup,
|
||||
}
|
||||
|
||||
pub struct EqPolynomial {
|
||||
r: Vec<Scalar>,
|
||||
}
|
||||
|
||||
impl EqPolynomial {
|
||||
pub fn new(r: Vec<Scalar>) -> Self {
|
||||
EqPolynomial { r }
|
||||
}
|
||||
|
||||
pub fn evaluate(&self, rx: &[Scalar]) -> Scalar {
|
||||
assert_eq!(self.r.len(), rx.len());
|
||||
(0..rx.len())
|
||||
.map(|i| self.r[i] * rx[i] + (Scalar::one() - self.r[i]) * (Scalar::one() - rx[i]))
|
||||
.product()
|
||||
}
|
||||
|
||||
pub fn evals(&self) -> Vec<Scalar> {
|
||||
let ell = self.r.len();
|
||||
|
||||
let mut evals: Vec<Scalar> = vec![Scalar::one(); ell.pow2()];
|
||||
let mut size = 1;
|
||||
for j in 0..ell {
|
||||
// in each iteration, we double the size of chis
|
||||
size *= 2;
|
||||
for i in (0..size).rev().step_by(2) {
|
||||
// copy each element from the prior iteration twice
|
||||
let scalar = evals[i / 2];
|
||||
evals[i] = scalar * self.r[j];
|
||||
evals[i - 1] = scalar - evals[i];
|
||||
}
|
||||
}
|
||||
evals
|
||||
}
|
||||
|
||||
pub fn compute_factored_lens(ell: usize) -> (usize, usize) {
|
||||
(ell / 2, ell - ell / 2)
|
||||
}
|
||||
|
||||
pub fn compute_factored_evals(&self) -> (Vec<Scalar>, Vec<Scalar>) {
|
||||
let ell = self.r.len();
|
||||
let (left_num_vars, _right_num_vars) = EqPolynomial::compute_factored_lens(ell);
|
||||
|
||||
let L = EqPolynomial::new(self.r[..left_num_vars].to_vec()).evals();
|
||||
let R = EqPolynomial::new(self.r[left_num_vars..ell].to_vec()).evals();
|
||||
|
||||
(L, R)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct IdentityPolynomial {
|
||||
size_point: usize,
|
||||
}
|
||||
|
||||
impl IdentityPolynomial {
|
||||
pub fn new(size_point: usize) -> Self {
|
||||
IdentityPolynomial { size_point }
|
||||
}
|
||||
|
||||
pub fn evaluate(&self, r: &[Scalar]) -> Scalar {
|
||||
let len = r.len();
|
||||
assert_eq!(len, self.size_point);
|
||||
(0..len)
|
||||
.map(|i| Scalar::from((len - i - 1).pow2() as u64) * r[i])
|
||||
.sum()
|
||||
}
|
||||
}
|
||||
|
||||
impl DensePolynomial {
|
||||
pub fn new(Z: Vec<Scalar>) -> Self {
|
||||
DensePolynomial {
|
||||
num_vars: Z.len().log_2(),
|
||||
len: Z.len(),
|
||||
Z,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_num_vars(&self) -> usize {
|
||||
self.num_vars
|
||||
}
|
||||
|
||||
pub fn len(&self) -> usize {
|
||||
self.len
|
||||
}
|
||||
|
||||
pub fn clone(&self) -> DensePolynomial {
|
||||
DensePolynomial::new(self.Z[0..self.len].to_vec())
|
||||
}
|
||||
|
||||
pub fn split(&self, idx: usize) -> (DensePolynomial, DensePolynomial) {
|
||||
assert!(idx < self.len());
|
||||
(
|
||||
DensePolynomial::new(self.Z[..idx].to_vec()),
|
||||
DensePolynomial::new(self.Z[idx..2 * idx].to_vec()),
|
||||
)
|
||||
}
|
||||
|
||||
#[cfg(feature = "multicore")]
|
||||
fn commit_inner(&self, blinds: &[Scalar], gens: &MultiCommitGens) -> PolyCommitment {
|
||||
let L_size = blinds.len();
|
||||
let R_size = self.Z.len() / L_size;
|
||||
assert_eq!(L_size * R_size, self.Z.len());
|
||||
let C = (0..L_size)
|
||||
.into_par_iter()
|
||||
.map(|i| {
|
||||
self.Z[R_size * i..R_size * (i + 1)]
|
||||
.commit(&blinds[i], gens)
|
||||
.compress()
|
||||
})
|
||||
.collect();
|
||||
PolyCommitment { C }
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "multicore"))]
|
||||
fn commit_inner(&self, blinds: &[Scalar], gens: &MultiCommitGens) -> PolyCommitment {
|
||||
let L_size = blinds.len();
|
||||
let R_size = self.Z.len() / L_size;
|
||||
assert_eq!(L_size * R_size, self.Z.len());
|
||||
let C = (0..L_size)
|
||||
.map(|i| {
|
||||
self.Z[R_size * i..R_size * (i + 1)]
|
||||
.commit(&blinds[i], gens)
|
||||
.compress()
|
||||
})
|
||||
.collect();
|
||||
PolyCommitment { C }
|
||||
}
|
||||
|
||||
pub fn commit(
|
||||
&self,
|
||||
gens: &PolyCommitmentGens,
|
||||
random_tape: Option<&mut RandomTape>,
|
||||
) -> (PolyCommitment, PolyCommitmentBlinds) {
|
||||
let n = self.Z.len();
|
||||
let ell = self.get_num_vars();
|
||||
assert_eq!(n, ell.pow2());
|
||||
|
||||
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(ell);
|
||||
let L_size = left_num_vars.pow2();
|
||||
let R_size = right_num_vars.pow2();
|
||||
assert_eq!(L_size * R_size, n);
|
||||
|
||||
let blinds = if let Some(t) = random_tape {
|
||||
PolyCommitmentBlinds {
|
||||
blinds: t.random_vector(b"poly_blinds", L_size),
|
||||
}
|
||||
} else {
|
||||
PolyCommitmentBlinds {
|
||||
blinds: vec![Scalar::zero(); L_size],
|
||||
}
|
||||
};
|
||||
|
||||
(self.commit_inner(&blinds.blinds, &gens.gens.gens_n), blinds)
|
||||
}
|
||||
|
||||
pub fn bound(&self, L: &[Scalar]) -> Vec<Scalar> {
|
||||
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(self.get_num_vars());
|
||||
let L_size = left_num_vars.pow2();
|
||||
let R_size = right_num_vars.pow2();
|
||||
(0..R_size)
|
||||
.map(|i| (0..L_size).map(|j| L[j] * self.Z[j * R_size + i]).sum())
|
||||
.collect()
|
||||
}
|
||||
|
||||
pub fn bound_poly_var_top(&mut self, r: &Scalar) {
|
||||
let n = self.len() / 2;
|
||||
for i in 0..n {
|
||||
self.Z[i] = self.Z[i] + r * (self.Z[i + n] - self.Z[i]);
|
||||
}
|
||||
self.num_vars -= 1;
|
||||
self.len = n;
|
||||
}
|
||||
|
||||
pub fn bound_poly_var_bot(&mut self, r: &Scalar) {
|
||||
let n = self.len() / 2;
|
||||
for i in 0..n {
|
||||
self.Z[i] = self.Z[2 * i] + r * (self.Z[2 * i + 1] - self.Z[2 * i]);
|
||||
}
|
||||
self.num_vars -= 1;
|
||||
self.len = n;
|
||||
}
|
||||
|
||||
// returns Z(r) in O(n) time
|
||||
pub fn evaluate(&self, r: &[Scalar]) -> Scalar {
|
||||
// r must have a value for each variable
|
||||
assert_eq!(r.len(), self.get_num_vars());
|
||||
let chis = EqPolynomial::new(r.to_vec()).evals();
|
||||
assert_eq!(chis.len(), self.Z.len());
|
||||
DotProductProofLog::compute_dotproduct(&self.Z, &chis)
|
||||
}
|
||||
|
||||
fn vec(&self) -> &Vec<Scalar> {
|
||||
&self.Z
|
||||
}
|
||||
|
||||
pub fn extend(&mut self, other: &DensePolynomial) {
|
||||
// TODO: allow extension even when some vars are bound
|
||||
assert_eq!(self.Z.len(), self.len);
|
||||
let other_vec = other.vec();
|
||||
assert_eq!(other_vec.len(), self.len);
|
||||
self.Z.extend(other_vec);
|
||||
self.num_vars += 1;
|
||||
self.len *= 2;
|
||||
assert_eq!(self.Z.len(), self.len);
|
||||
}
|
||||
|
||||
pub fn merge<'a, I>(polys: I) -> DensePolynomial
|
||||
where
|
||||
I: IntoIterator<Item = &'a DensePolynomial>,
|
||||
{
|
||||
let mut Z: Vec<Scalar> = Vec::new();
|
||||
for poly in polys.into_iter() {
|
||||
Z.extend(poly.vec());
|
||||
}
|
||||
|
||||
// pad the polynomial with zero polynomial at the end
|
||||
Z.resize(Z.len().next_power_of_two(), Scalar::zero());
|
||||
|
||||
DensePolynomial::new(Z)
|
||||
}
|
||||
|
||||
pub fn from_usize(Z: &[usize]) -> Self {
|
||||
DensePolynomial::new(
|
||||
(0..Z.len())
|
||||
.map(|i| Scalar::from(Z[i] as u64))
|
||||
.collect::<Vec<Scalar>>(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl Index<usize> for DensePolynomial {
|
||||
type Output = Scalar;
|
||||
|
||||
#[inline(always)]
|
||||
fn index(&self, _index: usize) -> &Scalar {
|
||||
&(self.Z[_index])
|
||||
}
|
||||
}
|
||||
|
||||
impl AppendToTranscript for PolyCommitment {
|
||||
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
|
||||
transcript.append_message(label, b"poly_commitment_begin");
|
||||
for i in 0..self.C.len() {
|
||||
transcript.append_point(b"poly_commitment_share", &self.C[i]);
|
||||
}
|
||||
transcript.append_message(label, b"poly_commitment_end");
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct PolyEvalProof {
|
||||
proof: DotProductProofLog,
|
||||
}
|
||||
|
||||
impl PolyEvalProof {
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"polynomial evaluation proof"
|
||||
}
|
||||
|
||||
pub fn prove(
|
||||
poly: &DensePolynomial,
|
||||
blinds_opt: Option<&PolyCommitmentBlinds>,
|
||||
r: &[Scalar], // point at which the polynomial is evaluated
|
||||
Zr: &Scalar, // evaluation of \widetilde{Z}(r)
|
||||
blind_Zr_opt: Option<&Scalar>, // specifies a blind for Zr
|
||||
gens: &PolyCommitmentGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut RandomTape,
|
||||
) -> (PolyEvalProof, CompressedGroup) {
|
||||
transcript.append_protocol_name(PolyEvalProof::protocol_name());
|
||||
|
||||
// assert vectors are of the right size
|
||||
assert_eq!(poly.get_num_vars(), r.len());
|
||||
|
||||
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(r.len());
|
||||
let L_size = left_num_vars.pow2();
|
||||
let R_size = right_num_vars.pow2();
|
||||
|
||||
let default_blinds = PolyCommitmentBlinds {
|
||||
blinds: vec![Scalar::zero(); L_size],
|
||||
};
|
||||
let blinds = blinds_opt.map_or(&default_blinds, |p| p);
|
||||
|
||||
assert_eq!(blinds.blinds.len(), L_size);
|
||||
|
||||
let zero = Scalar::zero();
|
||||
let blind_Zr = blind_Zr_opt.map_or(&zero, |p| p);
|
||||
|
||||
// compute the L and R vectors
|
||||
let eq = EqPolynomial::new(r.to_vec());
|
||||
let (L, R) = eq.compute_factored_evals();
|
||||
assert_eq!(L.len(), L_size);
|
||||
assert_eq!(R.len(), R_size);
|
||||
|
||||
// compute the vector underneath L*Z and the L*blinds
|
||||
// compute vector-matrix product between L and Z viewed as a matrix
|
||||
let LZ = poly.bound(&L);
|
||||
let LZ_blind: Scalar = (0..L.len()).map(|i| blinds.blinds[i] * L[i]).sum();
|
||||
|
||||
// a dot product proof of size R_size
|
||||
let (proof, _C_LR, C_Zr_prime) = DotProductProofLog::prove(
|
||||
&gens.gens,
|
||||
transcript,
|
||||
random_tape,
|
||||
&LZ,
|
||||
&LZ_blind,
|
||||
&R,
|
||||
Zr,
|
||||
blind_Zr,
|
||||
);
|
||||
|
||||
(PolyEvalProof { proof }, C_Zr_prime)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
gens: &PolyCommitmentGens,
|
||||
transcript: &mut Transcript,
|
||||
r: &[Scalar], // point at which the polynomial is evaluated
|
||||
C_Zr: &CompressedGroup, // commitment to \widetilde{Z}(r)
|
||||
comm: &PolyCommitment,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
transcript.append_protocol_name(PolyEvalProof::protocol_name());
|
||||
|
||||
// compute L and R
|
||||
let eq = EqPolynomial::new(r.to_vec());
|
||||
let (L, R) = eq.compute_factored_evals();
|
||||
|
||||
// compute a weighted sum of commitments and L
|
||||
let C_decompressed = comm.C.iter().map(|pt| pt.decompress().unwrap());
|
||||
|
||||
let C_LZ = GroupElement::vartime_multiscalar_mul(L, C_decompressed.collect()).compress();
|
||||
|
||||
self
|
||||
.proof
|
||||
.verify(R.len(), &gens.gens, transcript, &R, &C_LZ, C_Zr)
|
||||
}
|
||||
|
||||
pub fn verify_plain(
|
||||
&self,
|
||||
gens: &PolyCommitmentGens,
|
||||
transcript: &mut Transcript,
|
||||
r: &[Scalar], // point at which the polynomial is evaluated
|
||||
Zr: &Scalar, // evaluation \widetilde{Z}(r)
|
||||
comm: &PolyCommitment,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
// compute a commitment to Zr with a blind of zero
|
||||
let C_Zr = Zr.commit(&Scalar::zero(), &gens.gens.gens_1).compress();
|
||||
|
||||
self.verify(gens, transcript, r, &C_Zr, comm)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::super::scalar::ScalarFromPrimitives;
|
||||
use super::*;
|
||||
use rand_core::OsRng;
|
||||
|
||||
fn evaluate_with_LR(Z: &[Scalar], r: &[Scalar]) -> Scalar {
|
||||
let eq = EqPolynomial::new(r.to_vec());
|
||||
let (L, R) = eq.compute_factored_evals();
|
||||
|
||||
let ell = r.len();
|
||||
// ensure ell is even
|
||||
assert!(ell % 2 == 0);
|
||||
// compute n = 2^\ell
|
||||
let n = ell.pow2();
|
||||
// compute m = sqrt(n) = 2^{\ell/2}
|
||||
let m = n.square_root();
|
||||
|
||||
// compute vector-matrix product between L and Z viewed as a matrix
|
||||
let LZ = (0..m)
|
||||
.map(|i| (0..m).map(|j| L[j] * Z[j * m + i]).sum())
|
||||
.collect::<Vec<Scalar>>();
|
||||
|
||||
// compute dot product between LZ and R
|
||||
DotProductProofLog::compute_dotproduct(&LZ, &R)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_polynomial_evaluation() {
|
||||
// Z = [1, 2, 1, 4]
|
||||
let Z = vec![
|
||||
Scalar::one(),
|
||||
(2_usize).to_scalar(),
|
||||
(1_usize).to_scalar(),
|
||||
(4_usize).to_scalar(),
|
||||
];
|
||||
|
||||
// r = [4,3]
|
||||
let r = vec![(4_usize).to_scalar(), (3_usize).to_scalar()];
|
||||
|
||||
let eval_with_LR = evaluate_with_LR(&Z, &r);
|
||||
let poly = DensePolynomial::new(Z);
|
||||
|
||||
let eval = poly.evaluate(&r);
|
||||
assert_eq!(eval, (28_usize).to_scalar());
|
||||
assert_eq!(eval_with_LR, eval);
|
||||
}
|
||||
|
||||
pub fn compute_factored_chis_at_r(r: &[Scalar]) -> (Vec<Scalar>, Vec<Scalar>) {
|
||||
let mut L: Vec<Scalar> = Vec::new();
|
||||
let mut R: Vec<Scalar> = Vec::new();
|
||||
|
||||
let ell = r.len();
|
||||
assert!(ell % 2 == 0); // ensure ell is even
|
||||
let n = ell.pow2();
|
||||
let m = n.square_root();
|
||||
|
||||
// compute row vector L
|
||||
for i in 0..m {
|
||||
let mut chi_i = Scalar::one();
|
||||
for j in 0..ell / 2 {
|
||||
let bit_j = ((m * i) & (1 << (r.len() - j - 1))) > 0;
|
||||
if bit_j {
|
||||
chi_i *= r[j];
|
||||
} else {
|
||||
chi_i *= Scalar::one() - r[j];
|
||||
}
|
||||
}
|
||||
L.push(chi_i);
|
||||
}
|
||||
|
||||
// compute column vector R
|
||||
for i in 0..m {
|
||||
let mut chi_i = Scalar::one();
|
||||
for j in ell / 2..ell {
|
||||
let bit_j = (i & (1 << (r.len() - j - 1))) > 0;
|
||||
if bit_j {
|
||||
chi_i *= r[j];
|
||||
} else {
|
||||
chi_i *= Scalar::one() - r[j];
|
||||
}
|
||||
}
|
||||
R.push(chi_i);
|
||||
}
|
||||
(L, R)
|
||||
}
|
||||
|
||||
pub fn compute_chis_at_r(r: &[Scalar]) -> Vec<Scalar> {
|
||||
let ell = r.len();
|
||||
let n = ell.pow2();
|
||||
let mut chis: Vec<Scalar> = Vec::new();
|
||||
for i in 0..n {
|
||||
let mut chi_i = Scalar::one();
|
||||
for j in 0..r.len() {
|
||||
let bit_j = (i & (1 << (r.len() - j - 1))) > 0;
|
||||
if bit_j {
|
||||
chi_i *= r[j];
|
||||
} else {
|
||||
chi_i *= Scalar::one() - r[j];
|
||||
}
|
||||
}
|
||||
chis.push(chi_i);
|
||||
}
|
||||
chis
|
||||
}
|
||||
|
||||
pub fn compute_outerproduct(L: Vec<Scalar>, R: Vec<Scalar>) -> Vec<Scalar> {
|
||||
assert_eq!(L.len(), R.len());
|
||||
(0..L.len())
|
||||
.map(|i| (0..R.len()).map(|j| L[i] * R[j]).collect::<Vec<Scalar>>())
|
||||
.collect::<Vec<Vec<Scalar>>>()
|
||||
.into_iter()
|
||||
.flatten()
|
||||
.collect::<Vec<Scalar>>()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_memoized_chis() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let s = 10;
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
for _i in 0..s {
|
||||
r.push(Scalar::random(&mut csprng));
|
||||
}
|
||||
let chis = tests::compute_chis_at_r(&r);
|
||||
let chis_m = EqPolynomial::new(r).evals();
|
||||
assert_eq!(chis, chis_m);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_factored_chis() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let s = 10;
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
for _i in 0..s {
|
||||
r.push(Scalar::random(&mut csprng));
|
||||
}
|
||||
let chis = EqPolynomial::new(r.clone()).evals();
|
||||
let (L, R) = EqPolynomial::new(r).compute_factored_evals();
|
||||
let O = compute_outerproduct(L, R);
|
||||
assert_eq!(chis, O);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_memoized_factored_chis() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let s = 10;
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
for _i in 0..s {
|
||||
r.push(Scalar::random(&mut csprng));
|
||||
}
|
||||
let (L, R) = tests::compute_factored_chis_at_r(&r);
|
||||
let eq = EqPolynomial::new(r);
|
||||
let (L2, R2) = eq.compute_factored_evals();
|
||||
assert_eq!(L, L2);
|
||||
assert_eq!(R, R2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_polynomial_commit() {
|
||||
let Z = vec![
|
||||
(1_usize).to_scalar(),
|
||||
(2_usize).to_scalar(),
|
||||
(1_usize).to_scalar(),
|
||||
(4_usize).to_scalar(),
|
||||
];
|
||||
let poly = DensePolynomial::new(Z);
|
||||
|
||||
// r = [4,3]
|
||||
let r = vec![(4_usize).to_scalar(), (3_usize).to_scalar()];
|
||||
let eval = poly.evaluate(&r);
|
||||
assert_eq!(eval, (28_usize).to_scalar());
|
||||
|
||||
let gens = PolyCommitmentGens::new(poly.get_num_vars(), b"test-two");
|
||||
let (poly_commitment, blinds) = poly.commit(&gens, None);
|
||||
|
||||
let mut random_tape = RandomTape::new(b"proof");
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, C_Zr) = PolyEvalProof::prove(
|
||||
&poly,
|
||||
Some(&blinds),
|
||||
&r,
|
||||
&eval,
|
||||
None,
|
||||
&gens,
|
||||
&mut prover_transcript,
|
||||
&mut random_tape,
|
||||
);
|
||||
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
|
||||
assert!(proof
|
||||
.verify(&gens, &mut verifier_transcript, &r, &C_Zr, &poly_commitment)
|
||||
.is_ok());
|
||||
}
|
||||
}
|
||||
32
packages/Spartan-secq/src/errors.rs
Normal file
32
packages/Spartan-secq/src/errors.rs
Normal file
@@ -0,0 +1,32 @@
|
||||
use core::fmt::Debug;
|
||||
use thiserror::Error;
|
||||
|
||||
#[derive(Error, Debug)]
|
||||
pub enum ProofVerifyError {
|
||||
#[error("Proof verification failed")]
|
||||
InternalError,
|
||||
#[error("Compressed group element failed to decompress: {0:?}")]
|
||||
DecompressionError([u8; 32]),
|
||||
}
|
||||
|
||||
impl Default for ProofVerifyError {
|
||||
fn default() -> Self {
|
||||
ProofVerifyError::InternalError
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Eq, PartialEq)]
|
||||
pub enum R1CSError {
|
||||
/// returned if the number of constraints is not a power of 2
|
||||
NonPowerOfTwoCons,
|
||||
/// returned if the number of variables is not a power of 2
|
||||
NonPowerOfTwoVars,
|
||||
/// returned if a wrong number of inputs in an assignment are supplied
|
||||
InvalidNumberOfInputs,
|
||||
/// returned if a wrong number of variables in an assignment are supplied
|
||||
InvalidNumberOfVars,
|
||||
/// returned if a [u8;32] does not parse into a valid Scalar in the field of secq256k1
|
||||
InvalidScalar,
|
||||
/// returned if the supplied row or col in (row,col,val) tuple is out of range
|
||||
InvalidIndex,
|
||||
}
|
||||
138
packages/Spartan-secq/src/group.rs
Normal file
138
packages/Spartan-secq/src/group.rs
Normal file
@@ -0,0 +1,138 @@
|
||||
use secq256k1::{AffinePoint, ProjectivePoint};
|
||||
|
||||
use super::errors::ProofVerifyError;
|
||||
use super::scalar::{Scalar, ScalarBytes, ScalarBytesFromScalar};
|
||||
use core::ops::{Mul, MulAssign};
|
||||
use multiexp::multiexp;
|
||||
|
||||
pub type GroupElement = secq256k1::AffinePoint;
|
||||
pub type CompressedGroup = secq256k1::EncodedPoint;
|
||||
pub trait CompressedGroupExt {
|
||||
type Group;
|
||||
fn unpack(&self) -> Result<Self::Group, ProofVerifyError>;
|
||||
}
|
||||
|
||||
impl CompressedGroupExt for CompressedGroup {
|
||||
type Group = secq256k1::AffinePoint;
|
||||
fn unpack(&self) -> Result<Self::Group, ProofVerifyError> {
|
||||
let result = AffinePoint::decompress(*self);
|
||||
if result.is_some().into() {
|
||||
return Ok(result.unwrap());
|
||||
} else {
|
||||
Err(ProofVerifyError::DecompressionError(
|
||||
(*self.to_bytes()).try_into().unwrap(),
|
||||
))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait DecompressEncodedPoint {
|
||||
fn decompress(&self) -> Option<GroupElement>;
|
||||
}
|
||||
|
||||
impl DecompressEncodedPoint for CompressedGroup {
|
||||
fn decompress(&self) -> Option<GroupElement> {
|
||||
Some(self.unpack().unwrap())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'b> MulAssign<&'b Scalar> for GroupElement {
|
||||
fn mul_assign(&mut self, scalar: &'b Scalar) {
|
||||
let result = (self as &GroupElement) * Scalar::decompress_scalar(scalar);
|
||||
*self = result;
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, 'b> Mul<&'b Scalar> for &'a GroupElement {
|
||||
type Output = GroupElement;
|
||||
fn mul(self, scalar: &'b Scalar) -> GroupElement {
|
||||
*self * Scalar::decompress_scalar(scalar)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, 'b> Mul<&'b GroupElement> for &'a Scalar {
|
||||
type Output = GroupElement;
|
||||
|
||||
fn mul(self, point: &'b GroupElement) -> GroupElement {
|
||||
(*point * Scalar::decompress_scalar(self)).into()
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! define_mul_variants {
|
||||
(LHS = $lhs:ty, RHS = $rhs:ty, Output = $out:ty) => {
|
||||
impl<'b> Mul<&'b $rhs> for $lhs {
|
||||
type Output = $out;
|
||||
fn mul(self, rhs: &'b $rhs) -> $out {
|
||||
&self * rhs
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Mul<$rhs> for &'a $lhs {
|
||||
type Output = $out;
|
||||
fn mul(self, rhs: $rhs) -> $out {
|
||||
self * &rhs
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<$rhs> for $lhs {
|
||||
type Output = $out;
|
||||
fn mul(self, rhs: $rhs) -> $out {
|
||||
&self * &rhs
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
macro_rules! define_mul_assign_variants {
|
||||
(LHS = $lhs:ty, RHS = $rhs:ty) => {
|
||||
impl MulAssign<$rhs> for $lhs {
|
||||
fn mul_assign(&mut self, rhs: $rhs) {
|
||||
*self *= &rhs;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
define_mul_assign_variants!(LHS = GroupElement, RHS = Scalar);
|
||||
define_mul_variants!(LHS = GroupElement, RHS = Scalar, Output = GroupElement);
|
||||
define_mul_variants!(LHS = Scalar, RHS = GroupElement, Output = GroupElement);
|
||||
|
||||
pub trait VartimeMultiscalarMul {
|
||||
type Scalar;
|
||||
fn vartime_multiscalar_mul(scalars: Vec<Scalar>, points: Vec<GroupElement>) -> Self;
|
||||
}
|
||||
|
||||
impl VartimeMultiscalarMul for GroupElement {
|
||||
type Scalar = super::scalar::Scalar;
|
||||
// TODO Borrow the arguments so we don't have to clone them, as it was in the original implementation
|
||||
fn vartime_multiscalar_mul(scalars: Vec<Scalar>, points: Vec<GroupElement>) -> Self {
|
||||
let points: Vec<ProjectivePoint> = points.iter().map(|p| ProjectivePoint::from(p.0)).collect();
|
||||
|
||||
let pairs: Vec<(ScalarBytes, ProjectivePoint)> = scalars
|
||||
.into_iter()
|
||||
.enumerate()
|
||||
.map(|(i, s)| (Scalar::decompress_scalar(&s), points[i]))
|
||||
.collect();
|
||||
|
||||
let result = multiexp::<ProjectivePoint>(pairs.as_slice());
|
||||
|
||||
AffinePoint(result.to_affine())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
#[test]
|
||||
fn msm() {
|
||||
let scalars = vec![Scalar::from(1), Scalar::from(2), Scalar::from(3)];
|
||||
let points = vec![
|
||||
GroupElement::generator(),
|
||||
GroupElement::generator(),
|
||||
GroupElement::generator(),
|
||||
];
|
||||
let result = GroupElement::vartime_multiscalar_mul(scalars, points);
|
||||
|
||||
assert_eq!(result, GroupElement::generator() * Scalar::from(6));
|
||||
}
|
||||
}
|
||||
751
packages/Spartan-secq/src/lib.rs
Normal file
751
packages/Spartan-secq/src/lib.rs
Normal file
@@ -0,0 +1,751 @@
|
||||
#![allow(non_snake_case)]
|
||||
#![doc = include_str!("../README.md")]
|
||||
#![deny(missing_docs)]
|
||||
#![allow(clippy::assertions_on_result_states)]
|
||||
|
||||
extern crate byteorder;
|
||||
extern crate core;
|
||||
extern crate digest;
|
||||
extern crate merlin;
|
||||
extern crate rand;
|
||||
extern crate sha3;
|
||||
|
||||
#[cfg(feature = "multicore")]
|
||||
extern crate rayon;
|
||||
|
||||
mod commitments;
|
||||
mod dense_mlpoly;
|
||||
mod errors;
|
||||
mod group;
|
||||
mod math;
|
||||
mod nizk;
|
||||
mod product_tree;
|
||||
mod r1csinstance;
|
||||
mod r1csproof;
|
||||
mod random;
|
||||
mod scalar;
|
||||
mod sparse_mlpoly;
|
||||
mod sumcheck;
|
||||
mod timer;
|
||||
mod transcript;
|
||||
mod unipoly;
|
||||
|
||||
use core::cmp::max;
|
||||
use errors::{ProofVerifyError, R1CSError};
|
||||
use merlin::Transcript;
|
||||
use r1csinstance::{
|
||||
R1CSCommitment, R1CSCommitmentGens, R1CSDecommitment, R1CSEvalProof, R1CSInstance,
|
||||
};
|
||||
use r1csproof::{R1CSGens, R1CSProof};
|
||||
use random::RandomTape;
|
||||
use scalar::Scalar;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use timer::Timer;
|
||||
use transcript::{AppendToTranscript, ProofTranscript};
|
||||
|
||||
/// `ComputationCommitment` holds a public preprocessed NP statement (e.g., R1CS)
|
||||
pub struct ComputationCommitment {
|
||||
comm: R1CSCommitment,
|
||||
}
|
||||
|
||||
/// `ComputationDecommitment` holds information to decommit `ComputationCommitment`
|
||||
pub struct ComputationDecommitment {
|
||||
decomm: R1CSDecommitment,
|
||||
}
|
||||
|
||||
/// `Assignment` holds an assignment of values to either the inputs or variables in an `Instance`
|
||||
#[derive(Serialize, Deserialize, Clone)]
|
||||
pub struct Assignment {
|
||||
assignment: Vec<Scalar>,
|
||||
}
|
||||
|
||||
impl Assignment {
|
||||
/// Constructs a new `Assignment` from a vector
|
||||
pub fn new(assignment: &[[u8; 32]]) -> Result<Assignment, R1CSError> {
|
||||
let bytes_to_scalar = |vec: &[[u8; 32]]| -> Result<Vec<Scalar>, R1CSError> {
|
||||
let mut vec_scalar: Vec<Scalar> = Vec::new();
|
||||
for v in vec {
|
||||
let val = Scalar::from_bytes(v);
|
||||
if val.is_some().unwrap_u8() == 1 {
|
||||
vec_scalar.push(val.unwrap());
|
||||
} else {
|
||||
return Err(R1CSError::InvalidScalar);
|
||||
}
|
||||
}
|
||||
Ok(vec_scalar)
|
||||
};
|
||||
|
||||
let assignment_scalar = bytes_to_scalar(assignment);
|
||||
|
||||
// check for any parsing errors
|
||||
if assignment_scalar.is_err() {
|
||||
return Err(R1CSError::InvalidScalar);
|
||||
}
|
||||
|
||||
Ok(Assignment {
|
||||
assignment: assignment_scalar.unwrap(),
|
||||
})
|
||||
}
|
||||
|
||||
/// pads Assignment to the specified length
|
||||
fn pad(&self, len: usize) -> VarsAssignment {
|
||||
// check that the new length is higher than current length
|
||||
assert!(len > self.assignment.len());
|
||||
|
||||
let padded_assignment = {
|
||||
let mut padded_assignment = self.assignment.clone();
|
||||
padded_assignment.extend(vec![Scalar::zero(); len - self.assignment.len()]);
|
||||
padded_assignment
|
||||
};
|
||||
|
||||
VarsAssignment {
|
||||
assignment: padded_assignment,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// `VarsAssignment` holds an assignment of values to variables in an `Instance`
|
||||
pub type VarsAssignment = Assignment;
|
||||
|
||||
/// `InputsAssignment` holds an assignment of values to variables in an `Instance`
|
||||
pub type InputsAssignment = Assignment;
|
||||
|
||||
/// `Instance` holds the description of R1CS matrices and a hash of the matrices
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub struct Instance {
|
||||
/// R1CS instance
|
||||
pub inst: R1CSInstance,
|
||||
digest: Vec<u8>,
|
||||
}
|
||||
|
||||
impl Instance {
|
||||
/// Constructs a new `Instance` and an associated satisfying assignment
|
||||
pub fn new(
|
||||
num_cons: usize,
|
||||
num_vars: usize,
|
||||
num_inputs: usize,
|
||||
A: &[(usize, usize, [u8; 32])],
|
||||
B: &[(usize, usize, [u8; 32])],
|
||||
C: &[(usize, usize, [u8; 32])],
|
||||
) -> Result<Instance, R1CSError> {
|
||||
let (num_vars_padded, num_cons_padded) = {
|
||||
let num_vars_padded = {
|
||||
let mut num_vars_padded = num_vars;
|
||||
|
||||
// ensure that num_inputs + 1 <= num_vars
|
||||
num_vars_padded = max(num_vars_padded, num_inputs + 1);
|
||||
|
||||
// ensure that num_vars_padded a power of two
|
||||
if num_vars_padded.next_power_of_two() != num_vars_padded {
|
||||
num_vars_padded = num_vars_padded.next_power_of_two();
|
||||
}
|
||||
num_vars_padded
|
||||
};
|
||||
|
||||
let num_cons_padded = {
|
||||
let mut num_cons_padded = num_cons;
|
||||
|
||||
// ensure that num_cons_padded is at least 2
|
||||
if num_cons_padded == 0 || num_cons_padded == 1 {
|
||||
num_cons_padded = 2;
|
||||
}
|
||||
|
||||
// ensure that num_cons_padded is power of 2
|
||||
if num_cons.next_power_of_two() != num_cons {
|
||||
num_cons_padded = num_cons.next_power_of_two();
|
||||
}
|
||||
num_cons_padded
|
||||
};
|
||||
|
||||
(num_vars_padded, num_cons_padded)
|
||||
};
|
||||
|
||||
let bytes_to_scalar =
|
||||
|tups: &[(usize, usize, [u8; 32])]| -> Result<Vec<(usize, usize, Scalar)>, R1CSError> {
|
||||
let mut mat: Vec<(usize, usize, Scalar)> = Vec::new();
|
||||
for &(row, col, val_bytes) in tups {
|
||||
// row must be smaller than num_cons
|
||||
if row >= num_cons {
|
||||
return Err(R1CSError::InvalidIndex);
|
||||
}
|
||||
|
||||
// col must be smaller than num_vars + 1 + num_inputs
|
||||
if col >= num_vars + 1 + num_inputs {
|
||||
return Err(R1CSError::InvalidIndex);
|
||||
}
|
||||
|
||||
let val = Scalar::from_bytes(&val_bytes);
|
||||
if val.is_some().unwrap_u8() == 1 {
|
||||
// if col >= num_vars, it means that it is referencing a 1 or input in the satisfying
|
||||
// assignment
|
||||
if col >= num_vars {
|
||||
mat.push((row, col + num_vars_padded - num_vars, val.unwrap()));
|
||||
} else {
|
||||
mat.push((row, col, val.unwrap()));
|
||||
}
|
||||
} else {
|
||||
return Err(R1CSError::InvalidScalar);
|
||||
}
|
||||
}
|
||||
|
||||
// pad with additional constraints up until num_cons_padded if the original constraints were 0 or 1
|
||||
// we do not need to pad otherwise because the dummy constraints are implicit in the sum-check protocol
|
||||
if num_cons == 0 || num_cons == 1 {
|
||||
for i in tups.len()..num_cons_padded {
|
||||
mat.push((i, num_vars, Scalar::zero()));
|
||||
}
|
||||
}
|
||||
|
||||
Ok(mat)
|
||||
};
|
||||
|
||||
let A_scalar = bytes_to_scalar(A);
|
||||
if A_scalar.is_err() {
|
||||
return Err(A_scalar.err().unwrap());
|
||||
}
|
||||
|
||||
let B_scalar = bytes_to_scalar(B);
|
||||
if B_scalar.is_err() {
|
||||
return Err(B_scalar.err().unwrap());
|
||||
}
|
||||
|
||||
let C_scalar = bytes_to_scalar(C);
|
||||
if C_scalar.is_err() {
|
||||
return Err(C_scalar.err().unwrap());
|
||||
}
|
||||
|
||||
let inst = R1CSInstance::new(
|
||||
num_cons_padded,
|
||||
num_vars_padded,
|
||||
num_inputs,
|
||||
&A_scalar.unwrap(),
|
||||
&B_scalar.unwrap(),
|
||||
&C_scalar.unwrap(),
|
||||
);
|
||||
|
||||
let digest = inst.get_digest();
|
||||
|
||||
Ok(Instance { inst, digest })
|
||||
}
|
||||
|
||||
/// Checks if a given R1CSInstance is satisfiable with a given variables and inputs assignments
|
||||
pub fn is_sat(
|
||||
&self,
|
||||
vars: &VarsAssignment,
|
||||
inputs: &InputsAssignment,
|
||||
) -> Result<bool, R1CSError> {
|
||||
if vars.assignment.len() > self.inst.get_num_vars() {
|
||||
return Err(R1CSError::InvalidNumberOfInputs);
|
||||
}
|
||||
|
||||
if inputs.assignment.len() != self.inst.get_num_inputs() {
|
||||
return Err(R1CSError::InvalidNumberOfInputs);
|
||||
}
|
||||
|
||||
// we might need to pad variables
|
||||
let padded_vars = {
|
||||
let num_padded_vars = self.inst.get_num_vars();
|
||||
let num_vars = vars.assignment.len();
|
||||
if num_padded_vars > num_vars {
|
||||
vars.pad(num_padded_vars)
|
||||
} else {
|
||||
vars.clone()
|
||||
}
|
||||
};
|
||||
|
||||
Ok(
|
||||
self
|
||||
.inst
|
||||
.is_sat(&padded_vars.assignment, &inputs.assignment),
|
||||
)
|
||||
}
|
||||
|
||||
/// Constructs a new synthetic R1CS `Instance` and an associated satisfying assignment
|
||||
pub fn produce_synthetic_r1cs(
|
||||
num_cons: usize,
|
||||
num_vars: usize,
|
||||
num_inputs: usize,
|
||||
) -> (Instance, VarsAssignment, InputsAssignment) {
|
||||
let (inst, vars, inputs) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
let digest = inst.get_digest();
|
||||
(
|
||||
Instance { inst, digest },
|
||||
VarsAssignment { assignment: vars },
|
||||
InputsAssignment { assignment: inputs },
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// `SNARKGens` holds public parameters for producing and verifying proofs with the Spartan SNARK
|
||||
pub struct SNARKGens {
|
||||
gens_r1cs_sat: R1CSGens,
|
||||
gens_r1cs_eval: R1CSCommitmentGens,
|
||||
}
|
||||
|
||||
impl SNARKGens {
|
||||
/// Constructs a new `SNARKGens` given the size of the R1CS statement
|
||||
/// `num_nz_entries` specifies the maximum number of non-zero entries in any of the three R1CS matrices
|
||||
pub fn new(num_cons: usize, num_vars: usize, num_inputs: usize, num_nz_entries: usize) -> Self {
|
||||
let num_vars_padded = {
|
||||
let mut num_vars_padded = max(num_vars, num_inputs + 1);
|
||||
if num_vars_padded != num_vars_padded.next_power_of_two() {
|
||||
num_vars_padded = num_vars_padded.next_power_of_two();
|
||||
}
|
||||
num_vars_padded
|
||||
};
|
||||
|
||||
let gens_r1cs_sat = R1CSGens::new(b"gens_r1cs_sat", num_cons, num_vars_padded);
|
||||
let gens_r1cs_eval = R1CSCommitmentGens::new(
|
||||
b"gens_r1cs_eval",
|
||||
num_cons,
|
||||
num_vars_padded,
|
||||
num_inputs,
|
||||
num_nz_entries,
|
||||
);
|
||||
SNARKGens {
|
||||
gens_r1cs_sat,
|
||||
gens_r1cs_eval,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// `SNARK` holds a proof produced by Spartan SNARK
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct SNARK {
|
||||
r1cs_sat_proof: R1CSProof,
|
||||
inst_evals: (Scalar, Scalar, Scalar),
|
||||
r1cs_eval_proof: R1CSEvalProof,
|
||||
}
|
||||
|
||||
impl SNARK {
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"Spartan SNARK proof"
|
||||
}
|
||||
|
||||
/// A public computation to create a commitment to an R1CS instance
|
||||
pub fn encode(
|
||||
inst: &Instance,
|
||||
gens: &SNARKGens,
|
||||
) -> (ComputationCommitment, ComputationDecommitment) {
|
||||
let timer_encode = Timer::new("SNARK::encode");
|
||||
let (comm, decomm) = inst.inst.commit(&gens.gens_r1cs_eval);
|
||||
timer_encode.stop();
|
||||
(
|
||||
ComputationCommitment { comm },
|
||||
ComputationDecommitment { decomm },
|
||||
)
|
||||
}
|
||||
|
||||
/// A method to produce a SNARK proof of the satisfiability of an R1CS instance
|
||||
pub fn prove(
|
||||
inst: &Instance,
|
||||
comm: &ComputationCommitment,
|
||||
decomm: &ComputationDecommitment,
|
||||
vars: VarsAssignment,
|
||||
inputs: &InputsAssignment,
|
||||
gens: &SNARKGens,
|
||||
transcript: &mut Transcript,
|
||||
) -> Self {
|
||||
let timer_prove = Timer::new("SNARK::prove");
|
||||
|
||||
// we create a Transcript object seeded with a random Scalar
|
||||
// to aid the prover produce its randomness
|
||||
let mut random_tape = RandomTape::new(b"proof");
|
||||
|
||||
transcript.append_protocol_name(SNARK::protocol_name());
|
||||
comm.comm.append_to_transcript(b"comm", transcript);
|
||||
|
||||
let (r1cs_sat_proof, rx, ry) = {
|
||||
let (proof, rx, ry) = {
|
||||
// we might need to pad variables
|
||||
let padded_vars = {
|
||||
let num_padded_vars = inst.inst.get_num_vars();
|
||||
let num_vars = vars.assignment.len();
|
||||
if num_padded_vars > num_vars {
|
||||
vars.pad(num_padded_vars)
|
||||
} else {
|
||||
vars
|
||||
}
|
||||
};
|
||||
|
||||
R1CSProof::prove(
|
||||
&inst.inst,
|
||||
padded_vars.assignment,
|
||||
&inputs.assignment,
|
||||
&gens.gens_r1cs_sat,
|
||||
transcript,
|
||||
&mut random_tape,
|
||||
)
|
||||
};
|
||||
|
||||
let proof_encoded: Vec<u8> = bincode::serialize(&proof).unwrap();
|
||||
Timer::print(&format!("len_r1cs_sat_proof {:?}", proof_encoded.len()));
|
||||
|
||||
(proof, rx, ry)
|
||||
};
|
||||
|
||||
// We send evaluations of A, B, C at r = (rx, ry) as claims
|
||||
// to enable the verifier complete the first sum-check
|
||||
let timer_eval = Timer::new("eval_sparse_polys");
|
||||
let inst_evals = {
|
||||
let (Ar, Br, Cr) = inst.inst.evaluate(&rx, &ry);
|
||||
Ar.append_to_transcript(b"Ar_claim", transcript);
|
||||
Br.append_to_transcript(b"Br_claim", transcript);
|
||||
Cr.append_to_transcript(b"Cr_claim", transcript);
|
||||
(Ar, Br, Cr)
|
||||
};
|
||||
timer_eval.stop();
|
||||
|
||||
let r1cs_eval_proof = {
|
||||
let proof = R1CSEvalProof::prove(
|
||||
&decomm.decomm,
|
||||
&rx,
|
||||
&ry,
|
||||
&inst_evals,
|
||||
&gens.gens_r1cs_eval,
|
||||
transcript,
|
||||
&mut random_tape,
|
||||
);
|
||||
|
||||
let proof_encoded: Vec<u8> = bincode::serialize(&proof).unwrap();
|
||||
Timer::print(&format!("len_r1cs_eval_proof {:?}", proof_encoded.len()));
|
||||
proof
|
||||
};
|
||||
|
||||
timer_prove.stop();
|
||||
SNARK {
|
||||
r1cs_sat_proof,
|
||||
inst_evals,
|
||||
r1cs_eval_proof,
|
||||
}
|
||||
}
|
||||
|
||||
/// A method to verify the SNARK proof of the satisfiability of an R1CS instance
|
||||
pub fn verify(
|
||||
&self,
|
||||
comm: &ComputationCommitment,
|
||||
input: &InputsAssignment,
|
||||
transcript: &mut Transcript,
|
||||
gens: &SNARKGens,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
let timer_verify = Timer::new("SNARK::verify");
|
||||
transcript.append_protocol_name(SNARK::protocol_name());
|
||||
|
||||
// append a commitment to the computation to the transcript
|
||||
comm.comm.append_to_transcript(b"comm", transcript);
|
||||
|
||||
let timer_sat_proof = Timer::new("verify_sat_proof");
|
||||
assert_eq!(input.assignment.len(), comm.comm.get_num_inputs());
|
||||
let (rx, ry) = self.r1cs_sat_proof.verify(
|
||||
comm.comm.get_num_vars(),
|
||||
comm.comm.get_num_cons(),
|
||||
&input.assignment,
|
||||
&self.inst_evals,
|
||||
transcript,
|
||||
&gens.gens_r1cs_sat,
|
||||
)?;
|
||||
timer_sat_proof.stop();
|
||||
|
||||
let timer_eval_proof = Timer::new("verify_eval_proof");
|
||||
let (Ar, Br, Cr) = &self.inst_evals;
|
||||
Ar.append_to_transcript(b"Ar_claim", transcript);
|
||||
Br.append_to_transcript(b"Br_claim", transcript);
|
||||
Cr.append_to_transcript(b"Cr_claim", transcript);
|
||||
self.r1cs_eval_proof.verify(
|
||||
&comm.comm,
|
||||
&rx,
|
||||
&ry,
|
||||
&self.inst_evals,
|
||||
&gens.gens_r1cs_eval,
|
||||
transcript,
|
||||
)?;
|
||||
timer_eval_proof.stop();
|
||||
timer_verify.stop();
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// `NIZKGens` holds public parameters for producing and verifying proofs with the Spartan NIZK
|
||||
pub struct NIZKGens {
|
||||
gens_r1cs_sat: R1CSGens,
|
||||
}
|
||||
|
||||
impl NIZKGens {
|
||||
/// Constructs a new `NIZKGens` given the size of the R1CS statement
|
||||
pub fn new(num_cons: usize, num_vars: usize, num_inputs: usize) -> Self {
|
||||
let num_vars_padded = {
|
||||
let mut num_vars_padded = max(num_vars, num_inputs + 1);
|
||||
if num_vars_padded != num_vars_padded.next_power_of_two() {
|
||||
num_vars_padded = num_vars_padded.next_power_of_two();
|
||||
}
|
||||
num_vars_padded
|
||||
};
|
||||
|
||||
let gens_r1cs_sat = R1CSGens::new(b"gens_r1cs_sat", num_cons, num_vars_padded);
|
||||
NIZKGens { gens_r1cs_sat }
|
||||
}
|
||||
}
|
||||
|
||||
/// `NIZK` holds a proof produced by Spartan NIZK
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct NIZK {
|
||||
r1cs_sat_proof: R1CSProof,
|
||||
r: (Vec<Scalar>, Vec<Scalar>),
|
||||
}
|
||||
|
||||
impl NIZK {
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"Spartan NIZK proof"
|
||||
}
|
||||
|
||||
/// A method to produce a NIZK proof of the satisfiability of an R1CS instance
|
||||
pub fn prove(
|
||||
inst: &Instance,
|
||||
vars: VarsAssignment,
|
||||
input: &InputsAssignment,
|
||||
gens: &NIZKGens,
|
||||
transcript: &mut Transcript,
|
||||
) -> Self {
|
||||
let timer_prove = Timer::new("NIZK::prove");
|
||||
// we create a Transcript object seeded with a random Scalar
|
||||
// to aid the prover produce its randomness
|
||||
let mut random_tape = RandomTape::new(b"proof");
|
||||
|
||||
transcript.append_protocol_name(NIZK::protocol_name());
|
||||
transcript.append_message(b"R1CSInstanceDigest", &inst.digest);
|
||||
|
||||
let (r1cs_sat_proof, rx, ry) = {
|
||||
// we might need to pad variables
|
||||
let padded_vars = {
|
||||
let num_padded_vars = inst.inst.get_num_vars();
|
||||
let num_vars = vars.assignment.len();
|
||||
if num_padded_vars > num_vars {
|
||||
vars.pad(num_padded_vars)
|
||||
} else {
|
||||
vars
|
||||
}
|
||||
};
|
||||
|
||||
let (proof, rx, ry) = R1CSProof::prove(
|
||||
&inst.inst,
|
||||
padded_vars.assignment,
|
||||
&input.assignment,
|
||||
&gens.gens_r1cs_sat,
|
||||
transcript,
|
||||
&mut random_tape,
|
||||
);
|
||||
let proof_encoded: Vec<u8> = bincode::serialize(&proof).unwrap();
|
||||
Timer::print(&format!("len_r1cs_sat_proof {:?}", proof_encoded.len()));
|
||||
(proof, rx, ry)
|
||||
};
|
||||
|
||||
timer_prove.stop();
|
||||
NIZK {
|
||||
r1cs_sat_proof,
|
||||
r: (rx, ry),
|
||||
}
|
||||
}
|
||||
|
||||
/// A method to verify a NIZK proof of the satisfiability of an R1CS instance
|
||||
pub fn verify(
|
||||
&self,
|
||||
inst: &Instance,
|
||||
input: &InputsAssignment,
|
||||
transcript: &mut Transcript,
|
||||
gens: &NIZKGens,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
let timer_verify = Timer::new("NIZK::verify");
|
||||
|
||||
transcript.append_protocol_name(NIZK::protocol_name());
|
||||
transcript.append_message(b"R1CSInstanceDigest", &inst.digest);
|
||||
|
||||
// We send evaluations of A, B, C at r = (rx, ry) as claims
|
||||
// to enable the verifier complete the first sum-check
|
||||
let timer_eval = Timer::new("eval_sparse_polys");
|
||||
let (claimed_rx, claimed_ry) = &self.r;
|
||||
let inst_evals = inst.inst.evaluate(claimed_rx, claimed_ry);
|
||||
timer_eval.stop();
|
||||
|
||||
let timer_sat_proof = Timer::new("verify_sat_proof");
|
||||
assert_eq!(input.assignment.len(), inst.inst.get_num_inputs());
|
||||
let (rx, ry) = self.r1cs_sat_proof.verify(
|
||||
inst.inst.get_num_vars(),
|
||||
inst.inst.get_num_cons(),
|
||||
&input.assignment,
|
||||
&inst_evals,
|
||||
transcript,
|
||||
&gens.gens_r1cs_sat,
|
||||
)?;
|
||||
|
||||
// verify if claimed rx and ry are correct
|
||||
assert_eq!(rx, *claimed_rx);
|
||||
assert_eq!(ry, *claimed_ry);
|
||||
timer_sat_proof.stop();
|
||||
timer_verify.stop();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
pub fn check_snark() {
|
||||
let num_vars = 256;
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
|
||||
// produce public generators
|
||||
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_cons);
|
||||
|
||||
// produce a synthetic R1CSInstance
|
||||
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
|
||||
// create a commitment to R1CSInstance
|
||||
let (comm, decomm) = SNARK::encode(&inst, &gens);
|
||||
|
||||
// produce a proof
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let proof = SNARK::prove(
|
||||
&inst,
|
||||
&comm,
|
||||
&decomm,
|
||||
vars,
|
||||
&inputs,
|
||||
&gens,
|
||||
&mut prover_transcript,
|
||||
);
|
||||
|
||||
// verify the proof
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(&comm, &inputs, &mut verifier_transcript, &gens)
|
||||
.is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn check_r1cs_invalid_index() {
|
||||
let num_cons = 4;
|
||||
let num_vars = 8;
|
||||
let num_inputs = 1;
|
||||
|
||||
let zero: [u8; 32] = [
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0,
|
||||
];
|
||||
|
||||
let A = vec![(0, 0, zero)];
|
||||
let B = vec![(100, 1, zero)];
|
||||
let C = vec![(1, 1, zero)];
|
||||
|
||||
let inst = Instance::new(num_cons, num_vars, num_inputs, &A, &B, &C);
|
||||
assert!(inst.is_err());
|
||||
assert_eq!(inst.err(), Some(R1CSError::InvalidIndex));
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn check_r1cs_invalid_scalar() {
|
||||
let num_cons = 4;
|
||||
let num_vars = 8;
|
||||
let num_inputs = 1;
|
||||
|
||||
let zero: [u8; 32] = [
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0,
|
||||
];
|
||||
|
||||
let larger_than_mod = [255; 32];
|
||||
|
||||
let A = vec![(0, 0, zero)];
|
||||
let B = vec![(1, 1, larger_than_mod)];
|
||||
let C = vec![(1, 1, zero)];
|
||||
|
||||
let inst = Instance::new(num_cons, num_vars, num_inputs, &A, &B, &C);
|
||||
assert!(inst.is_err());
|
||||
assert_eq!(inst.err(), Some(R1CSError::InvalidScalar));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_padded_constraints() {
|
||||
// parameters of the R1CS instance
|
||||
let num_cons = 1;
|
||||
let num_vars = 0;
|
||||
let num_inputs = 3;
|
||||
let num_non_zero_entries = 3;
|
||||
|
||||
// We will encode the above constraints into three matrices, where
|
||||
// the coefficients in the matrix are in the little-endian byte order
|
||||
let mut A: Vec<(usize, usize, [u8; 32])> = Vec::new();
|
||||
let mut B: Vec<(usize, usize, [u8; 32])> = Vec::new();
|
||||
let mut C: Vec<(usize, usize, [u8; 32])> = Vec::new();
|
||||
|
||||
// Create a^2 + b + 13
|
||||
A.push((0, num_vars + 2, Scalar::one().to_bytes())); // 1*a
|
||||
B.push((0, num_vars + 2, Scalar::one().to_bytes())); // 1*a
|
||||
C.push((0, num_vars + 1, Scalar::one().to_bytes())); // 1*z
|
||||
C.push((0, num_vars, (-Scalar::from(13u64)).to_bytes())); // -13*1
|
||||
C.push((0, num_vars + 3, (-Scalar::one()).to_bytes())); // -1*b
|
||||
|
||||
// Var Assignments (Z_0 = 16 is the only output)
|
||||
let vars = vec![Scalar::zero().to_bytes(); num_vars];
|
||||
|
||||
// create an InputsAssignment (a = 1, b = 2)
|
||||
let mut inputs = vec![Scalar::zero().to_bytes(); num_inputs];
|
||||
inputs[0] = Scalar::from(16u64).to_bytes();
|
||||
inputs[1] = Scalar::from(1u64).to_bytes();
|
||||
inputs[2] = Scalar::from(2u64).to_bytes();
|
||||
|
||||
let assignment_inputs = InputsAssignment::new(&inputs).unwrap();
|
||||
let assignment_vars = VarsAssignment::new(&vars).unwrap();
|
||||
|
||||
// Check if instance is satisfiable
|
||||
let inst = Instance::new(num_cons, num_vars, num_inputs, &A, &B, &C).unwrap();
|
||||
let res = inst.is_sat(&assignment_vars, &assignment_inputs);
|
||||
assert!(res.unwrap(), "should be satisfied");
|
||||
|
||||
// SNARK public params
|
||||
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_non_zero_entries);
|
||||
|
||||
// create a commitment to the R1CS instance
|
||||
let (comm, decomm) = SNARK::encode(&inst, &gens);
|
||||
|
||||
// produce a SNARK
|
||||
let mut prover_transcript = Transcript::new(b"snark_example");
|
||||
let proof = SNARK::prove(
|
||||
&inst,
|
||||
&comm,
|
||||
&decomm,
|
||||
assignment_vars.clone(),
|
||||
&assignment_inputs,
|
||||
&gens,
|
||||
&mut prover_transcript,
|
||||
);
|
||||
|
||||
// verify the SNARK
|
||||
let mut verifier_transcript = Transcript::new(b"snark_example");
|
||||
assert!(proof
|
||||
.verify(&comm, &assignment_inputs, &mut verifier_transcript, &gens)
|
||||
.is_ok());
|
||||
|
||||
// NIZK public params
|
||||
let gens = NIZKGens::new(num_cons, num_vars, num_inputs);
|
||||
|
||||
// produce a NIZK
|
||||
let mut prover_transcript = Transcript::new(b"nizk_example");
|
||||
let proof = NIZK::prove(
|
||||
&inst,
|
||||
assignment_vars,
|
||||
&assignment_inputs,
|
||||
&gens,
|
||||
&mut prover_transcript,
|
||||
);
|
||||
|
||||
// verify the NIZK
|
||||
let mut verifier_transcript = Transcript::new(b"nizk_example");
|
||||
assert!(proof
|
||||
.verify(&inst, &assignment_inputs, &mut verifier_transcript, &gens)
|
||||
.is_ok());
|
||||
}
|
||||
}
|
||||
36
packages/Spartan-secq/src/math.rs
Normal file
36
packages/Spartan-secq/src/math.rs
Normal file
@@ -0,0 +1,36 @@
|
||||
pub trait Math {
|
||||
fn square_root(self) -> usize;
|
||||
fn pow2(self) -> usize;
|
||||
fn get_bits(self, num_bits: usize) -> Vec<bool>;
|
||||
fn log_2(self) -> usize;
|
||||
}
|
||||
|
||||
impl Math for usize {
|
||||
#[inline]
|
||||
fn square_root(self) -> usize {
|
||||
(self as f64).sqrt() as usize
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn pow2(self) -> usize {
|
||||
let base: usize = 2;
|
||||
base.pow(self as u32)
|
||||
}
|
||||
|
||||
/// Returns the num_bits from n in a canonical order
|
||||
fn get_bits(self, num_bits: usize) -> Vec<bool> {
|
||||
(0..num_bits)
|
||||
.map(|shift_amount| ((self & (1 << (num_bits - shift_amount - 1))) > 0))
|
||||
.collect::<Vec<bool>>()
|
||||
}
|
||||
|
||||
fn log_2(self) -> usize {
|
||||
assert_ne!(self, 0);
|
||||
|
||||
if self.is_power_of_two() {
|
||||
(1usize.leading_zeros() - self.leading_zeros()) as usize
|
||||
} else {
|
||||
(0usize.leading_zeros() - self.leading_zeros()) as usize
|
||||
}
|
||||
}
|
||||
}
|
||||
267
packages/Spartan-secq/src/nizk/bullet.rs
Normal file
267
packages/Spartan-secq/src/nizk/bullet.rs
Normal file
@@ -0,0 +1,267 @@
|
||||
//! This module is an adaptation of code from the bulletproofs crate.
|
||||
//! See NOTICE.md for more details
|
||||
#![allow(non_snake_case)]
|
||||
#![allow(clippy::type_complexity)]
|
||||
#![allow(clippy::too_many_arguments)]
|
||||
use super::super::errors::ProofVerifyError;
|
||||
use super::super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
|
||||
use super::super::math::Math;
|
||||
use super::super::scalar::Scalar;
|
||||
use super::super::transcript::ProofTranscript;
|
||||
use crate::group::DecompressEncodedPoint;
|
||||
use core::iter;
|
||||
use merlin::Transcript;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct BulletReductionProof {
|
||||
L_vec: Vec<CompressedGroup>,
|
||||
R_vec: Vec<CompressedGroup>,
|
||||
}
|
||||
|
||||
impl BulletReductionProof {
|
||||
/// Create an inner-product proof.
|
||||
///
|
||||
/// The proof is created with respect to the bases \\(G\\).
|
||||
///
|
||||
/// The `transcript` is passed in as a parameter so that the
|
||||
/// challenges depend on the *entire* transcript (including parent
|
||||
/// protocols).
|
||||
///
|
||||
/// The lengths of the vectors must all be the same, and must all be
|
||||
/// either 0 or a power of 2.
|
||||
pub fn prove(
|
||||
transcript: &mut Transcript,
|
||||
Q: &GroupElement,
|
||||
G_vec: &[GroupElement],
|
||||
H: &GroupElement,
|
||||
a_vec: &[Scalar],
|
||||
b_vec: &[Scalar],
|
||||
blind: &Scalar,
|
||||
blinds_vec: &[(Scalar, Scalar)],
|
||||
) -> (
|
||||
BulletReductionProof,
|
||||
GroupElement,
|
||||
Scalar,
|
||||
Scalar,
|
||||
GroupElement,
|
||||
Scalar,
|
||||
) {
|
||||
// Create slices G, H, a, b backed by their respective
|
||||
// vectors. This lets us reslice as we compress the lengths
|
||||
// of the vectors in the main loop below.
|
||||
let mut G = &mut G_vec.to_owned()[..];
|
||||
let mut a = &mut a_vec.to_owned()[..];
|
||||
let mut b = &mut b_vec.to_owned()[..];
|
||||
|
||||
// All of the input vectors must have a length that is a power of two.
|
||||
let mut n = G.len();
|
||||
assert!(n.is_power_of_two());
|
||||
let lg_n = n.log_2();
|
||||
|
||||
// All of the input vectors must have the same length.
|
||||
assert_eq!(G.len(), n);
|
||||
assert_eq!(a.len(), n);
|
||||
assert_eq!(b.len(), n);
|
||||
assert_eq!(blinds_vec.len(), 2 * lg_n);
|
||||
|
||||
let mut L_vec = Vec::with_capacity(lg_n);
|
||||
let mut R_vec = Vec::with_capacity(lg_n);
|
||||
let mut blinds_iter = blinds_vec.iter();
|
||||
let mut blind_fin = *blind;
|
||||
|
||||
while n != 1 {
|
||||
n /= 2;
|
||||
let (a_L, a_R) = a.split_at_mut(n);
|
||||
let (b_L, b_R) = b.split_at_mut(n);
|
||||
let (G_L, G_R) = G.split_at_mut(n);
|
||||
|
||||
let c_L = inner_product(a_L, b_R);
|
||||
let c_R = inner_product(a_R, b_L);
|
||||
|
||||
let (blind_L, blind_R) = blinds_iter.next().unwrap();
|
||||
|
||||
let L = GroupElement::vartime_multiscalar_mul(
|
||||
a_L
|
||||
.iter()
|
||||
.chain(iter::once(&c_L))
|
||||
.chain(iter::once(blind_L))
|
||||
.map(|s| *s)
|
||||
.collect(),
|
||||
G_R
|
||||
.iter()
|
||||
.chain(iter::once(Q))
|
||||
.chain(iter::once(H))
|
||||
.map(|s| *s)
|
||||
.collect(),
|
||||
);
|
||||
|
||||
let R = GroupElement::vartime_multiscalar_mul(
|
||||
a_R
|
||||
.iter()
|
||||
.chain(iter::once(&c_R))
|
||||
.chain(iter::once(blind_R))
|
||||
.map(|s| *s)
|
||||
.collect(),
|
||||
G_L
|
||||
.iter()
|
||||
.chain(iter::once(Q))
|
||||
.chain(iter::once(H))
|
||||
.map(|s| *s)
|
||||
.collect(),
|
||||
);
|
||||
|
||||
transcript.append_point(b"L", &L.compress());
|
||||
transcript.append_point(b"R", &R.compress());
|
||||
|
||||
let u = transcript.challenge_scalar(b"u");
|
||||
let u_inv = u.invert().unwrap();
|
||||
|
||||
for i in 0..n {
|
||||
a_L[i] = a_L[i] * u + u_inv * a_R[i];
|
||||
b_L[i] = b_L[i] * u_inv + u * b_R[i];
|
||||
G_L[i] =
|
||||
GroupElement::vartime_multiscalar_mul([u_inv, u].to_vec(), [G_L[i], G_R[i]].to_vec());
|
||||
}
|
||||
|
||||
blind_fin = blind_fin + blind_L * u * u + blind_R * u_inv * u_inv;
|
||||
|
||||
L_vec.push(L.compress());
|
||||
R_vec.push(R.compress());
|
||||
|
||||
a = a_L;
|
||||
b = b_L;
|
||||
G = G_L;
|
||||
}
|
||||
|
||||
let Gamma_hat = GroupElement::vartime_multiscalar_mul(
|
||||
[a[0], a[0] * b[0], blind_fin].to_vec(),
|
||||
[G[0], *Q, *H].to_vec(),
|
||||
);
|
||||
|
||||
(
|
||||
BulletReductionProof { L_vec, R_vec },
|
||||
Gamma_hat,
|
||||
a[0],
|
||||
b[0],
|
||||
G[0],
|
||||
blind_fin,
|
||||
)
|
||||
}
|
||||
|
||||
/// Computes three vectors of verification scalars \\([u\_{i}^{2}]\\), \\([u\_{i}^{-2}]\\) and \\([s\_{i}]\\) for combined multiscalar multiplication
|
||||
/// in a parent protocol. See [inner product protocol notes](index.html#verification-equation) for details.
|
||||
/// The verifier must provide the input length \\(n\\) explicitly to avoid unbounded allocation within the inner product proof.
|
||||
fn verification_scalars(
|
||||
&self,
|
||||
n: usize,
|
||||
transcript: &mut Transcript,
|
||||
) -> Result<(Vec<Scalar>, Vec<Scalar>, Vec<Scalar>), ProofVerifyError> {
|
||||
let lg_n = self.L_vec.len();
|
||||
if lg_n >= 32 {
|
||||
// 4 billion multiplications should be enough for anyone
|
||||
// and this check prevents overflow in 1<<lg_n below.
|
||||
return Err(ProofVerifyError::InternalError);
|
||||
}
|
||||
if n != (1 << lg_n) {
|
||||
return Err(ProofVerifyError::InternalError);
|
||||
}
|
||||
|
||||
// 1. Recompute x_k,...,x_1 based on the proof transcript
|
||||
let mut challenges = Vec::with_capacity(lg_n);
|
||||
for (L, R) in self.L_vec.iter().zip(self.R_vec.iter()) {
|
||||
transcript.append_point(b"L", L);
|
||||
transcript.append_point(b"R", R);
|
||||
challenges.push(transcript.challenge_scalar(b"u"));
|
||||
}
|
||||
|
||||
// 2. Compute 1/(u_k...u_1) and 1/u_k, ..., 1/u_1
|
||||
let mut challenges_inv = challenges.clone();
|
||||
let allinv = Scalar::batch_invert(&mut challenges_inv);
|
||||
|
||||
// 3. Compute u_i^2 and (1/u_i)^2
|
||||
for i in 0..lg_n {
|
||||
challenges[i] = challenges[i].square();
|
||||
challenges_inv[i] = challenges_inv[i].square();
|
||||
}
|
||||
let challenges_sq = challenges;
|
||||
let challenges_inv_sq = challenges_inv;
|
||||
|
||||
// 4. Compute s values inductively.
|
||||
let mut s = Vec::with_capacity(n);
|
||||
s.push(allinv);
|
||||
for i in 1..n {
|
||||
let lg_i = (32 - 1 - (i as u32).leading_zeros()) as usize;
|
||||
let k = 1 << lg_i;
|
||||
// The challenges are stored in "creation order" as [u_k,...,u_1],
|
||||
// so u_{lg(i)+1} = is indexed by (lg_n-1) - lg_i
|
||||
let u_lg_i_sq = challenges_sq[(lg_n - 1) - lg_i];
|
||||
s.push(s[i - k] * u_lg_i_sq);
|
||||
}
|
||||
|
||||
Ok((challenges_sq, challenges_inv_sq, s))
|
||||
}
|
||||
|
||||
/// This method is for testing that proof generation work,
|
||||
/// but for efficiency the actual protocols would use `verification_scalars`
|
||||
/// method to combine inner product verification with other checks
|
||||
/// in a single multiscalar multiplication.
|
||||
pub fn verify(
|
||||
&self,
|
||||
n: usize,
|
||||
a: &[Scalar],
|
||||
transcript: &mut Transcript,
|
||||
Gamma: &GroupElement,
|
||||
G: &[GroupElement],
|
||||
) -> Result<(GroupElement, GroupElement, Scalar), ProofVerifyError> {
|
||||
let (u_sq, u_inv_sq, s) = self.verification_scalars(n, transcript)?;
|
||||
|
||||
let Ls = self
|
||||
.L_vec
|
||||
.iter()
|
||||
.map(|p| p.decompress().ok_or(ProofVerifyError::InternalError))
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
let Rs = self
|
||||
.R_vec
|
||||
.iter()
|
||||
.map(|p| p.decompress().ok_or(ProofVerifyError::InternalError))
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
let G_hat = GroupElement::vartime_multiscalar_mul(s.clone(), G.to_vec());
|
||||
let a_hat = inner_product(a, &s);
|
||||
|
||||
let Gamma_hat = GroupElement::vartime_multiscalar_mul(
|
||||
u_sq
|
||||
.iter()
|
||||
.chain(u_inv_sq.iter())
|
||||
.chain(iter::once(&Scalar::one()))
|
||||
.map(|s| *s)
|
||||
.collect(),
|
||||
Ls.iter()
|
||||
.chain(Rs.iter())
|
||||
.chain(iter::once(Gamma))
|
||||
.map(|p| *p)
|
||||
.collect(),
|
||||
);
|
||||
|
||||
Ok((G_hat, Gamma_hat, a_hat))
|
||||
}
|
||||
}
|
||||
|
||||
/// Computes an inner product of two vectors
|
||||
/// \\[
|
||||
/// {\langle {\mathbf{a}}, {\mathbf{b}} \rangle} = \sum\_{i=0}^{n-1} a\_i \cdot b\_i.
|
||||
/// \\]
|
||||
/// Panics if the lengths of \\(\mathbf{a}\\) and \\(\mathbf{b}\\) are not equal.
|
||||
pub fn inner_product(a: &[Scalar], b: &[Scalar]) -> Scalar {
|
||||
assert!(
|
||||
a.len() == b.len(),
|
||||
"inner_product(a,b): lengths of vectors do not match"
|
||||
);
|
||||
let mut out = Scalar::zero();
|
||||
for i in 0..a.len() {
|
||||
out += a[i] * b[i];
|
||||
}
|
||||
out
|
||||
}
|
||||
735
packages/Spartan-secq/src/nizk/mod.rs
Normal file
735
packages/Spartan-secq/src/nizk/mod.rs
Normal file
@@ -0,0 +1,735 @@
|
||||
#![allow(clippy::too_many_arguments)]
|
||||
use super::commitments::{Commitments, MultiCommitGens};
|
||||
use super::errors::ProofVerifyError;
|
||||
use super::group::{CompressedGroup, CompressedGroupExt};
|
||||
use super::math::Math;
|
||||
use super::random::RandomTape;
|
||||
use super::scalar::Scalar;
|
||||
use super::transcript::{AppendToTranscript, ProofTranscript};
|
||||
use crate::group::DecompressEncodedPoint;
|
||||
use merlin::Transcript;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
mod bullet;
|
||||
use bullet::BulletReductionProof;
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct KnowledgeProof {
|
||||
alpha: CompressedGroup,
|
||||
z1: Scalar,
|
||||
z2: Scalar,
|
||||
}
|
||||
|
||||
impl KnowledgeProof {
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"knowledge proof"
|
||||
}
|
||||
|
||||
pub fn prove(
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut RandomTape,
|
||||
x: &Scalar,
|
||||
r: &Scalar,
|
||||
) -> (KnowledgeProof, CompressedGroup) {
|
||||
transcript.append_protocol_name(KnowledgeProof::protocol_name());
|
||||
|
||||
// produce two random Scalars
|
||||
let t1 = random_tape.random_scalar(b"t1");
|
||||
let t2 = random_tape.random_scalar(b"t2");
|
||||
|
||||
let C = x.commit(r, gens_n).compress();
|
||||
C.append_to_transcript(b"C", transcript);
|
||||
|
||||
let alpha = t1.commit(&t2, gens_n).compress();
|
||||
alpha.append_to_transcript(b"alpha", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let z1 = x * c + t1;
|
||||
let z2 = r * c + t2;
|
||||
|
||||
(KnowledgeProof { alpha, z1, z2 }, C)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
C: &CompressedGroup,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
transcript.append_protocol_name(KnowledgeProof::protocol_name());
|
||||
C.append_to_transcript(b"C", transcript);
|
||||
self.alpha.append_to_transcript(b"alpha", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let lhs = self.z1.commit(&self.z2, gens_n).compress();
|
||||
let rhs = (c * C.unpack()? + self.alpha.unpack()?).compress();
|
||||
|
||||
if lhs == rhs {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(ProofVerifyError::InternalError)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct EqualityProof {
|
||||
alpha: CompressedGroup,
|
||||
z: Scalar,
|
||||
}
|
||||
|
||||
impl EqualityProof {
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"equality proof"
|
||||
}
|
||||
|
||||
pub fn prove(
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut RandomTape,
|
||||
v1: &Scalar,
|
||||
s1: &Scalar,
|
||||
v2: &Scalar,
|
||||
s2: &Scalar,
|
||||
) -> (EqualityProof, CompressedGroup, CompressedGroup) {
|
||||
transcript.append_protocol_name(EqualityProof::protocol_name());
|
||||
|
||||
// produce a random Scalar
|
||||
let r = random_tape.random_scalar(b"r");
|
||||
|
||||
let C1 = v1.commit(s1, gens_n).compress();
|
||||
C1.append_to_transcript(b"C1", transcript);
|
||||
|
||||
let C2 = v2.commit(s2, gens_n).compress();
|
||||
C2.append_to_transcript(b"C2", transcript);
|
||||
|
||||
let alpha = (r * gens_n.h).compress();
|
||||
alpha.append_to_transcript(b"alpha", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let z = c * (s1 - s2) + r;
|
||||
|
||||
(EqualityProof { alpha, z }, C1, C2)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
C1: &CompressedGroup,
|
||||
C2: &CompressedGroup,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
transcript.append_protocol_name(EqualityProof::protocol_name());
|
||||
C1.append_to_transcript(b"C1", transcript);
|
||||
C2.append_to_transcript(b"C2", transcript);
|
||||
self.alpha.append_to_transcript(b"alpha", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
let rhs = {
|
||||
let C = C1.unpack()? - C2.unpack()?;
|
||||
(c * C + self.alpha.unpack()?).compress()
|
||||
};
|
||||
|
||||
let lhs = (self.z * gens_n.h).compress();
|
||||
|
||||
if lhs == rhs {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(ProofVerifyError::InternalError)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct ProductProof {
|
||||
alpha: CompressedGroup,
|
||||
beta: CompressedGroup,
|
||||
delta: CompressedGroup,
|
||||
z: [Scalar; 5],
|
||||
}
|
||||
|
||||
impl ProductProof {
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"product proof"
|
||||
}
|
||||
|
||||
pub fn prove(
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut RandomTape,
|
||||
x: &Scalar,
|
||||
rX: &Scalar,
|
||||
y: &Scalar,
|
||||
rY: &Scalar,
|
||||
z: &Scalar,
|
||||
rZ: &Scalar,
|
||||
) -> (
|
||||
ProductProof,
|
||||
CompressedGroup,
|
||||
CompressedGroup,
|
||||
CompressedGroup,
|
||||
) {
|
||||
transcript.append_protocol_name(ProductProof::protocol_name());
|
||||
|
||||
// produce five random Scalar
|
||||
let b1 = random_tape.random_scalar(b"b1");
|
||||
let b2 = random_tape.random_scalar(b"b2");
|
||||
let b3 = random_tape.random_scalar(b"b3");
|
||||
let b4 = random_tape.random_scalar(b"b4");
|
||||
let b5 = random_tape.random_scalar(b"b5");
|
||||
|
||||
let X = x.commit(rX, gens_n).compress();
|
||||
X.append_to_transcript(b"X", transcript);
|
||||
|
||||
let Y = y.commit(rY, gens_n).compress();
|
||||
Y.append_to_transcript(b"Y", transcript);
|
||||
|
||||
let Z = z.commit(rZ, gens_n).compress();
|
||||
Z.append_to_transcript(b"Z", transcript);
|
||||
|
||||
let alpha = b1.commit(&b2, gens_n).compress();
|
||||
alpha.append_to_transcript(b"alpha", transcript);
|
||||
|
||||
let beta = b3.commit(&b4, gens_n).compress();
|
||||
beta.append_to_transcript(b"beta", transcript);
|
||||
|
||||
let delta = {
|
||||
let gens_X = &MultiCommitGens {
|
||||
n: 1,
|
||||
G: vec![X.decompress().unwrap()],
|
||||
h: gens_n.h,
|
||||
};
|
||||
b3.commit(&b5, gens_X).compress()
|
||||
};
|
||||
delta.append_to_transcript(b"delta", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let z1 = b1 + c * x;
|
||||
let z2 = b2 + c * rX;
|
||||
let z3 = b3 + c * y;
|
||||
let z4 = b4 + c * rY;
|
||||
let z5 = b5 + c * (rZ - rX * y);
|
||||
let z = [z1, z2, z3, z4, z5];
|
||||
|
||||
(
|
||||
ProductProof {
|
||||
alpha,
|
||||
beta,
|
||||
delta,
|
||||
z,
|
||||
},
|
||||
X,
|
||||
Y,
|
||||
Z,
|
||||
)
|
||||
}
|
||||
|
||||
fn check_equality(
|
||||
P: &CompressedGroup,
|
||||
X: &CompressedGroup,
|
||||
c: &Scalar,
|
||||
gens_n: &MultiCommitGens,
|
||||
z1: &Scalar,
|
||||
z2: &Scalar,
|
||||
) -> bool {
|
||||
let lhs = (P.decompress().unwrap() + c * X.decompress().unwrap()).compress();
|
||||
let rhs = z1.commit(z2, gens_n).compress();
|
||||
|
||||
lhs == rhs
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
X: &CompressedGroup,
|
||||
Y: &CompressedGroup,
|
||||
Z: &CompressedGroup,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
transcript.append_protocol_name(ProductProof::protocol_name());
|
||||
|
||||
X.append_to_transcript(b"X", transcript);
|
||||
Y.append_to_transcript(b"Y", transcript);
|
||||
Z.append_to_transcript(b"Z", transcript);
|
||||
self.alpha.append_to_transcript(b"alpha", transcript);
|
||||
self.beta.append_to_transcript(b"beta", transcript);
|
||||
self.delta.append_to_transcript(b"delta", transcript);
|
||||
|
||||
let z1 = self.z[0];
|
||||
let z2 = self.z[1];
|
||||
let z3 = self.z[2];
|
||||
let z4 = self.z[3];
|
||||
let z5 = self.z[4];
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
if ProductProof::check_equality(&self.alpha, X, &c, gens_n, &z1, &z2)
|
||||
&& ProductProof::check_equality(&self.beta, Y, &c, gens_n, &z3, &z4)
|
||||
&& ProductProof::check_equality(
|
||||
&self.delta,
|
||||
Z,
|
||||
&c,
|
||||
&MultiCommitGens {
|
||||
n: 1,
|
||||
G: vec![X.unpack()?],
|
||||
h: gens_n.h,
|
||||
},
|
||||
&z3,
|
||||
&z5,
|
||||
)
|
||||
{
|
||||
Ok(())
|
||||
} else {
|
||||
Err(ProofVerifyError::InternalError)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct DotProductProof {
|
||||
delta: CompressedGroup,
|
||||
beta: CompressedGroup,
|
||||
z: Vec<Scalar>,
|
||||
z_delta: Scalar,
|
||||
z_beta: Scalar,
|
||||
}
|
||||
|
||||
impl DotProductProof {
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"dot product proof"
|
||||
}
|
||||
|
||||
pub fn compute_dotproduct(a: &[Scalar], b: &[Scalar]) -> Scalar {
|
||||
assert_eq!(a.len(), b.len());
|
||||
(0..a.len()).map(|i| a[i] * b[i]).sum()
|
||||
}
|
||||
|
||||
pub fn prove(
|
||||
gens_1: &MultiCommitGens,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut RandomTape,
|
||||
x_vec: &[Scalar],
|
||||
blind_x: &Scalar,
|
||||
a_vec: &[Scalar],
|
||||
y: &Scalar,
|
||||
blind_y: &Scalar,
|
||||
) -> (DotProductProof, CompressedGroup, CompressedGroup) {
|
||||
transcript.append_protocol_name(DotProductProof::protocol_name());
|
||||
|
||||
let n = x_vec.len();
|
||||
assert_eq!(x_vec.len(), a_vec.len());
|
||||
assert_eq!(gens_n.n, a_vec.len());
|
||||
assert_eq!(gens_1.n, 1);
|
||||
|
||||
// produce randomness for the proofs
|
||||
let d_vec = random_tape.random_vector(b"d_vec", n);
|
||||
let r_delta = random_tape.random_scalar(b"r_delta");
|
||||
let r_beta = random_tape.random_scalar(b"r_beta");
|
||||
|
||||
let Cx = x_vec.commit(blind_x, gens_n).compress();
|
||||
Cx.append_to_transcript(b"Cx", transcript);
|
||||
|
||||
let Cy = y.commit(blind_y, gens_1).compress();
|
||||
Cy.append_to_transcript(b"Cy", transcript);
|
||||
|
||||
a_vec.append_to_transcript(b"a", transcript);
|
||||
|
||||
let delta = d_vec.commit(&r_delta, gens_n).compress();
|
||||
delta.append_to_transcript(b"delta", transcript);
|
||||
|
||||
let dotproduct_a_d = DotProductProof::compute_dotproduct(a_vec, &d_vec);
|
||||
|
||||
let beta = dotproduct_a_d.commit(&r_beta, gens_1).compress();
|
||||
beta.append_to_transcript(b"beta", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let z = (0..d_vec.len())
|
||||
.map(|i| c * x_vec[i] + d_vec[i])
|
||||
.collect::<Vec<Scalar>>();
|
||||
|
||||
let z_delta = c * blind_x + r_delta;
|
||||
let z_beta = c * blind_y + r_beta;
|
||||
|
||||
(
|
||||
DotProductProof {
|
||||
delta,
|
||||
beta,
|
||||
z,
|
||||
z_delta,
|
||||
z_beta,
|
||||
},
|
||||
Cx,
|
||||
Cy,
|
||||
)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
gens_1: &MultiCommitGens,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
a: &[Scalar],
|
||||
Cx: &CompressedGroup,
|
||||
Cy: &CompressedGroup,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
assert_eq!(gens_n.n, a.len());
|
||||
assert_eq!(gens_1.n, 1);
|
||||
|
||||
transcript.append_protocol_name(DotProductProof::protocol_name());
|
||||
Cx.append_to_transcript(b"Cx", transcript);
|
||||
Cy.append_to_transcript(b"Cy", transcript);
|
||||
a.append_to_transcript(b"a", transcript);
|
||||
self.delta.append_to_transcript(b"delta", transcript);
|
||||
self.beta.append_to_transcript(b"beta", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let mut result =
|
||||
c * Cx.unpack()? + self.delta.unpack()? == self.z.commit(&self.z_delta, gens_n);
|
||||
|
||||
let dotproduct_z_a = DotProductProof::compute_dotproduct(&self.z, a);
|
||||
result &= c * Cy.unpack()? + self.beta.unpack()? == dotproduct_z_a.commit(&self.z_beta, gens_1);
|
||||
|
||||
if result {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(ProofVerifyError::InternalError)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct DotProductProofGens {
|
||||
n: usize,
|
||||
pub gens_n: MultiCommitGens,
|
||||
pub gens_1: MultiCommitGens,
|
||||
}
|
||||
|
||||
impl DotProductProofGens {
|
||||
pub fn new(n: usize, label: &[u8]) -> Self {
|
||||
let (gens_n, gens_1) = MultiCommitGens::new(n + 1, label).split_at(n);
|
||||
DotProductProofGens { n, gens_n, gens_1 }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct DotProductProofLog {
|
||||
bullet_reduction_proof: BulletReductionProof,
|
||||
delta: CompressedGroup,
|
||||
beta: CompressedGroup,
|
||||
z1: Scalar,
|
||||
z2: Scalar,
|
||||
}
|
||||
|
||||
impl DotProductProofLog {
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"dot product proof (log)"
|
||||
}
|
||||
|
||||
pub fn compute_dotproduct(a: &[Scalar], b: &[Scalar]) -> Scalar {
|
||||
assert_eq!(a.len(), b.len());
|
||||
(0..a.len()).map(|i| a[i] * b[i]).sum()
|
||||
}
|
||||
|
||||
pub fn prove(
|
||||
gens: &DotProductProofGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut RandomTape,
|
||||
x_vec: &[Scalar],
|
||||
blind_x: &Scalar,
|
||||
a_vec: &[Scalar],
|
||||
y: &Scalar,
|
||||
blind_y: &Scalar,
|
||||
) -> (DotProductProofLog, CompressedGroup, CompressedGroup) {
|
||||
transcript.append_protocol_name(DotProductProofLog::protocol_name());
|
||||
|
||||
let n = x_vec.len();
|
||||
assert_eq!(x_vec.len(), a_vec.len());
|
||||
assert_eq!(gens.n, n);
|
||||
|
||||
// produce randomness for generating a proof
|
||||
let d = random_tape.random_scalar(b"d");
|
||||
let r_delta = random_tape.random_scalar(b"r_delta");
|
||||
let r_beta = random_tape.random_scalar(b"r_delta");
|
||||
let blinds_vec = {
|
||||
let v1 = random_tape.random_vector(b"blinds_vec_1", 2 * n.log_2());
|
||||
let v2 = random_tape.random_vector(b"blinds_vec_2", 2 * n.log_2());
|
||||
(0..v1.len())
|
||||
.map(|i| (v1[i], v2[i]))
|
||||
.collect::<Vec<(Scalar, Scalar)>>()
|
||||
};
|
||||
|
||||
let Cx = x_vec.commit(blind_x, &gens.gens_n).compress();
|
||||
Cx.append_to_transcript(b"Cx", transcript);
|
||||
|
||||
let Cy = y.commit(blind_y, &gens.gens_1).compress();
|
||||
Cy.append_to_transcript(b"Cy", transcript);
|
||||
|
||||
a_vec.append_to_transcript(b"a", transcript);
|
||||
|
||||
// sample a random base and scale the generator used for
|
||||
// the output of the inner product
|
||||
let r = transcript.challenge_scalar(b"r");
|
||||
let gens_1_scaled = gens.gens_1.scale(&r);
|
||||
|
||||
let blind_Gamma = blind_x + r * blind_y;
|
||||
let (bullet_reduction_proof, _Gamma_hat, x_hat, a_hat, g_hat, rhat_Gamma) =
|
||||
BulletReductionProof::prove(
|
||||
transcript,
|
||||
&gens_1_scaled.G[0],
|
||||
&gens.gens_n.G,
|
||||
&gens.gens_n.h,
|
||||
x_vec,
|
||||
a_vec,
|
||||
&blind_Gamma,
|
||||
&blinds_vec,
|
||||
);
|
||||
let y_hat = x_hat * a_hat;
|
||||
|
||||
let delta = {
|
||||
let gens_hat = MultiCommitGens {
|
||||
n: 1,
|
||||
G: vec![g_hat],
|
||||
h: gens.gens_1.h,
|
||||
};
|
||||
d.commit(&r_delta, &gens_hat).compress()
|
||||
};
|
||||
delta.append_to_transcript(b"delta", transcript);
|
||||
|
||||
let beta = d.commit(&r_beta, &gens_1_scaled).compress();
|
||||
beta.append_to_transcript(b"beta", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let z1 = d + c * y_hat;
|
||||
let z2 = a_hat * (c * rhat_Gamma + r_beta) + r_delta;
|
||||
|
||||
(
|
||||
DotProductProofLog {
|
||||
bullet_reduction_proof,
|
||||
delta,
|
||||
beta,
|
||||
z1,
|
||||
z2,
|
||||
},
|
||||
Cx,
|
||||
Cy,
|
||||
)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
n: usize,
|
||||
gens: &DotProductProofGens,
|
||||
transcript: &mut Transcript,
|
||||
a: &[Scalar],
|
||||
Cx: &CompressedGroup,
|
||||
Cy: &CompressedGroup,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
assert_eq!(gens.n, n);
|
||||
assert_eq!(a.len(), n);
|
||||
|
||||
transcript.append_protocol_name(DotProductProofLog::protocol_name());
|
||||
Cx.append_to_transcript(b"Cx", transcript);
|
||||
Cy.append_to_transcript(b"Cy", transcript);
|
||||
a.append_to_transcript(b"a", transcript);
|
||||
|
||||
// sample a random base and scale the generator used for
|
||||
// the output of the inner product
|
||||
let r = transcript.challenge_scalar(b"r");
|
||||
let gens_1_scaled = gens.gens_1.scale(&r);
|
||||
|
||||
let Gamma = Cx.unpack()? + r * Cy.unpack()?;
|
||||
|
||||
let (g_hat, Gamma_hat, a_hat) =
|
||||
self
|
||||
.bullet_reduction_proof
|
||||
.verify(n, a, transcript, &Gamma, &gens.gens_n.G)?;
|
||||
self.delta.append_to_transcript(b"delta", transcript);
|
||||
self.beta.append_to_transcript(b"beta", transcript);
|
||||
|
||||
let c = transcript.challenge_scalar(b"c");
|
||||
|
||||
let c_s = &c;
|
||||
let beta_s = self.beta.unpack()?;
|
||||
let a_hat_s = &a_hat;
|
||||
let delta_s = self.delta.unpack()?;
|
||||
let z1_s = &self.z1;
|
||||
let z2_s = &self.z2;
|
||||
|
||||
let lhs = ((Gamma_hat * c_s + beta_s) * a_hat_s + delta_s).compress();
|
||||
let rhs = ((g_hat + gens_1_scaled.G[0] * a_hat_s) * z1_s + gens_1_scaled.h * z2_s).compress();
|
||||
|
||||
assert_eq!(lhs, rhs);
|
||||
|
||||
if lhs == rhs {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(ProofVerifyError::InternalError)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use rand_core::OsRng;
|
||||
#[test]
|
||||
fn check_knowledgeproof() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let gens_1 = MultiCommitGens::new(1, b"test-knowledgeproof");
|
||||
|
||||
let x = Scalar::random(&mut csprng);
|
||||
let r = Scalar::random(&mut csprng);
|
||||
|
||||
let mut random_tape = RandomTape::new(b"proof");
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, committed_value) =
|
||||
KnowledgeProof::prove(&gens_1, &mut prover_transcript, &mut random_tape, &x, &r);
|
||||
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(&gens_1, &mut verifier_transcript, &committed_value)
|
||||
.is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_equalityproof() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let gens_1 = MultiCommitGens::new(1, b"test-equalityproof");
|
||||
let v1 = Scalar::random(&mut csprng);
|
||||
let v2 = v1;
|
||||
let s1 = Scalar::random(&mut csprng);
|
||||
let s2 = Scalar::random(&mut csprng);
|
||||
|
||||
let mut random_tape = RandomTape::new(b"proof");
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, C1, C2) = EqualityProof::prove(
|
||||
&gens_1,
|
||||
&mut prover_transcript,
|
||||
&mut random_tape,
|
||||
&v1,
|
||||
&s1,
|
||||
&v2,
|
||||
&s2,
|
||||
);
|
||||
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(&gens_1, &mut verifier_transcript, &C1, &C2)
|
||||
.is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_productproof() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let gens_1 = MultiCommitGens::new(1, b"test-productproof");
|
||||
let x = Scalar::random(&mut csprng);
|
||||
let rX = Scalar::random(&mut csprng);
|
||||
let y = Scalar::random(&mut csprng);
|
||||
let rY = Scalar::random(&mut csprng);
|
||||
let z = x * y;
|
||||
let rZ = Scalar::random(&mut csprng);
|
||||
|
||||
let mut random_tape = RandomTape::new(b"proof");
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, X, Y, Z) = ProductProof::prove(
|
||||
&gens_1,
|
||||
&mut prover_transcript,
|
||||
&mut random_tape,
|
||||
&x,
|
||||
&rX,
|
||||
&y,
|
||||
&rY,
|
||||
&z,
|
||||
&rZ,
|
||||
);
|
||||
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(&gens_1, &mut verifier_transcript, &X, &Y, &Z)
|
||||
.is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_dotproductproof() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let n = 1024;
|
||||
|
||||
let gens_1 = MultiCommitGens::new(1, b"test-two");
|
||||
let gens_1024 = MultiCommitGens::new(n, b"test-1024");
|
||||
|
||||
let mut x: Vec<Scalar> = Vec::new();
|
||||
let mut a: Vec<Scalar> = Vec::new();
|
||||
for _ in 0..n {
|
||||
x.push(Scalar::random(&mut csprng));
|
||||
a.push(Scalar::random(&mut csprng));
|
||||
}
|
||||
let y = DotProductProofLog::compute_dotproduct(&x, &a);
|
||||
let r_x = Scalar::random(&mut csprng);
|
||||
let r_y = Scalar::random(&mut csprng);
|
||||
|
||||
let mut random_tape = RandomTape::new(b"proof");
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, Cx, Cy) = DotProductProof::prove(
|
||||
&gens_1,
|
||||
&gens_1024,
|
||||
&mut prover_transcript,
|
||||
&mut random_tape,
|
||||
&x,
|
||||
&r_x,
|
||||
&a,
|
||||
&y,
|
||||
&r_y,
|
||||
);
|
||||
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(&gens_1, &gens_1024, &mut verifier_transcript, &a, &Cx, &Cy)
|
||||
.is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_dotproductproof_log() {
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
let n = 1024;
|
||||
|
||||
let gens = DotProductProofGens::new(n, b"test-1024");
|
||||
|
||||
let x: Vec<Scalar> = (0..n).map(|_i| Scalar::random(&mut csprng)).collect();
|
||||
let a: Vec<Scalar> = (0..n).map(|_i| Scalar::random(&mut csprng)).collect();
|
||||
let y = DotProductProof::compute_dotproduct(&x, &a);
|
||||
|
||||
let r_x = Scalar::random(&mut csprng);
|
||||
let r_y = Scalar::random(&mut csprng);
|
||||
|
||||
let mut random_tape = RandomTape::new(b"proof");
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, Cx, Cy) = DotProductProofLog::prove(
|
||||
&gens,
|
||||
&mut prover_transcript,
|
||||
&mut random_tape,
|
||||
&x,
|
||||
&r_x,
|
||||
&a,
|
||||
&y,
|
||||
&r_y,
|
||||
);
|
||||
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(n, &gens, &mut verifier_transcript, &a, &Cx, &Cy)
|
||||
.is_ok());
|
||||
}
|
||||
}
|
||||
486
packages/Spartan-secq/src/product_tree.rs
Normal file
486
packages/Spartan-secq/src/product_tree.rs
Normal file
@@ -0,0 +1,486 @@
|
||||
#![allow(dead_code)]
|
||||
use super::dense_mlpoly::DensePolynomial;
|
||||
use super::dense_mlpoly::EqPolynomial;
|
||||
use super::math::Math;
|
||||
use super::scalar::Scalar;
|
||||
use super::sumcheck::SumcheckInstanceProof;
|
||||
use super::transcript::ProofTranscript;
|
||||
use merlin::Transcript;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct ProductCircuit {
|
||||
left_vec: Vec<DensePolynomial>,
|
||||
right_vec: Vec<DensePolynomial>,
|
||||
}
|
||||
|
||||
impl ProductCircuit {
|
||||
fn compute_layer(
|
||||
inp_left: &DensePolynomial,
|
||||
inp_right: &DensePolynomial,
|
||||
) -> (DensePolynomial, DensePolynomial) {
|
||||
let len = inp_left.len() + inp_right.len();
|
||||
let outp_left = (0..len / 4)
|
||||
.map(|i| inp_left[i] * inp_right[i])
|
||||
.collect::<Vec<Scalar>>();
|
||||
let outp_right = (len / 4..len / 2)
|
||||
.map(|i| inp_left[i] * inp_right[i])
|
||||
.collect::<Vec<Scalar>>();
|
||||
|
||||
(
|
||||
DensePolynomial::new(outp_left),
|
||||
DensePolynomial::new(outp_right),
|
||||
)
|
||||
}
|
||||
|
||||
pub fn new(poly: &DensePolynomial) -> Self {
|
||||
let mut left_vec: Vec<DensePolynomial> = Vec::new();
|
||||
let mut right_vec: Vec<DensePolynomial> = Vec::new();
|
||||
|
||||
let num_layers = poly.len().log_2();
|
||||
let (outp_left, outp_right) = poly.split(poly.len() / 2);
|
||||
|
||||
left_vec.push(outp_left);
|
||||
right_vec.push(outp_right);
|
||||
|
||||
for i in 0..num_layers - 1 {
|
||||
let (outp_left, outp_right) = ProductCircuit::compute_layer(&left_vec[i], &right_vec[i]);
|
||||
left_vec.push(outp_left);
|
||||
right_vec.push(outp_right);
|
||||
}
|
||||
|
||||
ProductCircuit {
|
||||
left_vec,
|
||||
right_vec,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn evaluate(&self) -> Scalar {
|
||||
let len = self.left_vec.len();
|
||||
assert_eq!(self.left_vec[len - 1].get_num_vars(), 0);
|
||||
assert_eq!(self.right_vec[len - 1].get_num_vars(), 0);
|
||||
self.left_vec[len - 1][0] * self.right_vec[len - 1][0]
|
||||
}
|
||||
}
|
||||
|
||||
pub struct DotProductCircuit {
|
||||
left: DensePolynomial,
|
||||
right: DensePolynomial,
|
||||
weight: DensePolynomial,
|
||||
}
|
||||
|
||||
impl DotProductCircuit {
|
||||
pub fn new(left: DensePolynomial, right: DensePolynomial, weight: DensePolynomial) -> Self {
|
||||
assert_eq!(left.len(), right.len());
|
||||
assert_eq!(left.len(), weight.len());
|
||||
DotProductCircuit {
|
||||
left,
|
||||
right,
|
||||
weight,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn evaluate(&self) -> Scalar {
|
||||
(0..self.left.len())
|
||||
.map(|i| self.left[i] * self.right[i] * self.weight[i])
|
||||
.sum()
|
||||
}
|
||||
|
||||
pub fn split(&mut self) -> (DotProductCircuit, DotProductCircuit) {
|
||||
let idx = self.left.len() / 2;
|
||||
assert_eq!(idx * 2, self.left.len());
|
||||
let (l1, l2) = self.left.split(idx);
|
||||
let (r1, r2) = self.right.split(idx);
|
||||
let (w1, w2) = self.weight.split(idx);
|
||||
(
|
||||
DotProductCircuit {
|
||||
left: l1,
|
||||
right: r1,
|
||||
weight: w1,
|
||||
},
|
||||
DotProductCircuit {
|
||||
left: l2,
|
||||
right: r2,
|
||||
weight: w2,
|
||||
},
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct LayerProof {
|
||||
pub proof: SumcheckInstanceProof,
|
||||
pub claims: Vec<Scalar>,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl LayerProof {
|
||||
pub fn verify(
|
||||
&self,
|
||||
claim: Scalar,
|
||||
num_rounds: usize,
|
||||
degree_bound: usize,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Scalar, Vec<Scalar>) {
|
||||
self
|
||||
.proof
|
||||
.verify(claim, num_rounds, degree_bound, transcript)
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct LayerProofBatched {
|
||||
pub proof: SumcheckInstanceProof,
|
||||
pub claims_prod_left: Vec<Scalar>,
|
||||
pub claims_prod_right: Vec<Scalar>,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl LayerProofBatched {
|
||||
pub fn verify(
|
||||
&self,
|
||||
claim: Scalar,
|
||||
num_rounds: usize,
|
||||
degree_bound: usize,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Scalar, Vec<Scalar>) {
|
||||
self
|
||||
.proof
|
||||
.verify(claim, num_rounds, degree_bound, transcript)
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct ProductCircuitEvalProof {
|
||||
proof: Vec<LayerProof>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct ProductCircuitEvalProofBatched {
|
||||
proof: Vec<LayerProofBatched>,
|
||||
claims_dotp: (Vec<Scalar>, Vec<Scalar>, Vec<Scalar>),
|
||||
}
|
||||
|
||||
impl ProductCircuitEvalProof {
|
||||
#![allow(dead_code)]
|
||||
pub fn prove(
|
||||
circuit: &mut ProductCircuit,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Self, Scalar, Vec<Scalar>) {
|
||||
let mut proof: Vec<LayerProof> = Vec::new();
|
||||
let num_layers = circuit.left_vec.len();
|
||||
|
||||
let mut claim = circuit.evaluate();
|
||||
let mut rand = Vec::new();
|
||||
for layer_id in (0..num_layers).rev() {
|
||||
let len = circuit.left_vec[layer_id].len() + circuit.right_vec[layer_id].len();
|
||||
|
||||
let mut poly_C = DensePolynomial::new(EqPolynomial::new(rand.clone()).evals());
|
||||
assert_eq!(poly_C.len(), len / 2);
|
||||
|
||||
let num_rounds_prod = poly_C.len().log_2();
|
||||
let comb_func_prod = |poly_A_comp: &Scalar,
|
||||
poly_B_comp: &Scalar,
|
||||
poly_C_comp: &Scalar|
|
||||
-> Scalar { poly_A_comp * poly_B_comp * poly_C_comp };
|
||||
let (proof_prod, rand_prod, claims_prod) = SumcheckInstanceProof::prove_cubic(
|
||||
&claim,
|
||||
num_rounds_prod,
|
||||
&mut circuit.left_vec[layer_id],
|
||||
&mut circuit.right_vec[layer_id],
|
||||
&mut poly_C,
|
||||
comb_func_prod,
|
||||
transcript,
|
||||
);
|
||||
|
||||
transcript.append_scalar(b"claim_prod_left", &claims_prod[0]);
|
||||
transcript.append_scalar(b"claim_prod_right", &claims_prod[1]);
|
||||
|
||||
// produce a random challenge
|
||||
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
|
||||
claim = claims_prod[0] + r_layer * (claims_prod[1] - claims_prod[0]);
|
||||
|
||||
let mut ext = vec![r_layer];
|
||||
ext.extend(rand_prod);
|
||||
rand = ext;
|
||||
|
||||
proof.push(LayerProof {
|
||||
proof: proof_prod,
|
||||
claims: claims_prod[0..claims_prod.len() - 1].to_vec(),
|
||||
});
|
||||
}
|
||||
|
||||
(ProductCircuitEvalProof { proof }, claim, rand)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
eval: Scalar,
|
||||
len: usize,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Scalar, Vec<Scalar>) {
|
||||
let num_layers = len.log_2();
|
||||
let mut claim = eval;
|
||||
let mut rand: Vec<Scalar> = Vec::new();
|
||||
//let mut num_rounds = 0;
|
||||
assert_eq!(self.proof.len(), num_layers);
|
||||
for (num_rounds, i) in (0..num_layers).enumerate() {
|
||||
let (claim_last, rand_prod) = self.proof[i].verify(claim, num_rounds, 3, transcript);
|
||||
|
||||
let claims_prod = &self.proof[i].claims;
|
||||
transcript.append_scalar(b"claim_prod_left", &claims_prod[0]);
|
||||
transcript.append_scalar(b"claim_prod_right", &claims_prod[1]);
|
||||
|
||||
assert_eq!(rand.len(), rand_prod.len());
|
||||
let eq: Scalar = (0..rand.len())
|
||||
.map(|i| {
|
||||
rand[i] * rand_prod[i] + (Scalar::one() - rand[i]) * (Scalar::one() - rand_prod[i])
|
||||
})
|
||||
.product();
|
||||
assert_eq!(claims_prod[0] * claims_prod[1] * eq, claim_last);
|
||||
|
||||
// produce a random challenge
|
||||
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
|
||||
claim = (Scalar::one() - r_layer) * claims_prod[0] + r_layer * claims_prod[1];
|
||||
let mut ext = vec![r_layer];
|
||||
ext.extend(rand_prod);
|
||||
rand = ext;
|
||||
}
|
||||
|
||||
(claim, rand)
|
||||
}
|
||||
}
|
||||
|
||||
impl ProductCircuitEvalProofBatched {
|
||||
pub fn prove(
|
||||
prod_circuit_vec: &mut Vec<&mut ProductCircuit>,
|
||||
dotp_circuit_vec: &mut Vec<&mut DotProductCircuit>,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Self, Vec<Scalar>) {
|
||||
assert!(!prod_circuit_vec.is_empty());
|
||||
|
||||
let mut claims_dotp_final = (Vec::new(), Vec::new(), Vec::new());
|
||||
|
||||
let mut proof_layers: Vec<LayerProofBatched> = Vec::new();
|
||||
let num_layers = prod_circuit_vec[0].left_vec.len();
|
||||
let mut claims_to_verify = (0..prod_circuit_vec.len())
|
||||
.map(|i| prod_circuit_vec[i].evaluate())
|
||||
.collect::<Vec<Scalar>>();
|
||||
let mut rand = Vec::new();
|
||||
for layer_id in (0..num_layers).rev() {
|
||||
// prepare paralell instance that share poly_C first
|
||||
let len = prod_circuit_vec[0].left_vec[layer_id].len()
|
||||
+ prod_circuit_vec[0].right_vec[layer_id].len();
|
||||
|
||||
let mut poly_C_par = DensePolynomial::new(EqPolynomial::new(rand.clone()).evals());
|
||||
assert_eq!(poly_C_par.len(), len / 2);
|
||||
|
||||
let num_rounds_prod = poly_C_par.len().log_2();
|
||||
let comb_func_prod = |poly_A_comp: &Scalar,
|
||||
poly_B_comp: &Scalar,
|
||||
poly_C_comp: &Scalar|
|
||||
-> Scalar { poly_A_comp * poly_B_comp * poly_C_comp };
|
||||
|
||||
let mut poly_A_batched_par: Vec<&mut DensePolynomial> = Vec::new();
|
||||
let mut poly_B_batched_par: Vec<&mut DensePolynomial> = Vec::new();
|
||||
for prod_circuit in prod_circuit_vec.iter_mut() {
|
||||
poly_A_batched_par.push(&mut prod_circuit.left_vec[layer_id]);
|
||||
poly_B_batched_par.push(&mut prod_circuit.right_vec[layer_id])
|
||||
}
|
||||
let poly_vec_par = (
|
||||
&mut poly_A_batched_par,
|
||||
&mut poly_B_batched_par,
|
||||
&mut poly_C_par,
|
||||
);
|
||||
|
||||
// prepare sequential instances that don't share poly_C
|
||||
let mut poly_A_batched_seq: Vec<&mut DensePolynomial> = Vec::new();
|
||||
let mut poly_B_batched_seq: Vec<&mut DensePolynomial> = Vec::new();
|
||||
let mut poly_C_batched_seq: Vec<&mut DensePolynomial> = Vec::new();
|
||||
if layer_id == 0 && !dotp_circuit_vec.is_empty() {
|
||||
// add additional claims
|
||||
for item in dotp_circuit_vec.iter() {
|
||||
claims_to_verify.push(item.evaluate());
|
||||
assert_eq!(len / 2, item.left.len());
|
||||
assert_eq!(len / 2, item.right.len());
|
||||
assert_eq!(len / 2, item.weight.len());
|
||||
}
|
||||
|
||||
for dotp_circuit in dotp_circuit_vec.iter_mut() {
|
||||
poly_A_batched_seq.push(&mut dotp_circuit.left);
|
||||
poly_B_batched_seq.push(&mut dotp_circuit.right);
|
||||
poly_C_batched_seq.push(&mut dotp_circuit.weight);
|
||||
}
|
||||
}
|
||||
let poly_vec_seq = (
|
||||
&mut poly_A_batched_seq,
|
||||
&mut poly_B_batched_seq,
|
||||
&mut poly_C_batched_seq,
|
||||
);
|
||||
|
||||
// produce a fresh set of coeffs and a joint claim
|
||||
let coeff_vec =
|
||||
transcript.challenge_vector(b"rand_coeffs_next_layer", claims_to_verify.len());
|
||||
let claim = (0..claims_to_verify.len())
|
||||
.map(|i| claims_to_verify[i] * coeff_vec[i])
|
||||
.sum();
|
||||
|
||||
let (proof, rand_prod, claims_prod, claims_dotp) = SumcheckInstanceProof::prove_cubic_batched(
|
||||
&claim,
|
||||
num_rounds_prod,
|
||||
poly_vec_par,
|
||||
poly_vec_seq,
|
||||
&coeff_vec,
|
||||
comb_func_prod,
|
||||
transcript,
|
||||
);
|
||||
|
||||
let (claims_prod_left, claims_prod_right, _claims_eq) = claims_prod;
|
||||
for i in 0..prod_circuit_vec.len() {
|
||||
transcript.append_scalar(b"claim_prod_left", &claims_prod_left[i]);
|
||||
transcript.append_scalar(b"claim_prod_right", &claims_prod_right[i]);
|
||||
}
|
||||
|
||||
if layer_id == 0 && !dotp_circuit_vec.is_empty() {
|
||||
let (claims_dotp_left, claims_dotp_right, claims_dotp_weight) = claims_dotp;
|
||||
for i in 0..dotp_circuit_vec.len() {
|
||||
transcript.append_scalar(b"claim_dotp_left", &claims_dotp_left[i]);
|
||||
transcript.append_scalar(b"claim_dotp_right", &claims_dotp_right[i]);
|
||||
transcript.append_scalar(b"claim_dotp_weight", &claims_dotp_weight[i]);
|
||||
}
|
||||
claims_dotp_final = (claims_dotp_left, claims_dotp_right, claims_dotp_weight);
|
||||
}
|
||||
|
||||
// produce a random challenge to condense two claims into a single claim
|
||||
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
|
||||
|
||||
claims_to_verify = (0..prod_circuit_vec.len())
|
||||
.map(|i| claims_prod_left[i] + r_layer * (claims_prod_right[i] - claims_prod_left[i]))
|
||||
.collect::<Vec<Scalar>>();
|
||||
|
||||
let mut ext = vec![r_layer];
|
||||
ext.extend(rand_prod);
|
||||
rand = ext;
|
||||
|
||||
proof_layers.push(LayerProofBatched {
|
||||
proof,
|
||||
claims_prod_left,
|
||||
claims_prod_right,
|
||||
});
|
||||
}
|
||||
|
||||
(
|
||||
ProductCircuitEvalProofBatched {
|
||||
proof: proof_layers,
|
||||
claims_dotp: claims_dotp_final,
|
||||
},
|
||||
rand,
|
||||
)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
claims_prod_vec: &[Scalar],
|
||||
claims_dotp_vec: &[Scalar],
|
||||
len: usize,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Vec<Scalar>, Vec<Scalar>, Vec<Scalar>) {
|
||||
let num_layers = len.log_2();
|
||||
let mut rand: Vec<Scalar> = Vec::new();
|
||||
//let mut num_rounds = 0;
|
||||
assert_eq!(self.proof.len(), num_layers);
|
||||
|
||||
let mut claims_to_verify = claims_prod_vec.to_owned();
|
||||
let mut claims_to_verify_dotp: Vec<Scalar> = Vec::new();
|
||||
for (num_rounds, i) in (0..num_layers).enumerate() {
|
||||
if i == num_layers - 1 {
|
||||
claims_to_verify.extend(claims_dotp_vec);
|
||||
}
|
||||
|
||||
// produce random coefficients, one for each instance
|
||||
let coeff_vec =
|
||||
transcript.challenge_vector(b"rand_coeffs_next_layer", claims_to_verify.len());
|
||||
|
||||
// produce a joint claim
|
||||
let claim = (0..claims_to_verify.len())
|
||||
.map(|i| claims_to_verify[i] * coeff_vec[i])
|
||||
.sum();
|
||||
|
||||
let (claim_last, rand_prod) = self.proof[i].verify(claim, num_rounds, 3, transcript);
|
||||
|
||||
let claims_prod_left = &self.proof[i].claims_prod_left;
|
||||
let claims_prod_right = &self.proof[i].claims_prod_right;
|
||||
assert_eq!(claims_prod_left.len(), claims_prod_vec.len());
|
||||
assert_eq!(claims_prod_right.len(), claims_prod_vec.len());
|
||||
|
||||
for i in 0..claims_prod_vec.len() {
|
||||
transcript.append_scalar(b"claim_prod_left", &claims_prod_left[i]);
|
||||
transcript.append_scalar(b"claim_prod_right", &claims_prod_right[i]);
|
||||
}
|
||||
|
||||
assert_eq!(rand.len(), rand_prod.len());
|
||||
let eq: Scalar = (0..rand.len())
|
||||
.map(|i| {
|
||||
rand[i] * rand_prod[i] + (Scalar::one() - rand[i]) * (Scalar::one() - rand_prod[i])
|
||||
})
|
||||
.product();
|
||||
let mut claim_expected: Scalar = (0..claims_prod_vec.len())
|
||||
.map(|i| coeff_vec[i] * (claims_prod_left[i] * claims_prod_right[i] * eq))
|
||||
.sum();
|
||||
|
||||
// add claims from the dotp instances
|
||||
if i == num_layers - 1 {
|
||||
let num_prod_instances = claims_prod_vec.len();
|
||||
let (claims_dotp_left, claims_dotp_right, claims_dotp_weight) = &self.claims_dotp;
|
||||
for i in 0..claims_dotp_left.len() {
|
||||
transcript.append_scalar(b"claim_dotp_left", &claims_dotp_left[i]);
|
||||
transcript.append_scalar(b"claim_dotp_right", &claims_dotp_right[i]);
|
||||
transcript.append_scalar(b"claim_dotp_weight", &claims_dotp_weight[i]);
|
||||
|
||||
claim_expected += coeff_vec[i + num_prod_instances]
|
||||
* claims_dotp_left[i]
|
||||
* claims_dotp_right[i]
|
||||
* claims_dotp_weight[i];
|
||||
}
|
||||
}
|
||||
|
||||
assert_eq!(claim_expected, claim_last);
|
||||
|
||||
// produce a random challenge
|
||||
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
|
||||
|
||||
claims_to_verify = (0..claims_prod_left.len())
|
||||
.map(|i| claims_prod_left[i] + r_layer * (claims_prod_right[i] - claims_prod_left[i]))
|
||||
.collect::<Vec<Scalar>>();
|
||||
|
||||
// add claims to verify for dotp circuit
|
||||
if i == num_layers - 1 {
|
||||
let (claims_dotp_left, claims_dotp_right, claims_dotp_weight) = &self.claims_dotp;
|
||||
|
||||
for i in 0..claims_dotp_vec.len() / 2 {
|
||||
// combine left claims
|
||||
let claim_left = claims_dotp_left[2 * i]
|
||||
+ r_layer * (claims_dotp_left[2 * i + 1] - claims_dotp_left[2 * i]);
|
||||
|
||||
let claim_right = claims_dotp_right[2 * i]
|
||||
+ r_layer * (claims_dotp_right[2 * i + 1] - claims_dotp_right[2 * i]);
|
||||
|
||||
let claim_weight = claims_dotp_weight[2 * i]
|
||||
+ r_layer * (claims_dotp_weight[2 * i + 1] - claims_dotp_weight[2 * i]);
|
||||
claims_to_verify_dotp.push(claim_left);
|
||||
claims_to_verify_dotp.push(claim_right);
|
||||
claims_to_verify_dotp.push(claim_weight);
|
||||
}
|
||||
}
|
||||
|
||||
let mut ext = vec![r_layer];
|
||||
ext.extend(rand_prod);
|
||||
rand = ext;
|
||||
}
|
||||
(claims_to_verify, claims_to_verify_dotp, rand)
|
||||
}
|
||||
}
|
||||
367
packages/Spartan-secq/src/r1csinstance.rs
Normal file
367
packages/Spartan-secq/src/r1csinstance.rs
Normal file
@@ -0,0 +1,367 @@
|
||||
use crate::transcript::AppendToTranscript;
|
||||
|
||||
use super::dense_mlpoly::DensePolynomial;
|
||||
use super::errors::ProofVerifyError;
|
||||
use super::math::Math;
|
||||
use super::random::RandomTape;
|
||||
use super::scalar::Scalar;
|
||||
use super::sparse_mlpoly::{
|
||||
MultiSparseMatPolynomialAsDense, SparseMatEntry, SparseMatPolyCommitment,
|
||||
SparseMatPolyCommitmentGens, SparseMatPolyEvalProof, SparseMatPolynomial,
|
||||
};
|
||||
use super::timer::Timer;
|
||||
use flate2::{write::ZlibEncoder, Compression};
|
||||
use merlin::Transcript;
|
||||
use rand_core::OsRng;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct R1CSInstance {
|
||||
num_cons: usize,
|
||||
num_vars: usize,
|
||||
num_inputs: usize,
|
||||
A: SparseMatPolynomial,
|
||||
B: SparseMatPolynomial,
|
||||
C: SparseMatPolynomial,
|
||||
}
|
||||
|
||||
pub struct R1CSCommitmentGens {
|
||||
gens: SparseMatPolyCommitmentGens,
|
||||
}
|
||||
|
||||
impl R1CSCommitmentGens {
|
||||
pub fn new(
|
||||
label: &'static [u8],
|
||||
num_cons: usize,
|
||||
num_vars: usize,
|
||||
num_inputs: usize,
|
||||
num_nz_entries: usize,
|
||||
) -> R1CSCommitmentGens {
|
||||
assert!(num_inputs < num_vars);
|
||||
let num_poly_vars_x = num_cons.log_2();
|
||||
let num_poly_vars_y = (2 * num_vars).log_2();
|
||||
let gens =
|
||||
SparseMatPolyCommitmentGens::new(label, num_poly_vars_x, num_poly_vars_y, num_nz_entries, 3);
|
||||
R1CSCommitmentGens { gens }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct R1CSCommitment {
|
||||
num_cons: usize,
|
||||
num_vars: usize,
|
||||
num_inputs: usize,
|
||||
comm: SparseMatPolyCommitment,
|
||||
}
|
||||
|
||||
impl AppendToTranscript for R1CSCommitment {
|
||||
fn append_to_transcript(&self, _label: &'static [u8], transcript: &mut Transcript) {
|
||||
transcript.append_u64(b"num_cons", self.num_cons as u64);
|
||||
transcript.append_u64(b"num_vars", self.num_vars as u64);
|
||||
transcript.append_u64(b"num_inputs", self.num_inputs as u64);
|
||||
self.comm.append_to_transcript(b"comm", transcript);
|
||||
}
|
||||
}
|
||||
|
||||
pub struct R1CSDecommitment {
|
||||
dense: MultiSparseMatPolynomialAsDense,
|
||||
}
|
||||
|
||||
impl R1CSCommitment {
|
||||
pub fn get_num_cons(&self) -> usize {
|
||||
self.num_cons
|
||||
}
|
||||
|
||||
pub fn get_num_vars(&self) -> usize {
|
||||
self.num_vars
|
||||
}
|
||||
|
||||
pub fn get_num_inputs(&self) -> usize {
|
||||
self.num_inputs
|
||||
}
|
||||
}
|
||||
|
||||
impl R1CSInstance {
|
||||
pub fn new(
|
||||
num_cons: usize,
|
||||
num_vars: usize,
|
||||
num_inputs: usize,
|
||||
A: &[(usize, usize, Scalar)],
|
||||
B: &[(usize, usize, Scalar)],
|
||||
C: &[(usize, usize, Scalar)],
|
||||
) -> R1CSInstance {
|
||||
Timer::print(&format!("number_of_constraints {}", num_cons));
|
||||
Timer::print(&format!("number_of_variables {}", num_vars));
|
||||
Timer::print(&format!("number_of_inputs {}", num_inputs));
|
||||
Timer::print(&format!("number_non-zero_entries_A {}", A.len()));
|
||||
Timer::print(&format!("number_non-zero_entries_B {}", B.len()));
|
||||
Timer::print(&format!("number_non-zero_entries_C {}", C.len()));
|
||||
|
||||
// check that num_cons is a power of 2
|
||||
assert_eq!(num_cons.next_power_of_two(), num_cons);
|
||||
|
||||
// check that num_vars is a power of 2
|
||||
assert_eq!(num_vars.next_power_of_two(), num_vars);
|
||||
|
||||
// check that number_inputs + 1 <= num_vars
|
||||
assert!(num_inputs < num_vars);
|
||||
|
||||
// no errors, so create polynomials
|
||||
let num_poly_vars_x = num_cons.log_2();
|
||||
let num_poly_vars_y = (2 * num_vars).log_2();
|
||||
|
||||
let mat_A = (0..A.len())
|
||||
.map(|i| SparseMatEntry::new(A[i].0, A[i].1, A[i].2))
|
||||
.collect::<Vec<SparseMatEntry>>();
|
||||
let mat_B = (0..B.len())
|
||||
.map(|i| SparseMatEntry::new(B[i].0, B[i].1, B[i].2))
|
||||
.collect::<Vec<SparseMatEntry>>();
|
||||
let mat_C = (0..C.len())
|
||||
.map(|i| SparseMatEntry::new(C[i].0, C[i].1, C[i].2))
|
||||
.collect::<Vec<SparseMatEntry>>();
|
||||
|
||||
let poly_A = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, mat_A);
|
||||
let poly_B = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, mat_B);
|
||||
let poly_C = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, mat_C);
|
||||
|
||||
R1CSInstance {
|
||||
num_cons,
|
||||
num_vars,
|
||||
num_inputs,
|
||||
A: poly_A,
|
||||
B: poly_B,
|
||||
C: poly_C,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_num_vars(&self) -> usize {
|
||||
self.num_vars
|
||||
}
|
||||
|
||||
pub fn get_num_cons(&self) -> usize {
|
||||
self.num_cons
|
||||
}
|
||||
|
||||
pub fn get_num_inputs(&self) -> usize {
|
||||
self.num_inputs
|
||||
}
|
||||
|
||||
pub fn get_digest(&self) -> Vec<u8> {
|
||||
let mut encoder = ZlibEncoder::new(Vec::new(), Compression::default());
|
||||
bincode::serialize_into(&mut encoder, &self).unwrap();
|
||||
encoder.finish().unwrap()
|
||||
}
|
||||
|
||||
pub fn produce_synthetic_r1cs(
|
||||
num_cons: usize,
|
||||
num_vars: usize,
|
||||
num_inputs: usize,
|
||||
) -> (R1CSInstance, Vec<Scalar>, Vec<Scalar>) {
|
||||
Timer::print(&format!("number_of_constraints {}", num_cons));
|
||||
Timer::print(&format!("number_of_variables {}", num_vars));
|
||||
Timer::print(&format!("number_of_inputs {}", num_inputs));
|
||||
|
||||
let mut csprng: OsRng = OsRng;
|
||||
|
||||
// assert num_cons and num_vars are power of 2
|
||||
assert_eq!((num_cons.log_2()).pow2(), num_cons);
|
||||
assert_eq!((num_vars.log_2()).pow2(), num_vars);
|
||||
|
||||
// num_inputs + 1 <= num_vars
|
||||
assert!(num_inputs < num_vars);
|
||||
|
||||
// z is organized as [vars,1,io]
|
||||
let size_z = num_vars + num_inputs + 1;
|
||||
|
||||
// produce a random satisfying assignment
|
||||
let Z = {
|
||||
let mut Z: Vec<Scalar> = (0..size_z)
|
||||
.map(|_i| Scalar::random(&mut csprng))
|
||||
.collect::<Vec<Scalar>>();
|
||||
Z[num_vars] = Scalar::one(); // set the constant term to 1
|
||||
Z
|
||||
};
|
||||
|
||||
// three sparse matrices
|
||||
let mut A: Vec<SparseMatEntry> = Vec::new();
|
||||
let mut B: Vec<SparseMatEntry> = Vec::new();
|
||||
let mut C: Vec<SparseMatEntry> = Vec::new();
|
||||
let one = Scalar::one();
|
||||
for i in 0..num_cons {
|
||||
let A_idx = i % size_z;
|
||||
let B_idx = (i + 2) % size_z;
|
||||
A.push(SparseMatEntry::new(i, A_idx, one));
|
||||
B.push(SparseMatEntry::new(i, B_idx, one));
|
||||
let AB_val = Z[A_idx] * Z[B_idx];
|
||||
|
||||
let C_idx = (i + 3) % size_z;
|
||||
let C_val = Z[C_idx];
|
||||
|
||||
if C_val == Scalar::zero() {
|
||||
C.push(SparseMatEntry::new(i, num_vars, AB_val));
|
||||
} else {
|
||||
C.push(SparseMatEntry::new(
|
||||
i,
|
||||
C_idx,
|
||||
AB_val * C_val.invert().unwrap(),
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
Timer::print(&format!("number_non-zero_entries_A {}", A.len()));
|
||||
Timer::print(&format!("number_non-zero_entries_B {}", B.len()));
|
||||
Timer::print(&format!("number_non-zero_entries_C {}", C.len()));
|
||||
|
||||
let num_poly_vars_x = num_cons.log_2();
|
||||
let num_poly_vars_y = (2 * num_vars).log_2();
|
||||
let poly_A = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, A);
|
||||
let poly_B = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, B);
|
||||
let poly_C = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, C);
|
||||
|
||||
let inst = R1CSInstance {
|
||||
num_cons,
|
||||
num_vars,
|
||||
num_inputs,
|
||||
A: poly_A,
|
||||
B: poly_B,
|
||||
C: poly_C,
|
||||
};
|
||||
|
||||
assert!(inst.is_sat(&Z[..num_vars], &Z[num_vars + 1..]));
|
||||
|
||||
(inst, Z[..num_vars].to_vec(), Z[num_vars + 1..].to_vec())
|
||||
}
|
||||
|
||||
pub fn is_sat(&self, vars: &[Scalar], input: &[Scalar]) -> bool {
|
||||
assert_eq!(vars.len(), self.num_vars);
|
||||
assert_eq!(input.len(), self.num_inputs);
|
||||
|
||||
let z = {
|
||||
let mut z = vars.to_vec();
|
||||
z.extend(&vec![Scalar::one()]);
|
||||
z.extend(input);
|
||||
z
|
||||
};
|
||||
|
||||
// verify if Az * Bz - Cz = [0...]
|
||||
let Az = self
|
||||
.A
|
||||
.multiply_vec(self.num_cons, self.num_vars + self.num_inputs + 1, &z);
|
||||
let Bz = self
|
||||
.B
|
||||
.multiply_vec(self.num_cons, self.num_vars + self.num_inputs + 1, &z);
|
||||
let Cz = self
|
||||
.C
|
||||
.multiply_vec(self.num_cons, self.num_vars + self.num_inputs + 1, &z);
|
||||
|
||||
assert_eq!(Az.len(), self.num_cons);
|
||||
assert_eq!(Bz.len(), self.num_cons);
|
||||
assert_eq!(Cz.len(), self.num_cons);
|
||||
let res: usize = (0..self.num_cons)
|
||||
.map(|i| usize::from(Az[i] * Bz[i] != Cz[i]))
|
||||
.sum();
|
||||
|
||||
res == 0
|
||||
}
|
||||
|
||||
pub fn multiply_vec(
|
||||
&self,
|
||||
num_rows: usize,
|
||||
num_cols: usize,
|
||||
z: &[Scalar],
|
||||
) -> (DensePolynomial, DensePolynomial, DensePolynomial) {
|
||||
assert_eq!(num_rows, self.num_cons);
|
||||
assert_eq!(z.len(), num_cols);
|
||||
assert!(num_cols > self.num_vars);
|
||||
(
|
||||
DensePolynomial::new(self.A.multiply_vec(num_rows, num_cols, z)),
|
||||
DensePolynomial::new(self.B.multiply_vec(num_rows, num_cols, z)),
|
||||
DensePolynomial::new(self.C.multiply_vec(num_rows, num_cols, z)),
|
||||
)
|
||||
}
|
||||
|
||||
pub fn compute_eval_table_sparse(
|
||||
&self,
|
||||
num_rows: usize,
|
||||
num_cols: usize,
|
||||
evals: &[Scalar],
|
||||
) -> (Vec<Scalar>, Vec<Scalar>, Vec<Scalar>) {
|
||||
assert_eq!(num_rows, self.num_cons);
|
||||
assert!(num_cols > self.num_vars);
|
||||
|
||||
let evals_A = self.A.compute_eval_table_sparse(evals, num_rows, num_cols);
|
||||
let evals_B = self.B.compute_eval_table_sparse(evals, num_rows, num_cols);
|
||||
let evals_C = self.C.compute_eval_table_sparse(evals, num_rows, num_cols);
|
||||
|
||||
(evals_A, evals_B, evals_C)
|
||||
}
|
||||
|
||||
pub fn evaluate(&self, rx: &[Scalar], ry: &[Scalar]) -> (Scalar, Scalar, Scalar) {
|
||||
let evals = SparseMatPolynomial::multi_evaluate(&[&self.A, &self.B, &self.C], rx, ry);
|
||||
(evals[0], evals[1], evals[2])
|
||||
}
|
||||
|
||||
pub fn commit(&self, gens: &R1CSCommitmentGens) -> (R1CSCommitment, R1CSDecommitment) {
|
||||
let (comm, dense) = SparseMatPolynomial::multi_commit(&[&self.A, &self.B, &self.C], &gens.gens);
|
||||
let r1cs_comm = R1CSCommitment {
|
||||
num_cons: self.num_cons,
|
||||
num_vars: self.num_vars,
|
||||
num_inputs: self.num_inputs,
|
||||
comm,
|
||||
};
|
||||
|
||||
let r1cs_decomm = R1CSDecommitment { dense };
|
||||
|
||||
(r1cs_comm, r1cs_decomm)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct R1CSEvalProof {
|
||||
proof: SparseMatPolyEvalProof,
|
||||
}
|
||||
|
||||
impl R1CSEvalProof {
|
||||
pub fn prove(
|
||||
decomm: &R1CSDecommitment,
|
||||
rx: &[Scalar], // point at which the polynomial is evaluated
|
||||
ry: &[Scalar],
|
||||
evals: &(Scalar, Scalar, Scalar),
|
||||
gens: &R1CSCommitmentGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut RandomTape,
|
||||
) -> R1CSEvalProof {
|
||||
let timer = Timer::new("R1CSEvalProof::prove");
|
||||
let proof = SparseMatPolyEvalProof::prove(
|
||||
&decomm.dense,
|
||||
rx,
|
||||
ry,
|
||||
&[evals.0, evals.1, evals.2],
|
||||
&gens.gens,
|
||||
transcript,
|
||||
random_tape,
|
||||
);
|
||||
timer.stop();
|
||||
|
||||
R1CSEvalProof { proof }
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
comm: &R1CSCommitment,
|
||||
rx: &[Scalar], // point at which the R1CS matrix polynomials are evaluated
|
||||
ry: &[Scalar],
|
||||
evals: &(Scalar, Scalar, Scalar),
|
||||
gens: &R1CSCommitmentGens,
|
||||
transcript: &mut Transcript,
|
||||
) -> Result<(), ProofVerifyError> {
|
||||
self.proof.verify(
|
||||
&comm.comm,
|
||||
rx,
|
||||
ry,
|
||||
&[evals.0, evals.1, evals.2],
|
||||
&gens.gens,
|
||||
transcript,
|
||||
)
|
||||
}
|
||||
}
|
||||
608
packages/Spartan-secq/src/r1csproof.rs
Normal file
608
packages/Spartan-secq/src/r1csproof.rs
Normal file
@@ -0,0 +1,608 @@
|
||||
#![allow(clippy::too_many_arguments)]
|
||||
use super::commitments::{Commitments, MultiCommitGens};
|
||||
use super::dense_mlpoly::{
|
||||
DensePolynomial, EqPolynomial, PolyCommitment, PolyCommitmentGens, PolyEvalProof,
|
||||
};
|
||||
use super::errors::ProofVerifyError;
|
||||
use super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
|
||||
use super::math::Math;
|
||||
use super::nizk::{EqualityProof, KnowledgeProof, ProductProof};
|
||||
use super::r1csinstance::R1CSInstance;
|
||||
use super::random::RandomTape;
|
||||
use super::scalar::Scalar;
|
||||
use super::sparse_mlpoly::{SparsePolyEntry, SparsePolynomial};
|
||||
use super::sumcheck::ZKSumcheckInstanceProof;
|
||||
use super::timer::Timer;
|
||||
use super::transcript::{AppendToTranscript, ProofTranscript};
|
||||
use crate::group::DecompressEncodedPoint;
|
||||
use core::iter;
|
||||
use merlin::Transcript;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct R1CSProof {
|
||||
comm_vars: PolyCommitment,
|
||||
sc_proof_phase1: ZKSumcheckInstanceProof,
|
||||
claims_phase2: (
|
||||
CompressedGroup,
|
||||
CompressedGroup,
|
||||
CompressedGroup,
|
||||
CompressedGroup,
|
||||
),
|
||||
pok_claims_phase2: (KnowledgeProof, ProductProof),
|
||||
proof_eq_sc_phase1: EqualityProof,
|
||||
sc_proof_phase2: ZKSumcheckInstanceProof,
|
||||
comm_vars_at_ry: CompressedGroup,
|
||||
proof_eval_vars_at_ry: PolyEvalProof,
|
||||
proof_eq_sc_phase2: EqualityProof,
|
||||
}
|
||||
|
||||
pub struct R1CSSumcheckGens {
|
||||
gens_1: MultiCommitGens,
|
||||
gens_3: MultiCommitGens,
|
||||
gens_4: MultiCommitGens,
|
||||
}
|
||||
|
||||
// TODO: fix passing gens_1_ref
|
||||
impl R1CSSumcheckGens {
|
||||
pub fn new(label: &'static [u8], gens_1_ref: &MultiCommitGens) -> Self {
|
||||
let gens_1 = gens_1_ref.clone();
|
||||
let gens_3 = MultiCommitGens::new(3, label);
|
||||
let gens_4 = MultiCommitGens::new(4, label);
|
||||
|
||||
R1CSSumcheckGens {
|
||||
gens_1,
|
||||
gens_3,
|
||||
gens_4,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct R1CSGens {
|
||||
gens_sc: R1CSSumcheckGens,
|
||||
gens_pc: PolyCommitmentGens,
|
||||
}
|
||||
|
||||
impl R1CSGens {
|
||||
pub fn new(label: &'static [u8], _num_cons: usize, num_vars: usize) -> Self {
|
||||
let num_poly_vars = num_vars.log_2();
|
||||
let gens_pc = PolyCommitmentGens::new(num_poly_vars, label);
|
||||
let gens_sc = R1CSSumcheckGens::new(label, &gens_pc.gens.gens_1);
|
||||
R1CSGens { gens_sc, gens_pc }
|
||||
}
|
||||
}
|
||||
|
||||
impl R1CSProof {
|
||||
fn prove_phase_one(
|
||||
num_rounds: usize,
|
||||
evals_tau: &mut DensePolynomial,
|
||||
evals_Az: &mut DensePolynomial,
|
||||
evals_Bz: &mut DensePolynomial,
|
||||
evals_Cz: &mut DensePolynomial,
|
||||
gens: &R1CSSumcheckGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut RandomTape,
|
||||
) -> (ZKSumcheckInstanceProof, Vec<Scalar>, Vec<Scalar>, Scalar) {
|
||||
let comb_func = |poly_A_comp: &Scalar,
|
||||
poly_B_comp: &Scalar,
|
||||
poly_C_comp: &Scalar,
|
||||
poly_D_comp: &Scalar|
|
||||
-> Scalar { poly_A_comp * (poly_B_comp * poly_C_comp - poly_D_comp) };
|
||||
|
||||
let (sc_proof_phase_one, r, claims, blind_claim_postsc) =
|
||||
ZKSumcheckInstanceProof::prove_cubic_with_additive_term(
|
||||
&Scalar::zero(), // claim is zero
|
||||
&Scalar::zero(), // blind for claim is also zero
|
||||
num_rounds,
|
||||
evals_tau,
|
||||
evals_Az,
|
||||
evals_Bz,
|
||||
evals_Cz,
|
||||
comb_func,
|
||||
&gens.gens_1,
|
||||
&gens.gens_4,
|
||||
transcript,
|
||||
random_tape,
|
||||
);
|
||||
|
||||
(sc_proof_phase_one, r, claims, blind_claim_postsc)
|
||||
}
|
||||
|
||||
fn prove_phase_two(
|
||||
num_rounds: usize,
|
||||
claim: &Scalar,
|
||||
blind_claim: &Scalar,
|
||||
evals_z: &mut DensePolynomial,
|
||||
evals_ABC: &mut DensePolynomial,
|
||||
gens: &R1CSSumcheckGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut RandomTape,
|
||||
) -> (ZKSumcheckInstanceProof, Vec<Scalar>, Vec<Scalar>, Scalar) {
|
||||
let comb_func =
|
||||
|poly_A_comp: &Scalar, poly_B_comp: &Scalar| -> Scalar { poly_A_comp * poly_B_comp };
|
||||
let (sc_proof_phase_two, r, claims, blind_claim_postsc) = ZKSumcheckInstanceProof::prove_quad(
|
||||
claim,
|
||||
blind_claim,
|
||||
num_rounds,
|
||||
evals_z,
|
||||
evals_ABC,
|
||||
comb_func,
|
||||
&gens.gens_1,
|
||||
&gens.gens_3,
|
||||
transcript,
|
||||
random_tape,
|
||||
);
|
||||
|
||||
(sc_proof_phase_two, r, claims, blind_claim_postsc)
|
||||
}
|
||||
|
||||
fn protocol_name() -> &'static [u8] {
|
||||
b"R1CS proof"
|
||||
}
|
||||
|
||||
pub fn prove(
|
||||
inst: &R1CSInstance,
|
||||
vars: Vec<Scalar>,
|
||||
input: &[Scalar],
|
||||
gens: &R1CSGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut RandomTape,
|
||||
) -> (R1CSProof, Vec<Scalar>, Vec<Scalar>) {
|
||||
let timer_prove = Timer::new("R1CSProof::prove");
|
||||
transcript.append_protocol_name(R1CSProof::protocol_name());
|
||||
|
||||
// we currently require the number of |inputs| + 1 to be at most number of vars
|
||||
assert!(input.len() < vars.len());
|
||||
|
||||
input.append_to_transcript(b"input", transcript);
|
||||
|
||||
let timer_commit = Timer::new("polycommit");
|
||||
let (poly_vars, comm_vars, blinds_vars) = {
|
||||
// create a multilinear polynomial using the supplied assignment for variables
|
||||
let poly_vars = DensePolynomial::new(vars.clone());
|
||||
|
||||
// produce a commitment to the satisfying assignment
|
||||
let (comm_vars, blinds_vars) = poly_vars.commit(&gens.gens_pc, Some(random_tape));
|
||||
|
||||
// add the commitment to the prover's transcript
|
||||
comm_vars.append_to_transcript(b"poly_commitment", transcript);
|
||||
(poly_vars, comm_vars, blinds_vars)
|
||||
};
|
||||
timer_commit.stop();
|
||||
|
||||
let timer_sc_proof_phase1 = Timer::new("prove_sc_phase_one");
|
||||
|
||||
// append input to variables to create a single vector z
|
||||
let z = {
|
||||
let num_inputs = input.len();
|
||||
let num_vars = vars.len();
|
||||
let mut z = vars;
|
||||
z.extend(&vec![Scalar::one()]); // add constant term in z
|
||||
z.extend(input);
|
||||
z.extend(&vec![Scalar::zero(); num_vars - num_inputs - 1]); // we will pad with zeros
|
||||
z
|
||||
};
|
||||
|
||||
// derive the verifier's challenge tau
|
||||
let (num_rounds_x, num_rounds_y) = (inst.get_num_cons().log_2(), z.len().log_2());
|
||||
let tau = transcript.challenge_vector(b"challenge_tau", num_rounds_x);
|
||||
// compute the initial evaluation table for R(\tau, x)
|
||||
let mut poly_tau = DensePolynomial::new(EqPolynomial::new(tau).evals());
|
||||
let (mut poly_Az, mut poly_Bz, mut poly_Cz) =
|
||||
inst.multiply_vec(inst.get_num_cons(), z.len(), &z);
|
||||
|
||||
let (sc_proof_phase1, rx, _claims_phase1, blind_claim_postsc1) = R1CSProof::prove_phase_one(
|
||||
num_rounds_x,
|
||||
&mut poly_tau,
|
||||
&mut poly_Az,
|
||||
&mut poly_Bz,
|
||||
&mut poly_Cz,
|
||||
&gens.gens_sc,
|
||||
transcript,
|
||||
random_tape,
|
||||
);
|
||||
assert_eq!(poly_tau.len(), 1);
|
||||
assert_eq!(poly_Az.len(), 1);
|
||||
assert_eq!(poly_Bz.len(), 1);
|
||||
assert_eq!(poly_Cz.len(), 1);
|
||||
timer_sc_proof_phase1.stop();
|
||||
|
||||
let (tau_claim, Az_claim, Bz_claim, Cz_claim) =
|
||||
(&poly_tau[0], &poly_Az[0], &poly_Bz[0], &poly_Cz[0]);
|
||||
let (Az_blind, Bz_blind, Cz_blind, prod_Az_Bz_blind) = (
|
||||
random_tape.random_scalar(b"Az_blind"),
|
||||
random_tape.random_scalar(b"Bz_blind"),
|
||||
random_tape.random_scalar(b"Cz_blind"),
|
||||
random_tape.random_scalar(b"prod_Az_Bz_blind"),
|
||||
);
|
||||
|
||||
let (pok_Cz_claim, comm_Cz_claim) = {
|
||||
KnowledgeProof::prove(
|
||||
&gens.gens_sc.gens_1,
|
||||
transcript,
|
||||
random_tape,
|
||||
Cz_claim,
|
||||
&Cz_blind,
|
||||
)
|
||||
};
|
||||
|
||||
let (proof_prod, comm_Az_claim, comm_Bz_claim, comm_prod_Az_Bz_claims) = {
|
||||
let prod = Az_claim * Bz_claim;
|
||||
ProductProof::prove(
|
||||
&gens.gens_sc.gens_1,
|
||||
transcript,
|
||||
random_tape,
|
||||
Az_claim,
|
||||
&Az_blind,
|
||||
Bz_claim,
|
||||
&Bz_blind,
|
||||
&prod,
|
||||
&prod_Az_Bz_blind,
|
||||
)
|
||||
};
|
||||
|
||||
comm_Az_claim.append_to_transcript(b"comm_Az_claim", transcript);
|
||||
comm_Bz_claim.append_to_transcript(b"comm_Bz_claim", transcript);
|
||||
comm_Cz_claim.append_to_transcript(b"comm_Cz_claim", transcript);
|
||||
comm_prod_Az_Bz_claims.append_to_transcript(b"comm_prod_Az_Bz_claims", transcript);
|
||||
|
||||
// prove the final step of sum-check #1
|
||||
let taus_bound_rx = tau_claim;
|
||||
let blind_expected_claim_postsc1 = taus_bound_rx * (prod_Az_Bz_blind - Cz_blind);
|
||||
let claim_post_phase1 = (Az_claim * Bz_claim - Cz_claim) * taus_bound_rx;
|
||||
let (proof_eq_sc_phase1, _C1, _C2) = EqualityProof::prove(
|
||||
&gens.gens_sc.gens_1,
|
||||
transcript,
|
||||
random_tape,
|
||||
&claim_post_phase1,
|
||||
&blind_expected_claim_postsc1,
|
||||
&claim_post_phase1,
|
||||
&blind_claim_postsc1,
|
||||
);
|
||||
|
||||
let timer_sc_proof_phase2 = Timer::new("prove_sc_phase_two");
|
||||
// combine the three claims into a single claim
|
||||
let r_A = transcript.challenge_scalar(b"challenege_Az");
|
||||
let r_B = transcript.challenge_scalar(b"challenege_Bz");
|
||||
let r_C = transcript.challenge_scalar(b"challenege_Cz");
|
||||
let claim_phase2 = r_A * Az_claim + r_B * Bz_claim + r_C * Cz_claim;
|
||||
let blind_claim_phase2 = r_A * Az_blind + r_B * Bz_blind + r_C * Cz_blind;
|
||||
|
||||
let evals_ABC = {
|
||||
// compute the initial evaluation table for R(\tau, x)
|
||||
let evals_rx = EqPolynomial::new(rx.clone()).evals();
|
||||
let (evals_A, evals_B, evals_C) =
|
||||
inst.compute_eval_table_sparse(inst.get_num_cons(), z.len(), &evals_rx);
|
||||
|
||||
assert_eq!(evals_A.len(), evals_B.len());
|
||||
assert_eq!(evals_A.len(), evals_C.len());
|
||||
(0..evals_A.len())
|
||||
.map(|i| r_A * evals_A[i] + r_B * evals_B[i] + r_C * evals_C[i])
|
||||
.collect::<Vec<Scalar>>()
|
||||
};
|
||||
|
||||
// another instance of the sum-check protocol
|
||||
let (sc_proof_phase2, ry, claims_phase2, blind_claim_postsc2) = R1CSProof::prove_phase_two(
|
||||
num_rounds_y,
|
||||
&claim_phase2,
|
||||
&blind_claim_phase2,
|
||||
&mut DensePolynomial::new(z),
|
||||
&mut DensePolynomial::new(evals_ABC),
|
||||
&gens.gens_sc,
|
||||
transcript,
|
||||
random_tape,
|
||||
);
|
||||
timer_sc_proof_phase2.stop();
|
||||
|
||||
let timer_polyeval = Timer::new("polyeval");
|
||||
let eval_vars_at_ry = poly_vars.evaluate(&ry[1..]);
|
||||
let blind_eval = random_tape.random_scalar(b"blind_eval");
|
||||
let (proof_eval_vars_at_ry, comm_vars_at_ry) = PolyEvalProof::prove(
|
||||
&poly_vars,
|
||||
Some(&blinds_vars),
|
||||
&ry[1..],
|
||||
&eval_vars_at_ry,
|
||||
Some(&blind_eval),
|
||||
&gens.gens_pc,
|
||||
transcript,
|
||||
random_tape,
|
||||
);
|
||||
timer_polyeval.stop();
|
||||
|
||||
// prove the final step of sum-check #2
|
||||
let blind_eval_Z_at_ry = (Scalar::one() - ry[0]) * blind_eval;
|
||||
let blind_expected_claim_postsc2 = claims_phase2[1] * blind_eval_Z_at_ry;
|
||||
let claim_post_phase2 = claims_phase2[0] * claims_phase2[1];
|
||||
let (proof_eq_sc_phase2, _C1, _C2) = EqualityProof::prove(
|
||||
&gens.gens_pc.gens.gens_1,
|
||||
transcript,
|
||||
random_tape,
|
||||
&claim_post_phase2,
|
||||
&blind_expected_claim_postsc2,
|
||||
&claim_post_phase2,
|
||||
&blind_claim_postsc2,
|
||||
);
|
||||
|
||||
timer_prove.stop();
|
||||
|
||||
(
|
||||
R1CSProof {
|
||||
comm_vars,
|
||||
sc_proof_phase1,
|
||||
claims_phase2: (
|
||||
comm_Az_claim,
|
||||
comm_Bz_claim,
|
||||
comm_Cz_claim,
|
||||
comm_prod_Az_Bz_claims,
|
||||
),
|
||||
pok_claims_phase2: (pok_Cz_claim, proof_prod),
|
||||
proof_eq_sc_phase1,
|
||||
sc_proof_phase2,
|
||||
comm_vars_at_ry,
|
||||
proof_eval_vars_at_ry,
|
||||
proof_eq_sc_phase2,
|
||||
},
|
||||
rx,
|
||||
ry,
|
||||
)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
num_vars: usize,
|
||||
num_cons: usize,
|
||||
input: &[Scalar],
|
||||
evals: &(Scalar, Scalar, Scalar),
|
||||
transcript: &mut Transcript,
|
||||
gens: &R1CSGens,
|
||||
) -> Result<(Vec<Scalar>, Vec<Scalar>), ProofVerifyError> {
|
||||
transcript.append_protocol_name(R1CSProof::protocol_name());
|
||||
|
||||
input.append_to_transcript(b"input", transcript);
|
||||
|
||||
let n = num_vars;
|
||||
// add the commitment to the verifier's transcript
|
||||
self
|
||||
.comm_vars
|
||||
.append_to_transcript(b"poly_commitment", transcript);
|
||||
|
||||
let (num_rounds_x, num_rounds_y) = (num_cons.log_2(), (2 * num_vars).log_2());
|
||||
|
||||
// derive the verifier's challenge tau
|
||||
let tau = transcript.challenge_vector(b"challenge_tau", num_rounds_x);
|
||||
|
||||
// verify the first sum-check instance
|
||||
let claim_phase1 = Scalar::zero()
|
||||
.commit(&Scalar::zero(), &gens.gens_sc.gens_1)
|
||||
.compress();
|
||||
let (comm_claim_post_phase1, rx) = self.sc_proof_phase1.verify(
|
||||
&claim_phase1,
|
||||
num_rounds_x,
|
||||
3,
|
||||
&gens.gens_sc.gens_1,
|
||||
&gens.gens_sc.gens_4,
|
||||
transcript,
|
||||
)?;
|
||||
// perform the intermediate sum-check test with claimed Az, Bz, and Cz
|
||||
let (comm_Az_claim, comm_Bz_claim, comm_Cz_claim, comm_prod_Az_Bz_claims) = &self.claims_phase2;
|
||||
let (pok_Cz_claim, proof_prod) = &self.pok_claims_phase2;
|
||||
|
||||
pok_Cz_claim.verify(&gens.gens_sc.gens_1, transcript, comm_Cz_claim)?;
|
||||
proof_prod.verify(
|
||||
&gens.gens_sc.gens_1,
|
||||
transcript,
|
||||
comm_Az_claim,
|
||||
comm_Bz_claim,
|
||||
comm_prod_Az_Bz_claims,
|
||||
)?;
|
||||
|
||||
comm_Az_claim.append_to_transcript(b"comm_Az_claim", transcript);
|
||||
comm_Bz_claim.append_to_transcript(b"comm_Bz_claim", transcript);
|
||||
comm_Cz_claim.append_to_transcript(b"comm_Cz_claim", transcript);
|
||||
comm_prod_Az_Bz_claims.append_to_transcript(b"comm_prod_Az_Bz_claims", transcript);
|
||||
|
||||
let taus_bound_rx: Scalar = (0..rx.len())
|
||||
.map(|i| rx[i] * tau[i] + (Scalar::one() - rx[i]) * (Scalar::one() - tau[i]))
|
||||
.product();
|
||||
let expected_claim_post_phase1 = (taus_bound_rx
|
||||
* (comm_prod_Az_Bz_claims.decompress().unwrap() - comm_Cz_claim.decompress().unwrap()))
|
||||
.compress();
|
||||
|
||||
// verify proof that expected_claim_post_phase1 == claim_post_phase1
|
||||
self.proof_eq_sc_phase1.verify(
|
||||
&gens.gens_sc.gens_1,
|
||||
transcript,
|
||||
&expected_claim_post_phase1,
|
||||
&comm_claim_post_phase1,
|
||||
)?;
|
||||
|
||||
// derive three public challenges and then derive a joint claim
|
||||
let r_A = transcript.challenge_scalar(b"challenege_Az");
|
||||
let r_B = transcript.challenge_scalar(b"challenege_Bz");
|
||||
let r_C = transcript.challenge_scalar(b"challenege_Cz");
|
||||
|
||||
// r_A * comm_Az_claim + r_B * comm_Bz_claim + r_C * comm_Cz_claim;
|
||||
let comm_claim_phase2 = GroupElement::vartime_multiscalar_mul(
|
||||
iter::once(r_A)
|
||||
.chain(iter::once(r_B))
|
||||
.chain(iter::once(r_C))
|
||||
.collect(),
|
||||
iter::once(&comm_Az_claim)
|
||||
.chain(iter::once(&comm_Bz_claim))
|
||||
.chain(iter::once(&comm_Cz_claim))
|
||||
.map(|pt| pt.decompress().unwrap())
|
||||
.collect(),
|
||||
)
|
||||
.compress();
|
||||
|
||||
// verify the joint claim with a sum-check protocol
|
||||
let (comm_claim_post_phase2, ry) = self.sc_proof_phase2.verify(
|
||||
&comm_claim_phase2,
|
||||
num_rounds_y,
|
||||
2,
|
||||
&gens.gens_sc.gens_1,
|
||||
&gens.gens_sc.gens_3,
|
||||
transcript,
|
||||
)?;
|
||||
|
||||
// verify Z(ry) proof against the initial commitment
|
||||
self.proof_eval_vars_at_ry.verify(
|
||||
&gens.gens_pc,
|
||||
transcript,
|
||||
&ry[1..],
|
||||
&self.comm_vars_at_ry,
|
||||
&self.comm_vars,
|
||||
)?;
|
||||
|
||||
let poly_input_eval = {
|
||||
// constant term
|
||||
let mut input_as_sparse_poly_entries = vec![SparsePolyEntry::new(0, Scalar::one())];
|
||||
//remaining inputs
|
||||
input_as_sparse_poly_entries.extend(
|
||||
(0..input.len())
|
||||
.map(|i| SparsePolyEntry::new(i + 1, input[i]))
|
||||
.collect::<Vec<SparsePolyEntry>>(),
|
||||
);
|
||||
SparsePolynomial::new(n.log_2(), input_as_sparse_poly_entries).evaluate(&ry[1..])
|
||||
};
|
||||
|
||||
// compute commitment to eval_Z_at_ry = (Scalar::one() - ry[0]) * self.eval_vars_at_ry + ry[0] * poly_input_eval
|
||||
let comm_eval_Z_at_ry = GroupElement::vartime_multiscalar_mul(
|
||||
iter::once(Scalar::one() - ry[0])
|
||||
.chain(iter::once(ry[0]))
|
||||
.map(|s| s)
|
||||
.collect(),
|
||||
iter::once(self.comm_vars_at_ry.decompress().unwrap())
|
||||
.chain(iter::once(
|
||||
poly_input_eval.commit(&Scalar::zero(), &gens.gens_pc.gens.gens_1),
|
||||
))
|
||||
.collect(),
|
||||
);
|
||||
|
||||
// perform the final check in the second sum-check protocol
|
||||
let (eval_A_r, eval_B_r, eval_C_r) = evals;
|
||||
let expected_claim_post_phase2 =
|
||||
((r_A * eval_A_r + r_B * eval_B_r + r_C * eval_C_r) * comm_eval_Z_at_ry).compress();
|
||||
// verify proof that expected_claim_post_phase1 == claim_post_phase1
|
||||
self.proof_eq_sc_phase2.verify(
|
||||
&gens.gens_sc.gens_1,
|
||||
transcript,
|
||||
&expected_claim_post_phase2,
|
||||
&comm_claim_post_phase2,
|
||||
)?;
|
||||
|
||||
Ok((rx, ry))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use rand_core::OsRng;
|
||||
|
||||
fn produce_tiny_r1cs() -> (R1CSInstance, Vec<Scalar>, Vec<Scalar>) {
|
||||
// three constraints over five variables Z1, Z2, Z3, Z4, and Z5
|
||||
// rounded to the nearest power of two
|
||||
let num_cons = 128;
|
||||
let num_vars = 256;
|
||||
let num_inputs = 2;
|
||||
|
||||
// encode the above constraints into three matrices
|
||||
let mut A: Vec<(usize, usize, Scalar)> = Vec::new();
|
||||
let mut B: Vec<(usize, usize, Scalar)> = Vec::new();
|
||||
let mut C: Vec<(usize, usize, Scalar)> = Vec::new();
|
||||
|
||||
let one = Scalar::one();
|
||||
// constraint 0 entries
|
||||
// (Z1 + Z2) * I0 - Z3 = 0;
|
||||
A.push((0, 0, one));
|
||||
A.push((0, 1, one));
|
||||
B.push((0, num_vars + 1, one));
|
||||
C.push((0, 2, one));
|
||||
|
||||
// constraint 1 entries
|
||||
// (Z1 + I1) * (Z3) - Z4 = 0
|
||||
A.push((1, 0, one));
|
||||
A.push((1, num_vars + 2, one));
|
||||
B.push((1, 2, one));
|
||||
C.push((1, 3, one));
|
||||
// constraint 3 entries
|
||||
// Z5 * 1 - 0 = 0
|
||||
A.push((2, 4, one));
|
||||
B.push((2, num_vars, one));
|
||||
|
||||
let inst = R1CSInstance::new(num_cons, num_vars, num_inputs, &A, &B, &C);
|
||||
|
||||
// compute a satisfying assignment
|
||||
let mut csprng: OsRng = OsRng;
|
||||
let i0 = Scalar::random(&mut csprng);
|
||||
let i1 = Scalar::random(&mut csprng);
|
||||
let z1 = Scalar::random(&mut csprng);
|
||||
let z2 = Scalar::random(&mut csprng);
|
||||
let z3 = (z1 + z2) * i0; // constraint 1: (Z1 + Z2) * I0 - Z3 = 0;
|
||||
let z4 = (z1 + i1) * z3; // constraint 2: (Z1 + I1) * (Z3) - Z4 = 0
|
||||
let z5 = Scalar::zero(); //constraint 3
|
||||
|
||||
let mut vars = vec![Scalar::zero(); num_vars];
|
||||
vars[0] = z1;
|
||||
vars[1] = z2;
|
||||
vars[2] = z3;
|
||||
vars[3] = z4;
|
||||
vars[4] = z5;
|
||||
|
||||
let mut input = vec![Scalar::zero(); num_inputs];
|
||||
input[0] = i0;
|
||||
input[1] = i1;
|
||||
|
||||
(inst, vars, input)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_tiny_r1cs() {
|
||||
let (inst, vars, input) = tests::produce_tiny_r1cs();
|
||||
let is_sat = inst.is_sat(&vars, &input);
|
||||
assert!(is_sat);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_synthetic_r1cs() {
|
||||
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(1024, 1024, 10);
|
||||
let is_sat = inst.is_sat(&vars, &input);
|
||||
assert!(is_sat);
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn check_r1cs_proof() {
|
||||
let num_vars = 1024;
|
||||
let num_cons = num_vars;
|
||||
let num_inputs = 10;
|
||||
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
|
||||
let gens = R1CSGens::new(b"test-m", num_cons, num_vars);
|
||||
|
||||
let mut random_tape = RandomTape::new(b"proof");
|
||||
let mut prover_transcript = Transcript::new(b"example");
|
||||
let (proof, rx, ry) = R1CSProof::prove(
|
||||
&inst,
|
||||
vars,
|
||||
&input,
|
||||
&gens,
|
||||
&mut prover_transcript,
|
||||
&mut random_tape,
|
||||
);
|
||||
|
||||
let inst_evals = inst.evaluate(&rx, &ry);
|
||||
|
||||
let mut verifier_transcript = Transcript::new(b"example");
|
||||
assert!(proof
|
||||
.verify(
|
||||
inst.get_num_vars(),
|
||||
inst.get_num_cons(),
|
||||
&input,
|
||||
&inst_evals,
|
||||
&mut verifier_transcript,
|
||||
&gens,
|
||||
)
|
||||
.is_ok());
|
||||
}
|
||||
}
|
||||
27
packages/Spartan-secq/src/random.rs
Normal file
27
packages/Spartan-secq/src/random.rs
Normal file
@@ -0,0 +1,27 @@
|
||||
use super::scalar::Scalar;
|
||||
use super::transcript::ProofTranscript;
|
||||
use merlin::Transcript;
|
||||
use rand_core::OsRng;
|
||||
pub struct RandomTape {
|
||||
tape: Transcript,
|
||||
}
|
||||
|
||||
impl RandomTape {
|
||||
pub fn new(name: &'static [u8]) -> Self {
|
||||
let tape = {
|
||||
let mut rng = OsRng::default();
|
||||
let mut tape = Transcript::new(name);
|
||||
tape.append_scalar(b"init_randomness", &Scalar::random(&mut rng));
|
||||
tape
|
||||
};
|
||||
Self { tape }
|
||||
}
|
||||
|
||||
pub fn random_scalar(&mut self, label: &'static [u8]) -> Scalar {
|
||||
self.tape.challenge_scalar(label)
|
||||
}
|
||||
|
||||
pub fn random_vector(&mut self, label: &'static [u8], len: usize) -> Vec<Scalar> {
|
||||
self.tape.challenge_vector(label, len)
|
||||
}
|
||||
}
|
||||
46
packages/Spartan-secq/src/scalar/mod.rs
Normal file
46
packages/Spartan-secq/src/scalar/mod.rs
Normal file
@@ -0,0 +1,46 @@
|
||||
use secq256k1::elliptic_curve::ops::Reduce;
|
||||
use secq256k1::U256;
|
||||
|
||||
mod scalar;
|
||||
|
||||
pub type Scalar = scalar::Scalar;
|
||||
pub type ScalarBytes = secq256k1::Scalar;
|
||||
|
||||
pub trait ScalarFromPrimitives {
|
||||
fn to_scalar(self) -> Scalar;
|
||||
}
|
||||
|
||||
impl ScalarFromPrimitives for usize {
|
||||
#[inline]
|
||||
fn to_scalar(self) -> Scalar {
|
||||
(0..self).map(|_i| Scalar::one()).sum()
|
||||
}
|
||||
}
|
||||
|
||||
impl ScalarFromPrimitives for bool {
|
||||
#[inline]
|
||||
fn to_scalar(self) -> Scalar {
|
||||
if self {
|
||||
Scalar::one()
|
||||
} else {
|
||||
Scalar::zero()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait ScalarBytesFromScalar {
|
||||
fn decompress_scalar(s: &Scalar) -> ScalarBytes;
|
||||
fn decompress_vector(s: &[Scalar]) -> Vec<ScalarBytes>;
|
||||
}
|
||||
|
||||
impl ScalarBytesFromScalar for Scalar {
|
||||
fn decompress_scalar(s: &Scalar) -> ScalarBytes {
|
||||
ScalarBytes::from_uint_reduced(U256::from_le_slice(&s.to_bytes()))
|
||||
}
|
||||
|
||||
fn decompress_vector(s: &[Scalar]) -> Vec<ScalarBytes> {
|
||||
(0..s.len())
|
||||
.map(|i| Scalar::decompress_scalar(&s[i]))
|
||||
.collect::<Vec<ScalarBytes>>()
|
||||
}
|
||||
}
|
||||
1266
packages/Spartan-secq/src/scalar/scalar.rs
Executable file
1266
packages/Spartan-secq/src/scalar/scalar.rs
Executable file
File diff suppressed because it is too large
Load Diff
1679
packages/Spartan-secq/src/sparse_mlpoly.rs
Normal file
1679
packages/Spartan-secq/src/sparse_mlpoly.rs
Normal file
File diff suppressed because it is too large
Load Diff
778
packages/Spartan-secq/src/sumcheck.rs
Normal file
778
packages/Spartan-secq/src/sumcheck.rs
Normal file
@@ -0,0 +1,778 @@
|
||||
#![allow(clippy::too_many_arguments)]
|
||||
#![allow(clippy::type_complexity)]
|
||||
use super::commitments::{Commitments, MultiCommitGens};
|
||||
use super::dense_mlpoly::DensePolynomial;
|
||||
use super::errors::ProofVerifyError;
|
||||
use super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
|
||||
use super::nizk::DotProductProof;
|
||||
use super::random::RandomTape;
|
||||
use super::scalar::Scalar;
|
||||
use super::transcript::{AppendToTranscript, ProofTranscript};
|
||||
use super::unipoly::{CompressedUniPoly, UniPoly};
|
||||
use crate::group::DecompressEncodedPoint;
|
||||
use core::iter;
|
||||
use itertools::izip;
|
||||
use merlin::Transcript;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct SumcheckInstanceProof {
|
||||
compressed_polys: Vec<CompressedUniPoly>,
|
||||
}
|
||||
|
||||
impl SumcheckInstanceProof {
|
||||
pub fn new(compressed_polys: Vec<CompressedUniPoly>) -> SumcheckInstanceProof {
|
||||
SumcheckInstanceProof { compressed_polys }
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
claim: Scalar,
|
||||
num_rounds: usize,
|
||||
degree_bound: usize,
|
||||
transcript: &mut Transcript,
|
||||
) -> Result<(Scalar, Vec<Scalar>), ProofVerifyError> {
|
||||
let mut e = claim;
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
|
||||
// verify that there is a univariate polynomial for each round
|
||||
assert_eq!(self.compressed_polys.len(), num_rounds);
|
||||
for i in 0..self.compressed_polys.len() {
|
||||
let poly = self.compressed_polys[i].decompress(&e);
|
||||
|
||||
// verify degree bound
|
||||
assert_eq!(poly.degree(), degree_bound);
|
||||
|
||||
// check if G_k(0) + G_k(1) = e
|
||||
assert_eq!(poly.eval_at_zero() + poly.eval_at_one(), e);
|
||||
|
||||
// append the prover's message to the transcript
|
||||
poly.append_to_transcript(b"poly", transcript);
|
||||
|
||||
//derive the verifier's challenge for the next round
|
||||
let r_i = transcript.challenge_scalar(b"challenge_nextround");
|
||||
|
||||
r.push(r_i);
|
||||
|
||||
// evaluate the claimed degree-ell polynomial at r_i
|
||||
e = poly.evaluate(&r_i);
|
||||
}
|
||||
|
||||
Ok((e, r))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct ZKSumcheckInstanceProof {
|
||||
comm_polys: Vec<CompressedGroup>,
|
||||
comm_evals: Vec<CompressedGroup>,
|
||||
proofs: Vec<DotProductProof>,
|
||||
}
|
||||
|
||||
impl ZKSumcheckInstanceProof {
|
||||
pub fn new(
|
||||
comm_polys: Vec<CompressedGroup>,
|
||||
comm_evals: Vec<CompressedGroup>,
|
||||
proofs: Vec<DotProductProof>,
|
||||
) -> Self {
|
||||
ZKSumcheckInstanceProof {
|
||||
comm_polys,
|
||||
comm_evals,
|
||||
proofs,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
comm_claim: &CompressedGroup,
|
||||
num_rounds: usize,
|
||||
degree_bound: usize,
|
||||
gens_1: &MultiCommitGens,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
) -> Result<(CompressedGroup, Vec<Scalar>), ProofVerifyError> {
|
||||
// verify degree bound
|
||||
assert_eq!(gens_n.n, degree_bound + 1);
|
||||
|
||||
// verify that there is a univariate polynomial for each round
|
||||
assert_eq!(self.comm_polys.len(), num_rounds);
|
||||
assert_eq!(self.comm_evals.len(), num_rounds);
|
||||
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
for i in 0..self.comm_polys.len() {
|
||||
let comm_poly = &self.comm_polys[i];
|
||||
|
||||
// append the prover's polynomial to the transcript
|
||||
comm_poly.append_to_transcript(b"comm_poly", transcript);
|
||||
|
||||
//derive the verifier's challenge for the next round
|
||||
let r_i = transcript.challenge_scalar(b"challenge_nextround");
|
||||
|
||||
// verify the proof of sum-check and evals
|
||||
let res = {
|
||||
let comm_claim_per_round = if i == 0 {
|
||||
comm_claim
|
||||
} else {
|
||||
&self.comm_evals[i - 1]
|
||||
};
|
||||
let comm_eval = &self.comm_evals[i];
|
||||
|
||||
// add two claims to transcript
|
||||
comm_claim_per_round.append_to_transcript(b"comm_claim_per_round", transcript);
|
||||
comm_eval.append_to_transcript(b"comm_eval", transcript);
|
||||
|
||||
// produce two weights
|
||||
let w = transcript.challenge_vector(b"combine_two_claims_to_one", 2);
|
||||
|
||||
// compute a weighted sum of the RHS
|
||||
let comm_target = GroupElement::vartime_multiscalar_mul(
|
||||
w.clone(),
|
||||
iter::once(&comm_claim_per_round)
|
||||
.chain(iter::once(&comm_eval))
|
||||
.map(|pt| pt.decompress().unwrap())
|
||||
.collect(),
|
||||
)
|
||||
.compress();
|
||||
|
||||
let a = {
|
||||
// the vector to use to decommit for sum-check test
|
||||
let a_sc = {
|
||||
let mut a = vec![Scalar::one(); degree_bound + 1];
|
||||
a[0] += Scalar::one();
|
||||
a
|
||||
};
|
||||
|
||||
// the vector to use to decommit for evaluation
|
||||
let a_eval = {
|
||||
let mut a = vec![Scalar::one(); degree_bound + 1];
|
||||
for j in 1..a.len() {
|
||||
a[j] = a[j - 1] * r_i;
|
||||
}
|
||||
a
|
||||
};
|
||||
|
||||
// take weighted sum of the two vectors using w
|
||||
assert_eq!(a_sc.len(), a_eval.len());
|
||||
(0..a_sc.len())
|
||||
.map(|i| w[0] * a_sc[i] + w[1] * a_eval[i])
|
||||
.collect::<Vec<Scalar>>()
|
||||
};
|
||||
|
||||
self.proofs[i]
|
||||
.verify(
|
||||
gens_1,
|
||||
gens_n,
|
||||
transcript,
|
||||
&a,
|
||||
&self.comm_polys[i],
|
||||
&comm_target,
|
||||
)
|
||||
.is_ok()
|
||||
};
|
||||
if !res {
|
||||
return Err(ProofVerifyError::InternalError);
|
||||
}
|
||||
|
||||
r.push(r_i);
|
||||
}
|
||||
|
||||
Ok((self.comm_evals[self.comm_evals.len() - 1], r))
|
||||
}
|
||||
}
|
||||
|
||||
impl SumcheckInstanceProof {
|
||||
pub fn prove_cubic<F>(
|
||||
claim: &Scalar,
|
||||
num_rounds: usize,
|
||||
poly_A: &mut DensePolynomial,
|
||||
poly_B: &mut DensePolynomial,
|
||||
poly_C: &mut DensePolynomial,
|
||||
comb_func: F,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Self, Vec<Scalar>, Vec<Scalar>)
|
||||
where
|
||||
F: Fn(&Scalar, &Scalar, &Scalar) -> Scalar,
|
||||
{
|
||||
let mut e = *claim;
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
let mut cubic_polys: Vec<CompressedUniPoly> = Vec::new();
|
||||
for _j in 0..num_rounds {
|
||||
let mut eval_point_0 = Scalar::zero();
|
||||
let mut eval_point_2 = Scalar::zero();
|
||||
let mut eval_point_3 = Scalar::zero();
|
||||
|
||||
let len = poly_A.len() / 2;
|
||||
for i in 0..len {
|
||||
// eval 0: bound_func is A(low)
|
||||
eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C[i]);
|
||||
|
||||
// eval 2: bound_func is -A(low) + 2*A(high)
|
||||
let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i];
|
||||
let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i];
|
||||
let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i];
|
||||
eval_point_2 += comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
);
|
||||
|
||||
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
|
||||
let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i];
|
||||
let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i];
|
||||
let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i];
|
||||
|
||||
eval_point_3 += comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
);
|
||||
}
|
||||
|
||||
let evals = vec![eval_point_0, e - eval_point_0, eval_point_2, eval_point_3];
|
||||
let poly = UniPoly::from_evals(&evals);
|
||||
|
||||
// append the prover's message to the transcript
|
||||
poly.append_to_transcript(b"poly", transcript);
|
||||
|
||||
//derive the verifier's challenge for the next round
|
||||
let r_j = transcript.challenge_scalar(b"challenge_nextround");
|
||||
r.push(r_j);
|
||||
// bound all tables to the verifier's challenege
|
||||
poly_A.bound_poly_var_top(&r_j);
|
||||
poly_B.bound_poly_var_top(&r_j);
|
||||
poly_C.bound_poly_var_top(&r_j);
|
||||
e = poly.evaluate(&r_j);
|
||||
cubic_polys.push(poly.compress());
|
||||
}
|
||||
|
||||
(
|
||||
SumcheckInstanceProof::new(cubic_polys),
|
||||
r,
|
||||
vec![poly_A[0], poly_B[0], poly_C[0]],
|
||||
)
|
||||
}
|
||||
|
||||
pub fn prove_cubic_batched<F>(
|
||||
claim: &Scalar,
|
||||
num_rounds: usize,
|
||||
poly_vec_par: (
|
||||
&mut Vec<&mut DensePolynomial>,
|
||||
&mut Vec<&mut DensePolynomial>,
|
||||
&mut DensePolynomial,
|
||||
),
|
||||
poly_vec_seq: (
|
||||
&mut Vec<&mut DensePolynomial>,
|
||||
&mut Vec<&mut DensePolynomial>,
|
||||
&mut Vec<&mut DensePolynomial>,
|
||||
),
|
||||
coeffs: &[Scalar],
|
||||
comb_func: F,
|
||||
transcript: &mut Transcript,
|
||||
) -> (
|
||||
Self,
|
||||
Vec<Scalar>,
|
||||
(Vec<Scalar>, Vec<Scalar>, Scalar),
|
||||
(Vec<Scalar>, Vec<Scalar>, Vec<Scalar>),
|
||||
)
|
||||
where
|
||||
F: Fn(&Scalar, &Scalar, &Scalar) -> Scalar,
|
||||
{
|
||||
let (poly_A_vec_par, poly_B_vec_par, poly_C_par) = poly_vec_par;
|
||||
let (poly_A_vec_seq, poly_B_vec_seq, poly_C_vec_seq) = poly_vec_seq;
|
||||
|
||||
//let (poly_A_vec_seq, poly_B_vec_seq, poly_C_vec_seq) = poly_vec_seq;
|
||||
let mut e = *claim;
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
let mut cubic_polys: Vec<CompressedUniPoly> = Vec::new();
|
||||
|
||||
for _j in 0..num_rounds {
|
||||
let mut evals: Vec<(Scalar, Scalar, Scalar)> = Vec::new();
|
||||
|
||||
for (poly_A, poly_B) in poly_A_vec_par.iter().zip(poly_B_vec_par.iter()) {
|
||||
let mut eval_point_0 = Scalar::zero();
|
||||
let mut eval_point_2 = Scalar::zero();
|
||||
let mut eval_point_3 = Scalar::zero();
|
||||
|
||||
let len = poly_A.len() / 2;
|
||||
for i in 0..len {
|
||||
// eval 0: bound_func is A(low)
|
||||
eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C_par[i]);
|
||||
|
||||
// eval 2: bound_func is -A(low) + 2*A(high)
|
||||
let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i];
|
||||
let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i];
|
||||
let poly_C_bound_point = poly_C_par[len + i] + poly_C_par[len + i] - poly_C_par[i];
|
||||
eval_point_2 += comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
);
|
||||
|
||||
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
|
||||
let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i];
|
||||
let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i];
|
||||
let poly_C_bound_point = poly_C_bound_point + poly_C_par[len + i] - poly_C_par[i];
|
||||
|
||||
eval_point_3 += comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
);
|
||||
}
|
||||
|
||||
evals.push((eval_point_0, eval_point_2, eval_point_3));
|
||||
}
|
||||
|
||||
for (poly_A, poly_B, poly_C) in izip!(
|
||||
poly_A_vec_seq.iter(),
|
||||
poly_B_vec_seq.iter(),
|
||||
poly_C_vec_seq.iter()
|
||||
) {
|
||||
let mut eval_point_0 = Scalar::zero();
|
||||
let mut eval_point_2 = Scalar::zero();
|
||||
let mut eval_point_3 = Scalar::zero();
|
||||
let len = poly_A.len() / 2;
|
||||
for i in 0..len {
|
||||
// eval 0: bound_func is A(low)
|
||||
eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C[i]);
|
||||
// eval 2: bound_func is -A(low) + 2*A(high)
|
||||
let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i];
|
||||
let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i];
|
||||
let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i];
|
||||
eval_point_2 += comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
);
|
||||
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
|
||||
let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i];
|
||||
let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i];
|
||||
let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i];
|
||||
eval_point_3 += comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
);
|
||||
}
|
||||
evals.push((eval_point_0, eval_point_2, eval_point_3));
|
||||
}
|
||||
|
||||
let evals_combined_0 = (0..evals.len()).map(|i| evals[i].0 * coeffs[i]).sum();
|
||||
let evals_combined_2 = (0..evals.len()).map(|i| evals[i].1 * coeffs[i]).sum();
|
||||
let evals_combined_3 = (0..evals.len()).map(|i| evals[i].2 * coeffs[i]).sum();
|
||||
|
||||
let evals = vec![
|
||||
evals_combined_0,
|
||||
e - evals_combined_0,
|
||||
evals_combined_2,
|
||||
evals_combined_3,
|
||||
];
|
||||
let poly = UniPoly::from_evals(&evals);
|
||||
|
||||
// append the prover's message to the transcript
|
||||
poly.append_to_transcript(b"poly", transcript);
|
||||
|
||||
//derive the verifier's challenge for the next round
|
||||
let r_j = transcript.challenge_scalar(b"challenge_nextround");
|
||||
r.push(r_j);
|
||||
|
||||
// bound all tables to the verifier's challenege
|
||||
for (poly_A, poly_B) in poly_A_vec_par.iter_mut().zip(poly_B_vec_par.iter_mut()) {
|
||||
poly_A.bound_poly_var_top(&r_j);
|
||||
poly_B.bound_poly_var_top(&r_j);
|
||||
}
|
||||
poly_C_par.bound_poly_var_top(&r_j);
|
||||
|
||||
for (poly_A, poly_B, poly_C) in izip!(
|
||||
poly_A_vec_seq.iter_mut(),
|
||||
poly_B_vec_seq.iter_mut(),
|
||||
poly_C_vec_seq.iter_mut()
|
||||
) {
|
||||
poly_A.bound_poly_var_top(&r_j);
|
||||
poly_B.bound_poly_var_top(&r_j);
|
||||
poly_C.bound_poly_var_top(&r_j);
|
||||
}
|
||||
|
||||
e = poly.evaluate(&r_j);
|
||||
cubic_polys.push(poly.compress());
|
||||
}
|
||||
|
||||
let poly_A_par_final = (0..poly_A_vec_par.len())
|
||||
.map(|i| poly_A_vec_par[i][0])
|
||||
.collect();
|
||||
let poly_B_par_final = (0..poly_B_vec_par.len())
|
||||
.map(|i| poly_B_vec_par[i][0])
|
||||
.collect();
|
||||
let claims_prod = (poly_A_par_final, poly_B_par_final, poly_C_par[0]);
|
||||
|
||||
let poly_A_seq_final = (0..poly_A_vec_seq.len())
|
||||
.map(|i| poly_A_vec_seq[i][0])
|
||||
.collect();
|
||||
let poly_B_seq_final = (0..poly_B_vec_seq.len())
|
||||
.map(|i| poly_B_vec_seq[i][0])
|
||||
.collect();
|
||||
let poly_C_seq_final = (0..poly_C_vec_seq.len())
|
||||
.map(|i| poly_C_vec_seq[i][0])
|
||||
.collect();
|
||||
let claims_dotp = (poly_A_seq_final, poly_B_seq_final, poly_C_seq_final);
|
||||
|
||||
(
|
||||
SumcheckInstanceProof::new(cubic_polys),
|
||||
r,
|
||||
claims_prod,
|
||||
claims_dotp,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl ZKSumcheckInstanceProof {
|
||||
pub fn prove_quad<F>(
|
||||
claim: &Scalar,
|
||||
blind_claim: &Scalar,
|
||||
num_rounds: usize,
|
||||
poly_A: &mut DensePolynomial,
|
||||
poly_B: &mut DensePolynomial,
|
||||
comb_func: F,
|
||||
gens_1: &MultiCommitGens,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut RandomTape,
|
||||
) -> (Self, Vec<Scalar>, Vec<Scalar>, Scalar)
|
||||
where
|
||||
F: Fn(&Scalar, &Scalar) -> Scalar,
|
||||
{
|
||||
let (blinds_poly, blinds_evals) = (
|
||||
random_tape.random_vector(b"blinds_poly", num_rounds),
|
||||
random_tape.random_vector(b"blinds_evals", num_rounds),
|
||||
);
|
||||
let mut claim_per_round = *claim;
|
||||
let mut comm_claim_per_round = claim_per_round.commit(blind_claim, gens_1).compress();
|
||||
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
let mut comm_polys: Vec<CompressedGroup> = Vec::new();
|
||||
let mut comm_evals: Vec<CompressedGroup> = Vec::new();
|
||||
let mut proofs: Vec<DotProductProof> = Vec::new();
|
||||
|
||||
for j in 0..num_rounds {
|
||||
let (poly, comm_poly) = {
|
||||
let mut eval_point_0 = Scalar::zero();
|
||||
let mut eval_point_2 = Scalar::zero();
|
||||
|
||||
let len = poly_A.len() / 2;
|
||||
for i in 0..len {
|
||||
// eval 0: bound_func is A(low)
|
||||
eval_point_0 += comb_func(&poly_A[i], &poly_B[i]);
|
||||
|
||||
// eval 2: bound_func is -A(low) + 2*A(high)
|
||||
let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i];
|
||||
let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i];
|
||||
eval_point_2 += comb_func(&poly_A_bound_point, &poly_B_bound_point);
|
||||
}
|
||||
|
||||
let evals = vec![eval_point_0, claim_per_round - eval_point_0, eval_point_2];
|
||||
let poly = UniPoly::from_evals(&evals);
|
||||
let comm_poly = poly.commit(gens_n, &blinds_poly[j]).compress();
|
||||
(poly, comm_poly)
|
||||
};
|
||||
|
||||
// append the prover's message to the transcript
|
||||
comm_poly.append_to_transcript(b"comm_poly", transcript);
|
||||
comm_polys.push(comm_poly);
|
||||
|
||||
//derive the verifier's challenge for the next round
|
||||
let r_j = transcript.challenge_scalar(b"challenge_nextround");
|
||||
|
||||
// bound all tables to the verifier's challenege
|
||||
poly_A.bound_poly_var_top(&r_j);
|
||||
poly_B.bound_poly_var_top(&r_j);
|
||||
|
||||
// produce a proof of sum-check and of evaluation
|
||||
let (proof, claim_next_round, comm_claim_next_round) = {
|
||||
let eval = poly.evaluate(&r_j);
|
||||
let comm_eval = eval.commit(&blinds_evals[j], gens_1).compress();
|
||||
|
||||
// we need to prove the following under homomorphic commitments:
|
||||
// (1) poly(0) + poly(1) = claim_per_round
|
||||
// (2) poly(r_j) = eval
|
||||
|
||||
// Our technique is to leverage dot product proofs:
|
||||
// (1) we can prove: <poly_in_coeffs_form, (2, 1, 1, 1)> = claim_per_round
|
||||
// (2) we can prove: <poly_in_coeffs_form, (1, r_j, r^2_j, ..) = eval
|
||||
// for efficiency we batch them using random weights
|
||||
|
||||
// add two claims to transcript
|
||||
comm_claim_per_round.append_to_transcript(b"comm_claim_per_round", transcript);
|
||||
comm_eval.append_to_transcript(b"comm_eval", transcript);
|
||||
|
||||
// produce two weights
|
||||
let w = transcript.challenge_vector(b"combine_two_claims_to_one", 2);
|
||||
|
||||
// compute a weighted sum of the RHS
|
||||
let target = w[0] * claim_per_round + w[1] * eval;
|
||||
let comm_target = GroupElement::vartime_multiscalar_mul(
|
||||
w.clone(),
|
||||
iter::once(&comm_claim_per_round)
|
||||
.chain(iter::once(&comm_eval))
|
||||
.map(|pt| pt.decompress().unwrap())
|
||||
.collect(),
|
||||
)
|
||||
.compress();
|
||||
|
||||
let blind = {
|
||||
let blind_sc = if j == 0 {
|
||||
blind_claim
|
||||
} else {
|
||||
&blinds_evals[j - 1]
|
||||
};
|
||||
|
||||
let blind_eval = &blinds_evals[j];
|
||||
|
||||
w[0] * blind_sc + w[1] * blind_eval
|
||||
};
|
||||
assert_eq!(target.commit(&blind, gens_1).compress(), comm_target);
|
||||
|
||||
let a = {
|
||||
// the vector to use to decommit for sum-check test
|
||||
let a_sc = {
|
||||
let mut a = vec![Scalar::one(); poly.degree() + 1];
|
||||
a[0] += Scalar::one();
|
||||
a
|
||||
};
|
||||
|
||||
// the vector to use to decommit for evaluation
|
||||
let a_eval = {
|
||||
let mut a = vec![Scalar::one(); poly.degree() + 1];
|
||||
for j in 1..a.len() {
|
||||
a[j] = a[j - 1] * r_j;
|
||||
}
|
||||
a
|
||||
};
|
||||
|
||||
// take weighted sum of the two vectors using w
|
||||
assert_eq!(a_sc.len(), a_eval.len());
|
||||
(0..a_sc.len())
|
||||
.map(|i| w[0] * a_sc[i] + w[1] * a_eval[i])
|
||||
.collect::<Vec<Scalar>>()
|
||||
};
|
||||
|
||||
let (proof, _comm_poly, _comm_sc_eval) = DotProductProof::prove(
|
||||
gens_1,
|
||||
gens_n,
|
||||
transcript,
|
||||
random_tape,
|
||||
&poly.as_vec(),
|
||||
&blinds_poly[j],
|
||||
&a,
|
||||
&target,
|
||||
&blind,
|
||||
);
|
||||
|
||||
(proof, eval, comm_eval)
|
||||
};
|
||||
|
||||
claim_per_round = claim_next_round;
|
||||
comm_claim_per_round = comm_claim_next_round;
|
||||
|
||||
proofs.push(proof);
|
||||
r.push(r_j);
|
||||
comm_evals.push(comm_claim_per_round);
|
||||
}
|
||||
|
||||
(
|
||||
ZKSumcheckInstanceProof::new(comm_polys, comm_evals, proofs),
|
||||
r,
|
||||
vec![poly_A[0], poly_B[0]],
|
||||
blinds_evals[num_rounds - 1],
|
||||
)
|
||||
}
|
||||
|
||||
pub fn prove_cubic_with_additive_term<F>(
|
||||
claim: &Scalar,
|
||||
blind_claim: &Scalar,
|
||||
num_rounds: usize,
|
||||
poly_A: &mut DensePolynomial,
|
||||
poly_B: &mut DensePolynomial,
|
||||
poly_C: &mut DensePolynomial,
|
||||
poly_D: &mut DensePolynomial,
|
||||
comb_func: F,
|
||||
gens_1: &MultiCommitGens,
|
||||
gens_n: &MultiCommitGens,
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut RandomTape,
|
||||
) -> (Self, Vec<Scalar>, Vec<Scalar>, Scalar)
|
||||
where
|
||||
F: Fn(&Scalar, &Scalar, &Scalar, &Scalar) -> Scalar,
|
||||
{
|
||||
let (blinds_poly, blinds_evals) = (
|
||||
random_tape.random_vector(b"blinds_poly", num_rounds),
|
||||
random_tape.random_vector(b"blinds_evals", num_rounds),
|
||||
);
|
||||
|
||||
let mut claim_per_round = *claim;
|
||||
let mut comm_claim_per_round = claim_per_round.commit(blind_claim, gens_1).compress();
|
||||
|
||||
let mut r: Vec<Scalar> = Vec::new();
|
||||
let mut comm_polys: Vec<CompressedGroup> = Vec::new();
|
||||
let mut comm_evals: Vec<CompressedGroup> = Vec::new();
|
||||
let mut proofs: Vec<DotProductProof> = Vec::new();
|
||||
|
||||
for j in 0..num_rounds {
|
||||
let (poly, comm_poly) = {
|
||||
let mut eval_point_0 = Scalar::zero();
|
||||
let mut eval_point_2 = Scalar::zero();
|
||||
let mut eval_point_3 = Scalar::zero();
|
||||
|
||||
let len = poly_A.len() / 2;
|
||||
for i in 0..len {
|
||||
// eval 0: bound_func is A(low)
|
||||
eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C[i], &poly_D[i]);
|
||||
|
||||
// eval 2: bound_func is -A(low) + 2*A(high)
|
||||
let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i];
|
||||
let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i];
|
||||
let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i];
|
||||
let poly_D_bound_point = poly_D[len + i] + poly_D[len + i] - poly_D[i];
|
||||
eval_point_2 += comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
&poly_D_bound_point,
|
||||
);
|
||||
|
||||
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
|
||||
let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i];
|
||||
let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i];
|
||||
let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i];
|
||||
let poly_D_bound_point = poly_D_bound_point + poly_D[len + i] - poly_D[i];
|
||||
eval_point_3 += comb_func(
|
||||
&poly_A_bound_point,
|
||||
&poly_B_bound_point,
|
||||
&poly_C_bound_point,
|
||||
&poly_D_bound_point,
|
||||
);
|
||||
}
|
||||
|
||||
let evals = vec![
|
||||
eval_point_0,
|
||||
claim_per_round - eval_point_0,
|
||||
eval_point_2,
|
||||
eval_point_3,
|
||||
];
|
||||
let poly = UniPoly::from_evals(&evals);
|
||||
let comm_poly = poly.commit(gens_n, &blinds_poly[j]).compress();
|
||||
(poly, comm_poly)
|
||||
};
|
||||
|
||||
// append the prover's message to the transcript
|
||||
comm_poly.append_to_transcript(b"comm_poly", transcript);
|
||||
comm_polys.push(comm_poly);
|
||||
|
||||
//derive the verifier's challenge for the next round
|
||||
let r_j = transcript.challenge_scalar(b"challenge_nextround");
|
||||
|
||||
// bound all tables to the verifier's challenege
|
||||
poly_A.bound_poly_var_top(&r_j);
|
||||
poly_B.bound_poly_var_top(&r_j);
|
||||
poly_C.bound_poly_var_top(&r_j);
|
||||
poly_D.bound_poly_var_top(&r_j);
|
||||
|
||||
// produce a proof of sum-check and of evaluation
|
||||
let (proof, claim_next_round, comm_claim_next_round) = {
|
||||
let eval = poly.evaluate(&r_j);
|
||||
let comm_eval = eval.commit(&blinds_evals[j], gens_1).compress();
|
||||
|
||||
// we need to prove the following under homomorphic commitments:
|
||||
// (1) poly(0) + poly(1) = claim_per_round
|
||||
// (2) poly(r_j) = eval
|
||||
|
||||
// Our technique is to leverage dot product proofs:
|
||||
// (1) we can prove: <poly_in_coeffs_form, (2, 1, 1, 1)> = claim_per_round
|
||||
// (2) we can prove: <poly_in_coeffs_form, (1, r_j, r^2_j, ..) = eval
|
||||
// for efficiency we batch them using random weights
|
||||
|
||||
// add two claims to transcript
|
||||
comm_claim_per_round.append_to_transcript(b"comm_claim_per_round", transcript);
|
||||
comm_eval.append_to_transcript(b"comm_eval", transcript);
|
||||
|
||||
// produce two weights
|
||||
let w = transcript.challenge_vector(b"combine_two_claims_to_one", 2);
|
||||
|
||||
// compute a weighted sum of the RHS
|
||||
let target = w[0] * claim_per_round + w[1] * eval;
|
||||
let comm_target = GroupElement::vartime_multiscalar_mul(
|
||||
w.clone(),
|
||||
iter::once(&comm_claim_per_round)
|
||||
.chain(iter::once(&comm_eval))
|
||||
.map(|pt| pt.decompress().unwrap())
|
||||
.collect::<Vec<GroupElement>>(),
|
||||
)
|
||||
.compress();
|
||||
|
||||
let blind = {
|
||||
let blind_sc = if j == 0 {
|
||||
blind_claim
|
||||
} else {
|
||||
&blinds_evals[j - 1]
|
||||
};
|
||||
|
||||
let blind_eval = &blinds_evals[j];
|
||||
|
||||
w[0] * blind_sc + w[1] * blind_eval
|
||||
};
|
||||
|
||||
assert_eq!(target.commit(&blind, gens_1).compress(), comm_target);
|
||||
|
||||
let a = {
|
||||
// the vector to use to decommit for sum-check test
|
||||
let a_sc = {
|
||||
let mut a = vec![Scalar::one(); poly.degree() + 1];
|
||||
a[0] += Scalar::one();
|
||||
a
|
||||
};
|
||||
|
||||
// the vector to use to decommit for evaluation
|
||||
let a_eval = {
|
||||
let mut a = vec![Scalar::one(); poly.degree() + 1];
|
||||
for j in 1..a.len() {
|
||||
a[j] = a[j - 1] * r_j;
|
||||
}
|
||||
a
|
||||
};
|
||||
|
||||
// take weighted sum of the two vectors using w
|
||||
assert_eq!(a_sc.len(), a_eval.len());
|
||||
(0..a_sc.len())
|
||||
.map(|i| w[0] * a_sc[i] + w[1] * a_eval[i])
|
||||
.collect::<Vec<Scalar>>()
|
||||
};
|
||||
|
||||
let (proof, _comm_poly, _comm_sc_eval) = DotProductProof::prove(
|
||||
gens_1,
|
||||
gens_n,
|
||||
transcript,
|
||||
random_tape,
|
||||
&poly.as_vec(),
|
||||
&blinds_poly[j],
|
||||
&a,
|
||||
&target,
|
||||
&blind,
|
||||
);
|
||||
|
||||
(proof, eval, comm_eval)
|
||||
};
|
||||
|
||||
proofs.push(proof);
|
||||
claim_per_round = claim_next_round;
|
||||
comm_claim_per_round = comm_claim_next_round;
|
||||
r.push(r_j);
|
||||
comm_evals.push(comm_claim_per_round);
|
||||
}
|
||||
|
||||
(
|
||||
ZKSumcheckInstanceProof::new(comm_polys, comm_evals, proofs),
|
||||
r,
|
||||
vec![poly_A[0], poly_B[0], poly_C[0], poly_D[0]],
|
||||
blinds_evals[num_rounds - 1],
|
||||
)
|
||||
}
|
||||
}
|
||||
88
packages/Spartan-secq/src/timer.rs
Normal file
88
packages/Spartan-secq/src/timer.rs
Normal file
@@ -0,0 +1,88 @@
|
||||
#[cfg(feature = "profile")]
|
||||
use colored::Colorize;
|
||||
#[cfg(feature = "profile")]
|
||||
use core::sync::atomic::AtomicUsize;
|
||||
#[cfg(feature = "profile")]
|
||||
use core::sync::atomic::Ordering;
|
||||
#[cfg(feature = "profile")]
|
||||
use std::time::Instant;
|
||||
|
||||
#[cfg(feature = "profile")]
|
||||
pub static CALL_DEPTH: AtomicUsize = AtomicUsize::new(0);
|
||||
|
||||
#[cfg(feature = "profile")]
|
||||
pub struct Timer {
|
||||
label: String,
|
||||
timer: Instant,
|
||||
}
|
||||
|
||||
#[cfg(feature = "profile")]
|
||||
impl Timer {
|
||||
#[inline(always)]
|
||||
pub fn new(label: &str) -> Self {
|
||||
let timer = Instant::now();
|
||||
CALL_DEPTH.fetch_add(1, Ordering::Relaxed);
|
||||
let star = "* ";
|
||||
println!(
|
||||
"{:indent$}{}{}",
|
||||
"",
|
||||
star,
|
||||
label.yellow().bold(),
|
||||
indent = 2 * CALL_DEPTH.fetch_add(0, Ordering::Relaxed)
|
||||
);
|
||||
Self {
|
||||
label: label.to_string(),
|
||||
timer,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn stop(&self) {
|
||||
let duration = self.timer.elapsed();
|
||||
let star = "* ";
|
||||
println!(
|
||||
"{:indent$}{}{} {:?}",
|
||||
"",
|
||||
star,
|
||||
self.label.blue().bold(),
|
||||
duration,
|
||||
indent = 2 * CALL_DEPTH.fetch_add(0, Ordering::Relaxed)
|
||||
);
|
||||
CALL_DEPTH.fetch_sub(1, Ordering::Relaxed);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn print(msg: &str) {
|
||||
CALL_DEPTH.fetch_add(1, Ordering::Relaxed);
|
||||
let star = "* ";
|
||||
println!(
|
||||
"{:indent$}{}{}",
|
||||
"",
|
||||
star,
|
||||
msg.to_string().green().bold(),
|
||||
indent = 2 * CALL_DEPTH.fetch_add(0, Ordering::Relaxed)
|
||||
);
|
||||
CALL_DEPTH.fetch_sub(1, Ordering::Relaxed);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "profile"))]
|
||||
pub struct Timer {
|
||||
_label: String,
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "profile"))]
|
||||
impl Timer {
|
||||
#[inline(always)]
|
||||
pub fn new(label: &str) -> Self {
|
||||
Self {
|
||||
_label: label.to_string(),
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn stop(&self) {}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn print(_msg: &str) {}
|
||||
}
|
||||
63
packages/Spartan-secq/src/transcript.rs
Normal file
63
packages/Spartan-secq/src/transcript.rs
Normal file
@@ -0,0 +1,63 @@
|
||||
use super::group::CompressedGroup;
|
||||
use super::scalar::Scalar;
|
||||
use merlin::Transcript;
|
||||
|
||||
pub trait ProofTranscript {
|
||||
fn append_protocol_name(&mut self, protocol_name: &'static [u8]);
|
||||
fn append_scalar(&mut self, label: &'static [u8], scalar: &Scalar);
|
||||
fn append_point(&mut self, label: &'static [u8], point: &CompressedGroup);
|
||||
fn challenge_scalar(&mut self, label: &'static [u8]) -> Scalar;
|
||||
fn challenge_vector(&mut self, label: &'static [u8], len: usize) -> Vec<Scalar>;
|
||||
}
|
||||
|
||||
impl ProofTranscript for Transcript {
|
||||
fn append_protocol_name(&mut self, protocol_name: &'static [u8]) {
|
||||
self.append_message(b"protocol-name", protocol_name);
|
||||
}
|
||||
|
||||
fn append_scalar(&mut self, label: &'static [u8], scalar: &Scalar) {
|
||||
self.append_message(label, &scalar.to_bytes());
|
||||
}
|
||||
|
||||
fn append_point(&mut self, label: &'static [u8], point: &CompressedGroup) {
|
||||
self.append_message(label, point.as_bytes());
|
||||
}
|
||||
|
||||
fn challenge_scalar(&mut self, label: &'static [u8]) -> Scalar {
|
||||
let mut buf = [0u8; 64];
|
||||
self.challenge_bytes(label, &mut buf);
|
||||
Scalar::from_bytes_wide(&buf)
|
||||
}
|
||||
|
||||
fn challenge_vector(&mut self, label: &'static [u8], len: usize) -> Vec<Scalar> {
|
||||
(0..len)
|
||||
.map(|_i| self.challenge_scalar(label))
|
||||
.collect::<Vec<Scalar>>()
|
||||
}
|
||||
}
|
||||
|
||||
pub trait AppendToTranscript {
|
||||
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript);
|
||||
}
|
||||
|
||||
impl AppendToTranscript for Scalar {
|
||||
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
|
||||
transcript.append_scalar(label, self);
|
||||
}
|
||||
}
|
||||
|
||||
impl AppendToTranscript for [Scalar] {
|
||||
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
|
||||
transcript.append_message(label, b"begin_append_vector");
|
||||
for item in self {
|
||||
transcript.append_scalar(label, item);
|
||||
}
|
||||
transcript.append_message(label, b"end_append_vector");
|
||||
}
|
||||
}
|
||||
|
||||
impl AppendToTranscript for CompressedGroup {
|
||||
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
|
||||
transcript.append_point(label, self);
|
||||
}
|
||||
}
|
||||
182
packages/Spartan-secq/src/unipoly.rs
Normal file
182
packages/Spartan-secq/src/unipoly.rs
Normal file
@@ -0,0 +1,182 @@
|
||||
use super::commitments::{Commitments, MultiCommitGens};
|
||||
use super::group::GroupElement;
|
||||
use super::scalar::{Scalar, ScalarFromPrimitives};
|
||||
use super::transcript::{AppendToTranscript, ProofTranscript};
|
||||
use merlin::Transcript;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
// ax^2 + bx + c stored as vec![c,b,a]
|
||||
// ax^3 + bx^2 + cx + d stored as vec![d,c,b,a]
|
||||
#[derive(Debug)]
|
||||
pub struct UniPoly {
|
||||
coeffs: Vec<Scalar>,
|
||||
}
|
||||
|
||||
// ax^2 + bx + c stored as vec![c,a]
|
||||
// ax^3 + bx^2 + cx + d stored as vec![d,b,a]
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct CompressedUniPoly {
|
||||
coeffs_except_linear_term: Vec<Scalar>,
|
||||
}
|
||||
|
||||
impl UniPoly {
|
||||
pub fn from_evals(evals: &[Scalar]) -> Self {
|
||||
// we only support degree-2 or degree-3 univariate polynomials
|
||||
assert!(evals.len() == 3 || evals.len() == 4);
|
||||
let coeffs = if evals.len() == 3 {
|
||||
// ax^2 + bx + c
|
||||
let two_inv = (2_usize).to_scalar().invert().unwrap();
|
||||
|
||||
let c = evals[0];
|
||||
let a = two_inv * (evals[2] - evals[1] - evals[1] + c);
|
||||
let b = evals[1] - c - a;
|
||||
vec![c, b, a]
|
||||
} else {
|
||||
// ax^3 + bx^2 + cx + d
|
||||
let two_inv = (2_usize).to_scalar().invert().unwrap();
|
||||
let six_inv = (6_usize).to_scalar().invert().unwrap();
|
||||
|
||||
let d = evals[0];
|
||||
let a = six_inv
|
||||
* (evals[3] - evals[2] - evals[2] - evals[2] + evals[1] + evals[1] + evals[1] - evals[0]);
|
||||
let b = two_inv
|
||||
* (evals[0] + evals[0] - evals[1] - evals[1] - evals[1] - evals[1] - evals[1]
|
||||
+ evals[2]
|
||||
+ evals[2]
|
||||
+ evals[2]
|
||||
+ evals[2]
|
||||
- evals[3]);
|
||||
let c = evals[1] - d - a - b;
|
||||
vec![d, c, b, a]
|
||||
};
|
||||
|
||||
UniPoly { coeffs }
|
||||
}
|
||||
|
||||
pub fn degree(&self) -> usize {
|
||||
self.coeffs.len() - 1
|
||||
}
|
||||
|
||||
pub fn as_vec(&self) -> Vec<Scalar> {
|
||||
self.coeffs.clone()
|
||||
}
|
||||
|
||||
pub fn eval_at_zero(&self) -> Scalar {
|
||||
self.coeffs[0]
|
||||
}
|
||||
|
||||
pub fn eval_at_one(&self) -> Scalar {
|
||||
(0..self.coeffs.len()).map(|i| self.coeffs[i]).sum()
|
||||
}
|
||||
|
||||
pub fn evaluate(&self, r: &Scalar) -> Scalar {
|
||||
let mut eval = self.coeffs[0];
|
||||
let mut power = *r;
|
||||
for i in 1..self.coeffs.len() {
|
||||
eval += power * self.coeffs[i];
|
||||
power *= r;
|
||||
}
|
||||
eval
|
||||
}
|
||||
|
||||
pub fn compress(&self) -> CompressedUniPoly {
|
||||
let coeffs_except_linear_term = [&self.coeffs[..1], &self.coeffs[2..]].concat();
|
||||
assert_eq!(coeffs_except_linear_term.len() + 1, self.coeffs.len());
|
||||
CompressedUniPoly {
|
||||
coeffs_except_linear_term,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn commit(&self, gens: &MultiCommitGens, blind: &Scalar) -> GroupElement {
|
||||
self.coeffs.commit(blind, gens)
|
||||
}
|
||||
}
|
||||
|
||||
impl CompressedUniPoly {
|
||||
// we require eval(0) + eval(1) = hint, so we can solve for the linear term as:
|
||||
// linear_term = hint - 2 * constant_term - deg2 term - deg3 term
|
||||
pub fn decompress(&self, hint: &Scalar) -> UniPoly {
|
||||
let mut linear_term =
|
||||
hint - self.coeffs_except_linear_term[0] - self.coeffs_except_linear_term[0];
|
||||
for i in 1..self.coeffs_except_linear_term.len() {
|
||||
linear_term -= self.coeffs_except_linear_term[i];
|
||||
}
|
||||
|
||||
let mut coeffs = vec![self.coeffs_except_linear_term[0], linear_term];
|
||||
coeffs.extend(&self.coeffs_except_linear_term[1..]);
|
||||
assert_eq!(self.coeffs_except_linear_term.len() + 1, coeffs.len());
|
||||
UniPoly { coeffs }
|
||||
}
|
||||
}
|
||||
|
||||
impl AppendToTranscript for UniPoly {
|
||||
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
|
||||
transcript.append_message(label, b"UniPoly_begin");
|
||||
for i in 0..self.coeffs.len() {
|
||||
transcript.append_scalar(b"coeff", &self.coeffs[i]);
|
||||
}
|
||||
transcript.append_message(label, b"UniPoly_end");
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_from_evals_quad() {
|
||||
// polynomial is 2x^2 + 3x + 1
|
||||
let e0 = Scalar::one();
|
||||
let e1 = (6_usize).to_scalar();
|
||||
let e2 = (15_usize).to_scalar();
|
||||
let evals = vec![e0, e1, e2];
|
||||
let poly = UniPoly::from_evals(&evals);
|
||||
|
||||
assert_eq!(poly.eval_at_zero(), e0);
|
||||
assert_eq!(poly.eval_at_one(), e1);
|
||||
assert_eq!(poly.coeffs.len(), 3);
|
||||
assert_eq!(poly.coeffs[0], Scalar::one());
|
||||
assert_eq!(poly.coeffs[1], (3_usize).to_scalar());
|
||||
assert_eq!(poly.coeffs[2], (2_usize).to_scalar());
|
||||
|
||||
let hint = e0 + e1;
|
||||
let compressed_poly = poly.compress();
|
||||
let decompressed_poly = compressed_poly.decompress(&hint);
|
||||
for i in 0..decompressed_poly.coeffs.len() {
|
||||
assert_eq!(decompressed_poly.coeffs[i], poly.coeffs[i]);
|
||||
}
|
||||
|
||||
let e3 = (28_usize).to_scalar();
|
||||
assert_eq!(poly.evaluate(&(3_usize).to_scalar()), e3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_from_evals_cubic() {
|
||||
// polynomial is x^3 + 2x^2 + 3x + 1
|
||||
let e0 = Scalar::one();
|
||||
let e1 = (7_usize).to_scalar();
|
||||
let e2 = (23_usize).to_scalar();
|
||||
let e3 = (55_usize).to_scalar();
|
||||
let evals = vec![e0, e1, e2, e3];
|
||||
let poly = UniPoly::from_evals(&evals);
|
||||
|
||||
assert_eq!(poly.eval_at_zero(), e0);
|
||||
assert_eq!(poly.eval_at_one(), e1);
|
||||
assert_eq!(poly.coeffs.len(), 4);
|
||||
assert_eq!(poly.coeffs[0], Scalar::one());
|
||||
assert_eq!(poly.coeffs[1], (3_usize).to_scalar());
|
||||
assert_eq!(poly.coeffs[2], (2_usize).to_scalar());
|
||||
assert_eq!(poly.coeffs[3], (1_usize).to_scalar());
|
||||
|
||||
let hint = e0 + e1;
|
||||
let compressed_poly = poly.compress();
|
||||
let decompressed_poly = compressed_poly.decompress(&hint);
|
||||
for i in 0..decompressed_poly.coeffs.len() {
|
||||
assert_eq!(decompressed_poly.coeffs[i], poly.coeffs[i]);
|
||||
}
|
||||
|
||||
let e4 = (109_usize).to_scalar();
|
||||
assert_eq!(poly.evaluate(&(4_usize).to_scalar()), e4);
|
||||
}
|
||||
}
|
||||
22
packages/circuit_reader/Cargo.toml
Normal file
22
packages/circuit_reader/Cargo.toml
Normal file
@@ -0,0 +1,22 @@
|
||||
[package]
|
||||
name = "circuit_reader"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
bincode = "1.3.3"
|
||||
secq256k1 = { path = "../secq256k1" }
|
||||
spartan = { path = "../Spartan-secq" }
|
||||
ff = "0.12.0"
|
||||
byteorder = "1.4.3"
|
||||
group = "0.12.0"
|
||||
itertools = "0.9.0"
|
||||
|
||||
[[bin]]
|
||||
name = "gen_spartan_inst"
|
||||
path = "src/bin/gen_spartan_inst.rs"
|
||||
|
||||
|
||||
|
||||
24
packages/circuit_reader/src/bin/gen_spartan_inst.rs
Normal file
24
packages/circuit_reader/src/bin/gen_spartan_inst.rs
Normal file
@@ -0,0 +1,24 @@
|
||||
#![allow(non_snake_case)]
|
||||
use bincode;
|
||||
use circuit_reader::load_as_spartan_inst;
|
||||
use std::env::{args, current_dir};
|
||||
use std::fs::File;
|
||||
use std::io::Write;
|
||||
|
||||
fn main() {
|
||||
let circom_r1cs_path = args().nth(1).unwrap();
|
||||
let output_path = args().nth(2).unwrap();
|
||||
let num_pub_inputs = args().nth(3).unwrap().parse::<usize>().unwrap();
|
||||
|
||||
let root = current_dir().unwrap();
|
||||
let circom_r1cs_path = root.join(circom_r1cs_path);
|
||||
let spartan_inst = load_as_spartan_inst(circom_r1cs_path, num_pub_inputs);
|
||||
let sparta_inst_bytes = bincode::serialize(&spartan_inst).unwrap();
|
||||
|
||||
File::create(root.join(output_path.clone()))
|
||||
.unwrap()
|
||||
.write_all(sparta_inst_bytes.as_slice())
|
||||
.unwrap();
|
||||
|
||||
println!("Written Spartan circuit to {}", output_path);
|
||||
}
|
||||
@@ -1,41 +1,15 @@
|
||||
#![allow(non_snake_case)]
|
||||
use bincode;
|
||||
mod circom_reader;
|
||||
|
||||
use circom_reader::{load_r1cs_from_bin_file, R1CS};
|
||||
use ff::PrimeField;
|
||||
use libspartan::Instance;
|
||||
use secq256k1::AffinePoint;
|
||||
use secq256k1::FieldBytes;
|
||||
use spartan_wasm::circom_reader::{load_r1cs_from_bin_file, R1CS};
|
||||
use std::env::{args, current_dir};
|
||||
use std::fs::File;
|
||||
use std::io::Write;
|
||||
use std::path::PathBuf;
|
||||
|
||||
fn main() {
|
||||
let circuit_path = args().nth(1).unwrap();
|
||||
let output_path = args().nth(2).unwrap();
|
||||
let num_pub_inputs = args().nth(3).unwrap().parse::<usize>().unwrap();
|
||||
|
||||
let root = current_dir().unwrap();
|
||||
let circuit_path = root.join(circuit_path);
|
||||
let spartan_inst = load_as_spartan_inst(circuit_path, num_pub_inputs);
|
||||
let sparta_inst_bytes = bincode::serialize(&spartan_inst).unwrap();
|
||||
|
||||
File::create(root.join(output_path.clone()))
|
||||
.unwrap()
|
||||
.write_all(sparta_inst_bytes.as_slice())
|
||||
.unwrap();
|
||||
|
||||
println!("Written Spartan circuit to {}", output_path);
|
||||
}
|
||||
|
||||
pub fn load_as_spartan_inst(circuit_file: PathBuf, num_pub_inputs: usize) -> Instance {
|
||||
let root = current_dir().unwrap();
|
||||
|
||||
let circuit_file = root.join(circuit_file);
|
||||
let (r1cs, _) = load_r1cs_from_bin_file::<AffinePoint>(&circuit_file);
|
||||
|
||||
let spartan_inst = convert_to_spartan_r1cs(&r1cs, num_pub_inputs);
|
||||
|
||||
spartan_inst
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "circuits",
|
||||
"version": "1.0.0",
|
||||
"name": "@personaelabs/spartan-ecdsa-circuits",
|
||||
"version": "0.1.0",
|
||||
"main": "index.js",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
@@ -18,4 +18,4 @@
|
||||
"ts-jest": "^29.0.3",
|
||||
"typescript": "^4.9.4"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
pragma circom 2.1.2;
|
||||
|
||||
function ROUND_KEYS() {
|
||||
return [
|
||||
15180568604901803243989155929934437997245952775071395385994322939386074967328,
|
||||
@@ -213,4 +215,4 @@ function MDS_MATRIX() {
|
||||
70274477372358662369456035572054501601454406272695978931839980644925236550307
|
||||
]
|
||||
];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@personaelabs/spartan-ecdsa",
|
||||
"version": "1.0.2",
|
||||
"version": "2.0.0",
|
||||
"main": "./build/lib.js",
|
||||
"types": "./build/lib.d.ts",
|
||||
"license": "MIT",
|
||||
|
||||
@@ -109,7 +109,7 @@ export class PublicInput {
|
||||
|
||||
/**
|
||||
* Compute the group elements T and U for efficient ecdsa
|
||||
* http://localhost:1313/posts/efficient-ecdsa-1/
|
||||
* https://personaelabs.org/posts/efficient-ecdsa-1/
|
||||
*/
|
||||
export const computeEffEcdsaPubInput = (
|
||||
r: bigint,
|
||||
|
||||
@@ -20,6 +20,14 @@ export class Tree {
|
||||
this.treeInner.insert(leaf);
|
||||
}
|
||||
|
||||
delete(index: number) {
|
||||
this.treeInner.delete(index);
|
||||
}
|
||||
|
||||
leaves(): bigint[] {
|
||||
return this.treeInner.leaves;
|
||||
}
|
||||
|
||||
root(): bigint {
|
||||
return this.treeInner.root;
|
||||
}
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
|
||||
let wasm;
|
||||
|
||||
const heap = new Array(32).fill(undefined);
|
||||
const heap = new Array(128).fill(undefined);
|
||||
|
||||
heap.push(undefined, null, true, false);
|
||||
|
||||
@@ -10,7 +9,7 @@ function getObject(idx) { return heap[idx]; }
|
||||
let heap_next = heap.length;
|
||||
|
||||
function dropObject(idx) {
|
||||
if (idx < 36) return;
|
||||
if (idx < 132) return;
|
||||
heap[idx] = heap_next;
|
||||
heap_next = idx;
|
||||
}
|
||||
@@ -25,10 +24,10 @@ const cachedTextDecoder = new TextDecoder('utf-8', { ignoreBOM: true, fatal: tru
|
||||
|
||||
cachedTextDecoder.decode();
|
||||
|
||||
let cachedUint8Memory0 = new Uint8Array();
|
||||
let cachedUint8Memory0 = null;
|
||||
|
||||
function getUint8Memory0() {
|
||||
if (cachedUint8Memory0.buffer !== wasm.memory.buffer) {
|
||||
if (cachedUint8Memory0 === null || cachedUint8Memory0.buffer !== wasm.memory.buffer) {
|
||||
cachedUint8Memory0 = new Uint8Array(wasm.memory.buffer);
|
||||
}
|
||||
return cachedUint8Memory0;
|
||||
@@ -61,10 +60,10 @@ function passArray8ToWasm0(arg, malloc) {
|
||||
return ptr;
|
||||
}
|
||||
|
||||
let cachedInt32Memory0 = new Int32Array();
|
||||
let cachedInt32Memory0 = null;
|
||||
|
||||
function getInt32Memory0() {
|
||||
if (cachedInt32Memory0.buffer !== wasm.memory.buffer) {
|
||||
if (cachedInt32Memory0 === null || cachedInt32Memory0.buffer !== wasm.memory.buffer) {
|
||||
cachedInt32Memory0 = new Int32Array(wasm.memory.buffer);
|
||||
}
|
||||
return cachedInt32Memory0;
|
||||
@@ -248,6 +247,15 @@ async function load(module, imports) {
|
||||
function getImports() {
|
||||
const imports = {};
|
||||
imports.wbg = {};
|
||||
imports.wbg.__wbg_randomFillSync_6894564c2c334c42 = function() { return handleError(function (arg0, arg1, arg2) {
|
||||
getObject(arg0).randomFillSync(getArrayU8FromWasm0(arg1, arg2));
|
||||
}, arguments) };
|
||||
imports.wbg.__wbindgen_object_drop_ref = function(arg0) {
|
||||
takeObject(arg0);
|
||||
};
|
||||
imports.wbg.__wbg_getRandomValues_805f1c3d65988a5a = function() { return handleError(function (arg0, arg1) {
|
||||
getObject(arg0).getRandomValues(getObject(arg1));
|
||||
}, arguments) };
|
||||
imports.wbg.__wbg_crypto_e1d53a1d73fb10b8 = function(arg0) {
|
||||
const ret = getObject(arg0).crypto;
|
||||
return addHeapObject(ret);
|
||||
@@ -273,9 +281,6 @@ function getImports() {
|
||||
const ret = typeof(getObject(arg0)) === 'string';
|
||||
return ret;
|
||||
};
|
||||
imports.wbg.__wbindgen_object_drop_ref = function(arg0) {
|
||||
takeObject(arg0);
|
||||
};
|
||||
imports.wbg.__wbg_msCrypto_6e7d3e1f92610cbb = function(arg0) {
|
||||
const ret = getObject(arg0).msCrypto;
|
||||
return addHeapObject(ret);
|
||||
@@ -292,17 +297,11 @@ function getImports() {
|
||||
const ret = getStringFromWasm0(arg0, arg1);
|
||||
return addHeapObject(ret);
|
||||
};
|
||||
imports.wbg.__wbg_getRandomValues_805f1c3d65988a5a = function() { return handleError(function (arg0, arg1) {
|
||||
getObject(arg0).getRandomValues(getObject(arg1));
|
||||
}, arguments) };
|
||||
imports.wbg.__wbg_randomFillSync_6894564c2c334c42 = function() { return handleError(function (arg0, arg1, arg2) {
|
||||
getObject(arg0).randomFillSync(getArrayU8FromWasm0(arg1, arg2));
|
||||
}, arguments) };
|
||||
imports.wbg.__wbg_newnoargs_b5b063fc6c2f0376 = function(arg0, arg1) {
|
||||
imports.wbg.__wbg_newnoargs_2b8b6bd7753c76ba = function(arg0, arg1) {
|
||||
const ret = new Function(getStringFromWasm0(arg0, arg1));
|
||||
return addHeapObject(ret);
|
||||
};
|
||||
imports.wbg.__wbg_call_97ae9d8645dc388b = function() { return handleError(function (arg0, arg1) {
|
||||
imports.wbg.__wbg_call_95d1ea488d03e4e8 = function() { return handleError(function (arg0, arg1) {
|
||||
const ret = getObject(arg0).call(getObject(arg1));
|
||||
return addHeapObject(ret);
|
||||
}, arguments) };
|
||||
@@ -310,19 +309,19 @@ function getImports() {
|
||||
const ret = getObject(arg0);
|
||||
return addHeapObject(ret);
|
||||
};
|
||||
imports.wbg.__wbg_self_6d479506f72c6a71 = function() { return handleError(function () {
|
||||
imports.wbg.__wbg_self_e7c1f827057f6584 = function() { return handleError(function () {
|
||||
const ret = self.self;
|
||||
return addHeapObject(ret);
|
||||
}, arguments) };
|
||||
imports.wbg.__wbg_window_f2557cc78490aceb = function() { return handleError(function () {
|
||||
imports.wbg.__wbg_window_a09ec664e14b1b81 = function() { return handleError(function () {
|
||||
const ret = window.window;
|
||||
return addHeapObject(ret);
|
||||
}, arguments) };
|
||||
imports.wbg.__wbg_globalThis_7f206bda628d5286 = function() { return handleError(function () {
|
||||
imports.wbg.__wbg_globalThis_87cbb8506fecf3a9 = function() { return handleError(function () {
|
||||
const ret = globalThis.globalThis;
|
||||
return addHeapObject(ret);
|
||||
}, arguments) };
|
||||
imports.wbg.__wbg_global_ba75c50d1cf384f4 = function() { return handleError(function () {
|
||||
imports.wbg.__wbg_global_c85a9259e621f3db = function() { return handleError(function () {
|
||||
const ret = global.global;
|
||||
return addHeapObject(ret);
|
||||
}, arguments) };
|
||||
@@ -330,30 +329,30 @@ function getImports() {
|
||||
const ret = getObject(arg0) === undefined;
|
||||
return ret;
|
||||
};
|
||||
imports.wbg.__wbg_call_168da88779e35f61 = function() { return handleError(function (arg0, arg1, arg2) {
|
||||
imports.wbg.__wbg_call_9495de66fdbe016b = function() { return handleError(function (arg0, arg1, arg2) {
|
||||
const ret = getObject(arg0).call(getObject(arg1), getObject(arg2));
|
||||
return addHeapObject(ret);
|
||||
}, arguments) };
|
||||
imports.wbg.__wbg_buffer_3f3d764d4747d564 = function(arg0) {
|
||||
imports.wbg.__wbg_buffer_cf65c07de34b9a08 = function(arg0) {
|
||||
const ret = getObject(arg0).buffer;
|
||||
return addHeapObject(ret);
|
||||
};
|
||||
imports.wbg.__wbg_new_8c3f0052272a457a = function(arg0) {
|
||||
imports.wbg.__wbg_new_537b7341ce90bb31 = function(arg0) {
|
||||
const ret = new Uint8Array(getObject(arg0));
|
||||
return addHeapObject(ret);
|
||||
};
|
||||
imports.wbg.__wbg_set_83db9690f9353e79 = function(arg0, arg1, arg2) {
|
||||
imports.wbg.__wbg_set_17499e8aa4003ebd = function(arg0, arg1, arg2) {
|
||||
getObject(arg0).set(getObject(arg1), arg2 >>> 0);
|
||||
};
|
||||
imports.wbg.__wbg_length_9e1ae1900cb0fbd5 = function(arg0) {
|
||||
imports.wbg.__wbg_length_27a2afe8ab42b09f = function(arg0) {
|
||||
const ret = getObject(arg0).length;
|
||||
return ret;
|
||||
};
|
||||
imports.wbg.__wbg_newwithlength_f5933855e4f48a19 = function(arg0) {
|
||||
imports.wbg.__wbg_newwithlength_b56c882b57805732 = function(arg0) {
|
||||
const ret = new Uint8Array(arg0 >>> 0);
|
||||
return addHeapObject(ret);
|
||||
};
|
||||
imports.wbg.__wbg_subarray_58ad4efbb5bcb886 = function(arg0, arg1, arg2) {
|
||||
imports.wbg.__wbg_subarray_7526649b91a252a6 = function(arg0, arg1, arg2) {
|
||||
const ret = getObject(arg0).subarray(arg1 >>> 0, arg2 >>> 0);
|
||||
return addHeapObject(ret);
|
||||
};
|
||||
@@ -393,8 +392,8 @@ function initMemory(imports, maybe_memory) {
|
||||
function finalizeInit(instance, module) {
|
||||
wasm = instance.exports;
|
||||
init.__wbindgen_wasm_module = module;
|
||||
cachedInt32Memory0 = new Int32Array();
|
||||
cachedUint8Memory0 = new Uint8Array();
|
||||
cachedInt32Memory0 = null;
|
||||
cachedUint8Memory0 = null;
|
||||
|
||||
wasm.__wbindgen_start();
|
||||
return wasm;
|
||||
|
||||
@@ -32,14 +32,3 @@ poseidon = { path = "../poseidon" }
|
||||
itertools = "0.9.0"
|
||||
group = "0.12.0"
|
||||
|
||||
# Do not compile these dependencies when targeting wasm
|
||||
#[target.'cfg(not(target_family = "wasm"))'.dependencies]
|
||||
#nova-scotia = { git = "https://github.com/DanTehrani/Nova-Scotia.git" }
|
||||
#nova-snark = "0.9.0"
|
||||
#ff = "0.12.1"
|
||||
#ark-std = { version = "0.3.0", features = ["print-trace"] }
|
||||
|
||||
|
||||
[[bin]]
|
||||
name = "gen_spartan_inst"
|
||||
path = "src/bin/gen_spartan_inst.rs"
|
||||
|
||||
@@ -1,4 +1 @@
|
||||
pub mod wasm;
|
||||
|
||||
#[cfg(not(target_family = "wasm"))]
|
||||
pub mod circom_reader;
|
||||
|
||||
2
scripts/test.sh
Normal file
2
scripts/test.sh
Normal file
@@ -0,0 +1,2 @@
|
||||
cargo test --release &&
|
||||
yarn lerna run test
|
||||
Reference in New Issue
Block a user