53 Commits

Author SHA1 Message Date
Daniel Tehrani
4bf236a1a5 Merge pull request #45 from 0xisk/main
refactor: minor enhancements on the lib package
2023-12-05 14:12:43 -08:00
Daniel Tehrani
ede2b29cac fix: use tsconfig.build.json so vscode can annotate test files as well 2023-12-02 08:45:37 +09:00
0xisk
cb273002c0 refactor: destructure params, update package metadata, enhance file naming and structure. 2023-11-29 20:41:48 +01:00
Daniel Tehrani
a08876d1ff Merge pull request #44 from 0xisk/main
chore: refactor lib package exports to named for clarity
2023-11-25 13:42:03 +09:00
isk
8b0529f868 chore: refactor lib exports to named for clarity 2023-11-24 11:40:18 +01:00
Daniel Tehrani
3827e5de67 v2.3.1 2023-10-11 16:33:48 +09:00
Daniel Tehrani
53049c8cbe fix: this lead to the unintentional breaking change 2023-10-11 16:32:19 +09:00
Daniel Tehrani
2fab170a15 Merge pull request #41 from AtHeartEngineer/patch-1
Update package.json
2023-10-11 11:27:15 +09:00
Daniel Tehrani
82518aabc3 Remove unused snarkjs installations 2023-10-11 11:22:57 +09:00
Daniel Tehrani
e8c95a975b Update yarn.lock 2023-10-11 11:10:44 +09:00
AtHeartEngineer
4cf4b36efd Update package.json
Bump snarkjs version to get rid of vulnerability warning, even though it doesn't effect this project since spartan-ecdsa is only using the witness generation
2023-10-10 21:18:56 -04:00
Daniel Tehrani
63f534a23a v2.3.0 2023-10-05 19:24:51 +09:00
Daniel Tehrani
4d7c3c73df feat: allow specifying using a remote circuit for the prover 2023-10-05 19:13:59 +09:00
Daniel Tehrani
baedc727fb v2.2.0 2023-09-21 14:58:58 +09:00
Daniel Tehrani
eeb704a7d1 feat: allow specifying using the remote circuit 2023-09-21 14:53:35 +09:00
Dan Tehrani
5dae5e1aa4 Update README.md 2023-06-24 00:34:04 +09:00
Daniel Tehrani
3386b30d9b v2.1.4 2023-05-29 12:17:16 +02:00
Daniel Tehrani
19e1ddd4ef Add method verifyProof to Tree 2023-05-29 12:14:23 +02:00
Daniel Tehrani
85fc788204 Remove multi threading config (not doing multi threading at this moment) 2023-05-26 16:01:57 +02:00
Daniel Tehrani
5fa21ec9c3 Commit lock file 2023-05-12 16:17:33 +02:00
Daniel Tehrani
f05b40e7f3 v2.1.3 2023-05-12 13:36:30 +02:00
Daniel Tehrani
adb73907fd Fix WebAssembly instantiation 2023-05-12 13:34:38 +02:00
Daniel Tehrani
86338b7d4d v2.1.2 2023-05-05 13:28:48 +02:00
Daniel Tehrani
4b8acc430d feat: use lazy_static to load the constants 2023-05-05 12:49:40 +02:00
Daniel Tehrani
4d72a30b63 feat: only allow two inputs 2023-05-05 12:48:59 +02:00
Dan Tehrani
ebf2b5f6cc Update README.md 2023-04-30 11:02:21 +02:00
Daniel Tehrani
9da3bb96ab v2.1.1 2023-04-24 11:01:47 +02:00
Daniel Tehrani
84a54098b5 Fix the javascript wasm compile 2023-04-24 11:01:29 +02:00
Daniel Tehrani
b7e9c32e05 v2.1.0 2023-03-29 16:20:57 +09:00
Daniel Tehrani
bfef367bfb Merge branch 'main' of https://github.com/personaelabs/spartan-ecdsa 2023-03-29 13:59:14 +09:00
Dan Tehrani
feaad7e337 Attempt to fix failing build (3) 2023-03-29 13:55:49 +09:00
Daniel Tehrani
ef7e590464 Separate circuit bin file generator from spartan_wasm 2023-03-28 16:35:50 +09:00
Daniel Tehrani
3d0f6f5a01 Attempt to fix failing build (2) 2023-03-28 11:56:58 +09:00
Daniel Tehrani
885e92019e Attempt to fix failing build 2023-03-28 11:48:39 +09:00
Daniel Tehrani
70614aa862 Specify correct rust version 2023-03-28 11:40:30 +09:00
Daniel Tehrani
2061eacf8b Add Github Action workflow for deploying the npm package 2023-03-28 11:32:54 +09:00
Daniel Tehrani
4fa672024b Expose leaves and delete functions 2023-03-23 19:45:30 +09:00
Dan Tehrani
035689ac8f Merge pull request #31 from personaelabs/fix/apply-1e431e2
Fix/apply 1e431e2
2023-03-15 15:47:39 +09:00
Daniel Tehrani
1055716bf3 v2.0.0 2023-03-15 10:12:19 +09:00
Daniel Tehrani
a019e051f5 Apply commit 1e431e2 from microsoft/Spartan 2023-03-15 09:56:39 +09:00
Daniel Tehrani
40ddce1c01 Update wasm.js to the latest Spartan wasm compile 2023-03-15 09:54:41 +09:00
Daniel Tehrani
6bc45a95a1 Remove .gitignore in subdir since we only use the one in root 2023-03-15 09:54:15 +09:00
Daniel Tehrani
e0b9cad003 Add Spartan-secq to the workplace 2023-03-15 09:01:52 +09:00
Dan Tehrani
955f3a2344 Merge pull request #29 from personaelabs/lsankar/publish-circuits-npm
publish spartan-ecdsa-circuits on npm
2023-03-11 13:00:04 +09:00
Dan Tehrani
41b3a48a49 Merge pull request #30 from personaelabs/lsankar/fix-url
link to hosted blog post instead of localhost
2023-03-11 12:59:09 +09:00
lsankar4033
f40a2928b0 link to hosted blog post 2023-03-08 09:55:09 -08:00
lsankar4033
d5c3513286 publish spartan-ecdsa-circuits on npm 2023-03-05 20:17:04 -07:00
lsankar4033
62a666ccca add pragma version to poseidon_constants.circom 2023-03-05 12:31:18 -07:00
Dan Tehrani
6196feb45b Merge pull request #26 from personaelabs/lsankar/move-spartan-secq-in
Inline spartan-secq dependency
2023-02-24 15:00:16 +09:00
lsankar4033
b0996b6d1e remove github CI tests from spartan-secq 2023-02-23 07:06:04 -08:00
Daniel Tehrani
8da070d660 Remove .vscode from subdir since we have it in the root dir 2023-02-23 16:37:33 +09:00
lsankar4033
edb72871f6 update deps 2023-02-22 20:08:43 -08:00
lsankar4033
ac30f8e4dd import spartan-secq in 2023-02-22 19:48:39 -08:00
79 changed files with 11178 additions and 633 deletions

View File

@@ -1,5 +1,5 @@
[target.wasm32-unknown-unknown]
rustflags = ["-C", "target-feature=+atomics,+bulk-memory,+mutable-globals", "-C", "link-arg=--max-memory=4294967296"]
rustflags = ["-C", "link-arg=--max-memory=4294967296"]
[unstable]
build-std = ["panic_abort", "std"]

42
.github/workflows/publish.yaml vendored Normal file
View File

@@ -0,0 +1,42 @@
name: Publish Package to npmjs
on:
release:
types: [published]
workflow_dispatch:
jobs:
publish:
runs-on: macos-latest
steps:
- uses: actions/checkout@v3
with:
ref: ${{ github.ref_name }}
# Setup Node.js
- uses: actions/setup-node@v3
with:
node-version: 18
registry-url: "https://registry.npmjs.org"
# Setup Rust
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2022-10-31
- run: rustup component add rust-src
- run: rustup target add x86_64-apple-darwin
# Install circom-secq
- uses: GuillaumeFalourd/clone-github-repo-action@v2
with:
owner: "DanTehrani"
repository: "circom-secq"
- run: cd circom-secq && cargo build --release && cargo install --path circom
# Install wasm-pack
- uses: jetli/wasm-pack-action@v0.4.0
with:
version: "v0.10.3"
- run: cargo test --release
- run: yarn
- run: yarn build
- run: yarn test
- run: npm publish
working-directory: ./packages/lib
env:
NODE_AUTH_TOKEN: ${{ secrets.NPM_TOKEN }}

6
.gitignore vendored
View File

@@ -2,9 +2,6 @@
# will have compiled files and executables
/target/
# Remove Cargo.lock from gitignore if creating an executable, leave it for libraries
# More information here https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
Cargo.lock
# These are backup files generated by rustfmt
**/*.rs.bk
@@ -26,6 +23,7 @@ circom_witness.wtns
*.ptau
build/
dist/
*.r1cs
*.sym
@@ -36,7 +34,7 @@ packages/prover/test_circuit/test_circuit_js/
packages/prover/test_circuit/*.json
wasm_bytes.ts
wasmBytes.ts
**/sage/*.sage.py
packages/lib/src/circuits/

1398
Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -3,4 +3,6 @@ members = [
"packages/spartan_wasm",
"packages/secq256k1",
"packages/poseidon",
"packages/Spartan-secq",
"packages/circuit_reader",
]

View File

@@ -53,7 +53,17 @@ yarn add @personaelabs/spartan-ecdsa
v18 or later
### Install dependencies & Build all packages
### Build
1. Install Circom with secq256k1 support
```
git clone https://github.com/DanTehrani/circom-secq
cd circom-secq && cargo build --release && cargo install --path circom
```
2. Install [wasm-pack](https://rustwasm.github.io/wasm-pack/installer/)
4. Install dependencies & Build all packages
```jsx
yarn && yarn build

View File

@@ -6,7 +6,8 @@
"repository": "https://github.com/DanTehrani/spartan-wasm.git",
"author": "Daniel Tehrani <contact@dantehrani.com>",
"scripts": {
"build": "sh ./scripts/build.sh && lerna run build"
"build": "sh ./scripts/build.sh && lerna run build",
"test": "sh ./scripts/test.sh"
},
"devDependencies": {
"@types/jest": "^29.2.4",
@@ -15,8 +16,7 @@
"eslint-plugin-react": "7.32.1",
"eslint-plugin-react-hooks": "4.6.0",
"eslint-plugin-security": "1.7.0",
"lerna": "^6.4.0",
"snarkjs": "^0.5.0"
"lerna": "^6.4.0"
},
"workspaces": [
"packages/lib",

View File

@@ -0,0 +1,9 @@
# Microsoft Open Source Code of Conduct
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
Resources:
- [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
- [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
- Contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with questions or concerns

View File

@@ -0,0 +1,12 @@
This project welcomes contributions and suggestions. Most contributions require you to
agree to a Contributor License Agreement (CLA) declaring that you have the right to,
and actually do, grant us the rights to use your contribution. For details, visit
https://cla.microsoft.com.
When you submit a pull request, a CLA-bot will automatically determine whether you need
to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the
instructions provided by the bot. You will only need to do this once across all repositories using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.

View File

@@ -0,0 +1,57 @@
[package]
name = "spartan"
version = "0.7.1"
authors = ["Srinath Setty <srinath@microsoft.com>"]
edition = "2021"
description = "High-speed zkSNARKs without trusted setup"
documentation = "https://docs.rs/spartan/"
readme = "README.md"
repository = "https://github.com/microsoft/Spartan"
license-file = "LICENSE"
keywords = ["zkSNARKs", "cryptography", "proofs"]
[dependencies]
num-bigint-dig = "^0.7"
secq256k1 = { path = "../secq256k1" }
merlin = "3.0.0"
rand = "0.7.3"
digest = "0.8.1"
sha3 = "0.8.2"
byteorder = "1.3.4"
rayon = { version = "1.3.0", optional = true }
serde = { version = "1.0.106", features = ["derive"] }
bincode = "1.2.1"
subtle = { version = "2.4", default-features = false }
rand_core = { version = "0.6", default-features = false }
zeroize = { version = "1", default-features = false }
itertools = "0.10.0"
colored = "2.0.0"
flate2 = "1.0.14"
thiserror = "1.0"
num-traits = "0.2.15"
hex-literal = { version = "0.3" }
multiexp = "0.2.2"
[dev-dependencies]
criterion = "0.3.1"
[lib]
name = "libspartan"
path = "src/lib.rs"
crate-type = ["cdylib", "rlib"]
[[bin]]
name = "snark"
path = "profiler/snark.rs"
[[bin]]
name = "nizk"
path = "profiler/nizk.rs"
[[bench]]
name = "snark"
harness = false
[[bench]]
name = "nizk"
harness = false

View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) Microsoft Corporation.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE

View File

@@ -0,0 +1,10 @@
## Fork of [Spartan](https://github.com/microsoft/Spartan)
_This fork is still under development._
Modify Spartan to operate over the **base field** of secp256k1.
### Changes from the original Spartan
- Use the secq256k1 crate instead of curve25519-dalek
- Modify values in scalar.rs (originally ristretto255.rs)
Please refer to [spartan-ecdsa](https://github.com/personaelabs/spartan-ecdsa) for development status.

View File

@@ -0,0 +1,41 @@
<!-- BEGIN MICROSOFT SECURITY.MD V0.0.3 BLOCK -->
## Security
Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), and [our GitHub organizations](https://opensource.microsoft.com/).
If you believe you have found a security vulnerability in any Microsoft-owned repository that meets Microsoft's [Microsoft's definition of a security vulnerability](https://docs.microsoft.com/en-us/previous-versions/tn-archive/cc751383(v=technet.10)) of a security vulnerability, please report it to us as described below.
## Reporting Security Issues
**Please do not report security vulnerabilities through public GitHub issues.**
Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://msrc.microsoft.com/create-report).
If you prefer to submit without logging in, send email to [secure@microsoft.com](mailto:secure@microsoft.com). If possible, encrypt your message with our PGP key; please download it from the the [Microsoft Security Response Center PGP Key page](https://www.microsoft.com/en-us/msrc/pgp-key-msrc).
You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc).
Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
* Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
* Full paths of source file(s) related to the manifestation of the issue
* The location of the affected source code (tag/branch/commit or direct URL)
* Any special configuration required to reproduce the issue
* Step-by-step instructions to reproduce the issue
* Proof-of-concept or exploit code (if possible)
* Impact of the issue, including how an attacker might exploit the issue
This information will help us triage your report more quickly.
If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://microsoft.com/msrc/bounty) page for more details about our active programs.
## Preferred Languages
We prefer all communications to be in English.
## Policy
Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://www.microsoft.com/en-us/msrc/cvd).
<!-- END MICROSOFT SECURITY.MD BLOCK -->

View File

@@ -0,0 +1,92 @@
#![allow(clippy::assertions_on_result_states)]
extern crate byteorder;
extern crate core;
extern crate criterion;
extern crate digest;
extern crate libspartan;
extern crate merlin;
extern crate rand;
extern crate sha3;
use libspartan::{Instance, NIZKGens, NIZK};
use merlin::Transcript;
use criterion::*;
fn nizk_prove_benchmark(c: &mut Criterion) {
for &s in [10, 12, 16].iter() {
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
let mut group = c.benchmark_group("NIZK_prove_benchmark");
group.plot_config(plot_config);
let num_vars = (2_usize).pow(s as u32);
let num_cons = num_vars;
let num_inputs = 10;
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
let gens = NIZKGens::new(num_cons, num_vars, num_inputs);
let name = format!("NIZK_prove_{}", num_vars);
group.bench_function(&name, move |b| {
b.iter(|| {
let mut prover_transcript = Transcript::new(b"example");
NIZK::prove(
black_box(&inst),
black_box(vars.clone()),
black_box(&inputs),
black_box(&gens),
black_box(&mut prover_transcript),
);
});
});
group.finish();
}
}
fn nizk_verify_benchmark(c: &mut Criterion) {
for &s in [10, 12, 16].iter() {
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
let mut group = c.benchmark_group("NIZK_verify_benchmark");
group.plot_config(plot_config);
let num_vars = (2_usize).pow(s as u32);
let num_cons = num_vars;
let num_inputs = 10;
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
let gens = NIZKGens::new(num_cons, num_vars, num_inputs);
// produce a proof of satisfiability
let mut prover_transcript = Transcript::new(b"example");
let proof = NIZK::prove(&inst, vars, &inputs, &gens, &mut prover_transcript);
let name = format!("NIZK_verify_{}", num_cons);
group.bench_function(&name, move |b| {
b.iter(|| {
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(
black_box(&inst),
black_box(&inputs),
black_box(&mut verifier_transcript),
black_box(&gens)
)
.is_ok());
});
});
group.finish();
}
}
fn set_duration() -> Criterion {
Criterion::default().sample_size(10)
}
criterion_group! {
name = benches_nizk;
config = set_duration();
targets = nizk_prove_benchmark, nizk_verify_benchmark
}
criterion_main!(benches_nizk);

View File

@@ -0,0 +1,131 @@
#![allow(clippy::assertions_on_result_states)]
extern crate libspartan;
extern crate merlin;
use libspartan::{Instance, SNARKGens, SNARK};
use merlin::Transcript;
use criterion::*;
fn snark_encode_benchmark(c: &mut Criterion) {
for &s in [10, 12, 16].iter() {
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
let mut group = c.benchmark_group("SNARK_encode_benchmark");
group.plot_config(plot_config);
let num_vars = (2_usize).pow(s as u32);
let num_cons = num_vars;
let num_inputs = 10;
let (inst, _vars, _inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
// produce public parameters
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_cons);
// produce a commitment to R1CS instance
let name = format!("SNARK_encode_{}", num_cons);
group.bench_function(&name, move |b| {
b.iter(|| {
SNARK::encode(black_box(&inst), black_box(&gens));
});
});
group.finish();
}
}
fn snark_prove_benchmark(c: &mut Criterion) {
for &s in [10, 12, 16].iter() {
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
let mut group = c.benchmark_group("SNARK_prove_benchmark");
group.plot_config(plot_config);
let num_vars = (2_usize).pow(s as u32);
let num_cons = num_vars;
let num_inputs = 10;
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
// produce public parameters
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_cons);
// produce a commitment to R1CS instance
let (comm, decomm) = SNARK::encode(&inst, &gens);
// produce a proof
let name = format!("SNARK_prove_{}", num_cons);
group.bench_function(&name, move |b| {
b.iter(|| {
let mut prover_transcript = Transcript::new(b"example");
SNARK::prove(
black_box(&inst),
black_box(&comm),
black_box(&decomm),
black_box(vars.clone()),
black_box(&inputs),
black_box(&gens),
black_box(&mut prover_transcript),
);
});
});
group.finish();
}
}
fn snark_verify_benchmark(c: &mut Criterion) {
for &s in [10, 12, 16].iter() {
let plot_config = PlotConfiguration::default().summary_scale(AxisScale::Logarithmic);
let mut group = c.benchmark_group("SNARK_verify_benchmark");
group.plot_config(plot_config);
let num_vars = (2_usize).pow(s as u32);
let num_cons = num_vars;
let num_inputs = 10;
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
// produce public parameters
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_cons);
// produce a commitment to R1CS instance
let (comm, decomm) = SNARK::encode(&inst, &gens);
// produce a proof of satisfiability
let mut prover_transcript = Transcript::new(b"example");
let proof = SNARK::prove(
&inst,
&comm,
&decomm,
vars,
&inputs,
&gens,
&mut prover_transcript,
);
// verify the proof
let name = format!("SNARK_verify_{}", num_cons);
group.bench_function(&name, move |b| {
b.iter(|| {
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(
black_box(&comm),
black_box(&inputs),
black_box(&mut verifier_transcript),
black_box(&gens)
)
.is_ok());
});
});
group.finish();
}
}
fn set_duration() -> Criterion {
Criterion::default().sample_size(10)
}
criterion_group! {
name = benches_snark;
config = set_duration();
targets = snark_encode_benchmark, snark_prove_benchmark, snark_verify_benchmark
}
criterion_main!(benches_snark);

View File

@@ -0,0 +1,147 @@
//! Demonstrates how to produces a proof for canonical cubic equation: `x^3 + x + 5 = y`.
//! The example is described in detail [here].
//!
//! The R1CS for this problem consists of the following 4 constraints:
//! `Z0 * Z0 - Z1 = 0`
//! `Z1 * Z0 - Z2 = 0`
//! `(Z2 + Z0) * 1 - Z3 = 0`
//! `(Z3 + 5) * 1 - I0 = 0`
//!
//! [here]: https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
#![allow(clippy::assertions_on_result_states)]
use libspartan::{InputsAssignment, Instance, SNARKGens, VarsAssignment, SNARK};
use merlin::Transcript;
use rand_core::OsRng;
use secq256k1::elliptic_curve::Field;
use secq256k1::Scalar;
#[allow(non_snake_case)]
fn produce_r1cs() -> (
usize,
usize,
usize,
usize,
Instance,
VarsAssignment,
InputsAssignment,
) {
// parameters of the R1CS instance
let num_cons = 4;
let num_vars = 4;
let num_inputs = 1;
let num_non_zero_entries = 8;
// We will encode the above constraints into three matrices, where
// the coefficients in the matrix are in the little-endian byte order
let mut A: Vec<(usize, usize, [u8; 32])> = Vec::new();
let mut B: Vec<(usize, usize, [u8; 32])> = Vec::new();
let mut C: Vec<(usize, usize, [u8; 32])> = Vec::new();
let one: [u8; 32] = Scalar::ONE.to_bytes().into();
// R1CS is a set of three sparse matrices A B C, where is a row for every
// constraint and a column for every entry in z = (vars, 1, inputs)
// An R1CS instance is satisfiable iff:
// Az \circ Bz = Cz, where z = (vars, 1, inputs)
// constraint 0 entries in (A,B,C)
// constraint 0 is Z0 * Z0 - Z1 = 0.
A.push((0, 0, one));
B.push((0, 0, one));
C.push((0, 1, one));
// constraint 1 entries in (A,B,C)
// constraint 1 is Z1 * Z0 - Z2 = 0.
A.push((1, 1, one));
B.push((1, 0, one));
C.push((1, 2, one));
// constraint 2 entries in (A,B,C)
// constraint 2 is (Z2 + Z0) * 1 - Z3 = 0.
A.push((2, 2, one));
A.push((2, 0, one));
B.push((2, num_vars, one));
C.push((2, 3, one));
// constraint 3 entries in (A,B,C)
// constraint 3 is (Z3 + 5) * 1 - I0 = 0.
A.push((3, 3, one));
A.push((3, num_vars, Scalar::from(5u32).to_bytes().into()));
B.push((3, num_vars, one));
C.push((3, num_vars + 1, one));
let inst = Instance::new(num_cons, num_vars, num_inputs, &A, &B, &C).unwrap();
// compute a satisfying assignment
let mut csprng: OsRng = OsRng;
let z0 = Scalar::random(&mut csprng);
let z1 = z0 * z0; // constraint 0
let z2 = z1 * z0; // constraint 1
let z3 = z2 + z0; // constraint 2
let i0 = z3 + Scalar::from(5u32); // constraint 3
// create a VarsAssignment
let mut vars: Vec<[u8; 32]> = vec![Scalar::ZERO.to_bytes().into(); num_vars];
vars[0] = z0.to_bytes().into();
vars[1] = z1.to_bytes().into();
vars[2] = z2.to_bytes().into();
vars[3] = z3.to_bytes().into();
let assignment_vars = VarsAssignment::new(&vars).unwrap();
// create an InputsAssignment
let mut inputs: Vec<[u8; 32]> = vec![Scalar::ZERO.to_bytes().into(); num_inputs];
inputs[0] = i0.to_bytes().into();
let assignment_inputs = InputsAssignment::new(&inputs).unwrap();
// check if the instance we created is satisfiable
let res = inst.is_sat(&assignment_vars, &assignment_inputs);
assert!(res.unwrap(), "should be satisfied");
(
num_cons,
num_vars,
num_inputs,
num_non_zero_entries,
inst,
assignment_vars,
assignment_inputs,
)
}
fn main() {
// produce an R1CS instance
let (
num_cons,
num_vars,
num_inputs,
num_non_zero_entries,
inst,
assignment_vars,
assignment_inputs,
) = produce_r1cs();
// produce public parameters
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_non_zero_entries);
// create a commitment to the R1CS instance
let (comm, decomm) = SNARK::encode(&inst, &gens);
// produce a proof of satisfiability
let mut prover_transcript = Transcript::new(b"snark_example");
let proof = SNARK::prove(
&inst,
&comm,
&decomm,
assignment_vars,
&assignment_inputs,
&gens,
&mut prover_transcript,
);
// verify the proof of satisfiability
let mut verifier_transcript = Transcript::new(b"snark_example");
assert!(proof
.verify(&comm, &assignment_inputs, &mut verifier_transcript, &gens)
.is_ok());
println!("proof verification successful!");
}

View File

@@ -0,0 +1,52 @@
#![allow(non_snake_case)]
#![allow(clippy::assertions_on_result_states)]
extern crate flate2;
extern crate libspartan;
extern crate merlin;
extern crate rand;
use flate2::{write::ZlibEncoder, Compression};
use libspartan::{Instance, NIZKGens, NIZK};
use merlin::Transcript;
fn print(msg: &str) {
let star = "* ";
println!("{:indent$}{}{}", "", star, msg, indent = 2);
}
pub fn main() {
// the list of number of variables (and constraints) in an R1CS instance
let inst_sizes = vec![10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20];
println!("Profiler:: NIZK");
for &s in inst_sizes.iter() {
let num_vars = (2_usize).pow(s as u32);
let num_cons = num_vars;
let num_inputs = 10;
// produce a synthetic R1CSInstance
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
// produce public generators
let gens = NIZKGens::new(num_cons, num_vars, num_inputs);
// produce a proof of satisfiability
let mut prover_transcript = Transcript::new(b"nizk_example");
let proof = NIZK::prove(&inst, vars, &inputs, &gens, &mut prover_transcript);
let mut encoder = ZlibEncoder::new(Vec::new(), Compression::default());
bincode::serialize_into(&mut encoder, &proof).unwrap();
let proof_encoded = encoder.finish().unwrap();
let msg_proof_len = format!("NIZK::proof_compressed_len {:?}", proof_encoded.len());
print(&msg_proof_len);
// verify the proof of satisfiability
let mut verifier_transcript = Transcript::new(b"nizk_example");
assert!(proof
.verify(&inst, &inputs, &mut verifier_transcript, &gens)
.is_ok());
println!();
}
}

View File

@@ -0,0 +1,62 @@
#![allow(non_snake_case)]
#![allow(clippy::assertions_on_result_states)]
extern crate flate2;
extern crate libspartan;
extern crate merlin;
use flate2::{write::ZlibEncoder, Compression};
use libspartan::{Instance, SNARKGens, SNARK};
use merlin::Transcript;
fn print(msg: &str) {
let star = "* ";
println!("{:indent$}{}{}", "", star, msg, indent = 2);
}
pub fn main() {
// the list of number of variables (and constraints) in an R1CS instance
let inst_sizes = vec![10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20];
println!("Profiler:: SNARK");
for &s in inst_sizes.iter() {
let num_vars = (2_usize).pow(s as u32);
let num_cons = num_vars;
let num_inputs = 10;
// produce a synthetic R1CSInstance
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
// produce public generators
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_cons);
// create a commitment to R1CSInstance
let (comm, decomm) = SNARK::encode(&inst, &gens);
// produce a proof of satisfiability
let mut prover_transcript = Transcript::new(b"snark_example");
let proof = SNARK::prove(
&inst,
&comm,
&decomm,
vars,
&inputs,
&gens,
&mut prover_transcript,
);
let mut encoder = ZlibEncoder::new(Vec::new(), Compression::default());
bincode::serialize_into(&mut encoder, &proof).unwrap();
let proof_encoded = encoder.finish().unwrap();
let msg_proof_len = format!("SNARK::proof_compressed_len {:?}", proof_encoded.len());
print(&msg_proof_len);
// verify the proof of satisfiability
let mut verifier_transcript = Transcript::new(b"snark_example");
assert!(proof
.verify(&comm, &inputs, &mut verifier_transcript, &gens)
.is_ok());
println!();
}
}

View File

@@ -0,0 +1,4 @@
edition = "2018"
tab_spaces = 2
newline_style = "Unix"
use_try_shorthand = true

View File

@@ -0,0 +1,54 @@
use hex_literal::hex;
use num_bigint_dig::{BigInt, BigUint, ModInverse, ToBigInt};
use num_traits::{FromPrimitive, ToPrimitive};
use std::ops::Neg;
fn get_words(n: &BigUint) -> [u64; 4] {
let mut words = [0u64; 4];
for i in 0..4 {
let word = n.clone() >> (64 * i) & BigUint::from(0xffffffffffffffffu64);
words[i] = word.to_u64().unwrap();
}
words
}
fn render_hex(label: String, words: &[u64; 4]) {
println!("// {}", label);
for word in words {
println!("0x{:016x},", word);
}
}
fn main() {
let modulus = BigUint::from_bytes_be(&hex!(
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"
));
let r = BigUint::from_u8(2)
.unwrap()
.modpow(&BigUint::from_u64(256).unwrap(), &modulus);
let r2 = BigUint::from_u8(2)
.unwrap()
.modpow(&BigUint::from_u64(512).unwrap(), &modulus);
let r3 = BigUint::from_u8(2)
.unwrap()
.modpow(&BigUint::from_u64(768).unwrap(), &modulus);
let two_pow_64 = BigUint::from_u128(18446744073709551616u128).unwrap();
let one = BigInt::from_u8(1).unwrap();
let inv = modulus
.clone()
.mod_inverse(&two_pow_64)
.unwrap()
.neg()
.modpow(&one, &two_pow_64.to_bigint().unwrap());
render_hex("Modulus".to_string(), &get_words(&modulus));
render_hex("R".to_string(), &get_words(&r));
render_hex("R2".to_string(), &get_words(&r2));
render_hex("R3".to_string(), &get_words(&r3));
render_hex("INV".to_string(), &get_words(&inv.to_biguint().unwrap()));
}

View File

@@ -0,0 +1,96 @@
use super::group::{GroupElement, VartimeMultiscalarMul};
use super::scalar::Scalar;
use digest::{ExtendableOutput, Input};
use secq256k1::AffinePoint;
use sha3::Shake256;
use std::io::Read;
#[derive(Debug)]
pub struct MultiCommitGens {
pub n: usize,
pub G: Vec<GroupElement>,
pub h: GroupElement,
}
impl MultiCommitGens {
pub fn new(n: usize, label: &[u8]) -> Self {
let mut shake = Shake256::default();
shake.input(label);
shake.input(AffinePoint::generator().compress().as_bytes());
let mut reader = shake.xof_result();
let mut gens: Vec<GroupElement> = Vec::new();
let mut uniform_bytes = [0u8; 128];
for _ in 0..n + 1 {
reader.read_exact(&mut uniform_bytes).unwrap();
gens.push(AffinePoint::from_uniform_bytes(&uniform_bytes));
}
MultiCommitGens {
n,
G: gens[..n].to_vec(),
h: gens[n],
}
}
pub fn clone(&self) -> MultiCommitGens {
MultiCommitGens {
n: self.n,
h: self.h,
G: self.G.clone(),
}
}
pub fn scale(&self, s: &Scalar) -> MultiCommitGens {
MultiCommitGens {
n: self.n,
h: self.h,
G: (0..self.n).map(|i| s * self.G[i]).collect(),
}
}
pub fn split_at(&self, mid: usize) -> (MultiCommitGens, MultiCommitGens) {
let (G1, G2) = self.G.split_at(mid);
(
MultiCommitGens {
n: G1.len(),
G: G1.to_vec(),
h: self.h,
},
MultiCommitGens {
n: G2.len(),
G: G2.to_vec(),
h: self.h,
},
)
}
}
pub trait Commitments {
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement;
}
impl Commitments for Scalar {
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
assert_eq!(gens_n.n, 1);
GroupElement::vartime_multiscalar_mul(
[*self, *blind].to_vec(),
[gens_n.G[0], gens_n.h].to_vec(),
)
}
}
impl Commitments for Vec<Scalar> {
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
assert_eq!(gens_n.n, self.len());
GroupElement::vartime_multiscalar_mul((*self).clone(), gens_n.G.clone()) + blind * gens_n.h
}
}
impl Commitments for [Scalar] {
fn commit(&self, blind: &Scalar, gens_n: &MultiCommitGens) -> GroupElement {
assert_eq!(gens_n.n, self.len());
GroupElement::vartime_multiscalar_mul(self.to_vec(), gens_n.G.clone()) + blind * gens_n.h
}
}

View File

@@ -0,0 +1,602 @@
#![allow(clippy::too_many_arguments)]
use super::commitments::{Commitments, MultiCommitGens};
use super::errors::ProofVerifyError;
use super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
use super::math::Math;
use super::nizk::{DotProductProofGens, DotProductProofLog};
use super::random::RandomTape;
use super::scalar::Scalar;
use super::transcript::{AppendToTranscript, ProofTranscript};
use crate::group::DecompressEncodedPoint;
use core::ops::Index;
use merlin::Transcript;
use serde::{Deserialize, Serialize};
#[cfg(feature = "multicore")]
use rayon::prelude::*;
#[derive(Debug)]
pub struct DensePolynomial {
num_vars: usize, // the number of variables in the multilinear polynomial
len: usize,
Z: Vec<Scalar>, // evaluations of the polynomial in all the 2^num_vars Boolean inputs
}
pub struct PolyCommitmentGens {
pub gens: DotProductProofGens,
}
impl PolyCommitmentGens {
// the number of variables in the multilinear polynomial
pub fn new(num_vars: usize, label: &'static [u8]) -> PolyCommitmentGens {
let (_left, right) = EqPolynomial::compute_factored_lens(num_vars);
let gens = DotProductProofGens::new(right.pow2(), label);
PolyCommitmentGens { gens }
}
}
pub struct PolyCommitmentBlinds {
blinds: Vec<Scalar>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct PolyCommitment {
C: Vec<CompressedGroup>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ConstPolyCommitment {
C: CompressedGroup,
}
pub struct EqPolynomial {
r: Vec<Scalar>,
}
impl EqPolynomial {
pub fn new(r: Vec<Scalar>) -> Self {
EqPolynomial { r }
}
pub fn evaluate(&self, rx: &[Scalar]) -> Scalar {
assert_eq!(self.r.len(), rx.len());
(0..rx.len())
.map(|i| self.r[i] * rx[i] + (Scalar::one() - self.r[i]) * (Scalar::one() - rx[i]))
.product()
}
pub fn evals(&self) -> Vec<Scalar> {
let ell = self.r.len();
let mut evals: Vec<Scalar> = vec![Scalar::one(); ell.pow2()];
let mut size = 1;
for j in 0..ell {
// in each iteration, we double the size of chis
size *= 2;
for i in (0..size).rev().step_by(2) {
// copy each element from the prior iteration twice
let scalar = evals[i / 2];
evals[i] = scalar * self.r[j];
evals[i - 1] = scalar - evals[i];
}
}
evals
}
pub fn compute_factored_lens(ell: usize) -> (usize, usize) {
(ell / 2, ell - ell / 2)
}
pub fn compute_factored_evals(&self) -> (Vec<Scalar>, Vec<Scalar>) {
let ell = self.r.len();
let (left_num_vars, _right_num_vars) = EqPolynomial::compute_factored_lens(ell);
let L = EqPolynomial::new(self.r[..left_num_vars].to_vec()).evals();
let R = EqPolynomial::new(self.r[left_num_vars..ell].to_vec()).evals();
(L, R)
}
}
pub struct IdentityPolynomial {
size_point: usize,
}
impl IdentityPolynomial {
pub fn new(size_point: usize) -> Self {
IdentityPolynomial { size_point }
}
pub fn evaluate(&self, r: &[Scalar]) -> Scalar {
let len = r.len();
assert_eq!(len, self.size_point);
(0..len)
.map(|i| Scalar::from((len - i - 1).pow2() as u64) * r[i])
.sum()
}
}
impl DensePolynomial {
pub fn new(Z: Vec<Scalar>) -> Self {
DensePolynomial {
num_vars: Z.len().log_2(),
len: Z.len(),
Z,
}
}
pub fn get_num_vars(&self) -> usize {
self.num_vars
}
pub fn len(&self) -> usize {
self.len
}
pub fn clone(&self) -> DensePolynomial {
DensePolynomial::new(self.Z[0..self.len].to_vec())
}
pub fn split(&self, idx: usize) -> (DensePolynomial, DensePolynomial) {
assert!(idx < self.len());
(
DensePolynomial::new(self.Z[..idx].to_vec()),
DensePolynomial::new(self.Z[idx..2 * idx].to_vec()),
)
}
#[cfg(feature = "multicore")]
fn commit_inner(&self, blinds: &[Scalar], gens: &MultiCommitGens) -> PolyCommitment {
let L_size = blinds.len();
let R_size = self.Z.len() / L_size;
assert_eq!(L_size * R_size, self.Z.len());
let C = (0..L_size)
.into_par_iter()
.map(|i| {
self.Z[R_size * i..R_size * (i + 1)]
.commit(&blinds[i], gens)
.compress()
})
.collect();
PolyCommitment { C }
}
#[cfg(not(feature = "multicore"))]
fn commit_inner(&self, blinds: &[Scalar], gens: &MultiCommitGens) -> PolyCommitment {
let L_size = blinds.len();
let R_size = self.Z.len() / L_size;
assert_eq!(L_size * R_size, self.Z.len());
let C = (0..L_size)
.map(|i| {
self.Z[R_size * i..R_size * (i + 1)]
.commit(&blinds[i], gens)
.compress()
})
.collect();
PolyCommitment { C }
}
pub fn commit(
&self,
gens: &PolyCommitmentGens,
random_tape: Option<&mut RandomTape>,
) -> (PolyCommitment, PolyCommitmentBlinds) {
let n = self.Z.len();
let ell = self.get_num_vars();
assert_eq!(n, ell.pow2());
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(ell);
let L_size = left_num_vars.pow2();
let R_size = right_num_vars.pow2();
assert_eq!(L_size * R_size, n);
let blinds = if let Some(t) = random_tape {
PolyCommitmentBlinds {
blinds: t.random_vector(b"poly_blinds", L_size),
}
} else {
PolyCommitmentBlinds {
blinds: vec![Scalar::zero(); L_size],
}
};
(self.commit_inner(&blinds.blinds, &gens.gens.gens_n), blinds)
}
pub fn bound(&self, L: &[Scalar]) -> Vec<Scalar> {
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(self.get_num_vars());
let L_size = left_num_vars.pow2();
let R_size = right_num_vars.pow2();
(0..R_size)
.map(|i| (0..L_size).map(|j| L[j] * self.Z[j * R_size + i]).sum())
.collect()
}
pub fn bound_poly_var_top(&mut self, r: &Scalar) {
let n = self.len() / 2;
for i in 0..n {
self.Z[i] = self.Z[i] + r * (self.Z[i + n] - self.Z[i]);
}
self.num_vars -= 1;
self.len = n;
}
pub fn bound_poly_var_bot(&mut self, r: &Scalar) {
let n = self.len() / 2;
for i in 0..n {
self.Z[i] = self.Z[2 * i] + r * (self.Z[2 * i + 1] - self.Z[2 * i]);
}
self.num_vars -= 1;
self.len = n;
}
// returns Z(r) in O(n) time
pub fn evaluate(&self, r: &[Scalar]) -> Scalar {
// r must have a value for each variable
assert_eq!(r.len(), self.get_num_vars());
let chis = EqPolynomial::new(r.to_vec()).evals();
assert_eq!(chis.len(), self.Z.len());
DotProductProofLog::compute_dotproduct(&self.Z, &chis)
}
fn vec(&self) -> &Vec<Scalar> {
&self.Z
}
pub fn extend(&mut self, other: &DensePolynomial) {
// TODO: allow extension even when some vars are bound
assert_eq!(self.Z.len(), self.len);
let other_vec = other.vec();
assert_eq!(other_vec.len(), self.len);
self.Z.extend(other_vec);
self.num_vars += 1;
self.len *= 2;
assert_eq!(self.Z.len(), self.len);
}
pub fn merge<'a, I>(polys: I) -> DensePolynomial
where
I: IntoIterator<Item = &'a DensePolynomial>,
{
let mut Z: Vec<Scalar> = Vec::new();
for poly in polys.into_iter() {
Z.extend(poly.vec());
}
// pad the polynomial with zero polynomial at the end
Z.resize(Z.len().next_power_of_two(), Scalar::zero());
DensePolynomial::new(Z)
}
pub fn from_usize(Z: &[usize]) -> Self {
DensePolynomial::new(
(0..Z.len())
.map(|i| Scalar::from(Z[i] as u64))
.collect::<Vec<Scalar>>(),
)
}
}
impl Index<usize> for DensePolynomial {
type Output = Scalar;
#[inline(always)]
fn index(&self, _index: usize) -> &Scalar {
&(self.Z[_index])
}
}
impl AppendToTranscript for PolyCommitment {
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
transcript.append_message(label, b"poly_commitment_begin");
for i in 0..self.C.len() {
transcript.append_point(b"poly_commitment_share", &self.C[i]);
}
transcript.append_message(label, b"poly_commitment_end");
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct PolyEvalProof {
proof: DotProductProofLog,
}
impl PolyEvalProof {
fn protocol_name() -> &'static [u8] {
b"polynomial evaluation proof"
}
pub fn prove(
poly: &DensePolynomial,
blinds_opt: Option<&PolyCommitmentBlinds>,
r: &[Scalar], // point at which the polynomial is evaluated
Zr: &Scalar, // evaluation of \widetilde{Z}(r)
blind_Zr_opt: Option<&Scalar>, // specifies a blind for Zr
gens: &PolyCommitmentGens,
transcript: &mut Transcript,
random_tape: &mut RandomTape,
) -> (PolyEvalProof, CompressedGroup) {
transcript.append_protocol_name(PolyEvalProof::protocol_name());
// assert vectors are of the right size
assert_eq!(poly.get_num_vars(), r.len());
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(r.len());
let L_size = left_num_vars.pow2();
let R_size = right_num_vars.pow2();
let default_blinds = PolyCommitmentBlinds {
blinds: vec![Scalar::zero(); L_size],
};
let blinds = blinds_opt.map_or(&default_blinds, |p| p);
assert_eq!(blinds.blinds.len(), L_size);
let zero = Scalar::zero();
let blind_Zr = blind_Zr_opt.map_or(&zero, |p| p);
// compute the L and R vectors
let eq = EqPolynomial::new(r.to_vec());
let (L, R) = eq.compute_factored_evals();
assert_eq!(L.len(), L_size);
assert_eq!(R.len(), R_size);
// compute the vector underneath L*Z and the L*blinds
// compute vector-matrix product between L and Z viewed as a matrix
let LZ = poly.bound(&L);
let LZ_blind: Scalar = (0..L.len()).map(|i| blinds.blinds[i] * L[i]).sum();
// a dot product proof of size R_size
let (proof, _C_LR, C_Zr_prime) = DotProductProofLog::prove(
&gens.gens,
transcript,
random_tape,
&LZ,
&LZ_blind,
&R,
Zr,
blind_Zr,
);
(PolyEvalProof { proof }, C_Zr_prime)
}
pub fn verify(
&self,
gens: &PolyCommitmentGens,
transcript: &mut Transcript,
r: &[Scalar], // point at which the polynomial is evaluated
C_Zr: &CompressedGroup, // commitment to \widetilde{Z}(r)
comm: &PolyCommitment,
) -> Result<(), ProofVerifyError> {
transcript.append_protocol_name(PolyEvalProof::protocol_name());
// compute L and R
let eq = EqPolynomial::new(r.to_vec());
let (L, R) = eq.compute_factored_evals();
// compute a weighted sum of commitments and L
let C_decompressed = comm.C.iter().map(|pt| pt.decompress().unwrap());
let C_LZ = GroupElement::vartime_multiscalar_mul(L, C_decompressed.collect()).compress();
self
.proof
.verify(R.len(), &gens.gens, transcript, &R, &C_LZ, C_Zr)
}
pub fn verify_plain(
&self,
gens: &PolyCommitmentGens,
transcript: &mut Transcript,
r: &[Scalar], // point at which the polynomial is evaluated
Zr: &Scalar, // evaluation \widetilde{Z}(r)
comm: &PolyCommitment,
) -> Result<(), ProofVerifyError> {
// compute a commitment to Zr with a blind of zero
let C_Zr = Zr.commit(&Scalar::zero(), &gens.gens.gens_1).compress();
self.verify(gens, transcript, r, &C_Zr, comm)
}
}
#[cfg(test)]
mod tests {
use super::super::scalar::ScalarFromPrimitives;
use super::*;
use rand_core::OsRng;
fn evaluate_with_LR(Z: &[Scalar], r: &[Scalar]) -> Scalar {
let eq = EqPolynomial::new(r.to_vec());
let (L, R) = eq.compute_factored_evals();
let ell = r.len();
// ensure ell is even
assert!(ell % 2 == 0);
// compute n = 2^\ell
let n = ell.pow2();
// compute m = sqrt(n) = 2^{\ell/2}
let m = n.square_root();
// compute vector-matrix product between L and Z viewed as a matrix
let LZ = (0..m)
.map(|i| (0..m).map(|j| L[j] * Z[j * m + i]).sum())
.collect::<Vec<Scalar>>();
// compute dot product between LZ and R
DotProductProofLog::compute_dotproduct(&LZ, &R)
}
#[test]
fn check_polynomial_evaluation() {
// Z = [1, 2, 1, 4]
let Z = vec![
Scalar::one(),
(2_usize).to_scalar(),
(1_usize).to_scalar(),
(4_usize).to_scalar(),
];
// r = [4,3]
let r = vec![(4_usize).to_scalar(), (3_usize).to_scalar()];
let eval_with_LR = evaluate_with_LR(&Z, &r);
let poly = DensePolynomial::new(Z);
let eval = poly.evaluate(&r);
assert_eq!(eval, (28_usize).to_scalar());
assert_eq!(eval_with_LR, eval);
}
pub fn compute_factored_chis_at_r(r: &[Scalar]) -> (Vec<Scalar>, Vec<Scalar>) {
let mut L: Vec<Scalar> = Vec::new();
let mut R: Vec<Scalar> = Vec::new();
let ell = r.len();
assert!(ell % 2 == 0); // ensure ell is even
let n = ell.pow2();
let m = n.square_root();
// compute row vector L
for i in 0..m {
let mut chi_i = Scalar::one();
for j in 0..ell / 2 {
let bit_j = ((m * i) & (1 << (r.len() - j - 1))) > 0;
if bit_j {
chi_i *= r[j];
} else {
chi_i *= Scalar::one() - r[j];
}
}
L.push(chi_i);
}
// compute column vector R
for i in 0..m {
let mut chi_i = Scalar::one();
for j in ell / 2..ell {
let bit_j = (i & (1 << (r.len() - j - 1))) > 0;
if bit_j {
chi_i *= r[j];
} else {
chi_i *= Scalar::one() - r[j];
}
}
R.push(chi_i);
}
(L, R)
}
pub fn compute_chis_at_r(r: &[Scalar]) -> Vec<Scalar> {
let ell = r.len();
let n = ell.pow2();
let mut chis: Vec<Scalar> = Vec::new();
for i in 0..n {
let mut chi_i = Scalar::one();
for j in 0..r.len() {
let bit_j = (i & (1 << (r.len() - j - 1))) > 0;
if bit_j {
chi_i *= r[j];
} else {
chi_i *= Scalar::one() - r[j];
}
}
chis.push(chi_i);
}
chis
}
pub fn compute_outerproduct(L: Vec<Scalar>, R: Vec<Scalar>) -> Vec<Scalar> {
assert_eq!(L.len(), R.len());
(0..L.len())
.map(|i| (0..R.len()).map(|j| L[i] * R[j]).collect::<Vec<Scalar>>())
.collect::<Vec<Vec<Scalar>>>()
.into_iter()
.flatten()
.collect::<Vec<Scalar>>()
}
#[test]
fn check_memoized_chis() {
let mut csprng: OsRng = OsRng;
let s = 10;
let mut r: Vec<Scalar> = Vec::new();
for _i in 0..s {
r.push(Scalar::random(&mut csprng));
}
let chis = tests::compute_chis_at_r(&r);
let chis_m = EqPolynomial::new(r).evals();
assert_eq!(chis, chis_m);
}
#[test]
fn check_factored_chis() {
let mut csprng: OsRng = OsRng;
let s = 10;
let mut r: Vec<Scalar> = Vec::new();
for _i in 0..s {
r.push(Scalar::random(&mut csprng));
}
let chis = EqPolynomial::new(r.clone()).evals();
let (L, R) = EqPolynomial::new(r).compute_factored_evals();
let O = compute_outerproduct(L, R);
assert_eq!(chis, O);
}
#[test]
fn check_memoized_factored_chis() {
let mut csprng: OsRng = OsRng;
let s = 10;
let mut r: Vec<Scalar> = Vec::new();
for _i in 0..s {
r.push(Scalar::random(&mut csprng));
}
let (L, R) = tests::compute_factored_chis_at_r(&r);
let eq = EqPolynomial::new(r);
let (L2, R2) = eq.compute_factored_evals();
assert_eq!(L, L2);
assert_eq!(R, R2);
}
#[test]
fn check_polynomial_commit() {
let Z = vec![
(1_usize).to_scalar(),
(2_usize).to_scalar(),
(1_usize).to_scalar(),
(4_usize).to_scalar(),
];
let poly = DensePolynomial::new(Z);
// r = [4,3]
let r = vec![(4_usize).to_scalar(), (3_usize).to_scalar()];
let eval = poly.evaluate(&r);
assert_eq!(eval, (28_usize).to_scalar());
let gens = PolyCommitmentGens::new(poly.get_num_vars(), b"test-two");
let (poly_commitment, blinds) = poly.commit(&gens, None);
let mut random_tape = RandomTape::new(b"proof");
let mut prover_transcript = Transcript::new(b"example");
let (proof, C_Zr) = PolyEvalProof::prove(
&poly,
Some(&blinds),
&r,
&eval,
None,
&gens,
&mut prover_transcript,
&mut random_tape,
);
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(&gens, &mut verifier_transcript, &r, &C_Zr, &poly_commitment)
.is_ok());
}
}

View File

@@ -0,0 +1,32 @@
use core::fmt::Debug;
use thiserror::Error;
#[derive(Error, Debug)]
pub enum ProofVerifyError {
#[error("Proof verification failed")]
InternalError,
#[error("Compressed group element failed to decompress: {0:?}")]
DecompressionError([u8; 32]),
}
impl Default for ProofVerifyError {
fn default() -> Self {
ProofVerifyError::InternalError
}
}
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum R1CSError {
/// returned if the number of constraints is not a power of 2
NonPowerOfTwoCons,
/// returned if the number of variables is not a power of 2
NonPowerOfTwoVars,
/// returned if a wrong number of inputs in an assignment are supplied
InvalidNumberOfInputs,
/// returned if a wrong number of variables in an assignment are supplied
InvalidNumberOfVars,
/// returned if a [u8;32] does not parse into a valid Scalar in the field of secq256k1
InvalidScalar,
/// returned if the supplied row or col in (row,col,val) tuple is out of range
InvalidIndex,
}

View File

@@ -0,0 +1,138 @@
use secq256k1::{AffinePoint, ProjectivePoint};
use super::errors::ProofVerifyError;
use super::scalar::{Scalar, ScalarBytes, ScalarBytesFromScalar};
use core::ops::{Mul, MulAssign};
use multiexp::multiexp;
pub type GroupElement = secq256k1::AffinePoint;
pub type CompressedGroup = secq256k1::EncodedPoint;
pub trait CompressedGroupExt {
type Group;
fn unpack(&self) -> Result<Self::Group, ProofVerifyError>;
}
impl CompressedGroupExt for CompressedGroup {
type Group = secq256k1::AffinePoint;
fn unpack(&self) -> Result<Self::Group, ProofVerifyError> {
let result = AffinePoint::decompress(*self);
if result.is_some().into() {
return Ok(result.unwrap());
} else {
Err(ProofVerifyError::DecompressionError(
(*self.to_bytes()).try_into().unwrap(),
))
}
}
}
pub trait DecompressEncodedPoint {
fn decompress(&self) -> Option<GroupElement>;
}
impl DecompressEncodedPoint for CompressedGroup {
fn decompress(&self) -> Option<GroupElement> {
Some(self.unpack().unwrap())
}
}
impl<'b> MulAssign<&'b Scalar> for GroupElement {
fn mul_assign(&mut self, scalar: &'b Scalar) {
let result = (self as &GroupElement) * Scalar::decompress_scalar(scalar);
*self = result;
}
}
impl<'a, 'b> Mul<&'b Scalar> for &'a GroupElement {
type Output = GroupElement;
fn mul(self, scalar: &'b Scalar) -> GroupElement {
*self * Scalar::decompress_scalar(scalar)
}
}
impl<'a, 'b> Mul<&'b GroupElement> for &'a Scalar {
type Output = GroupElement;
fn mul(self, point: &'b GroupElement) -> GroupElement {
(*point * Scalar::decompress_scalar(self)).into()
}
}
macro_rules! define_mul_variants {
(LHS = $lhs:ty, RHS = $rhs:ty, Output = $out:ty) => {
impl<'b> Mul<&'b $rhs> for $lhs {
type Output = $out;
fn mul(self, rhs: &'b $rhs) -> $out {
&self * rhs
}
}
impl<'a> Mul<$rhs> for &'a $lhs {
type Output = $out;
fn mul(self, rhs: $rhs) -> $out {
self * &rhs
}
}
impl Mul<$rhs> for $lhs {
type Output = $out;
fn mul(self, rhs: $rhs) -> $out {
&self * &rhs
}
}
};
}
macro_rules! define_mul_assign_variants {
(LHS = $lhs:ty, RHS = $rhs:ty) => {
impl MulAssign<$rhs> for $lhs {
fn mul_assign(&mut self, rhs: $rhs) {
*self *= &rhs;
}
}
};
}
define_mul_assign_variants!(LHS = GroupElement, RHS = Scalar);
define_mul_variants!(LHS = GroupElement, RHS = Scalar, Output = GroupElement);
define_mul_variants!(LHS = Scalar, RHS = GroupElement, Output = GroupElement);
pub trait VartimeMultiscalarMul {
type Scalar;
fn vartime_multiscalar_mul(scalars: Vec<Scalar>, points: Vec<GroupElement>) -> Self;
}
impl VartimeMultiscalarMul for GroupElement {
type Scalar = super::scalar::Scalar;
// TODO Borrow the arguments so we don't have to clone them, as it was in the original implementation
fn vartime_multiscalar_mul(scalars: Vec<Scalar>, points: Vec<GroupElement>) -> Self {
let points: Vec<ProjectivePoint> = points.iter().map(|p| ProjectivePoint::from(p.0)).collect();
let pairs: Vec<(ScalarBytes, ProjectivePoint)> = scalars
.into_iter()
.enumerate()
.map(|(i, s)| (Scalar::decompress_scalar(&s), points[i]))
.collect();
let result = multiexp::<ProjectivePoint>(pairs.as_slice());
AffinePoint(result.to_affine())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn msm() {
let scalars = vec![Scalar::from(1), Scalar::from(2), Scalar::from(3)];
let points = vec![
GroupElement::generator(),
GroupElement::generator(),
GroupElement::generator(),
];
let result = GroupElement::vartime_multiscalar_mul(scalars, points);
assert_eq!(result, GroupElement::generator() * Scalar::from(6));
}
}

View File

@@ -0,0 +1,751 @@
#![allow(non_snake_case)]
#![doc = include_str!("../README.md")]
#![deny(missing_docs)]
#![allow(clippy::assertions_on_result_states)]
extern crate byteorder;
extern crate core;
extern crate digest;
extern crate merlin;
extern crate rand;
extern crate sha3;
#[cfg(feature = "multicore")]
extern crate rayon;
mod commitments;
mod dense_mlpoly;
mod errors;
mod group;
mod math;
mod nizk;
mod product_tree;
mod r1csinstance;
mod r1csproof;
mod random;
mod scalar;
mod sparse_mlpoly;
mod sumcheck;
mod timer;
mod transcript;
mod unipoly;
use core::cmp::max;
use errors::{ProofVerifyError, R1CSError};
use merlin::Transcript;
use r1csinstance::{
R1CSCommitment, R1CSCommitmentGens, R1CSDecommitment, R1CSEvalProof, R1CSInstance,
};
use r1csproof::{R1CSGens, R1CSProof};
use random::RandomTape;
use scalar::Scalar;
use serde::{Deserialize, Serialize};
use timer::Timer;
use transcript::{AppendToTranscript, ProofTranscript};
/// `ComputationCommitment` holds a public preprocessed NP statement (e.g., R1CS)
pub struct ComputationCommitment {
comm: R1CSCommitment,
}
/// `ComputationDecommitment` holds information to decommit `ComputationCommitment`
pub struct ComputationDecommitment {
decomm: R1CSDecommitment,
}
/// `Assignment` holds an assignment of values to either the inputs or variables in an `Instance`
#[derive(Serialize, Deserialize, Clone)]
pub struct Assignment {
assignment: Vec<Scalar>,
}
impl Assignment {
/// Constructs a new `Assignment` from a vector
pub fn new(assignment: &[[u8; 32]]) -> Result<Assignment, R1CSError> {
let bytes_to_scalar = |vec: &[[u8; 32]]| -> Result<Vec<Scalar>, R1CSError> {
let mut vec_scalar: Vec<Scalar> = Vec::new();
for v in vec {
let val = Scalar::from_bytes(v);
if val.is_some().unwrap_u8() == 1 {
vec_scalar.push(val.unwrap());
} else {
return Err(R1CSError::InvalidScalar);
}
}
Ok(vec_scalar)
};
let assignment_scalar = bytes_to_scalar(assignment);
// check for any parsing errors
if assignment_scalar.is_err() {
return Err(R1CSError::InvalidScalar);
}
Ok(Assignment {
assignment: assignment_scalar.unwrap(),
})
}
/// pads Assignment to the specified length
fn pad(&self, len: usize) -> VarsAssignment {
// check that the new length is higher than current length
assert!(len > self.assignment.len());
let padded_assignment = {
let mut padded_assignment = self.assignment.clone();
padded_assignment.extend(vec![Scalar::zero(); len - self.assignment.len()]);
padded_assignment
};
VarsAssignment {
assignment: padded_assignment,
}
}
}
/// `VarsAssignment` holds an assignment of values to variables in an `Instance`
pub type VarsAssignment = Assignment;
/// `InputsAssignment` holds an assignment of values to variables in an `Instance`
pub type InputsAssignment = Assignment;
/// `Instance` holds the description of R1CS matrices and a hash of the matrices
#[derive(Serialize, Deserialize)]
pub struct Instance {
/// R1CS instance
pub inst: R1CSInstance,
digest: Vec<u8>,
}
impl Instance {
/// Constructs a new `Instance` and an associated satisfying assignment
pub fn new(
num_cons: usize,
num_vars: usize,
num_inputs: usize,
A: &[(usize, usize, [u8; 32])],
B: &[(usize, usize, [u8; 32])],
C: &[(usize, usize, [u8; 32])],
) -> Result<Instance, R1CSError> {
let (num_vars_padded, num_cons_padded) = {
let num_vars_padded = {
let mut num_vars_padded = num_vars;
// ensure that num_inputs + 1 <= num_vars
num_vars_padded = max(num_vars_padded, num_inputs + 1);
// ensure that num_vars_padded a power of two
if num_vars_padded.next_power_of_two() != num_vars_padded {
num_vars_padded = num_vars_padded.next_power_of_two();
}
num_vars_padded
};
let num_cons_padded = {
let mut num_cons_padded = num_cons;
// ensure that num_cons_padded is at least 2
if num_cons_padded == 0 || num_cons_padded == 1 {
num_cons_padded = 2;
}
// ensure that num_cons_padded is power of 2
if num_cons.next_power_of_two() != num_cons {
num_cons_padded = num_cons.next_power_of_two();
}
num_cons_padded
};
(num_vars_padded, num_cons_padded)
};
let bytes_to_scalar =
|tups: &[(usize, usize, [u8; 32])]| -> Result<Vec<(usize, usize, Scalar)>, R1CSError> {
let mut mat: Vec<(usize, usize, Scalar)> = Vec::new();
for &(row, col, val_bytes) in tups {
// row must be smaller than num_cons
if row >= num_cons {
return Err(R1CSError::InvalidIndex);
}
// col must be smaller than num_vars + 1 + num_inputs
if col >= num_vars + 1 + num_inputs {
return Err(R1CSError::InvalidIndex);
}
let val = Scalar::from_bytes(&val_bytes);
if val.is_some().unwrap_u8() == 1 {
// if col >= num_vars, it means that it is referencing a 1 or input in the satisfying
// assignment
if col >= num_vars {
mat.push((row, col + num_vars_padded - num_vars, val.unwrap()));
} else {
mat.push((row, col, val.unwrap()));
}
} else {
return Err(R1CSError::InvalidScalar);
}
}
// pad with additional constraints up until num_cons_padded if the original constraints were 0 or 1
// we do not need to pad otherwise because the dummy constraints are implicit in the sum-check protocol
if num_cons == 0 || num_cons == 1 {
for i in tups.len()..num_cons_padded {
mat.push((i, num_vars, Scalar::zero()));
}
}
Ok(mat)
};
let A_scalar = bytes_to_scalar(A);
if A_scalar.is_err() {
return Err(A_scalar.err().unwrap());
}
let B_scalar = bytes_to_scalar(B);
if B_scalar.is_err() {
return Err(B_scalar.err().unwrap());
}
let C_scalar = bytes_to_scalar(C);
if C_scalar.is_err() {
return Err(C_scalar.err().unwrap());
}
let inst = R1CSInstance::new(
num_cons_padded,
num_vars_padded,
num_inputs,
&A_scalar.unwrap(),
&B_scalar.unwrap(),
&C_scalar.unwrap(),
);
let digest = inst.get_digest();
Ok(Instance { inst, digest })
}
/// Checks if a given R1CSInstance is satisfiable with a given variables and inputs assignments
pub fn is_sat(
&self,
vars: &VarsAssignment,
inputs: &InputsAssignment,
) -> Result<bool, R1CSError> {
if vars.assignment.len() > self.inst.get_num_vars() {
return Err(R1CSError::InvalidNumberOfInputs);
}
if inputs.assignment.len() != self.inst.get_num_inputs() {
return Err(R1CSError::InvalidNumberOfInputs);
}
// we might need to pad variables
let padded_vars = {
let num_padded_vars = self.inst.get_num_vars();
let num_vars = vars.assignment.len();
if num_padded_vars > num_vars {
vars.pad(num_padded_vars)
} else {
vars.clone()
}
};
Ok(
self
.inst
.is_sat(&padded_vars.assignment, &inputs.assignment),
)
}
/// Constructs a new synthetic R1CS `Instance` and an associated satisfying assignment
pub fn produce_synthetic_r1cs(
num_cons: usize,
num_vars: usize,
num_inputs: usize,
) -> (Instance, VarsAssignment, InputsAssignment) {
let (inst, vars, inputs) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
let digest = inst.get_digest();
(
Instance { inst, digest },
VarsAssignment { assignment: vars },
InputsAssignment { assignment: inputs },
)
}
}
/// `SNARKGens` holds public parameters for producing and verifying proofs with the Spartan SNARK
pub struct SNARKGens {
gens_r1cs_sat: R1CSGens,
gens_r1cs_eval: R1CSCommitmentGens,
}
impl SNARKGens {
/// Constructs a new `SNARKGens` given the size of the R1CS statement
/// `num_nz_entries` specifies the maximum number of non-zero entries in any of the three R1CS matrices
pub fn new(num_cons: usize, num_vars: usize, num_inputs: usize, num_nz_entries: usize) -> Self {
let num_vars_padded = {
let mut num_vars_padded = max(num_vars, num_inputs + 1);
if num_vars_padded != num_vars_padded.next_power_of_two() {
num_vars_padded = num_vars_padded.next_power_of_two();
}
num_vars_padded
};
let gens_r1cs_sat = R1CSGens::new(b"gens_r1cs_sat", num_cons, num_vars_padded);
let gens_r1cs_eval = R1CSCommitmentGens::new(
b"gens_r1cs_eval",
num_cons,
num_vars_padded,
num_inputs,
num_nz_entries,
);
SNARKGens {
gens_r1cs_sat,
gens_r1cs_eval,
}
}
}
/// `SNARK` holds a proof produced by Spartan SNARK
#[derive(Serialize, Deserialize, Debug)]
pub struct SNARK {
r1cs_sat_proof: R1CSProof,
inst_evals: (Scalar, Scalar, Scalar),
r1cs_eval_proof: R1CSEvalProof,
}
impl SNARK {
fn protocol_name() -> &'static [u8] {
b"Spartan SNARK proof"
}
/// A public computation to create a commitment to an R1CS instance
pub fn encode(
inst: &Instance,
gens: &SNARKGens,
) -> (ComputationCommitment, ComputationDecommitment) {
let timer_encode = Timer::new("SNARK::encode");
let (comm, decomm) = inst.inst.commit(&gens.gens_r1cs_eval);
timer_encode.stop();
(
ComputationCommitment { comm },
ComputationDecommitment { decomm },
)
}
/// A method to produce a SNARK proof of the satisfiability of an R1CS instance
pub fn prove(
inst: &Instance,
comm: &ComputationCommitment,
decomm: &ComputationDecommitment,
vars: VarsAssignment,
inputs: &InputsAssignment,
gens: &SNARKGens,
transcript: &mut Transcript,
) -> Self {
let timer_prove = Timer::new("SNARK::prove");
// we create a Transcript object seeded with a random Scalar
// to aid the prover produce its randomness
let mut random_tape = RandomTape::new(b"proof");
transcript.append_protocol_name(SNARK::protocol_name());
comm.comm.append_to_transcript(b"comm", transcript);
let (r1cs_sat_proof, rx, ry) = {
let (proof, rx, ry) = {
// we might need to pad variables
let padded_vars = {
let num_padded_vars = inst.inst.get_num_vars();
let num_vars = vars.assignment.len();
if num_padded_vars > num_vars {
vars.pad(num_padded_vars)
} else {
vars
}
};
R1CSProof::prove(
&inst.inst,
padded_vars.assignment,
&inputs.assignment,
&gens.gens_r1cs_sat,
transcript,
&mut random_tape,
)
};
let proof_encoded: Vec<u8> = bincode::serialize(&proof).unwrap();
Timer::print(&format!("len_r1cs_sat_proof {:?}", proof_encoded.len()));
(proof, rx, ry)
};
// We send evaluations of A, B, C at r = (rx, ry) as claims
// to enable the verifier complete the first sum-check
let timer_eval = Timer::new("eval_sparse_polys");
let inst_evals = {
let (Ar, Br, Cr) = inst.inst.evaluate(&rx, &ry);
Ar.append_to_transcript(b"Ar_claim", transcript);
Br.append_to_transcript(b"Br_claim", transcript);
Cr.append_to_transcript(b"Cr_claim", transcript);
(Ar, Br, Cr)
};
timer_eval.stop();
let r1cs_eval_proof = {
let proof = R1CSEvalProof::prove(
&decomm.decomm,
&rx,
&ry,
&inst_evals,
&gens.gens_r1cs_eval,
transcript,
&mut random_tape,
);
let proof_encoded: Vec<u8> = bincode::serialize(&proof).unwrap();
Timer::print(&format!("len_r1cs_eval_proof {:?}", proof_encoded.len()));
proof
};
timer_prove.stop();
SNARK {
r1cs_sat_proof,
inst_evals,
r1cs_eval_proof,
}
}
/// A method to verify the SNARK proof of the satisfiability of an R1CS instance
pub fn verify(
&self,
comm: &ComputationCommitment,
input: &InputsAssignment,
transcript: &mut Transcript,
gens: &SNARKGens,
) -> Result<(), ProofVerifyError> {
let timer_verify = Timer::new("SNARK::verify");
transcript.append_protocol_name(SNARK::protocol_name());
// append a commitment to the computation to the transcript
comm.comm.append_to_transcript(b"comm", transcript);
let timer_sat_proof = Timer::new("verify_sat_proof");
assert_eq!(input.assignment.len(), comm.comm.get_num_inputs());
let (rx, ry) = self.r1cs_sat_proof.verify(
comm.comm.get_num_vars(),
comm.comm.get_num_cons(),
&input.assignment,
&self.inst_evals,
transcript,
&gens.gens_r1cs_sat,
)?;
timer_sat_proof.stop();
let timer_eval_proof = Timer::new("verify_eval_proof");
let (Ar, Br, Cr) = &self.inst_evals;
Ar.append_to_transcript(b"Ar_claim", transcript);
Br.append_to_transcript(b"Br_claim", transcript);
Cr.append_to_transcript(b"Cr_claim", transcript);
self.r1cs_eval_proof.verify(
&comm.comm,
&rx,
&ry,
&self.inst_evals,
&gens.gens_r1cs_eval,
transcript,
)?;
timer_eval_proof.stop();
timer_verify.stop();
Ok(())
}
}
/// `NIZKGens` holds public parameters for producing and verifying proofs with the Spartan NIZK
pub struct NIZKGens {
gens_r1cs_sat: R1CSGens,
}
impl NIZKGens {
/// Constructs a new `NIZKGens` given the size of the R1CS statement
pub fn new(num_cons: usize, num_vars: usize, num_inputs: usize) -> Self {
let num_vars_padded = {
let mut num_vars_padded = max(num_vars, num_inputs + 1);
if num_vars_padded != num_vars_padded.next_power_of_two() {
num_vars_padded = num_vars_padded.next_power_of_two();
}
num_vars_padded
};
let gens_r1cs_sat = R1CSGens::new(b"gens_r1cs_sat", num_cons, num_vars_padded);
NIZKGens { gens_r1cs_sat }
}
}
/// `NIZK` holds a proof produced by Spartan NIZK
#[derive(Serialize, Deserialize, Debug)]
pub struct NIZK {
r1cs_sat_proof: R1CSProof,
r: (Vec<Scalar>, Vec<Scalar>),
}
impl NIZK {
fn protocol_name() -> &'static [u8] {
b"Spartan NIZK proof"
}
/// A method to produce a NIZK proof of the satisfiability of an R1CS instance
pub fn prove(
inst: &Instance,
vars: VarsAssignment,
input: &InputsAssignment,
gens: &NIZKGens,
transcript: &mut Transcript,
) -> Self {
let timer_prove = Timer::new("NIZK::prove");
// we create a Transcript object seeded with a random Scalar
// to aid the prover produce its randomness
let mut random_tape = RandomTape::new(b"proof");
transcript.append_protocol_name(NIZK::protocol_name());
transcript.append_message(b"R1CSInstanceDigest", &inst.digest);
let (r1cs_sat_proof, rx, ry) = {
// we might need to pad variables
let padded_vars = {
let num_padded_vars = inst.inst.get_num_vars();
let num_vars = vars.assignment.len();
if num_padded_vars > num_vars {
vars.pad(num_padded_vars)
} else {
vars
}
};
let (proof, rx, ry) = R1CSProof::prove(
&inst.inst,
padded_vars.assignment,
&input.assignment,
&gens.gens_r1cs_sat,
transcript,
&mut random_tape,
);
let proof_encoded: Vec<u8> = bincode::serialize(&proof).unwrap();
Timer::print(&format!("len_r1cs_sat_proof {:?}", proof_encoded.len()));
(proof, rx, ry)
};
timer_prove.stop();
NIZK {
r1cs_sat_proof,
r: (rx, ry),
}
}
/// A method to verify a NIZK proof of the satisfiability of an R1CS instance
pub fn verify(
&self,
inst: &Instance,
input: &InputsAssignment,
transcript: &mut Transcript,
gens: &NIZKGens,
) -> Result<(), ProofVerifyError> {
let timer_verify = Timer::new("NIZK::verify");
transcript.append_protocol_name(NIZK::protocol_name());
transcript.append_message(b"R1CSInstanceDigest", &inst.digest);
// We send evaluations of A, B, C at r = (rx, ry) as claims
// to enable the verifier complete the first sum-check
let timer_eval = Timer::new("eval_sparse_polys");
let (claimed_rx, claimed_ry) = &self.r;
let inst_evals = inst.inst.evaluate(claimed_rx, claimed_ry);
timer_eval.stop();
let timer_sat_proof = Timer::new("verify_sat_proof");
assert_eq!(input.assignment.len(), inst.inst.get_num_inputs());
let (rx, ry) = self.r1cs_sat_proof.verify(
inst.inst.get_num_vars(),
inst.inst.get_num_cons(),
&input.assignment,
&inst_evals,
transcript,
&gens.gens_r1cs_sat,
)?;
// verify if claimed rx and ry are correct
assert_eq!(rx, *claimed_rx);
assert_eq!(ry, *claimed_ry);
timer_sat_proof.stop();
timer_verify.stop();
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
pub fn check_snark() {
let num_vars = 256;
let num_cons = num_vars;
let num_inputs = 10;
// produce public generators
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_cons);
// produce a synthetic R1CSInstance
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
// create a commitment to R1CSInstance
let (comm, decomm) = SNARK::encode(&inst, &gens);
// produce a proof
let mut prover_transcript = Transcript::new(b"example");
let proof = SNARK::prove(
&inst,
&comm,
&decomm,
vars,
&inputs,
&gens,
&mut prover_transcript,
);
// verify the proof
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(&comm, &inputs, &mut verifier_transcript, &gens)
.is_ok());
}
#[test]
pub fn check_r1cs_invalid_index() {
let num_cons = 4;
let num_vars = 8;
let num_inputs = 1;
let zero: [u8; 32] = [
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,
];
let A = vec![(0, 0, zero)];
let B = vec![(100, 1, zero)];
let C = vec![(1, 1, zero)];
let inst = Instance::new(num_cons, num_vars, num_inputs, &A, &B, &C);
assert!(inst.is_err());
assert_eq!(inst.err(), Some(R1CSError::InvalidIndex));
}
#[test]
pub fn check_r1cs_invalid_scalar() {
let num_cons = 4;
let num_vars = 8;
let num_inputs = 1;
let zero: [u8; 32] = [
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,
];
let larger_than_mod = [255; 32];
let A = vec![(0, 0, zero)];
let B = vec![(1, 1, larger_than_mod)];
let C = vec![(1, 1, zero)];
let inst = Instance::new(num_cons, num_vars, num_inputs, &A, &B, &C);
assert!(inst.is_err());
assert_eq!(inst.err(), Some(R1CSError::InvalidScalar));
}
#[test]
fn test_padded_constraints() {
// parameters of the R1CS instance
let num_cons = 1;
let num_vars = 0;
let num_inputs = 3;
let num_non_zero_entries = 3;
// We will encode the above constraints into three matrices, where
// the coefficients in the matrix are in the little-endian byte order
let mut A: Vec<(usize, usize, [u8; 32])> = Vec::new();
let mut B: Vec<(usize, usize, [u8; 32])> = Vec::new();
let mut C: Vec<(usize, usize, [u8; 32])> = Vec::new();
// Create a^2 + b + 13
A.push((0, num_vars + 2, Scalar::one().to_bytes())); // 1*a
B.push((0, num_vars + 2, Scalar::one().to_bytes())); // 1*a
C.push((0, num_vars + 1, Scalar::one().to_bytes())); // 1*z
C.push((0, num_vars, (-Scalar::from(13u64)).to_bytes())); // -13*1
C.push((0, num_vars + 3, (-Scalar::one()).to_bytes())); // -1*b
// Var Assignments (Z_0 = 16 is the only output)
let vars = vec![Scalar::zero().to_bytes(); num_vars];
// create an InputsAssignment (a = 1, b = 2)
let mut inputs = vec![Scalar::zero().to_bytes(); num_inputs];
inputs[0] = Scalar::from(16u64).to_bytes();
inputs[1] = Scalar::from(1u64).to_bytes();
inputs[2] = Scalar::from(2u64).to_bytes();
let assignment_inputs = InputsAssignment::new(&inputs).unwrap();
let assignment_vars = VarsAssignment::new(&vars).unwrap();
// Check if instance is satisfiable
let inst = Instance::new(num_cons, num_vars, num_inputs, &A, &B, &C).unwrap();
let res = inst.is_sat(&assignment_vars, &assignment_inputs);
assert!(res.unwrap(), "should be satisfied");
// SNARK public params
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_non_zero_entries);
// create a commitment to the R1CS instance
let (comm, decomm) = SNARK::encode(&inst, &gens);
// produce a SNARK
let mut prover_transcript = Transcript::new(b"snark_example");
let proof = SNARK::prove(
&inst,
&comm,
&decomm,
assignment_vars.clone(),
&assignment_inputs,
&gens,
&mut prover_transcript,
);
// verify the SNARK
let mut verifier_transcript = Transcript::new(b"snark_example");
assert!(proof
.verify(&comm, &assignment_inputs, &mut verifier_transcript, &gens)
.is_ok());
// NIZK public params
let gens = NIZKGens::new(num_cons, num_vars, num_inputs);
// produce a NIZK
let mut prover_transcript = Transcript::new(b"nizk_example");
let proof = NIZK::prove(
&inst,
assignment_vars,
&assignment_inputs,
&gens,
&mut prover_transcript,
);
// verify the NIZK
let mut verifier_transcript = Transcript::new(b"nizk_example");
assert!(proof
.verify(&inst, &assignment_inputs, &mut verifier_transcript, &gens)
.is_ok());
}
}

View File

@@ -0,0 +1,36 @@
pub trait Math {
fn square_root(self) -> usize;
fn pow2(self) -> usize;
fn get_bits(self, num_bits: usize) -> Vec<bool>;
fn log_2(self) -> usize;
}
impl Math for usize {
#[inline]
fn square_root(self) -> usize {
(self as f64).sqrt() as usize
}
#[inline]
fn pow2(self) -> usize {
let base: usize = 2;
base.pow(self as u32)
}
/// Returns the num_bits from n in a canonical order
fn get_bits(self, num_bits: usize) -> Vec<bool> {
(0..num_bits)
.map(|shift_amount| ((self & (1 << (num_bits - shift_amount - 1))) > 0))
.collect::<Vec<bool>>()
}
fn log_2(self) -> usize {
assert_ne!(self, 0);
if self.is_power_of_two() {
(1usize.leading_zeros() - self.leading_zeros()) as usize
} else {
(0usize.leading_zeros() - self.leading_zeros()) as usize
}
}
}

View File

@@ -0,0 +1,267 @@
//! This module is an adaptation of code from the bulletproofs crate.
//! See NOTICE.md for more details
#![allow(non_snake_case)]
#![allow(clippy::type_complexity)]
#![allow(clippy::too_many_arguments)]
use super::super::errors::ProofVerifyError;
use super::super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
use super::super::math::Math;
use super::super::scalar::Scalar;
use super::super::transcript::ProofTranscript;
use crate::group::DecompressEncodedPoint;
use core::iter;
use merlin::Transcript;
use serde::{Deserialize, Serialize};
#[derive(Debug, Serialize, Deserialize)]
pub struct BulletReductionProof {
L_vec: Vec<CompressedGroup>,
R_vec: Vec<CompressedGroup>,
}
impl BulletReductionProof {
/// Create an inner-product proof.
///
/// The proof is created with respect to the bases \\(G\\).
///
/// The `transcript` is passed in as a parameter so that the
/// challenges depend on the *entire* transcript (including parent
/// protocols).
///
/// The lengths of the vectors must all be the same, and must all be
/// either 0 or a power of 2.
pub fn prove(
transcript: &mut Transcript,
Q: &GroupElement,
G_vec: &[GroupElement],
H: &GroupElement,
a_vec: &[Scalar],
b_vec: &[Scalar],
blind: &Scalar,
blinds_vec: &[(Scalar, Scalar)],
) -> (
BulletReductionProof,
GroupElement,
Scalar,
Scalar,
GroupElement,
Scalar,
) {
// Create slices G, H, a, b backed by their respective
// vectors. This lets us reslice as we compress the lengths
// of the vectors in the main loop below.
let mut G = &mut G_vec.to_owned()[..];
let mut a = &mut a_vec.to_owned()[..];
let mut b = &mut b_vec.to_owned()[..];
// All of the input vectors must have a length that is a power of two.
let mut n = G.len();
assert!(n.is_power_of_two());
let lg_n = n.log_2();
// All of the input vectors must have the same length.
assert_eq!(G.len(), n);
assert_eq!(a.len(), n);
assert_eq!(b.len(), n);
assert_eq!(blinds_vec.len(), 2 * lg_n);
let mut L_vec = Vec::with_capacity(lg_n);
let mut R_vec = Vec::with_capacity(lg_n);
let mut blinds_iter = blinds_vec.iter();
let mut blind_fin = *blind;
while n != 1 {
n /= 2;
let (a_L, a_R) = a.split_at_mut(n);
let (b_L, b_R) = b.split_at_mut(n);
let (G_L, G_R) = G.split_at_mut(n);
let c_L = inner_product(a_L, b_R);
let c_R = inner_product(a_R, b_L);
let (blind_L, blind_R) = blinds_iter.next().unwrap();
let L = GroupElement::vartime_multiscalar_mul(
a_L
.iter()
.chain(iter::once(&c_L))
.chain(iter::once(blind_L))
.map(|s| *s)
.collect(),
G_R
.iter()
.chain(iter::once(Q))
.chain(iter::once(H))
.map(|s| *s)
.collect(),
);
let R = GroupElement::vartime_multiscalar_mul(
a_R
.iter()
.chain(iter::once(&c_R))
.chain(iter::once(blind_R))
.map(|s| *s)
.collect(),
G_L
.iter()
.chain(iter::once(Q))
.chain(iter::once(H))
.map(|s| *s)
.collect(),
);
transcript.append_point(b"L", &L.compress());
transcript.append_point(b"R", &R.compress());
let u = transcript.challenge_scalar(b"u");
let u_inv = u.invert().unwrap();
for i in 0..n {
a_L[i] = a_L[i] * u + u_inv * a_R[i];
b_L[i] = b_L[i] * u_inv + u * b_R[i];
G_L[i] =
GroupElement::vartime_multiscalar_mul([u_inv, u].to_vec(), [G_L[i], G_R[i]].to_vec());
}
blind_fin = blind_fin + blind_L * u * u + blind_R * u_inv * u_inv;
L_vec.push(L.compress());
R_vec.push(R.compress());
a = a_L;
b = b_L;
G = G_L;
}
let Gamma_hat = GroupElement::vartime_multiscalar_mul(
[a[0], a[0] * b[0], blind_fin].to_vec(),
[G[0], *Q, *H].to_vec(),
);
(
BulletReductionProof { L_vec, R_vec },
Gamma_hat,
a[0],
b[0],
G[0],
blind_fin,
)
}
/// Computes three vectors of verification scalars \\([u\_{i}^{2}]\\), \\([u\_{i}^{-2}]\\) and \\([s\_{i}]\\) for combined multiscalar multiplication
/// in a parent protocol. See [inner product protocol notes](index.html#verification-equation) for details.
/// The verifier must provide the input length \\(n\\) explicitly to avoid unbounded allocation within the inner product proof.
fn verification_scalars(
&self,
n: usize,
transcript: &mut Transcript,
) -> Result<(Vec<Scalar>, Vec<Scalar>, Vec<Scalar>), ProofVerifyError> {
let lg_n = self.L_vec.len();
if lg_n >= 32 {
// 4 billion multiplications should be enough for anyone
// and this check prevents overflow in 1<<lg_n below.
return Err(ProofVerifyError::InternalError);
}
if n != (1 << lg_n) {
return Err(ProofVerifyError::InternalError);
}
// 1. Recompute x_k,...,x_1 based on the proof transcript
let mut challenges = Vec::with_capacity(lg_n);
for (L, R) in self.L_vec.iter().zip(self.R_vec.iter()) {
transcript.append_point(b"L", L);
transcript.append_point(b"R", R);
challenges.push(transcript.challenge_scalar(b"u"));
}
// 2. Compute 1/(u_k...u_1) and 1/u_k, ..., 1/u_1
let mut challenges_inv = challenges.clone();
let allinv = Scalar::batch_invert(&mut challenges_inv);
// 3. Compute u_i^2 and (1/u_i)^2
for i in 0..lg_n {
challenges[i] = challenges[i].square();
challenges_inv[i] = challenges_inv[i].square();
}
let challenges_sq = challenges;
let challenges_inv_sq = challenges_inv;
// 4. Compute s values inductively.
let mut s = Vec::with_capacity(n);
s.push(allinv);
for i in 1..n {
let lg_i = (32 - 1 - (i as u32).leading_zeros()) as usize;
let k = 1 << lg_i;
// The challenges are stored in "creation order" as [u_k,...,u_1],
// so u_{lg(i)+1} = is indexed by (lg_n-1) - lg_i
let u_lg_i_sq = challenges_sq[(lg_n - 1) - lg_i];
s.push(s[i - k] * u_lg_i_sq);
}
Ok((challenges_sq, challenges_inv_sq, s))
}
/// This method is for testing that proof generation work,
/// but for efficiency the actual protocols would use `verification_scalars`
/// method to combine inner product verification with other checks
/// in a single multiscalar multiplication.
pub fn verify(
&self,
n: usize,
a: &[Scalar],
transcript: &mut Transcript,
Gamma: &GroupElement,
G: &[GroupElement],
) -> Result<(GroupElement, GroupElement, Scalar), ProofVerifyError> {
let (u_sq, u_inv_sq, s) = self.verification_scalars(n, transcript)?;
let Ls = self
.L_vec
.iter()
.map(|p| p.decompress().ok_or(ProofVerifyError::InternalError))
.collect::<Result<Vec<_>, _>>()?;
let Rs = self
.R_vec
.iter()
.map(|p| p.decompress().ok_or(ProofVerifyError::InternalError))
.collect::<Result<Vec<_>, _>>()?;
let G_hat = GroupElement::vartime_multiscalar_mul(s.clone(), G.to_vec());
let a_hat = inner_product(a, &s);
let Gamma_hat = GroupElement::vartime_multiscalar_mul(
u_sq
.iter()
.chain(u_inv_sq.iter())
.chain(iter::once(&Scalar::one()))
.map(|s| *s)
.collect(),
Ls.iter()
.chain(Rs.iter())
.chain(iter::once(Gamma))
.map(|p| *p)
.collect(),
);
Ok((G_hat, Gamma_hat, a_hat))
}
}
/// Computes an inner product of two vectors
/// \\[
/// {\langle {\mathbf{a}}, {\mathbf{b}} \rangle} = \sum\_{i=0}^{n-1} a\_i \cdot b\_i.
/// \\]
/// Panics if the lengths of \\(\mathbf{a}\\) and \\(\mathbf{b}\\) are not equal.
pub fn inner_product(a: &[Scalar], b: &[Scalar]) -> Scalar {
assert!(
a.len() == b.len(),
"inner_product(a,b): lengths of vectors do not match"
);
let mut out = Scalar::zero();
for i in 0..a.len() {
out += a[i] * b[i];
}
out
}

View File

@@ -0,0 +1,735 @@
#![allow(clippy::too_many_arguments)]
use super::commitments::{Commitments, MultiCommitGens};
use super::errors::ProofVerifyError;
use super::group::{CompressedGroup, CompressedGroupExt};
use super::math::Math;
use super::random::RandomTape;
use super::scalar::Scalar;
use super::transcript::{AppendToTranscript, ProofTranscript};
use crate::group::DecompressEncodedPoint;
use merlin::Transcript;
use serde::{Deserialize, Serialize};
mod bullet;
use bullet::BulletReductionProof;
#[derive(Serialize, Deserialize, Debug)]
pub struct KnowledgeProof {
alpha: CompressedGroup,
z1: Scalar,
z2: Scalar,
}
impl KnowledgeProof {
fn protocol_name() -> &'static [u8] {
b"knowledge proof"
}
pub fn prove(
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
random_tape: &mut RandomTape,
x: &Scalar,
r: &Scalar,
) -> (KnowledgeProof, CompressedGroup) {
transcript.append_protocol_name(KnowledgeProof::protocol_name());
// produce two random Scalars
let t1 = random_tape.random_scalar(b"t1");
let t2 = random_tape.random_scalar(b"t2");
let C = x.commit(r, gens_n).compress();
C.append_to_transcript(b"C", transcript);
let alpha = t1.commit(&t2, gens_n).compress();
alpha.append_to_transcript(b"alpha", transcript);
let c = transcript.challenge_scalar(b"c");
let z1 = x * c + t1;
let z2 = r * c + t2;
(KnowledgeProof { alpha, z1, z2 }, C)
}
pub fn verify(
&self,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
C: &CompressedGroup,
) -> Result<(), ProofVerifyError> {
transcript.append_protocol_name(KnowledgeProof::protocol_name());
C.append_to_transcript(b"C", transcript);
self.alpha.append_to_transcript(b"alpha", transcript);
let c = transcript.challenge_scalar(b"c");
let lhs = self.z1.commit(&self.z2, gens_n).compress();
let rhs = (c * C.unpack()? + self.alpha.unpack()?).compress();
if lhs == rhs {
Ok(())
} else {
Err(ProofVerifyError::InternalError)
}
}
}
#[derive(Serialize, Deserialize, Debug)]
pub struct EqualityProof {
alpha: CompressedGroup,
z: Scalar,
}
impl EqualityProof {
fn protocol_name() -> &'static [u8] {
b"equality proof"
}
pub fn prove(
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
random_tape: &mut RandomTape,
v1: &Scalar,
s1: &Scalar,
v2: &Scalar,
s2: &Scalar,
) -> (EqualityProof, CompressedGroup, CompressedGroup) {
transcript.append_protocol_name(EqualityProof::protocol_name());
// produce a random Scalar
let r = random_tape.random_scalar(b"r");
let C1 = v1.commit(s1, gens_n).compress();
C1.append_to_transcript(b"C1", transcript);
let C2 = v2.commit(s2, gens_n).compress();
C2.append_to_transcript(b"C2", transcript);
let alpha = (r * gens_n.h).compress();
alpha.append_to_transcript(b"alpha", transcript);
let c = transcript.challenge_scalar(b"c");
let z = c * (s1 - s2) + r;
(EqualityProof { alpha, z }, C1, C2)
}
pub fn verify(
&self,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
C1: &CompressedGroup,
C2: &CompressedGroup,
) -> Result<(), ProofVerifyError> {
transcript.append_protocol_name(EqualityProof::protocol_name());
C1.append_to_transcript(b"C1", transcript);
C2.append_to_transcript(b"C2", transcript);
self.alpha.append_to_transcript(b"alpha", transcript);
let c = transcript.challenge_scalar(b"c");
let rhs = {
let C = C1.unpack()? - C2.unpack()?;
(c * C + self.alpha.unpack()?).compress()
};
let lhs = (self.z * gens_n.h).compress();
if lhs == rhs {
Ok(())
} else {
Err(ProofVerifyError::InternalError)
}
}
}
#[derive(Serialize, Deserialize, Debug)]
pub struct ProductProof {
alpha: CompressedGroup,
beta: CompressedGroup,
delta: CompressedGroup,
z: [Scalar; 5],
}
impl ProductProof {
fn protocol_name() -> &'static [u8] {
b"product proof"
}
pub fn prove(
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
random_tape: &mut RandomTape,
x: &Scalar,
rX: &Scalar,
y: &Scalar,
rY: &Scalar,
z: &Scalar,
rZ: &Scalar,
) -> (
ProductProof,
CompressedGroup,
CompressedGroup,
CompressedGroup,
) {
transcript.append_protocol_name(ProductProof::protocol_name());
// produce five random Scalar
let b1 = random_tape.random_scalar(b"b1");
let b2 = random_tape.random_scalar(b"b2");
let b3 = random_tape.random_scalar(b"b3");
let b4 = random_tape.random_scalar(b"b4");
let b5 = random_tape.random_scalar(b"b5");
let X = x.commit(rX, gens_n).compress();
X.append_to_transcript(b"X", transcript);
let Y = y.commit(rY, gens_n).compress();
Y.append_to_transcript(b"Y", transcript);
let Z = z.commit(rZ, gens_n).compress();
Z.append_to_transcript(b"Z", transcript);
let alpha = b1.commit(&b2, gens_n).compress();
alpha.append_to_transcript(b"alpha", transcript);
let beta = b3.commit(&b4, gens_n).compress();
beta.append_to_transcript(b"beta", transcript);
let delta = {
let gens_X = &MultiCommitGens {
n: 1,
G: vec![X.decompress().unwrap()],
h: gens_n.h,
};
b3.commit(&b5, gens_X).compress()
};
delta.append_to_transcript(b"delta", transcript);
let c = transcript.challenge_scalar(b"c");
let z1 = b1 + c * x;
let z2 = b2 + c * rX;
let z3 = b3 + c * y;
let z4 = b4 + c * rY;
let z5 = b5 + c * (rZ - rX * y);
let z = [z1, z2, z3, z4, z5];
(
ProductProof {
alpha,
beta,
delta,
z,
},
X,
Y,
Z,
)
}
fn check_equality(
P: &CompressedGroup,
X: &CompressedGroup,
c: &Scalar,
gens_n: &MultiCommitGens,
z1: &Scalar,
z2: &Scalar,
) -> bool {
let lhs = (P.decompress().unwrap() + c * X.decompress().unwrap()).compress();
let rhs = z1.commit(z2, gens_n).compress();
lhs == rhs
}
pub fn verify(
&self,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
X: &CompressedGroup,
Y: &CompressedGroup,
Z: &CompressedGroup,
) -> Result<(), ProofVerifyError> {
transcript.append_protocol_name(ProductProof::protocol_name());
X.append_to_transcript(b"X", transcript);
Y.append_to_transcript(b"Y", transcript);
Z.append_to_transcript(b"Z", transcript);
self.alpha.append_to_transcript(b"alpha", transcript);
self.beta.append_to_transcript(b"beta", transcript);
self.delta.append_to_transcript(b"delta", transcript);
let z1 = self.z[0];
let z2 = self.z[1];
let z3 = self.z[2];
let z4 = self.z[3];
let z5 = self.z[4];
let c = transcript.challenge_scalar(b"c");
if ProductProof::check_equality(&self.alpha, X, &c, gens_n, &z1, &z2)
&& ProductProof::check_equality(&self.beta, Y, &c, gens_n, &z3, &z4)
&& ProductProof::check_equality(
&self.delta,
Z,
&c,
&MultiCommitGens {
n: 1,
G: vec![X.unpack()?],
h: gens_n.h,
},
&z3,
&z5,
)
{
Ok(())
} else {
Err(ProofVerifyError::InternalError)
}
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct DotProductProof {
delta: CompressedGroup,
beta: CompressedGroup,
z: Vec<Scalar>,
z_delta: Scalar,
z_beta: Scalar,
}
impl DotProductProof {
fn protocol_name() -> &'static [u8] {
b"dot product proof"
}
pub fn compute_dotproduct(a: &[Scalar], b: &[Scalar]) -> Scalar {
assert_eq!(a.len(), b.len());
(0..a.len()).map(|i| a[i] * b[i]).sum()
}
pub fn prove(
gens_1: &MultiCommitGens,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
random_tape: &mut RandomTape,
x_vec: &[Scalar],
blind_x: &Scalar,
a_vec: &[Scalar],
y: &Scalar,
blind_y: &Scalar,
) -> (DotProductProof, CompressedGroup, CompressedGroup) {
transcript.append_protocol_name(DotProductProof::protocol_name());
let n = x_vec.len();
assert_eq!(x_vec.len(), a_vec.len());
assert_eq!(gens_n.n, a_vec.len());
assert_eq!(gens_1.n, 1);
// produce randomness for the proofs
let d_vec = random_tape.random_vector(b"d_vec", n);
let r_delta = random_tape.random_scalar(b"r_delta");
let r_beta = random_tape.random_scalar(b"r_beta");
let Cx = x_vec.commit(blind_x, gens_n).compress();
Cx.append_to_transcript(b"Cx", transcript);
let Cy = y.commit(blind_y, gens_1).compress();
Cy.append_to_transcript(b"Cy", transcript);
a_vec.append_to_transcript(b"a", transcript);
let delta = d_vec.commit(&r_delta, gens_n).compress();
delta.append_to_transcript(b"delta", transcript);
let dotproduct_a_d = DotProductProof::compute_dotproduct(a_vec, &d_vec);
let beta = dotproduct_a_d.commit(&r_beta, gens_1).compress();
beta.append_to_transcript(b"beta", transcript);
let c = transcript.challenge_scalar(b"c");
let z = (0..d_vec.len())
.map(|i| c * x_vec[i] + d_vec[i])
.collect::<Vec<Scalar>>();
let z_delta = c * blind_x + r_delta;
let z_beta = c * blind_y + r_beta;
(
DotProductProof {
delta,
beta,
z,
z_delta,
z_beta,
},
Cx,
Cy,
)
}
pub fn verify(
&self,
gens_1: &MultiCommitGens,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
a: &[Scalar],
Cx: &CompressedGroup,
Cy: &CompressedGroup,
) -> Result<(), ProofVerifyError> {
assert_eq!(gens_n.n, a.len());
assert_eq!(gens_1.n, 1);
transcript.append_protocol_name(DotProductProof::protocol_name());
Cx.append_to_transcript(b"Cx", transcript);
Cy.append_to_transcript(b"Cy", transcript);
a.append_to_transcript(b"a", transcript);
self.delta.append_to_transcript(b"delta", transcript);
self.beta.append_to_transcript(b"beta", transcript);
let c = transcript.challenge_scalar(b"c");
let mut result =
c * Cx.unpack()? + self.delta.unpack()? == self.z.commit(&self.z_delta, gens_n);
let dotproduct_z_a = DotProductProof::compute_dotproduct(&self.z, a);
result &= c * Cy.unpack()? + self.beta.unpack()? == dotproduct_z_a.commit(&self.z_beta, gens_1);
if result {
Ok(())
} else {
Err(ProofVerifyError::InternalError)
}
}
}
pub struct DotProductProofGens {
n: usize,
pub gens_n: MultiCommitGens,
pub gens_1: MultiCommitGens,
}
impl DotProductProofGens {
pub fn new(n: usize, label: &[u8]) -> Self {
let (gens_n, gens_1) = MultiCommitGens::new(n + 1, label).split_at(n);
DotProductProofGens { n, gens_n, gens_1 }
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct DotProductProofLog {
bullet_reduction_proof: BulletReductionProof,
delta: CompressedGroup,
beta: CompressedGroup,
z1: Scalar,
z2: Scalar,
}
impl DotProductProofLog {
fn protocol_name() -> &'static [u8] {
b"dot product proof (log)"
}
pub fn compute_dotproduct(a: &[Scalar], b: &[Scalar]) -> Scalar {
assert_eq!(a.len(), b.len());
(0..a.len()).map(|i| a[i] * b[i]).sum()
}
pub fn prove(
gens: &DotProductProofGens,
transcript: &mut Transcript,
random_tape: &mut RandomTape,
x_vec: &[Scalar],
blind_x: &Scalar,
a_vec: &[Scalar],
y: &Scalar,
blind_y: &Scalar,
) -> (DotProductProofLog, CompressedGroup, CompressedGroup) {
transcript.append_protocol_name(DotProductProofLog::protocol_name());
let n = x_vec.len();
assert_eq!(x_vec.len(), a_vec.len());
assert_eq!(gens.n, n);
// produce randomness for generating a proof
let d = random_tape.random_scalar(b"d");
let r_delta = random_tape.random_scalar(b"r_delta");
let r_beta = random_tape.random_scalar(b"r_delta");
let blinds_vec = {
let v1 = random_tape.random_vector(b"blinds_vec_1", 2 * n.log_2());
let v2 = random_tape.random_vector(b"blinds_vec_2", 2 * n.log_2());
(0..v1.len())
.map(|i| (v1[i], v2[i]))
.collect::<Vec<(Scalar, Scalar)>>()
};
let Cx = x_vec.commit(blind_x, &gens.gens_n).compress();
Cx.append_to_transcript(b"Cx", transcript);
let Cy = y.commit(blind_y, &gens.gens_1).compress();
Cy.append_to_transcript(b"Cy", transcript);
a_vec.append_to_transcript(b"a", transcript);
// sample a random base and scale the generator used for
// the output of the inner product
let r = transcript.challenge_scalar(b"r");
let gens_1_scaled = gens.gens_1.scale(&r);
let blind_Gamma = blind_x + r * blind_y;
let (bullet_reduction_proof, _Gamma_hat, x_hat, a_hat, g_hat, rhat_Gamma) =
BulletReductionProof::prove(
transcript,
&gens_1_scaled.G[0],
&gens.gens_n.G,
&gens.gens_n.h,
x_vec,
a_vec,
&blind_Gamma,
&blinds_vec,
);
let y_hat = x_hat * a_hat;
let delta = {
let gens_hat = MultiCommitGens {
n: 1,
G: vec![g_hat],
h: gens.gens_1.h,
};
d.commit(&r_delta, &gens_hat).compress()
};
delta.append_to_transcript(b"delta", transcript);
let beta = d.commit(&r_beta, &gens_1_scaled).compress();
beta.append_to_transcript(b"beta", transcript);
let c = transcript.challenge_scalar(b"c");
let z1 = d + c * y_hat;
let z2 = a_hat * (c * rhat_Gamma + r_beta) + r_delta;
(
DotProductProofLog {
bullet_reduction_proof,
delta,
beta,
z1,
z2,
},
Cx,
Cy,
)
}
pub fn verify(
&self,
n: usize,
gens: &DotProductProofGens,
transcript: &mut Transcript,
a: &[Scalar],
Cx: &CompressedGroup,
Cy: &CompressedGroup,
) -> Result<(), ProofVerifyError> {
assert_eq!(gens.n, n);
assert_eq!(a.len(), n);
transcript.append_protocol_name(DotProductProofLog::protocol_name());
Cx.append_to_transcript(b"Cx", transcript);
Cy.append_to_transcript(b"Cy", transcript);
a.append_to_transcript(b"a", transcript);
// sample a random base and scale the generator used for
// the output of the inner product
let r = transcript.challenge_scalar(b"r");
let gens_1_scaled = gens.gens_1.scale(&r);
let Gamma = Cx.unpack()? + r * Cy.unpack()?;
let (g_hat, Gamma_hat, a_hat) =
self
.bullet_reduction_proof
.verify(n, a, transcript, &Gamma, &gens.gens_n.G)?;
self.delta.append_to_transcript(b"delta", transcript);
self.beta.append_to_transcript(b"beta", transcript);
let c = transcript.challenge_scalar(b"c");
let c_s = &c;
let beta_s = self.beta.unpack()?;
let a_hat_s = &a_hat;
let delta_s = self.delta.unpack()?;
let z1_s = &self.z1;
let z2_s = &self.z2;
let lhs = ((Gamma_hat * c_s + beta_s) * a_hat_s + delta_s).compress();
let rhs = ((g_hat + gens_1_scaled.G[0] * a_hat_s) * z1_s + gens_1_scaled.h * z2_s).compress();
assert_eq!(lhs, rhs);
if lhs == rhs {
Ok(())
} else {
Err(ProofVerifyError::InternalError)
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use rand_core::OsRng;
#[test]
fn check_knowledgeproof() {
let mut csprng: OsRng = OsRng;
let gens_1 = MultiCommitGens::new(1, b"test-knowledgeproof");
let x = Scalar::random(&mut csprng);
let r = Scalar::random(&mut csprng);
let mut random_tape = RandomTape::new(b"proof");
let mut prover_transcript = Transcript::new(b"example");
let (proof, committed_value) =
KnowledgeProof::prove(&gens_1, &mut prover_transcript, &mut random_tape, &x, &r);
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(&gens_1, &mut verifier_transcript, &committed_value)
.is_ok());
}
#[test]
fn check_equalityproof() {
let mut csprng: OsRng = OsRng;
let gens_1 = MultiCommitGens::new(1, b"test-equalityproof");
let v1 = Scalar::random(&mut csprng);
let v2 = v1;
let s1 = Scalar::random(&mut csprng);
let s2 = Scalar::random(&mut csprng);
let mut random_tape = RandomTape::new(b"proof");
let mut prover_transcript = Transcript::new(b"example");
let (proof, C1, C2) = EqualityProof::prove(
&gens_1,
&mut prover_transcript,
&mut random_tape,
&v1,
&s1,
&v2,
&s2,
);
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(&gens_1, &mut verifier_transcript, &C1, &C2)
.is_ok());
}
#[test]
fn check_productproof() {
let mut csprng: OsRng = OsRng;
let gens_1 = MultiCommitGens::new(1, b"test-productproof");
let x = Scalar::random(&mut csprng);
let rX = Scalar::random(&mut csprng);
let y = Scalar::random(&mut csprng);
let rY = Scalar::random(&mut csprng);
let z = x * y;
let rZ = Scalar::random(&mut csprng);
let mut random_tape = RandomTape::new(b"proof");
let mut prover_transcript = Transcript::new(b"example");
let (proof, X, Y, Z) = ProductProof::prove(
&gens_1,
&mut prover_transcript,
&mut random_tape,
&x,
&rX,
&y,
&rY,
&z,
&rZ,
);
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(&gens_1, &mut verifier_transcript, &X, &Y, &Z)
.is_ok());
}
#[test]
fn check_dotproductproof() {
let mut csprng: OsRng = OsRng;
let n = 1024;
let gens_1 = MultiCommitGens::new(1, b"test-two");
let gens_1024 = MultiCommitGens::new(n, b"test-1024");
let mut x: Vec<Scalar> = Vec::new();
let mut a: Vec<Scalar> = Vec::new();
for _ in 0..n {
x.push(Scalar::random(&mut csprng));
a.push(Scalar::random(&mut csprng));
}
let y = DotProductProofLog::compute_dotproduct(&x, &a);
let r_x = Scalar::random(&mut csprng);
let r_y = Scalar::random(&mut csprng);
let mut random_tape = RandomTape::new(b"proof");
let mut prover_transcript = Transcript::new(b"example");
let (proof, Cx, Cy) = DotProductProof::prove(
&gens_1,
&gens_1024,
&mut prover_transcript,
&mut random_tape,
&x,
&r_x,
&a,
&y,
&r_y,
);
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(&gens_1, &gens_1024, &mut verifier_transcript, &a, &Cx, &Cy)
.is_ok());
}
#[test]
fn check_dotproductproof_log() {
let mut csprng: OsRng = OsRng;
let n = 1024;
let gens = DotProductProofGens::new(n, b"test-1024");
let x: Vec<Scalar> = (0..n).map(|_i| Scalar::random(&mut csprng)).collect();
let a: Vec<Scalar> = (0..n).map(|_i| Scalar::random(&mut csprng)).collect();
let y = DotProductProof::compute_dotproduct(&x, &a);
let r_x = Scalar::random(&mut csprng);
let r_y = Scalar::random(&mut csprng);
let mut random_tape = RandomTape::new(b"proof");
let mut prover_transcript = Transcript::new(b"example");
let (proof, Cx, Cy) = DotProductProofLog::prove(
&gens,
&mut prover_transcript,
&mut random_tape,
&x,
&r_x,
&a,
&y,
&r_y,
);
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(n, &gens, &mut verifier_transcript, &a, &Cx, &Cy)
.is_ok());
}
}

View File

@@ -0,0 +1,486 @@
#![allow(dead_code)]
use super::dense_mlpoly::DensePolynomial;
use super::dense_mlpoly::EqPolynomial;
use super::math::Math;
use super::scalar::Scalar;
use super::sumcheck::SumcheckInstanceProof;
use super::transcript::ProofTranscript;
use merlin::Transcript;
use serde::{Deserialize, Serialize};
#[derive(Debug)]
pub struct ProductCircuit {
left_vec: Vec<DensePolynomial>,
right_vec: Vec<DensePolynomial>,
}
impl ProductCircuit {
fn compute_layer(
inp_left: &DensePolynomial,
inp_right: &DensePolynomial,
) -> (DensePolynomial, DensePolynomial) {
let len = inp_left.len() + inp_right.len();
let outp_left = (0..len / 4)
.map(|i| inp_left[i] * inp_right[i])
.collect::<Vec<Scalar>>();
let outp_right = (len / 4..len / 2)
.map(|i| inp_left[i] * inp_right[i])
.collect::<Vec<Scalar>>();
(
DensePolynomial::new(outp_left),
DensePolynomial::new(outp_right),
)
}
pub fn new(poly: &DensePolynomial) -> Self {
let mut left_vec: Vec<DensePolynomial> = Vec::new();
let mut right_vec: Vec<DensePolynomial> = Vec::new();
let num_layers = poly.len().log_2();
let (outp_left, outp_right) = poly.split(poly.len() / 2);
left_vec.push(outp_left);
right_vec.push(outp_right);
for i in 0..num_layers - 1 {
let (outp_left, outp_right) = ProductCircuit::compute_layer(&left_vec[i], &right_vec[i]);
left_vec.push(outp_left);
right_vec.push(outp_right);
}
ProductCircuit {
left_vec,
right_vec,
}
}
pub fn evaluate(&self) -> Scalar {
let len = self.left_vec.len();
assert_eq!(self.left_vec[len - 1].get_num_vars(), 0);
assert_eq!(self.right_vec[len - 1].get_num_vars(), 0);
self.left_vec[len - 1][0] * self.right_vec[len - 1][0]
}
}
pub struct DotProductCircuit {
left: DensePolynomial,
right: DensePolynomial,
weight: DensePolynomial,
}
impl DotProductCircuit {
pub fn new(left: DensePolynomial, right: DensePolynomial, weight: DensePolynomial) -> Self {
assert_eq!(left.len(), right.len());
assert_eq!(left.len(), weight.len());
DotProductCircuit {
left,
right,
weight,
}
}
pub fn evaluate(&self) -> Scalar {
(0..self.left.len())
.map(|i| self.left[i] * self.right[i] * self.weight[i])
.sum()
}
pub fn split(&mut self) -> (DotProductCircuit, DotProductCircuit) {
let idx = self.left.len() / 2;
assert_eq!(idx * 2, self.left.len());
let (l1, l2) = self.left.split(idx);
let (r1, r2) = self.right.split(idx);
let (w1, w2) = self.weight.split(idx);
(
DotProductCircuit {
left: l1,
right: r1,
weight: w1,
},
DotProductCircuit {
left: l2,
right: r2,
weight: w2,
},
)
}
}
#[allow(dead_code)]
#[derive(Debug, Serialize, Deserialize)]
pub struct LayerProof {
pub proof: SumcheckInstanceProof,
pub claims: Vec<Scalar>,
}
#[allow(dead_code)]
impl LayerProof {
pub fn verify(
&self,
claim: Scalar,
num_rounds: usize,
degree_bound: usize,
transcript: &mut Transcript,
) -> (Scalar, Vec<Scalar>) {
self
.proof
.verify(claim, num_rounds, degree_bound, transcript)
.unwrap()
}
}
#[allow(dead_code)]
#[derive(Debug, Serialize, Deserialize)]
pub struct LayerProofBatched {
pub proof: SumcheckInstanceProof,
pub claims_prod_left: Vec<Scalar>,
pub claims_prod_right: Vec<Scalar>,
}
#[allow(dead_code)]
impl LayerProofBatched {
pub fn verify(
&self,
claim: Scalar,
num_rounds: usize,
degree_bound: usize,
transcript: &mut Transcript,
) -> (Scalar, Vec<Scalar>) {
self
.proof
.verify(claim, num_rounds, degree_bound, transcript)
.unwrap()
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ProductCircuitEvalProof {
proof: Vec<LayerProof>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ProductCircuitEvalProofBatched {
proof: Vec<LayerProofBatched>,
claims_dotp: (Vec<Scalar>, Vec<Scalar>, Vec<Scalar>),
}
impl ProductCircuitEvalProof {
#![allow(dead_code)]
pub fn prove(
circuit: &mut ProductCircuit,
transcript: &mut Transcript,
) -> (Self, Scalar, Vec<Scalar>) {
let mut proof: Vec<LayerProof> = Vec::new();
let num_layers = circuit.left_vec.len();
let mut claim = circuit.evaluate();
let mut rand = Vec::new();
for layer_id in (0..num_layers).rev() {
let len = circuit.left_vec[layer_id].len() + circuit.right_vec[layer_id].len();
let mut poly_C = DensePolynomial::new(EqPolynomial::new(rand.clone()).evals());
assert_eq!(poly_C.len(), len / 2);
let num_rounds_prod = poly_C.len().log_2();
let comb_func_prod = |poly_A_comp: &Scalar,
poly_B_comp: &Scalar,
poly_C_comp: &Scalar|
-> Scalar { poly_A_comp * poly_B_comp * poly_C_comp };
let (proof_prod, rand_prod, claims_prod) = SumcheckInstanceProof::prove_cubic(
&claim,
num_rounds_prod,
&mut circuit.left_vec[layer_id],
&mut circuit.right_vec[layer_id],
&mut poly_C,
comb_func_prod,
transcript,
);
transcript.append_scalar(b"claim_prod_left", &claims_prod[0]);
transcript.append_scalar(b"claim_prod_right", &claims_prod[1]);
// produce a random challenge
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
claim = claims_prod[0] + r_layer * (claims_prod[1] - claims_prod[0]);
let mut ext = vec![r_layer];
ext.extend(rand_prod);
rand = ext;
proof.push(LayerProof {
proof: proof_prod,
claims: claims_prod[0..claims_prod.len() - 1].to_vec(),
});
}
(ProductCircuitEvalProof { proof }, claim, rand)
}
pub fn verify(
&self,
eval: Scalar,
len: usize,
transcript: &mut Transcript,
) -> (Scalar, Vec<Scalar>) {
let num_layers = len.log_2();
let mut claim = eval;
let mut rand: Vec<Scalar> = Vec::new();
//let mut num_rounds = 0;
assert_eq!(self.proof.len(), num_layers);
for (num_rounds, i) in (0..num_layers).enumerate() {
let (claim_last, rand_prod) = self.proof[i].verify(claim, num_rounds, 3, transcript);
let claims_prod = &self.proof[i].claims;
transcript.append_scalar(b"claim_prod_left", &claims_prod[0]);
transcript.append_scalar(b"claim_prod_right", &claims_prod[1]);
assert_eq!(rand.len(), rand_prod.len());
let eq: Scalar = (0..rand.len())
.map(|i| {
rand[i] * rand_prod[i] + (Scalar::one() - rand[i]) * (Scalar::one() - rand_prod[i])
})
.product();
assert_eq!(claims_prod[0] * claims_prod[1] * eq, claim_last);
// produce a random challenge
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
claim = (Scalar::one() - r_layer) * claims_prod[0] + r_layer * claims_prod[1];
let mut ext = vec![r_layer];
ext.extend(rand_prod);
rand = ext;
}
(claim, rand)
}
}
impl ProductCircuitEvalProofBatched {
pub fn prove(
prod_circuit_vec: &mut Vec<&mut ProductCircuit>,
dotp_circuit_vec: &mut Vec<&mut DotProductCircuit>,
transcript: &mut Transcript,
) -> (Self, Vec<Scalar>) {
assert!(!prod_circuit_vec.is_empty());
let mut claims_dotp_final = (Vec::new(), Vec::new(), Vec::new());
let mut proof_layers: Vec<LayerProofBatched> = Vec::new();
let num_layers = prod_circuit_vec[0].left_vec.len();
let mut claims_to_verify = (0..prod_circuit_vec.len())
.map(|i| prod_circuit_vec[i].evaluate())
.collect::<Vec<Scalar>>();
let mut rand = Vec::new();
for layer_id in (0..num_layers).rev() {
// prepare paralell instance that share poly_C first
let len = prod_circuit_vec[0].left_vec[layer_id].len()
+ prod_circuit_vec[0].right_vec[layer_id].len();
let mut poly_C_par = DensePolynomial::new(EqPolynomial::new(rand.clone()).evals());
assert_eq!(poly_C_par.len(), len / 2);
let num_rounds_prod = poly_C_par.len().log_2();
let comb_func_prod = |poly_A_comp: &Scalar,
poly_B_comp: &Scalar,
poly_C_comp: &Scalar|
-> Scalar { poly_A_comp * poly_B_comp * poly_C_comp };
let mut poly_A_batched_par: Vec<&mut DensePolynomial> = Vec::new();
let mut poly_B_batched_par: Vec<&mut DensePolynomial> = Vec::new();
for prod_circuit in prod_circuit_vec.iter_mut() {
poly_A_batched_par.push(&mut prod_circuit.left_vec[layer_id]);
poly_B_batched_par.push(&mut prod_circuit.right_vec[layer_id])
}
let poly_vec_par = (
&mut poly_A_batched_par,
&mut poly_B_batched_par,
&mut poly_C_par,
);
// prepare sequential instances that don't share poly_C
let mut poly_A_batched_seq: Vec<&mut DensePolynomial> = Vec::new();
let mut poly_B_batched_seq: Vec<&mut DensePolynomial> = Vec::new();
let mut poly_C_batched_seq: Vec<&mut DensePolynomial> = Vec::new();
if layer_id == 0 && !dotp_circuit_vec.is_empty() {
// add additional claims
for item in dotp_circuit_vec.iter() {
claims_to_verify.push(item.evaluate());
assert_eq!(len / 2, item.left.len());
assert_eq!(len / 2, item.right.len());
assert_eq!(len / 2, item.weight.len());
}
for dotp_circuit in dotp_circuit_vec.iter_mut() {
poly_A_batched_seq.push(&mut dotp_circuit.left);
poly_B_batched_seq.push(&mut dotp_circuit.right);
poly_C_batched_seq.push(&mut dotp_circuit.weight);
}
}
let poly_vec_seq = (
&mut poly_A_batched_seq,
&mut poly_B_batched_seq,
&mut poly_C_batched_seq,
);
// produce a fresh set of coeffs and a joint claim
let coeff_vec =
transcript.challenge_vector(b"rand_coeffs_next_layer", claims_to_verify.len());
let claim = (0..claims_to_verify.len())
.map(|i| claims_to_verify[i] * coeff_vec[i])
.sum();
let (proof, rand_prod, claims_prod, claims_dotp) = SumcheckInstanceProof::prove_cubic_batched(
&claim,
num_rounds_prod,
poly_vec_par,
poly_vec_seq,
&coeff_vec,
comb_func_prod,
transcript,
);
let (claims_prod_left, claims_prod_right, _claims_eq) = claims_prod;
for i in 0..prod_circuit_vec.len() {
transcript.append_scalar(b"claim_prod_left", &claims_prod_left[i]);
transcript.append_scalar(b"claim_prod_right", &claims_prod_right[i]);
}
if layer_id == 0 && !dotp_circuit_vec.is_empty() {
let (claims_dotp_left, claims_dotp_right, claims_dotp_weight) = claims_dotp;
for i in 0..dotp_circuit_vec.len() {
transcript.append_scalar(b"claim_dotp_left", &claims_dotp_left[i]);
transcript.append_scalar(b"claim_dotp_right", &claims_dotp_right[i]);
transcript.append_scalar(b"claim_dotp_weight", &claims_dotp_weight[i]);
}
claims_dotp_final = (claims_dotp_left, claims_dotp_right, claims_dotp_weight);
}
// produce a random challenge to condense two claims into a single claim
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
claims_to_verify = (0..prod_circuit_vec.len())
.map(|i| claims_prod_left[i] + r_layer * (claims_prod_right[i] - claims_prod_left[i]))
.collect::<Vec<Scalar>>();
let mut ext = vec![r_layer];
ext.extend(rand_prod);
rand = ext;
proof_layers.push(LayerProofBatched {
proof,
claims_prod_left,
claims_prod_right,
});
}
(
ProductCircuitEvalProofBatched {
proof: proof_layers,
claims_dotp: claims_dotp_final,
},
rand,
)
}
pub fn verify(
&self,
claims_prod_vec: &[Scalar],
claims_dotp_vec: &[Scalar],
len: usize,
transcript: &mut Transcript,
) -> (Vec<Scalar>, Vec<Scalar>, Vec<Scalar>) {
let num_layers = len.log_2();
let mut rand: Vec<Scalar> = Vec::new();
//let mut num_rounds = 0;
assert_eq!(self.proof.len(), num_layers);
let mut claims_to_verify = claims_prod_vec.to_owned();
let mut claims_to_verify_dotp: Vec<Scalar> = Vec::new();
for (num_rounds, i) in (0..num_layers).enumerate() {
if i == num_layers - 1 {
claims_to_verify.extend(claims_dotp_vec);
}
// produce random coefficients, one for each instance
let coeff_vec =
transcript.challenge_vector(b"rand_coeffs_next_layer", claims_to_verify.len());
// produce a joint claim
let claim = (0..claims_to_verify.len())
.map(|i| claims_to_verify[i] * coeff_vec[i])
.sum();
let (claim_last, rand_prod) = self.proof[i].verify(claim, num_rounds, 3, transcript);
let claims_prod_left = &self.proof[i].claims_prod_left;
let claims_prod_right = &self.proof[i].claims_prod_right;
assert_eq!(claims_prod_left.len(), claims_prod_vec.len());
assert_eq!(claims_prod_right.len(), claims_prod_vec.len());
for i in 0..claims_prod_vec.len() {
transcript.append_scalar(b"claim_prod_left", &claims_prod_left[i]);
transcript.append_scalar(b"claim_prod_right", &claims_prod_right[i]);
}
assert_eq!(rand.len(), rand_prod.len());
let eq: Scalar = (0..rand.len())
.map(|i| {
rand[i] * rand_prod[i] + (Scalar::one() - rand[i]) * (Scalar::one() - rand_prod[i])
})
.product();
let mut claim_expected: Scalar = (0..claims_prod_vec.len())
.map(|i| coeff_vec[i] * (claims_prod_left[i] * claims_prod_right[i] * eq))
.sum();
// add claims from the dotp instances
if i == num_layers - 1 {
let num_prod_instances = claims_prod_vec.len();
let (claims_dotp_left, claims_dotp_right, claims_dotp_weight) = &self.claims_dotp;
for i in 0..claims_dotp_left.len() {
transcript.append_scalar(b"claim_dotp_left", &claims_dotp_left[i]);
transcript.append_scalar(b"claim_dotp_right", &claims_dotp_right[i]);
transcript.append_scalar(b"claim_dotp_weight", &claims_dotp_weight[i]);
claim_expected += coeff_vec[i + num_prod_instances]
* claims_dotp_left[i]
* claims_dotp_right[i]
* claims_dotp_weight[i];
}
}
assert_eq!(claim_expected, claim_last);
// produce a random challenge
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
claims_to_verify = (0..claims_prod_left.len())
.map(|i| claims_prod_left[i] + r_layer * (claims_prod_right[i] - claims_prod_left[i]))
.collect::<Vec<Scalar>>();
// add claims to verify for dotp circuit
if i == num_layers - 1 {
let (claims_dotp_left, claims_dotp_right, claims_dotp_weight) = &self.claims_dotp;
for i in 0..claims_dotp_vec.len() / 2 {
// combine left claims
let claim_left = claims_dotp_left[2 * i]
+ r_layer * (claims_dotp_left[2 * i + 1] - claims_dotp_left[2 * i]);
let claim_right = claims_dotp_right[2 * i]
+ r_layer * (claims_dotp_right[2 * i + 1] - claims_dotp_right[2 * i]);
let claim_weight = claims_dotp_weight[2 * i]
+ r_layer * (claims_dotp_weight[2 * i + 1] - claims_dotp_weight[2 * i]);
claims_to_verify_dotp.push(claim_left);
claims_to_verify_dotp.push(claim_right);
claims_to_verify_dotp.push(claim_weight);
}
}
let mut ext = vec![r_layer];
ext.extend(rand_prod);
rand = ext;
}
(claims_to_verify, claims_to_verify_dotp, rand)
}
}

View File

@@ -0,0 +1,367 @@
use crate::transcript::AppendToTranscript;
use super::dense_mlpoly::DensePolynomial;
use super::errors::ProofVerifyError;
use super::math::Math;
use super::random::RandomTape;
use super::scalar::Scalar;
use super::sparse_mlpoly::{
MultiSparseMatPolynomialAsDense, SparseMatEntry, SparseMatPolyCommitment,
SparseMatPolyCommitmentGens, SparseMatPolyEvalProof, SparseMatPolynomial,
};
use super::timer::Timer;
use flate2::{write::ZlibEncoder, Compression};
use merlin::Transcript;
use rand_core::OsRng;
use serde::{Deserialize, Serialize};
#[derive(Debug, Serialize, Deserialize)]
pub struct R1CSInstance {
num_cons: usize,
num_vars: usize,
num_inputs: usize,
A: SparseMatPolynomial,
B: SparseMatPolynomial,
C: SparseMatPolynomial,
}
pub struct R1CSCommitmentGens {
gens: SparseMatPolyCommitmentGens,
}
impl R1CSCommitmentGens {
pub fn new(
label: &'static [u8],
num_cons: usize,
num_vars: usize,
num_inputs: usize,
num_nz_entries: usize,
) -> R1CSCommitmentGens {
assert!(num_inputs < num_vars);
let num_poly_vars_x = num_cons.log_2();
let num_poly_vars_y = (2 * num_vars).log_2();
let gens =
SparseMatPolyCommitmentGens::new(label, num_poly_vars_x, num_poly_vars_y, num_nz_entries, 3);
R1CSCommitmentGens { gens }
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct R1CSCommitment {
num_cons: usize,
num_vars: usize,
num_inputs: usize,
comm: SparseMatPolyCommitment,
}
impl AppendToTranscript for R1CSCommitment {
fn append_to_transcript(&self, _label: &'static [u8], transcript: &mut Transcript) {
transcript.append_u64(b"num_cons", self.num_cons as u64);
transcript.append_u64(b"num_vars", self.num_vars as u64);
transcript.append_u64(b"num_inputs", self.num_inputs as u64);
self.comm.append_to_transcript(b"comm", transcript);
}
}
pub struct R1CSDecommitment {
dense: MultiSparseMatPolynomialAsDense,
}
impl R1CSCommitment {
pub fn get_num_cons(&self) -> usize {
self.num_cons
}
pub fn get_num_vars(&self) -> usize {
self.num_vars
}
pub fn get_num_inputs(&self) -> usize {
self.num_inputs
}
}
impl R1CSInstance {
pub fn new(
num_cons: usize,
num_vars: usize,
num_inputs: usize,
A: &[(usize, usize, Scalar)],
B: &[(usize, usize, Scalar)],
C: &[(usize, usize, Scalar)],
) -> R1CSInstance {
Timer::print(&format!("number_of_constraints {}", num_cons));
Timer::print(&format!("number_of_variables {}", num_vars));
Timer::print(&format!("number_of_inputs {}", num_inputs));
Timer::print(&format!("number_non-zero_entries_A {}", A.len()));
Timer::print(&format!("number_non-zero_entries_B {}", B.len()));
Timer::print(&format!("number_non-zero_entries_C {}", C.len()));
// check that num_cons is a power of 2
assert_eq!(num_cons.next_power_of_two(), num_cons);
// check that num_vars is a power of 2
assert_eq!(num_vars.next_power_of_two(), num_vars);
// check that number_inputs + 1 <= num_vars
assert!(num_inputs < num_vars);
// no errors, so create polynomials
let num_poly_vars_x = num_cons.log_2();
let num_poly_vars_y = (2 * num_vars).log_2();
let mat_A = (0..A.len())
.map(|i| SparseMatEntry::new(A[i].0, A[i].1, A[i].2))
.collect::<Vec<SparseMatEntry>>();
let mat_B = (0..B.len())
.map(|i| SparseMatEntry::new(B[i].0, B[i].1, B[i].2))
.collect::<Vec<SparseMatEntry>>();
let mat_C = (0..C.len())
.map(|i| SparseMatEntry::new(C[i].0, C[i].1, C[i].2))
.collect::<Vec<SparseMatEntry>>();
let poly_A = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, mat_A);
let poly_B = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, mat_B);
let poly_C = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, mat_C);
R1CSInstance {
num_cons,
num_vars,
num_inputs,
A: poly_A,
B: poly_B,
C: poly_C,
}
}
pub fn get_num_vars(&self) -> usize {
self.num_vars
}
pub fn get_num_cons(&self) -> usize {
self.num_cons
}
pub fn get_num_inputs(&self) -> usize {
self.num_inputs
}
pub fn get_digest(&self) -> Vec<u8> {
let mut encoder = ZlibEncoder::new(Vec::new(), Compression::default());
bincode::serialize_into(&mut encoder, &self).unwrap();
encoder.finish().unwrap()
}
pub fn produce_synthetic_r1cs(
num_cons: usize,
num_vars: usize,
num_inputs: usize,
) -> (R1CSInstance, Vec<Scalar>, Vec<Scalar>) {
Timer::print(&format!("number_of_constraints {}", num_cons));
Timer::print(&format!("number_of_variables {}", num_vars));
Timer::print(&format!("number_of_inputs {}", num_inputs));
let mut csprng: OsRng = OsRng;
// assert num_cons and num_vars are power of 2
assert_eq!((num_cons.log_2()).pow2(), num_cons);
assert_eq!((num_vars.log_2()).pow2(), num_vars);
// num_inputs + 1 <= num_vars
assert!(num_inputs < num_vars);
// z is organized as [vars,1,io]
let size_z = num_vars + num_inputs + 1;
// produce a random satisfying assignment
let Z = {
let mut Z: Vec<Scalar> = (0..size_z)
.map(|_i| Scalar::random(&mut csprng))
.collect::<Vec<Scalar>>();
Z[num_vars] = Scalar::one(); // set the constant term to 1
Z
};
// three sparse matrices
let mut A: Vec<SparseMatEntry> = Vec::new();
let mut B: Vec<SparseMatEntry> = Vec::new();
let mut C: Vec<SparseMatEntry> = Vec::new();
let one = Scalar::one();
for i in 0..num_cons {
let A_idx = i % size_z;
let B_idx = (i + 2) % size_z;
A.push(SparseMatEntry::new(i, A_idx, one));
B.push(SparseMatEntry::new(i, B_idx, one));
let AB_val = Z[A_idx] * Z[B_idx];
let C_idx = (i + 3) % size_z;
let C_val = Z[C_idx];
if C_val == Scalar::zero() {
C.push(SparseMatEntry::new(i, num_vars, AB_val));
} else {
C.push(SparseMatEntry::new(
i,
C_idx,
AB_val * C_val.invert().unwrap(),
));
}
}
Timer::print(&format!("number_non-zero_entries_A {}", A.len()));
Timer::print(&format!("number_non-zero_entries_B {}", B.len()));
Timer::print(&format!("number_non-zero_entries_C {}", C.len()));
let num_poly_vars_x = num_cons.log_2();
let num_poly_vars_y = (2 * num_vars).log_2();
let poly_A = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, A);
let poly_B = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, B);
let poly_C = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, C);
let inst = R1CSInstance {
num_cons,
num_vars,
num_inputs,
A: poly_A,
B: poly_B,
C: poly_C,
};
assert!(inst.is_sat(&Z[..num_vars], &Z[num_vars + 1..]));
(inst, Z[..num_vars].to_vec(), Z[num_vars + 1..].to_vec())
}
pub fn is_sat(&self, vars: &[Scalar], input: &[Scalar]) -> bool {
assert_eq!(vars.len(), self.num_vars);
assert_eq!(input.len(), self.num_inputs);
let z = {
let mut z = vars.to_vec();
z.extend(&vec![Scalar::one()]);
z.extend(input);
z
};
// verify if Az * Bz - Cz = [0...]
let Az = self
.A
.multiply_vec(self.num_cons, self.num_vars + self.num_inputs + 1, &z);
let Bz = self
.B
.multiply_vec(self.num_cons, self.num_vars + self.num_inputs + 1, &z);
let Cz = self
.C
.multiply_vec(self.num_cons, self.num_vars + self.num_inputs + 1, &z);
assert_eq!(Az.len(), self.num_cons);
assert_eq!(Bz.len(), self.num_cons);
assert_eq!(Cz.len(), self.num_cons);
let res: usize = (0..self.num_cons)
.map(|i| usize::from(Az[i] * Bz[i] != Cz[i]))
.sum();
res == 0
}
pub fn multiply_vec(
&self,
num_rows: usize,
num_cols: usize,
z: &[Scalar],
) -> (DensePolynomial, DensePolynomial, DensePolynomial) {
assert_eq!(num_rows, self.num_cons);
assert_eq!(z.len(), num_cols);
assert!(num_cols > self.num_vars);
(
DensePolynomial::new(self.A.multiply_vec(num_rows, num_cols, z)),
DensePolynomial::new(self.B.multiply_vec(num_rows, num_cols, z)),
DensePolynomial::new(self.C.multiply_vec(num_rows, num_cols, z)),
)
}
pub fn compute_eval_table_sparse(
&self,
num_rows: usize,
num_cols: usize,
evals: &[Scalar],
) -> (Vec<Scalar>, Vec<Scalar>, Vec<Scalar>) {
assert_eq!(num_rows, self.num_cons);
assert!(num_cols > self.num_vars);
let evals_A = self.A.compute_eval_table_sparse(evals, num_rows, num_cols);
let evals_B = self.B.compute_eval_table_sparse(evals, num_rows, num_cols);
let evals_C = self.C.compute_eval_table_sparse(evals, num_rows, num_cols);
(evals_A, evals_B, evals_C)
}
pub fn evaluate(&self, rx: &[Scalar], ry: &[Scalar]) -> (Scalar, Scalar, Scalar) {
let evals = SparseMatPolynomial::multi_evaluate(&[&self.A, &self.B, &self.C], rx, ry);
(evals[0], evals[1], evals[2])
}
pub fn commit(&self, gens: &R1CSCommitmentGens) -> (R1CSCommitment, R1CSDecommitment) {
let (comm, dense) = SparseMatPolynomial::multi_commit(&[&self.A, &self.B, &self.C], &gens.gens);
let r1cs_comm = R1CSCommitment {
num_cons: self.num_cons,
num_vars: self.num_vars,
num_inputs: self.num_inputs,
comm,
};
let r1cs_decomm = R1CSDecommitment { dense };
(r1cs_comm, r1cs_decomm)
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct R1CSEvalProof {
proof: SparseMatPolyEvalProof,
}
impl R1CSEvalProof {
pub fn prove(
decomm: &R1CSDecommitment,
rx: &[Scalar], // point at which the polynomial is evaluated
ry: &[Scalar],
evals: &(Scalar, Scalar, Scalar),
gens: &R1CSCommitmentGens,
transcript: &mut Transcript,
random_tape: &mut RandomTape,
) -> R1CSEvalProof {
let timer = Timer::new("R1CSEvalProof::prove");
let proof = SparseMatPolyEvalProof::prove(
&decomm.dense,
rx,
ry,
&[evals.0, evals.1, evals.2],
&gens.gens,
transcript,
random_tape,
);
timer.stop();
R1CSEvalProof { proof }
}
pub fn verify(
&self,
comm: &R1CSCommitment,
rx: &[Scalar], // point at which the R1CS matrix polynomials are evaluated
ry: &[Scalar],
evals: &(Scalar, Scalar, Scalar),
gens: &R1CSCommitmentGens,
transcript: &mut Transcript,
) -> Result<(), ProofVerifyError> {
self.proof.verify(
&comm.comm,
rx,
ry,
&[evals.0, evals.1, evals.2],
&gens.gens,
transcript,
)
}
}

View File

@@ -0,0 +1,608 @@
#![allow(clippy::too_many_arguments)]
use super::commitments::{Commitments, MultiCommitGens};
use super::dense_mlpoly::{
DensePolynomial, EqPolynomial, PolyCommitment, PolyCommitmentGens, PolyEvalProof,
};
use super::errors::ProofVerifyError;
use super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
use super::math::Math;
use super::nizk::{EqualityProof, KnowledgeProof, ProductProof};
use super::r1csinstance::R1CSInstance;
use super::random::RandomTape;
use super::scalar::Scalar;
use super::sparse_mlpoly::{SparsePolyEntry, SparsePolynomial};
use super::sumcheck::ZKSumcheckInstanceProof;
use super::timer::Timer;
use super::transcript::{AppendToTranscript, ProofTranscript};
use crate::group::DecompressEncodedPoint;
use core::iter;
use merlin::Transcript;
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize, Debug)]
pub struct R1CSProof {
comm_vars: PolyCommitment,
sc_proof_phase1: ZKSumcheckInstanceProof,
claims_phase2: (
CompressedGroup,
CompressedGroup,
CompressedGroup,
CompressedGroup,
),
pok_claims_phase2: (KnowledgeProof, ProductProof),
proof_eq_sc_phase1: EqualityProof,
sc_proof_phase2: ZKSumcheckInstanceProof,
comm_vars_at_ry: CompressedGroup,
proof_eval_vars_at_ry: PolyEvalProof,
proof_eq_sc_phase2: EqualityProof,
}
pub struct R1CSSumcheckGens {
gens_1: MultiCommitGens,
gens_3: MultiCommitGens,
gens_4: MultiCommitGens,
}
// TODO: fix passing gens_1_ref
impl R1CSSumcheckGens {
pub fn new(label: &'static [u8], gens_1_ref: &MultiCommitGens) -> Self {
let gens_1 = gens_1_ref.clone();
let gens_3 = MultiCommitGens::new(3, label);
let gens_4 = MultiCommitGens::new(4, label);
R1CSSumcheckGens {
gens_1,
gens_3,
gens_4,
}
}
}
pub struct R1CSGens {
gens_sc: R1CSSumcheckGens,
gens_pc: PolyCommitmentGens,
}
impl R1CSGens {
pub fn new(label: &'static [u8], _num_cons: usize, num_vars: usize) -> Self {
let num_poly_vars = num_vars.log_2();
let gens_pc = PolyCommitmentGens::new(num_poly_vars, label);
let gens_sc = R1CSSumcheckGens::new(label, &gens_pc.gens.gens_1);
R1CSGens { gens_sc, gens_pc }
}
}
impl R1CSProof {
fn prove_phase_one(
num_rounds: usize,
evals_tau: &mut DensePolynomial,
evals_Az: &mut DensePolynomial,
evals_Bz: &mut DensePolynomial,
evals_Cz: &mut DensePolynomial,
gens: &R1CSSumcheckGens,
transcript: &mut Transcript,
random_tape: &mut RandomTape,
) -> (ZKSumcheckInstanceProof, Vec<Scalar>, Vec<Scalar>, Scalar) {
let comb_func = |poly_A_comp: &Scalar,
poly_B_comp: &Scalar,
poly_C_comp: &Scalar,
poly_D_comp: &Scalar|
-> Scalar { poly_A_comp * (poly_B_comp * poly_C_comp - poly_D_comp) };
let (sc_proof_phase_one, r, claims, blind_claim_postsc) =
ZKSumcheckInstanceProof::prove_cubic_with_additive_term(
&Scalar::zero(), // claim is zero
&Scalar::zero(), // blind for claim is also zero
num_rounds,
evals_tau,
evals_Az,
evals_Bz,
evals_Cz,
comb_func,
&gens.gens_1,
&gens.gens_4,
transcript,
random_tape,
);
(sc_proof_phase_one, r, claims, blind_claim_postsc)
}
fn prove_phase_two(
num_rounds: usize,
claim: &Scalar,
blind_claim: &Scalar,
evals_z: &mut DensePolynomial,
evals_ABC: &mut DensePolynomial,
gens: &R1CSSumcheckGens,
transcript: &mut Transcript,
random_tape: &mut RandomTape,
) -> (ZKSumcheckInstanceProof, Vec<Scalar>, Vec<Scalar>, Scalar) {
let comb_func =
|poly_A_comp: &Scalar, poly_B_comp: &Scalar| -> Scalar { poly_A_comp * poly_B_comp };
let (sc_proof_phase_two, r, claims, blind_claim_postsc) = ZKSumcheckInstanceProof::prove_quad(
claim,
blind_claim,
num_rounds,
evals_z,
evals_ABC,
comb_func,
&gens.gens_1,
&gens.gens_3,
transcript,
random_tape,
);
(sc_proof_phase_two, r, claims, blind_claim_postsc)
}
fn protocol_name() -> &'static [u8] {
b"R1CS proof"
}
pub fn prove(
inst: &R1CSInstance,
vars: Vec<Scalar>,
input: &[Scalar],
gens: &R1CSGens,
transcript: &mut Transcript,
random_tape: &mut RandomTape,
) -> (R1CSProof, Vec<Scalar>, Vec<Scalar>) {
let timer_prove = Timer::new("R1CSProof::prove");
transcript.append_protocol_name(R1CSProof::protocol_name());
// we currently require the number of |inputs| + 1 to be at most number of vars
assert!(input.len() < vars.len());
input.append_to_transcript(b"input", transcript);
let timer_commit = Timer::new("polycommit");
let (poly_vars, comm_vars, blinds_vars) = {
// create a multilinear polynomial using the supplied assignment for variables
let poly_vars = DensePolynomial::new(vars.clone());
// produce a commitment to the satisfying assignment
let (comm_vars, blinds_vars) = poly_vars.commit(&gens.gens_pc, Some(random_tape));
// add the commitment to the prover's transcript
comm_vars.append_to_transcript(b"poly_commitment", transcript);
(poly_vars, comm_vars, blinds_vars)
};
timer_commit.stop();
let timer_sc_proof_phase1 = Timer::new("prove_sc_phase_one");
// append input to variables to create a single vector z
let z = {
let num_inputs = input.len();
let num_vars = vars.len();
let mut z = vars;
z.extend(&vec![Scalar::one()]); // add constant term in z
z.extend(input);
z.extend(&vec![Scalar::zero(); num_vars - num_inputs - 1]); // we will pad with zeros
z
};
// derive the verifier's challenge tau
let (num_rounds_x, num_rounds_y) = (inst.get_num_cons().log_2(), z.len().log_2());
let tau = transcript.challenge_vector(b"challenge_tau", num_rounds_x);
// compute the initial evaluation table for R(\tau, x)
let mut poly_tau = DensePolynomial::new(EqPolynomial::new(tau).evals());
let (mut poly_Az, mut poly_Bz, mut poly_Cz) =
inst.multiply_vec(inst.get_num_cons(), z.len(), &z);
let (sc_proof_phase1, rx, _claims_phase1, blind_claim_postsc1) = R1CSProof::prove_phase_one(
num_rounds_x,
&mut poly_tau,
&mut poly_Az,
&mut poly_Bz,
&mut poly_Cz,
&gens.gens_sc,
transcript,
random_tape,
);
assert_eq!(poly_tau.len(), 1);
assert_eq!(poly_Az.len(), 1);
assert_eq!(poly_Bz.len(), 1);
assert_eq!(poly_Cz.len(), 1);
timer_sc_proof_phase1.stop();
let (tau_claim, Az_claim, Bz_claim, Cz_claim) =
(&poly_tau[0], &poly_Az[0], &poly_Bz[0], &poly_Cz[0]);
let (Az_blind, Bz_blind, Cz_blind, prod_Az_Bz_blind) = (
random_tape.random_scalar(b"Az_blind"),
random_tape.random_scalar(b"Bz_blind"),
random_tape.random_scalar(b"Cz_blind"),
random_tape.random_scalar(b"prod_Az_Bz_blind"),
);
let (pok_Cz_claim, comm_Cz_claim) = {
KnowledgeProof::prove(
&gens.gens_sc.gens_1,
transcript,
random_tape,
Cz_claim,
&Cz_blind,
)
};
let (proof_prod, comm_Az_claim, comm_Bz_claim, comm_prod_Az_Bz_claims) = {
let prod = Az_claim * Bz_claim;
ProductProof::prove(
&gens.gens_sc.gens_1,
transcript,
random_tape,
Az_claim,
&Az_blind,
Bz_claim,
&Bz_blind,
&prod,
&prod_Az_Bz_blind,
)
};
comm_Az_claim.append_to_transcript(b"comm_Az_claim", transcript);
comm_Bz_claim.append_to_transcript(b"comm_Bz_claim", transcript);
comm_Cz_claim.append_to_transcript(b"comm_Cz_claim", transcript);
comm_prod_Az_Bz_claims.append_to_transcript(b"comm_prod_Az_Bz_claims", transcript);
// prove the final step of sum-check #1
let taus_bound_rx = tau_claim;
let blind_expected_claim_postsc1 = taus_bound_rx * (prod_Az_Bz_blind - Cz_blind);
let claim_post_phase1 = (Az_claim * Bz_claim - Cz_claim) * taus_bound_rx;
let (proof_eq_sc_phase1, _C1, _C2) = EqualityProof::prove(
&gens.gens_sc.gens_1,
transcript,
random_tape,
&claim_post_phase1,
&blind_expected_claim_postsc1,
&claim_post_phase1,
&blind_claim_postsc1,
);
let timer_sc_proof_phase2 = Timer::new("prove_sc_phase_two");
// combine the three claims into a single claim
let r_A = transcript.challenge_scalar(b"challenege_Az");
let r_B = transcript.challenge_scalar(b"challenege_Bz");
let r_C = transcript.challenge_scalar(b"challenege_Cz");
let claim_phase2 = r_A * Az_claim + r_B * Bz_claim + r_C * Cz_claim;
let blind_claim_phase2 = r_A * Az_blind + r_B * Bz_blind + r_C * Cz_blind;
let evals_ABC = {
// compute the initial evaluation table for R(\tau, x)
let evals_rx = EqPolynomial::new(rx.clone()).evals();
let (evals_A, evals_B, evals_C) =
inst.compute_eval_table_sparse(inst.get_num_cons(), z.len(), &evals_rx);
assert_eq!(evals_A.len(), evals_B.len());
assert_eq!(evals_A.len(), evals_C.len());
(0..evals_A.len())
.map(|i| r_A * evals_A[i] + r_B * evals_B[i] + r_C * evals_C[i])
.collect::<Vec<Scalar>>()
};
// another instance of the sum-check protocol
let (sc_proof_phase2, ry, claims_phase2, blind_claim_postsc2) = R1CSProof::prove_phase_two(
num_rounds_y,
&claim_phase2,
&blind_claim_phase2,
&mut DensePolynomial::new(z),
&mut DensePolynomial::new(evals_ABC),
&gens.gens_sc,
transcript,
random_tape,
);
timer_sc_proof_phase2.stop();
let timer_polyeval = Timer::new("polyeval");
let eval_vars_at_ry = poly_vars.evaluate(&ry[1..]);
let blind_eval = random_tape.random_scalar(b"blind_eval");
let (proof_eval_vars_at_ry, comm_vars_at_ry) = PolyEvalProof::prove(
&poly_vars,
Some(&blinds_vars),
&ry[1..],
&eval_vars_at_ry,
Some(&blind_eval),
&gens.gens_pc,
transcript,
random_tape,
);
timer_polyeval.stop();
// prove the final step of sum-check #2
let blind_eval_Z_at_ry = (Scalar::one() - ry[0]) * blind_eval;
let blind_expected_claim_postsc2 = claims_phase2[1] * blind_eval_Z_at_ry;
let claim_post_phase2 = claims_phase2[0] * claims_phase2[1];
let (proof_eq_sc_phase2, _C1, _C2) = EqualityProof::prove(
&gens.gens_pc.gens.gens_1,
transcript,
random_tape,
&claim_post_phase2,
&blind_expected_claim_postsc2,
&claim_post_phase2,
&blind_claim_postsc2,
);
timer_prove.stop();
(
R1CSProof {
comm_vars,
sc_proof_phase1,
claims_phase2: (
comm_Az_claim,
comm_Bz_claim,
comm_Cz_claim,
comm_prod_Az_Bz_claims,
),
pok_claims_phase2: (pok_Cz_claim, proof_prod),
proof_eq_sc_phase1,
sc_proof_phase2,
comm_vars_at_ry,
proof_eval_vars_at_ry,
proof_eq_sc_phase2,
},
rx,
ry,
)
}
pub fn verify(
&self,
num_vars: usize,
num_cons: usize,
input: &[Scalar],
evals: &(Scalar, Scalar, Scalar),
transcript: &mut Transcript,
gens: &R1CSGens,
) -> Result<(Vec<Scalar>, Vec<Scalar>), ProofVerifyError> {
transcript.append_protocol_name(R1CSProof::protocol_name());
input.append_to_transcript(b"input", transcript);
let n = num_vars;
// add the commitment to the verifier's transcript
self
.comm_vars
.append_to_transcript(b"poly_commitment", transcript);
let (num_rounds_x, num_rounds_y) = (num_cons.log_2(), (2 * num_vars).log_2());
// derive the verifier's challenge tau
let tau = transcript.challenge_vector(b"challenge_tau", num_rounds_x);
// verify the first sum-check instance
let claim_phase1 = Scalar::zero()
.commit(&Scalar::zero(), &gens.gens_sc.gens_1)
.compress();
let (comm_claim_post_phase1, rx) = self.sc_proof_phase1.verify(
&claim_phase1,
num_rounds_x,
3,
&gens.gens_sc.gens_1,
&gens.gens_sc.gens_4,
transcript,
)?;
// perform the intermediate sum-check test with claimed Az, Bz, and Cz
let (comm_Az_claim, comm_Bz_claim, comm_Cz_claim, comm_prod_Az_Bz_claims) = &self.claims_phase2;
let (pok_Cz_claim, proof_prod) = &self.pok_claims_phase2;
pok_Cz_claim.verify(&gens.gens_sc.gens_1, transcript, comm_Cz_claim)?;
proof_prod.verify(
&gens.gens_sc.gens_1,
transcript,
comm_Az_claim,
comm_Bz_claim,
comm_prod_Az_Bz_claims,
)?;
comm_Az_claim.append_to_transcript(b"comm_Az_claim", transcript);
comm_Bz_claim.append_to_transcript(b"comm_Bz_claim", transcript);
comm_Cz_claim.append_to_transcript(b"comm_Cz_claim", transcript);
comm_prod_Az_Bz_claims.append_to_transcript(b"comm_prod_Az_Bz_claims", transcript);
let taus_bound_rx: Scalar = (0..rx.len())
.map(|i| rx[i] * tau[i] + (Scalar::one() - rx[i]) * (Scalar::one() - tau[i]))
.product();
let expected_claim_post_phase1 = (taus_bound_rx
* (comm_prod_Az_Bz_claims.decompress().unwrap() - comm_Cz_claim.decompress().unwrap()))
.compress();
// verify proof that expected_claim_post_phase1 == claim_post_phase1
self.proof_eq_sc_phase1.verify(
&gens.gens_sc.gens_1,
transcript,
&expected_claim_post_phase1,
&comm_claim_post_phase1,
)?;
// derive three public challenges and then derive a joint claim
let r_A = transcript.challenge_scalar(b"challenege_Az");
let r_B = transcript.challenge_scalar(b"challenege_Bz");
let r_C = transcript.challenge_scalar(b"challenege_Cz");
// r_A * comm_Az_claim + r_B * comm_Bz_claim + r_C * comm_Cz_claim;
let comm_claim_phase2 = GroupElement::vartime_multiscalar_mul(
iter::once(r_A)
.chain(iter::once(r_B))
.chain(iter::once(r_C))
.collect(),
iter::once(&comm_Az_claim)
.chain(iter::once(&comm_Bz_claim))
.chain(iter::once(&comm_Cz_claim))
.map(|pt| pt.decompress().unwrap())
.collect(),
)
.compress();
// verify the joint claim with a sum-check protocol
let (comm_claim_post_phase2, ry) = self.sc_proof_phase2.verify(
&comm_claim_phase2,
num_rounds_y,
2,
&gens.gens_sc.gens_1,
&gens.gens_sc.gens_3,
transcript,
)?;
// verify Z(ry) proof against the initial commitment
self.proof_eval_vars_at_ry.verify(
&gens.gens_pc,
transcript,
&ry[1..],
&self.comm_vars_at_ry,
&self.comm_vars,
)?;
let poly_input_eval = {
// constant term
let mut input_as_sparse_poly_entries = vec![SparsePolyEntry::new(0, Scalar::one())];
//remaining inputs
input_as_sparse_poly_entries.extend(
(0..input.len())
.map(|i| SparsePolyEntry::new(i + 1, input[i]))
.collect::<Vec<SparsePolyEntry>>(),
);
SparsePolynomial::new(n.log_2(), input_as_sparse_poly_entries).evaluate(&ry[1..])
};
// compute commitment to eval_Z_at_ry = (Scalar::one() - ry[0]) * self.eval_vars_at_ry + ry[0] * poly_input_eval
let comm_eval_Z_at_ry = GroupElement::vartime_multiscalar_mul(
iter::once(Scalar::one() - ry[0])
.chain(iter::once(ry[0]))
.map(|s| s)
.collect(),
iter::once(self.comm_vars_at_ry.decompress().unwrap())
.chain(iter::once(
poly_input_eval.commit(&Scalar::zero(), &gens.gens_pc.gens.gens_1),
))
.collect(),
);
// perform the final check in the second sum-check protocol
let (eval_A_r, eval_B_r, eval_C_r) = evals;
let expected_claim_post_phase2 =
((r_A * eval_A_r + r_B * eval_B_r + r_C * eval_C_r) * comm_eval_Z_at_ry).compress();
// verify proof that expected_claim_post_phase1 == claim_post_phase1
self.proof_eq_sc_phase2.verify(
&gens.gens_sc.gens_1,
transcript,
&expected_claim_post_phase2,
&comm_claim_post_phase2,
)?;
Ok((rx, ry))
}
}
#[cfg(test)]
mod tests {
use super::*;
use rand_core::OsRng;
fn produce_tiny_r1cs() -> (R1CSInstance, Vec<Scalar>, Vec<Scalar>) {
// three constraints over five variables Z1, Z2, Z3, Z4, and Z5
// rounded to the nearest power of two
let num_cons = 128;
let num_vars = 256;
let num_inputs = 2;
// encode the above constraints into three matrices
let mut A: Vec<(usize, usize, Scalar)> = Vec::new();
let mut B: Vec<(usize, usize, Scalar)> = Vec::new();
let mut C: Vec<(usize, usize, Scalar)> = Vec::new();
let one = Scalar::one();
// constraint 0 entries
// (Z1 + Z2) * I0 - Z3 = 0;
A.push((0, 0, one));
A.push((0, 1, one));
B.push((0, num_vars + 1, one));
C.push((0, 2, one));
// constraint 1 entries
// (Z1 + I1) * (Z3) - Z4 = 0
A.push((1, 0, one));
A.push((1, num_vars + 2, one));
B.push((1, 2, one));
C.push((1, 3, one));
// constraint 3 entries
// Z5 * 1 - 0 = 0
A.push((2, 4, one));
B.push((2, num_vars, one));
let inst = R1CSInstance::new(num_cons, num_vars, num_inputs, &A, &B, &C);
// compute a satisfying assignment
let mut csprng: OsRng = OsRng;
let i0 = Scalar::random(&mut csprng);
let i1 = Scalar::random(&mut csprng);
let z1 = Scalar::random(&mut csprng);
let z2 = Scalar::random(&mut csprng);
let z3 = (z1 + z2) * i0; // constraint 1: (Z1 + Z2) * I0 - Z3 = 0;
let z4 = (z1 + i1) * z3; // constraint 2: (Z1 + I1) * (Z3) - Z4 = 0
let z5 = Scalar::zero(); //constraint 3
let mut vars = vec![Scalar::zero(); num_vars];
vars[0] = z1;
vars[1] = z2;
vars[2] = z3;
vars[3] = z4;
vars[4] = z5;
let mut input = vec![Scalar::zero(); num_inputs];
input[0] = i0;
input[1] = i1;
(inst, vars, input)
}
#[test]
fn test_tiny_r1cs() {
let (inst, vars, input) = tests::produce_tiny_r1cs();
let is_sat = inst.is_sat(&vars, &input);
assert!(is_sat);
}
#[test]
fn test_synthetic_r1cs() {
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(1024, 1024, 10);
let is_sat = inst.is_sat(&vars, &input);
assert!(is_sat);
}
#[test]
pub fn check_r1cs_proof() {
let num_vars = 1024;
let num_cons = num_vars;
let num_inputs = 10;
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
let gens = R1CSGens::new(b"test-m", num_cons, num_vars);
let mut random_tape = RandomTape::new(b"proof");
let mut prover_transcript = Transcript::new(b"example");
let (proof, rx, ry) = R1CSProof::prove(
&inst,
vars,
&input,
&gens,
&mut prover_transcript,
&mut random_tape,
);
let inst_evals = inst.evaluate(&rx, &ry);
let mut verifier_transcript = Transcript::new(b"example");
assert!(proof
.verify(
inst.get_num_vars(),
inst.get_num_cons(),
&input,
&inst_evals,
&mut verifier_transcript,
&gens,
)
.is_ok());
}
}

View File

@@ -0,0 +1,27 @@
use super::scalar::Scalar;
use super::transcript::ProofTranscript;
use merlin::Transcript;
use rand_core::OsRng;
pub struct RandomTape {
tape: Transcript,
}
impl RandomTape {
pub fn new(name: &'static [u8]) -> Self {
let tape = {
let mut rng = OsRng::default();
let mut tape = Transcript::new(name);
tape.append_scalar(b"init_randomness", &Scalar::random(&mut rng));
tape
};
Self { tape }
}
pub fn random_scalar(&mut self, label: &'static [u8]) -> Scalar {
self.tape.challenge_scalar(label)
}
pub fn random_vector(&mut self, label: &'static [u8], len: usize) -> Vec<Scalar> {
self.tape.challenge_vector(label, len)
}
}

View File

@@ -0,0 +1,46 @@
use secq256k1::elliptic_curve::ops::Reduce;
use secq256k1::U256;
mod scalar;
pub type Scalar = scalar::Scalar;
pub type ScalarBytes = secq256k1::Scalar;
pub trait ScalarFromPrimitives {
fn to_scalar(self) -> Scalar;
}
impl ScalarFromPrimitives for usize {
#[inline]
fn to_scalar(self) -> Scalar {
(0..self).map(|_i| Scalar::one()).sum()
}
}
impl ScalarFromPrimitives for bool {
#[inline]
fn to_scalar(self) -> Scalar {
if self {
Scalar::one()
} else {
Scalar::zero()
}
}
}
pub trait ScalarBytesFromScalar {
fn decompress_scalar(s: &Scalar) -> ScalarBytes;
fn decompress_vector(s: &[Scalar]) -> Vec<ScalarBytes>;
}
impl ScalarBytesFromScalar for Scalar {
fn decompress_scalar(s: &Scalar) -> ScalarBytes {
ScalarBytes::from_uint_reduced(U256::from_le_slice(&s.to_bytes()))
}
fn decompress_vector(s: &[Scalar]) -> Vec<ScalarBytes> {
(0..s.len())
.map(|i| Scalar::decompress_scalar(&s[i]))
.collect::<Vec<ScalarBytes>>()
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,778 @@
#![allow(clippy::too_many_arguments)]
#![allow(clippy::type_complexity)]
use super::commitments::{Commitments, MultiCommitGens};
use super::dense_mlpoly::DensePolynomial;
use super::errors::ProofVerifyError;
use super::group::{CompressedGroup, GroupElement, VartimeMultiscalarMul};
use super::nizk::DotProductProof;
use super::random::RandomTape;
use super::scalar::Scalar;
use super::transcript::{AppendToTranscript, ProofTranscript};
use super::unipoly::{CompressedUniPoly, UniPoly};
use crate::group::DecompressEncodedPoint;
use core::iter;
use itertools::izip;
use merlin::Transcript;
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize, Debug)]
pub struct SumcheckInstanceProof {
compressed_polys: Vec<CompressedUniPoly>,
}
impl SumcheckInstanceProof {
pub fn new(compressed_polys: Vec<CompressedUniPoly>) -> SumcheckInstanceProof {
SumcheckInstanceProof { compressed_polys }
}
pub fn verify(
&self,
claim: Scalar,
num_rounds: usize,
degree_bound: usize,
transcript: &mut Transcript,
) -> Result<(Scalar, Vec<Scalar>), ProofVerifyError> {
let mut e = claim;
let mut r: Vec<Scalar> = Vec::new();
// verify that there is a univariate polynomial for each round
assert_eq!(self.compressed_polys.len(), num_rounds);
for i in 0..self.compressed_polys.len() {
let poly = self.compressed_polys[i].decompress(&e);
// verify degree bound
assert_eq!(poly.degree(), degree_bound);
// check if G_k(0) + G_k(1) = e
assert_eq!(poly.eval_at_zero() + poly.eval_at_one(), e);
// append the prover's message to the transcript
poly.append_to_transcript(b"poly", transcript);
//derive the verifier's challenge for the next round
let r_i = transcript.challenge_scalar(b"challenge_nextround");
r.push(r_i);
// evaluate the claimed degree-ell polynomial at r_i
e = poly.evaluate(&r_i);
}
Ok((e, r))
}
}
#[derive(Serialize, Deserialize, Debug)]
pub struct ZKSumcheckInstanceProof {
comm_polys: Vec<CompressedGroup>,
comm_evals: Vec<CompressedGroup>,
proofs: Vec<DotProductProof>,
}
impl ZKSumcheckInstanceProof {
pub fn new(
comm_polys: Vec<CompressedGroup>,
comm_evals: Vec<CompressedGroup>,
proofs: Vec<DotProductProof>,
) -> Self {
ZKSumcheckInstanceProof {
comm_polys,
comm_evals,
proofs,
}
}
pub fn verify(
&self,
comm_claim: &CompressedGroup,
num_rounds: usize,
degree_bound: usize,
gens_1: &MultiCommitGens,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
) -> Result<(CompressedGroup, Vec<Scalar>), ProofVerifyError> {
// verify degree bound
assert_eq!(gens_n.n, degree_bound + 1);
// verify that there is a univariate polynomial for each round
assert_eq!(self.comm_polys.len(), num_rounds);
assert_eq!(self.comm_evals.len(), num_rounds);
let mut r: Vec<Scalar> = Vec::new();
for i in 0..self.comm_polys.len() {
let comm_poly = &self.comm_polys[i];
// append the prover's polynomial to the transcript
comm_poly.append_to_transcript(b"comm_poly", transcript);
//derive the verifier's challenge for the next round
let r_i = transcript.challenge_scalar(b"challenge_nextround");
// verify the proof of sum-check and evals
let res = {
let comm_claim_per_round = if i == 0 {
comm_claim
} else {
&self.comm_evals[i - 1]
};
let comm_eval = &self.comm_evals[i];
// add two claims to transcript
comm_claim_per_round.append_to_transcript(b"comm_claim_per_round", transcript);
comm_eval.append_to_transcript(b"comm_eval", transcript);
// produce two weights
let w = transcript.challenge_vector(b"combine_two_claims_to_one", 2);
// compute a weighted sum of the RHS
let comm_target = GroupElement::vartime_multiscalar_mul(
w.clone(),
iter::once(&comm_claim_per_round)
.chain(iter::once(&comm_eval))
.map(|pt| pt.decompress().unwrap())
.collect(),
)
.compress();
let a = {
// the vector to use to decommit for sum-check test
let a_sc = {
let mut a = vec![Scalar::one(); degree_bound + 1];
a[0] += Scalar::one();
a
};
// the vector to use to decommit for evaluation
let a_eval = {
let mut a = vec![Scalar::one(); degree_bound + 1];
for j in 1..a.len() {
a[j] = a[j - 1] * r_i;
}
a
};
// take weighted sum of the two vectors using w
assert_eq!(a_sc.len(), a_eval.len());
(0..a_sc.len())
.map(|i| w[0] * a_sc[i] + w[1] * a_eval[i])
.collect::<Vec<Scalar>>()
};
self.proofs[i]
.verify(
gens_1,
gens_n,
transcript,
&a,
&self.comm_polys[i],
&comm_target,
)
.is_ok()
};
if !res {
return Err(ProofVerifyError::InternalError);
}
r.push(r_i);
}
Ok((self.comm_evals[self.comm_evals.len() - 1], r))
}
}
impl SumcheckInstanceProof {
pub fn prove_cubic<F>(
claim: &Scalar,
num_rounds: usize,
poly_A: &mut DensePolynomial,
poly_B: &mut DensePolynomial,
poly_C: &mut DensePolynomial,
comb_func: F,
transcript: &mut Transcript,
) -> (Self, Vec<Scalar>, Vec<Scalar>)
where
F: Fn(&Scalar, &Scalar, &Scalar) -> Scalar,
{
let mut e = *claim;
let mut r: Vec<Scalar> = Vec::new();
let mut cubic_polys: Vec<CompressedUniPoly> = Vec::new();
for _j in 0..num_rounds {
let mut eval_point_0 = Scalar::zero();
let mut eval_point_2 = Scalar::zero();
let mut eval_point_3 = Scalar::zero();
let len = poly_A.len() / 2;
for i in 0..len {
// eval 0: bound_func is A(low)
eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C[i]);
// eval 2: bound_func is -A(low) + 2*A(high)
let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i];
let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i];
let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i];
eval_point_2 += comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i];
let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i];
let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i];
eval_point_3 += comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
}
let evals = vec![eval_point_0, e - eval_point_0, eval_point_2, eval_point_3];
let poly = UniPoly::from_evals(&evals);
// append the prover's message to the transcript
poly.append_to_transcript(b"poly", transcript);
//derive the verifier's challenge for the next round
let r_j = transcript.challenge_scalar(b"challenge_nextround");
r.push(r_j);
// bound all tables to the verifier's challenege
poly_A.bound_poly_var_top(&r_j);
poly_B.bound_poly_var_top(&r_j);
poly_C.bound_poly_var_top(&r_j);
e = poly.evaluate(&r_j);
cubic_polys.push(poly.compress());
}
(
SumcheckInstanceProof::new(cubic_polys),
r,
vec![poly_A[0], poly_B[0], poly_C[0]],
)
}
pub fn prove_cubic_batched<F>(
claim: &Scalar,
num_rounds: usize,
poly_vec_par: (
&mut Vec<&mut DensePolynomial>,
&mut Vec<&mut DensePolynomial>,
&mut DensePolynomial,
),
poly_vec_seq: (
&mut Vec<&mut DensePolynomial>,
&mut Vec<&mut DensePolynomial>,
&mut Vec<&mut DensePolynomial>,
),
coeffs: &[Scalar],
comb_func: F,
transcript: &mut Transcript,
) -> (
Self,
Vec<Scalar>,
(Vec<Scalar>, Vec<Scalar>, Scalar),
(Vec<Scalar>, Vec<Scalar>, Vec<Scalar>),
)
where
F: Fn(&Scalar, &Scalar, &Scalar) -> Scalar,
{
let (poly_A_vec_par, poly_B_vec_par, poly_C_par) = poly_vec_par;
let (poly_A_vec_seq, poly_B_vec_seq, poly_C_vec_seq) = poly_vec_seq;
//let (poly_A_vec_seq, poly_B_vec_seq, poly_C_vec_seq) = poly_vec_seq;
let mut e = *claim;
let mut r: Vec<Scalar> = Vec::new();
let mut cubic_polys: Vec<CompressedUniPoly> = Vec::new();
for _j in 0..num_rounds {
let mut evals: Vec<(Scalar, Scalar, Scalar)> = Vec::new();
for (poly_A, poly_B) in poly_A_vec_par.iter().zip(poly_B_vec_par.iter()) {
let mut eval_point_0 = Scalar::zero();
let mut eval_point_2 = Scalar::zero();
let mut eval_point_3 = Scalar::zero();
let len = poly_A.len() / 2;
for i in 0..len {
// eval 0: bound_func is A(low)
eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C_par[i]);
// eval 2: bound_func is -A(low) + 2*A(high)
let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i];
let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i];
let poly_C_bound_point = poly_C_par[len + i] + poly_C_par[len + i] - poly_C_par[i];
eval_point_2 += comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i];
let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i];
let poly_C_bound_point = poly_C_bound_point + poly_C_par[len + i] - poly_C_par[i];
eval_point_3 += comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
}
evals.push((eval_point_0, eval_point_2, eval_point_3));
}
for (poly_A, poly_B, poly_C) in izip!(
poly_A_vec_seq.iter(),
poly_B_vec_seq.iter(),
poly_C_vec_seq.iter()
) {
let mut eval_point_0 = Scalar::zero();
let mut eval_point_2 = Scalar::zero();
let mut eval_point_3 = Scalar::zero();
let len = poly_A.len() / 2;
for i in 0..len {
// eval 0: bound_func is A(low)
eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C[i]);
// eval 2: bound_func is -A(low) + 2*A(high)
let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i];
let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i];
let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i];
eval_point_2 += comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i];
let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i];
let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i];
eval_point_3 += comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
}
evals.push((eval_point_0, eval_point_2, eval_point_3));
}
let evals_combined_0 = (0..evals.len()).map(|i| evals[i].0 * coeffs[i]).sum();
let evals_combined_2 = (0..evals.len()).map(|i| evals[i].1 * coeffs[i]).sum();
let evals_combined_3 = (0..evals.len()).map(|i| evals[i].2 * coeffs[i]).sum();
let evals = vec![
evals_combined_0,
e - evals_combined_0,
evals_combined_2,
evals_combined_3,
];
let poly = UniPoly::from_evals(&evals);
// append the prover's message to the transcript
poly.append_to_transcript(b"poly", transcript);
//derive the verifier's challenge for the next round
let r_j = transcript.challenge_scalar(b"challenge_nextround");
r.push(r_j);
// bound all tables to the verifier's challenege
for (poly_A, poly_B) in poly_A_vec_par.iter_mut().zip(poly_B_vec_par.iter_mut()) {
poly_A.bound_poly_var_top(&r_j);
poly_B.bound_poly_var_top(&r_j);
}
poly_C_par.bound_poly_var_top(&r_j);
for (poly_A, poly_B, poly_C) in izip!(
poly_A_vec_seq.iter_mut(),
poly_B_vec_seq.iter_mut(),
poly_C_vec_seq.iter_mut()
) {
poly_A.bound_poly_var_top(&r_j);
poly_B.bound_poly_var_top(&r_j);
poly_C.bound_poly_var_top(&r_j);
}
e = poly.evaluate(&r_j);
cubic_polys.push(poly.compress());
}
let poly_A_par_final = (0..poly_A_vec_par.len())
.map(|i| poly_A_vec_par[i][0])
.collect();
let poly_B_par_final = (0..poly_B_vec_par.len())
.map(|i| poly_B_vec_par[i][0])
.collect();
let claims_prod = (poly_A_par_final, poly_B_par_final, poly_C_par[0]);
let poly_A_seq_final = (0..poly_A_vec_seq.len())
.map(|i| poly_A_vec_seq[i][0])
.collect();
let poly_B_seq_final = (0..poly_B_vec_seq.len())
.map(|i| poly_B_vec_seq[i][0])
.collect();
let poly_C_seq_final = (0..poly_C_vec_seq.len())
.map(|i| poly_C_vec_seq[i][0])
.collect();
let claims_dotp = (poly_A_seq_final, poly_B_seq_final, poly_C_seq_final);
(
SumcheckInstanceProof::new(cubic_polys),
r,
claims_prod,
claims_dotp,
)
}
}
impl ZKSumcheckInstanceProof {
pub fn prove_quad<F>(
claim: &Scalar,
blind_claim: &Scalar,
num_rounds: usize,
poly_A: &mut DensePolynomial,
poly_B: &mut DensePolynomial,
comb_func: F,
gens_1: &MultiCommitGens,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
random_tape: &mut RandomTape,
) -> (Self, Vec<Scalar>, Vec<Scalar>, Scalar)
where
F: Fn(&Scalar, &Scalar) -> Scalar,
{
let (blinds_poly, blinds_evals) = (
random_tape.random_vector(b"blinds_poly", num_rounds),
random_tape.random_vector(b"blinds_evals", num_rounds),
);
let mut claim_per_round = *claim;
let mut comm_claim_per_round = claim_per_round.commit(blind_claim, gens_1).compress();
let mut r: Vec<Scalar> = Vec::new();
let mut comm_polys: Vec<CompressedGroup> = Vec::new();
let mut comm_evals: Vec<CompressedGroup> = Vec::new();
let mut proofs: Vec<DotProductProof> = Vec::new();
for j in 0..num_rounds {
let (poly, comm_poly) = {
let mut eval_point_0 = Scalar::zero();
let mut eval_point_2 = Scalar::zero();
let len = poly_A.len() / 2;
for i in 0..len {
// eval 0: bound_func is A(low)
eval_point_0 += comb_func(&poly_A[i], &poly_B[i]);
// eval 2: bound_func is -A(low) + 2*A(high)
let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i];
let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i];
eval_point_2 += comb_func(&poly_A_bound_point, &poly_B_bound_point);
}
let evals = vec![eval_point_0, claim_per_round - eval_point_0, eval_point_2];
let poly = UniPoly::from_evals(&evals);
let comm_poly = poly.commit(gens_n, &blinds_poly[j]).compress();
(poly, comm_poly)
};
// append the prover's message to the transcript
comm_poly.append_to_transcript(b"comm_poly", transcript);
comm_polys.push(comm_poly);
//derive the verifier's challenge for the next round
let r_j = transcript.challenge_scalar(b"challenge_nextround");
// bound all tables to the verifier's challenege
poly_A.bound_poly_var_top(&r_j);
poly_B.bound_poly_var_top(&r_j);
// produce a proof of sum-check and of evaluation
let (proof, claim_next_round, comm_claim_next_round) = {
let eval = poly.evaluate(&r_j);
let comm_eval = eval.commit(&blinds_evals[j], gens_1).compress();
// we need to prove the following under homomorphic commitments:
// (1) poly(0) + poly(1) = claim_per_round
// (2) poly(r_j) = eval
// Our technique is to leverage dot product proofs:
// (1) we can prove: <poly_in_coeffs_form, (2, 1, 1, 1)> = claim_per_round
// (2) we can prove: <poly_in_coeffs_form, (1, r_j, r^2_j, ..) = eval
// for efficiency we batch them using random weights
// add two claims to transcript
comm_claim_per_round.append_to_transcript(b"comm_claim_per_round", transcript);
comm_eval.append_to_transcript(b"comm_eval", transcript);
// produce two weights
let w = transcript.challenge_vector(b"combine_two_claims_to_one", 2);
// compute a weighted sum of the RHS
let target = w[0] * claim_per_round + w[1] * eval;
let comm_target = GroupElement::vartime_multiscalar_mul(
w.clone(),
iter::once(&comm_claim_per_round)
.chain(iter::once(&comm_eval))
.map(|pt| pt.decompress().unwrap())
.collect(),
)
.compress();
let blind = {
let blind_sc = if j == 0 {
blind_claim
} else {
&blinds_evals[j - 1]
};
let blind_eval = &blinds_evals[j];
w[0] * blind_sc + w[1] * blind_eval
};
assert_eq!(target.commit(&blind, gens_1).compress(), comm_target);
let a = {
// the vector to use to decommit for sum-check test
let a_sc = {
let mut a = vec![Scalar::one(); poly.degree() + 1];
a[0] += Scalar::one();
a
};
// the vector to use to decommit for evaluation
let a_eval = {
let mut a = vec![Scalar::one(); poly.degree() + 1];
for j in 1..a.len() {
a[j] = a[j - 1] * r_j;
}
a
};
// take weighted sum of the two vectors using w
assert_eq!(a_sc.len(), a_eval.len());
(0..a_sc.len())
.map(|i| w[0] * a_sc[i] + w[1] * a_eval[i])
.collect::<Vec<Scalar>>()
};
let (proof, _comm_poly, _comm_sc_eval) = DotProductProof::prove(
gens_1,
gens_n,
transcript,
random_tape,
&poly.as_vec(),
&blinds_poly[j],
&a,
&target,
&blind,
);
(proof, eval, comm_eval)
};
claim_per_round = claim_next_round;
comm_claim_per_round = comm_claim_next_round;
proofs.push(proof);
r.push(r_j);
comm_evals.push(comm_claim_per_round);
}
(
ZKSumcheckInstanceProof::new(comm_polys, comm_evals, proofs),
r,
vec![poly_A[0], poly_B[0]],
blinds_evals[num_rounds - 1],
)
}
pub fn prove_cubic_with_additive_term<F>(
claim: &Scalar,
blind_claim: &Scalar,
num_rounds: usize,
poly_A: &mut DensePolynomial,
poly_B: &mut DensePolynomial,
poly_C: &mut DensePolynomial,
poly_D: &mut DensePolynomial,
comb_func: F,
gens_1: &MultiCommitGens,
gens_n: &MultiCommitGens,
transcript: &mut Transcript,
random_tape: &mut RandomTape,
) -> (Self, Vec<Scalar>, Vec<Scalar>, Scalar)
where
F: Fn(&Scalar, &Scalar, &Scalar, &Scalar) -> Scalar,
{
let (blinds_poly, blinds_evals) = (
random_tape.random_vector(b"blinds_poly", num_rounds),
random_tape.random_vector(b"blinds_evals", num_rounds),
);
let mut claim_per_round = *claim;
let mut comm_claim_per_round = claim_per_round.commit(blind_claim, gens_1).compress();
let mut r: Vec<Scalar> = Vec::new();
let mut comm_polys: Vec<CompressedGroup> = Vec::new();
let mut comm_evals: Vec<CompressedGroup> = Vec::new();
let mut proofs: Vec<DotProductProof> = Vec::new();
for j in 0..num_rounds {
let (poly, comm_poly) = {
let mut eval_point_0 = Scalar::zero();
let mut eval_point_2 = Scalar::zero();
let mut eval_point_3 = Scalar::zero();
let len = poly_A.len() / 2;
for i in 0..len {
// eval 0: bound_func is A(low)
eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C[i], &poly_D[i]);
// eval 2: bound_func is -A(low) + 2*A(high)
let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i];
let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i];
let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i];
let poly_D_bound_point = poly_D[len + i] + poly_D[len + i] - poly_D[i];
eval_point_2 += comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
&poly_D_bound_point,
);
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i];
let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i];
let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i];
let poly_D_bound_point = poly_D_bound_point + poly_D[len + i] - poly_D[i];
eval_point_3 += comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
&poly_D_bound_point,
);
}
let evals = vec![
eval_point_0,
claim_per_round - eval_point_0,
eval_point_2,
eval_point_3,
];
let poly = UniPoly::from_evals(&evals);
let comm_poly = poly.commit(gens_n, &blinds_poly[j]).compress();
(poly, comm_poly)
};
// append the prover's message to the transcript
comm_poly.append_to_transcript(b"comm_poly", transcript);
comm_polys.push(comm_poly);
//derive the verifier's challenge for the next round
let r_j = transcript.challenge_scalar(b"challenge_nextround");
// bound all tables to the verifier's challenege
poly_A.bound_poly_var_top(&r_j);
poly_B.bound_poly_var_top(&r_j);
poly_C.bound_poly_var_top(&r_j);
poly_D.bound_poly_var_top(&r_j);
// produce a proof of sum-check and of evaluation
let (proof, claim_next_round, comm_claim_next_round) = {
let eval = poly.evaluate(&r_j);
let comm_eval = eval.commit(&blinds_evals[j], gens_1).compress();
// we need to prove the following under homomorphic commitments:
// (1) poly(0) + poly(1) = claim_per_round
// (2) poly(r_j) = eval
// Our technique is to leverage dot product proofs:
// (1) we can prove: <poly_in_coeffs_form, (2, 1, 1, 1)> = claim_per_round
// (2) we can prove: <poly_in_coeffs_form, (1, r_j, r^2_j, ..) = eval
// for efficiency we batch them using random weights
// add two claims to transcript
comm_claim_per_round.append_to_transcript(b"comm_claim_per_round", transcript);
comm_eval.append_to_transcript(b"comm_eval", transcript);
// produce two weights
let w = transcript.challenge_vector(b"combine_two_claims_to_one", 2);
// compute a weighted sum of the RHS
let target = w[0] * claim_per_round + w[1] * eval;
let comm_target = GroupElement::vartime_multiscalar_mul(
w.clone(),
iter::once(&comm_claim_per_round)
.chain(iter::once(&comm_eval))
.map(|pt| pt.decompress().unwrap())
.collect::<Vec<GroupElement>>(),
)
.compress();
let blind = {
let blind_sc = if j == 0 {
blind_claim
} else {
&blinds_evals[j - 1]
};
let blind_eval = &blinds_evals[j];
w[0] * blind_sc + w[1] * blind_eval
};
assert_eq!(target.commit(&blind, gens_1).compress(), comm_target);
let a = {
// the vector to use to decommit for sum-check test
let a_sc = {
let mut a = vec![Scalar::one(); poly.degree() + 1];
a[0] += Scalar::one();
a
};
// the vector to use to decommit for evaluation
let a_eval = {
let mut a = vec![Scalar::one(); poly.degree() + 1];
for j in 1..a.len() {
a[j] = a[j - 1] * r_j;
}
a
};
// take weighted sum of the two vectors using w
assert_eq!(a_sc.len(), a_eval.len());
(0..a_sc.len())
.map(|i| w[0] * a_sc[i] + w[1] * a_eval[i])
.collect::<Vec<Scalar>>()
};
let (proof, _comm_poly, _comm_sc_eval) = DotProductProof::prove(
gens_1,
gens_n,
transcript,
random_tape,
&poly.as_vec(),
&blinds_poly[j],
&a,
&target,
&blind,
);
(proof, eval, comm_eval)
};
proofs.push(proof);
claim_per_round = claim_next_round;
comm_claim_per_round = comm_claim_next_round;
r.push(r_j);
comm_evals.push(comm_claim_per_round);
}
(
ZKSumcheckInstanceProof::new(comm_polys, comm_evals, proofs),
r,
vec![poly_A[0], poly_B[0], poly_C[0], poly_D[0]],
blinds_evals[num_rounds - 1],
)
}
}

View File

@@ -0,0 +1,88 @@
#[cfg(feature = "profile")]
use colored::Colorize;
#[cfg(feature = "profile")]
use core::sync::atomic::AtomicUsize;
#[cfg(feature = "profile")]
use core::sync::atomic::Ordering;
#[cfg(feature = "profile")]
use std::time::Instant;
#[cfg(feature = "profile")]
pub static CALL_DEPTH: AtomicUsize = AtomicUsize::new(0);
#[cfg(feature = "profile")]
pub struct Timer {
label: String,
timer: Instant,
}
#[cfg(feature = "profile")]
impl Timer {
#[inline(always)]
pub fn new(label: &str) -> Self {
let timer = Instant::now();
CALL_DEPTH.fetch_add(1, Ordering::Relaxed);
let star = "* ";
println!(
"{:indent$}{}{}",
"",
star,
label.yellow().bold(),
indent = 2 * CALL_DEPTH.fetch_add(0, Ordering::Relaxed)
);
Self {
label: label.to_string(),
timer,
}
}
#[inline(always)]
pub fn stop(&self) {
let duration = self.timer.elapsed();
let star = "* ";
println!(
"{:indent$}{}{} {:?}",
"",
star,
self.label.blue().bold(),
duration,
indent = 2 * CALL_DEPTH.fetch_add(0, Ordering::Relaxed)
);
CALL_DEPTH.fetch_sub(1, Ordering::Relaxed);
}
#[inline(always)]
pub fn print(msg: &str) {
CALL_DEPTH.fetch_add(1, Ordering::Relaxed);
let star = "* ";
println!(
"{:indent$}{}{}",
"",
star,
msg.to_string().green().bold(),
indent = 2 * CALL_DEPTH.fetch_add(0, Ordering::Relaxed)
);
CALL_DEPTH.fetch_sub(1, Ordering::Relaxed);
}
}
#[cfg(not(feature = "profile"))]
pub struct Timer {
_label: String,
}
#[cfg(not(feature = "profile"))]
impl Timer {
#[inline(always)]
pub fn new(label: &str) -> Self {
Self {
_label: label.to_string(),
}
}
#[inline(always)]
pub fn stop(&self) {}
#[inline(always)]
pub fn print(_msg: &str) {}
}

View File

@@ -0,0 +1,63 @@
use super::group::CompressedGroup;
use super::scalar::Scalar;
use merlin::Transcript;
pub trait ProofTranscript {
fn append_protocol_name(&mut self, protocol_name: &'static [u8]);
fn append_scalar(&mut self, label: &'static [u8], scalar: &Scalar);
fn append_point(&mut self, label: &'static [u8], point: &CompressedGroup);
fn challenge_scalar(&mut self, label: &'static [u8]) -> Scalar;
fn challenge_vector(&mut self, label: &'static [u8], len: usize) -> Vec<Scalar>;
}
impl ProofTranscript for Transcript {
fn append_protocol_name(&mut self, protocol_name: &'static [u8]) {
self.append_message(b"protocol-name", protocol_name);
}
fn append_scalar(&mut self, label: &'static [u8], scalar: &Scalar) {
self.append_message(label, &scalar.to_bytes());
}
fn append_point(&mut self, label: &'static [u8], point: &CompressedGroup) {
self.append_message(label, point.as_bytes());
}
fn challenge_scalar(&mut self, label: &'static [u8]) -> Scalar {
let mut buf = [0u8; 64];
self.challenge_bytes(label, &mut buf);
Scalar::from_bytes_wide(&buf)
}
fn challenge_vector(&mut self, label: &'static [u8], len: usize) -> Vec<Scalar> {
(0..len)
.map(|_i| self.challenge_scalar(label))
.collect::<Vec<Scalar>>()
}
}
pub trait AppendToTranscript {
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript);
}
impl AppendToTranscript for Scalar {
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
transcript.append_scalar(label, self);
}
}
impl AppendToTranscript for [Scalar] {
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
transcript.append_message(label, b"begin_append_vector");
for item in self {
transcript.append_scalar(label, item);
}
transcript.append_message(label, b"end_append_vector");
}
}
impl AppendToTranscript for CompressedGroup {
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
transcript.append_point(label, self);
}
}

View File

@@ -0,0 +1,182 @@
use super::commitments::{Commitments, MultiCommitGens};
use super::group::GroupElement;
use super::scalar::{Scalar, ScalarFromPrimitives};
use super::transcript::{AppendToTranscript, ProofTranscript};
use merlin::Transcript;
use serde::{Deserialize, Serialize};
// ax^2 + bx + c stored as vec![c,b,a]
// ax^3 + bx^2 + cx + d stored as vec![d,c,b,a]
#[derive(Debug)]
pub struct UniPoly {
coeffs: Vec<Scalar>,
}
// ax^2 + bx + c stored as vec![c,a]
// ax^3 + bx^2 + cx + d stored as vec![d,b,a]
#[derive(Serialize, Deserialize, Debug)]
pub struct CompressedUniPoly {
coeffs_except_linear_term: Vec<Scalar>,
}
impl UniPoly {
pub fn from_evals(evals: &[Scalar]) -> Self {
// we only support degree-2 or degree-3 univariate polynomials
assert!(evals.len() == 3 || evals.len() == 4);
let coeffs = if evals.len() == 3 {
// ax^2 + bx + c
let two_inv = (2_usize).to_scalar().invert().unwrap();
let c = evals[0];
let a = two_inv * (evals[2] - evals[1] - evals[1] + c);
let b = evals[1] - c - a;
vec![c, b, a]
} else {
// ax^3 + bx^2 + cx + d
let two_inv = (2_usize).to_scalar().invert().unwrap();
let six_inv = (6_usize).to_scalar().invert().unwrap();
let d = evals[0];
let a = six_inv
* (evals[3] - evals[2] - evals[2] - evals[2] + evals[1] + evals[1] + evals[1] - evals[0]);
let b = two_inv
* (evals[0] + evals[0] - evals[1] - evals[1] - evals[1] - evals[1] - evals[1]
+ evals[2]
+ evals[2]
+ evals[2]
+ evals[2]
- evals[3]);
let c = evals[1] - d - a - b;
vec![d, c, b, a]
};
UniPoly { coeffs }
}
pub fn degree(&self) -> usize {
self.coeffs.len() - 1
}
pub fn as_vec(&self) -> Vec<Scalar> {
self.coeffs.clone()
}
pub fn eval_at_zero(&self) -> Scalar {
self.coeffs[0]
}
pub fn eval_at_one(&self) -> Scalar {
(0..self.coeffs.len()).map(|i| self.coeffs[i]).sum()
}
pub fn evaluate(&self, r: &Scalar) -> Scalar {
let mut eval = self.coeffs[0];
let mut power = *r;
for i in 1..self.coeffs.len() {
eval += power * self.coeffs[i];
power *= r;
}
eval
}
pub fn compress(&self) -> CompressedUniPoly {
let coeffs_except_linear_term = [&self.coeffs[..1], &self.coeffs[2..]].concat();
assert_eq!(coeffs_except_linear_term.len() + 1, self.coeffs.len());
CompressedUniPoly {
coeffs_except_linear_term,
}
}
pub fn commit(&self, gens: &MultiCommitGens, blind: &Scalar) -> GroupElement {
self.coeffs.commit(blind, gens)
}
}
impl CompressedUniPoly {
// we require eval(0) + eval(1) = hint, so we can solve for the linear term as:
// linear_term = hint - 2 * constant_term - deg2 term - deg3 term
pub fn decompress(&self, hint: &Scalar) -> UniPoly {
let mut linear_term =
hint - self.coeffs_except_linear_term[0] - self.coeffs_except_linear_term[0];
for i in 1..self.coeffs_except_linear_term.len() {
linear_term -= self.coeffs_except_linear_term[i];
}
let mut coeffs = vec![self.coeffs_except_linear_term[0], linear_term];
coeffs.extend(&self.coeffs_except_linear_term[1..]);
assert_eq!(self.coeffs_except_linear_term.len() + 1, coeffs.len());
UniPoly { coeffs }
}
}
impl AppendToTranscript for UniPoly {
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
transcript.append_message(label, b"UniPoly_begin");
for i in 0..self.coeffs.len() {
transcript.append_scalar(b"coeff", &self.coeffs[i]);
}
transcript.append_message(label, b"UniPoly_end");
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_from_evals_quad() {
// polynomial is 2x^2 + 3x + 1
let e0 = Scalar::one();
let e1 = (6_usize).to_scalar();
let e2 = (15_usize).to_scalar();
let evals = vec![e0, e1, e2];
let poly = UniPoly::from_evals(&evals);
assert_eq!(poly.eval_at_zero(), e0);
assert_eq!(poly.eval_at_one(), e1);
assert_eq!(poly.coeffs.len(), 3);
assert_eq!(poly.coeffs[0], Scalar::one());
assert_eq!(poly.coeffs[1], (3_usize).to_scalar());
assert_eq!(poly.coeffs[2], (2_usize).to_scalar());
let hint = e0 + e1;
let compressed_poly = poly.compress();
let decompressed_poly = compressed_poly.decompress(&hint);
for i in 0..decompressed_poly.coeffs.len() {
assert_eq!(decompressed_poly.coeffs[i], poly.coeffs[i]);
}
let e3 = (28_usize).to_scalar();
assert_eq!(poly.evaluate(&(3_usize).to_scalar()), e3);
}
#[test]
fn test_from_evals_cubic() {
// polynomial is x^3 + 2x^2 + 3x + 1
let e0 = Scalar::one();
let e1 = (7_usize).to_scalar();
let e2 = (23_usize).to_scalar();
let e3 = (55_usize).to_scalar();
let evals = vec![e0, e1, e2, e3];
let poly = UniPoly::from_evals(&evals);
assert_eq!(poly.eval_at_zero(), e0);
assert_eq!(poly.eval_at_one(), e1);
assert_eq!(poly.coeffs.len(), 4);
assert_eq!(poly.coeffs[0], Scalar::one());
assert_eq!(poly.coeffs[1], (3_usize).to_scalar());
assert_eq!(poly.coeffs[2], (2_usize).to_scalar());
assert_eq!(poly.coeffs[3], (1_usize).to_scalar());
let hint = e0 + e1;
let compressed_poly = poly.compress();
let decompressed_poly = compressed_poly.decompress(&hint);
for i in 0..decompressed_poly.coeffs.len() {
assert_eq!(decompressed_poly.coeffs[i], poly.coeffs[i]);
}
let e4 = (109_usize).to_scalar();
assert_eq!(poly.evaluate(&(4_usize).to_scalar()), e4);
}
}

View File

@@ -8,7 +8,7 @@
},
"dependencies": {
"@ethereumjs/util": "^8.0.3",
"@personaelabs/spartan-ecdsa": "*"
"@personaelabs/spartan-ecdsa": "file:./../../lib"
},
"devDependencies": {
"ts-node": "^10.9.1",

View File

@@ -9,7 +9,7 @@
"lint": "next lint"
},
"dependencies": {
"@personaelabs/spartan-ecdsa": "*",
"@personaelabs/spartan-ecdsa": "file:./../../lib",
"@ethereumjs/util": "^8.0.3",
"comlink": "^4.3.1",
"elliptic": "^6.5.4",
@@ -17,8 +17,7 @@
"next": "13.0.0",
"react": "18.2.0",
"react-dom": "18.2.0",
"readline": "^1.3.0",
"snarkjs": "^0.5.0"
"readline": "^1.3.0"
},
"devDependencies": {
"@types/node": "18.11.7",

View File

@@ -0,0 +1,22 @@
[package]
name = "circuit_reader"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
bincode = "1.3.3"
secq256k1 = { path = "../secq256k1" }
spartan = { path = "../Spartan-secq" }
ff = "0.12.0"
byteorder = "1.4.3"
group = "0.12.0"
itertools = "0.9.0"
[[bin]]
name = "gen_spartan_inst"
path = "src/bin/gen_spartan_inst.rs"

View File

@@ -0,0 +1,24 @@
#![allow(non_snake_case)]
use bincode;
use circuit_reader::load_as_spartan_inst;
use std::env::{args, current_dir};
use std::fs::File;
use std::io::Write;
fn main() {
let circom_r1cs_path = args().nth(1).unwrap();
let output_path = args().nth(2).unwrap();
let num_pub_inputs = args().nth(3).unwrap().parse::<usize>().unwrap();
let root = current_dir().unwrap();
let circom_r1cs_path = root.join(circom_r1cs_path);
let spartan_inst = load_as_spartan_inst(circom_r1cs_path, num_pub_inputs);
let sparta_inst_bytes = bincode::serialize(&spartan_inst).unwrap();
File::create(root.join(output_path.clone()))
.unwrap()
.write_all(sparta_inst_bytes.as_slice())
.unwrap();
println!("Written Spartan circuit to {}", output_path);
}

View File

@@ -1,41 +1,15 @@
#![allow(non_snake_case)]
use bincode;
mod circom_reader;
use circom_reader::{load_r1cs_from_bin_file, R1CS};
use ff::PrimeField;
use libspartan::Instance;
use secq256k1::AffinePoint;
use secq256k1::FieldBytes;
use spartan_wasm::circom_reader::{load_r1cs_from_bin_file, R1CS};
use std::env::{args, current_dir};
use std::fs::File;
use std::io::Write;
use std::path::PathBuf;
fn main() {
let circuit_path = args().nth(1).unwrap();
let output_path = args().nth(2).unwrap();
let num_pub_inputs = args().nth(3).unwrap().parse::<usize>().unwrap();
let root = current_dir().unwrap();
let circuit_path = root.join(circuit_path);
let spartan_inst = load_as_spartan_inst(circuit_path, num_pub_inputs);
let sparta_inst_bytes = bincode::serialize(&spartan_inst).unwrap();
File::create(root.join(output_path.clone()))
.unwrap()
.write_all(sparta_inst_bytes.as_slice())
.unwrap();
println!("Written Spartan circuit to {}", output_path);
}
pub fn load_as_spartan_inst(circuit_file: PathBuf, num_pub_inputs: usize) -> Instance {
let root = current_dir().unwrap();
let circuit_file = root.join(circuit_file);
let (r1cs, _) = load_r1cs_from_bin_file::<AffinePoint>(&circuit_file);
let spartan_inst = convert_to_spartan_r1cs(&r1cs, num_pub_inputs);
spartan_inst
}

View File

@@ -1,6 +1,6 @@
{
"name": "circuits",
"version": "1.0.0",
"name": "@personaelabs/spartan-ecdsa-circuits",
"version": "0.1.0",
"main": "index.js",
"license": "MIT",
"dependencies": {
@@ -18,4 +18,4 @@
"ts-jest": "^29.0.3",
"typescript": "^4.9.4"
}
}
}

View File

@@ -1,3 +1,5 @@
pragma circom 2.1.2;
function ROUND_KEYS() {
return [
15180568604901803243989155929934437997245952775071395385994322939386074967328,
@@ -213,4 +215,4 @@ function MDS_MATRIX() {
70274477372358662369456035572054501601454406272695978931839980644925236550307
]
];
}
}

View File

@@ -12,7 +12,7 @@ const embedWasmBytes = async () => {
export const wasmBytes = new Uint8Array([${bytes.toString()}]);
`;
fs.writeFileSync("./src/wasm/wasm_bytes.ts", file);
fs.writeFileSync("./src/wasm/wasmBytes.ts", file);
};
embedWasmBytes();

View File

@@ -3,7 +3,10 @@ module.exports = {
preset: 'ts-jest',
testEnvironment: 'node',
transform: {
"^.+\\.js?$": "ts-jest"
"^.+\\.(ts|js)?$": "ts-jest"
},
moduleNameMapper: {
"@src/(.*)$": "<rootDir>/src/$1",
},
testTimeout: 600000,
};

View File

@@ -1,17 +1,32 @@
{
"name": "@personaelabs/spartan-ecdsa",
"version": "1.0.2",
"main": "./build/lib.js",
"types": "./build/lib.d.ts",
"version": "2.3.1",
"description": "Spartan-ecdsa (which to our knowledge) is the fastest open-source method to verify ECDSA (secp256k1) signatures in zero-knowledge.",
"keywords": [
"spartan",
"spartan-ecdsa",
"zk",
"efficient-ecdsa"
],
"author": "Personae Labs",
"main": "./dist/index.js",
"types": "./dist/index.d.ts",
"license": "MIT",
"bugs": {
"url": "https://github.com/personaelabs/spartan-ecdsa/issues/new"
},
"homepage": "https://github.com/personaelabs/spartan-ecdsa",
"publishConfig": {
"access": "public"
},
"files": [
"build/**/*"
"dist/**/*"
],
"scripts": {
"build": "rm -rf ./build && yarn embedWasmBytes && tsc",
"build": "rm -rf ./dist && yarn embedWasmBytes && tsc --project tsconfig.build.json",
"prepublishOnly": "yarn build",
"prepare": "yarn embedWasmBytes",
"embedWasmBytes": "ts-node ./embed_wasm_bytes.ts",
"embedWasmBytes": "ts-node ./embedWasmBytes.ts",
"test": "jest"
},
"devDependencies": {
@@ -25,6 +40,6 @@
"@ethereumjs/util": "^8.0.3",
"@zk-kit/incremental-merkle-tree": "^1.0.0",
"elliptic": "^6.5.4",
"snarkjs": "^0.5.0"
"snarkjs": "^0.7.1"
}
}
}

View File

@@ -1,25 +0,0 @@
import { ProverConfig, VerifyConfig } from "./types";
// Default configs for pubkey membership proving/verifying
export const defaultPubkeyMembershipPConfig: ProverConfig = {
witnessGenWasm:
"https://storage.googleapis.com/personae-proving-keys/membership/pubkey_membership.wasm",
circuit:
"https://storage.googleapis.com/personae-proving-keys/membership/pubkey_membership.circuit"
};
export const defaultPubkeyMembershipVConfig: VerifyConfig = {
circuit: defaultPubkeyMembershipPConfig.circuit
};
// Default configs for address membership proving/verifyign
export const defaultAddressMembershipPConfig: ProverConfig = {
witnessGenWasm:
"https://storage.googleapis.com/personae-proving-keys/membership/addr_membership.wasm",
circuit:
"https://storage.googleapis.com/personae-proving-keys/membership/addr_membership.circuit"
};
export const defaultAddressMembershipVConfig: VerifyConfig = {
circuit: defaultAddressMembershipPConfig.circuit
};

View File

@@ -0,0 +1,25 @@
import { ProverConfig, VerifyConfig } from "@src/types";
// Default configs for pubkey membership proving/verifying
export const defaultPubkeyProverConfig: ProverConfig = {
witnessGenWasm:
"https://storage.googleapis.com/personae-proving-keys/membership/pubkey_membership.wasm",
circuit:
"https://storage.googleapis.com/personae-proving-keys/membership/pubkey_membership.circuit"
};
export const defaultPubkeyVerifierConfig: VerifyConfig = {
circuit: defaultPubkeyProverConfig.circuit
};
// Default configs for address membership proving/verifyign
export const defaultAddressProverConfig: ProverConfig = {
witnessGenWasm:
"https://storage.googleapis.com/personae-proving-keys/membership/addr_membership.wasm",
circuit:
"https://storage.googleapis.com/personae-proving-keys/membership/addr_membership.circuit"
};
export const defaultAddressVerifierConfig: VerifyConfig = {
circuit: defaultAddressProverConfig.circuit
};

View File

@@ -1,16 +1,16 @@
import { Profiler } from "../helpers/profiler";
import { IProver, MerkleProof, NIZK, ProverConfig } from "../types";
import { loadCircuit, fromSig, snarkJsWitnessGen } from "../helpers/utils";
import { Profiler } from "@src/helpers/profiler";
import { IProver, MerkleProof, NIZK, ProveArgs, ProverConfig } from "@src/types";
import { loadCircuit, fromSig, snarkJsWitnessGen } from "@src/helpers/utils";
import {
PublicInput,
computeEffEcdsaPubInput,
CircuitPubInput
} from "../helpers/public_input";
import wasm, { init } from "../wasm";
} from "@src/helpers/publicInputs";
import { init, wasm } from "@src/wasm";
import {
defaultPubkeyMembershipPConfig,
defaultAddressMembershipPConfig
} from "../config";
defaultPubkeyProverConfig,
defaultAddressProverConfig
} from "@src/config";
/**
* ECDSA Membership Prover
@@ -18,16 +18,22 @@ import {
export class MembershipProver extends Profiler implements IProver {
circuit: string;
witnessGenWasm: string;
useRemoteCircuit: boolean;
constructor(options: ProverConfig) {
super({ enabled: options?.enableProfiler });
constructor({
enableProfiler,
circuit,
witnessGenWasm,
useRemoteCircuit
}: ProverConfig) {
super({ enabled: enableProfiler });
if (
options.circuit === defaultPubkeyMembershipPConfig.circuit ||
options.witnessGenWasm ===
defaultPubkeyMembershipPConfig.witnessGenWasm ||
options.circuit === defaultAddressMembershipPConfig.circuit ||
options.witnessGenWasm === defaultAddressMembershipPConfig.witnessGenWasm
circuit === defaultPubkeyProverConfig.circuit ||
witnessGenWasm ===
defaultPubkeyProverConfig.witnessGenWasm ||
circuit === defaultAddressProverConfig.circuit ||
witnessGenWasm === defaultAddressProverConfig.witnessGenWasm
) {
console.warn(`
Spartan-ecdsa default config warning:
@@ -37,33 +43,16 @@ export class MembershipProver extends Profiler implements IProver {
`);
}
const isNode = typeof window === "undefined";
if (isNode) {
if (
options.circuit.includes("http") ||
options.witnessGenWasm.includes("http")
) {
throw new Error(
`An URL was given for circuit/witnessGenWasm in Node.js environment. Please specify a local path.
`
);
}
}
this.circuit = options.circuit;
this.witnessGenWasm = options.witnessGenWasm;
this.circuit = circuit;
this.witnessGenWasm = witnessGenWasm;
this.useRemoteCircuit = useRemoteCircuit ?? false;
}
async initWasm() {
await init();
}
// @ts-ignore
async prove(
sig: string,
msgHash: Buffer,
merkleProof: MerkleProof
): Promise<NIZK> {
async prove({ sig, msgHash, merkleProof }: ProveArgs): Promise<NIZK> {
const { r, s, v } = fromSig(sig);
const effEcdsaPubInput = computeEffEcdsaPubInput(r, v, msgHash);
@@ -90,7 +79,9 @@ export class MembershipProver extends Profiler implements IProver {
this.timeEnd("Generate witness");
this.time("Load circuit");
const circuitBin = await loadCircuit(this.circuit);
const useRemoteCircuit =
this.useRemoteCircuit || typeof window !== "undefined";
const circuitBin = await loadCircuit(this.circuit, useRemoteCircuit);
this.timeEnd("Load circuit");
// Get the public input in bytes

View File

@@ -1,25 +1,30 @@
import {
defaultAddressMembershipVConfig,
defaultPubkeyMembershipVConfig
} from "../config";
import { Profiler } from "../helpers/profiler";
import { loadCircuit } from "../helpers/utils";
import { IVerifier, VerifyConfig } from "../types";
import wasm, { init } from "../wasm";
import { PublicInput, verifyEffEcdsaPubInput } from "../helpers/public_input";
defaultAddressVerifierConfig,
defaultPubkeyVerifierConfig
} from "@src/config";
import { Profiler } from "@src/helpers/profiler";
import { loadCircuit } from "@src/helpers/utils";
import { IVerifier, VerifyArgs, VerifyConfig } from "@src/types";
import { init, wasm } from "@src/wasm";
import { PublicInput, verifyEffEcdsaPubInput } from "@src/helpers/publicInputs";
/**
* ECDSA Membership Verifier
*/
export class MembershipVerifier extends Profiler implements IVerifier {
circuit: string;
useRemoteCircuit: boolean;
constructor(options: VerifyConfig) {
super({ enabled: options?.enableProfiler });
constructor({
circuit,
enableProfiler,
useRemoteCircuit
}: VerifyConfig) {
super({ enabled: enableProfiler });
if (
options.circuit === defaultAddressMembershipVConfig.circuit ||
options.circuit === defaultPubkeyMembershipVConfig.circuit
circuit === defaultAddressVerifierConfig.circuit ||
circuit === defaultPubkeyVerifierConfig.circuit
) {
console.warn(`
Spartan-ecdsa default config warning:
@@ -29,19 +34,18 @@ export class MembershipVerifier extends Profiler implements IVerifier {
`);
}
this.circuit = options.circuit;
this.circuit = circuit;
this.useRemoteCircuit =
useRemoteCircuit || typeof window !== "undefined";
}
async initWasm() {
await init();
}
async verify(
proof: Uint8Array,
publicInputSer: Uint8Array
): Promise<boolean> {
async verify({ proof, publicInputSer }: VerifyArgs): Promise<boolean> {
this.time("Load circuit");
const circuitBin = await loadCircuit(this.circuit);
const circuitBin = await loadCircuit(this.circuit, this.useRemoteCircuit);
this.timeEnd("Load circuit");
this.time("Verify public input");

View File

@@ -1,5 +1,5 @@
import { init, wasm } from "@src/wasm";
import { bigIntToLeBytes, bytesLeToBigInt } from "./utils";
import wasm, { init } from "../wasm";
export class Poseidon {
hash(inputs: bigint[]): bigint {

View File

@@ -1,8 +1,8 @@
var EC = require("elliptic").ec;
const BN = require("bn.js");
import { EffECDSAPubInput } from "@src/types";
import { bytesToBigInt, bigIntToBytes } from "./utils";
import { EffECDSAPubInput } from "../types";
const ec = new EC("secp256k1");
@@ -109,7 +109,7 @@ export class PublicInput {
/**
* Compute the group elements T and U for efficient ecdsa
* http://localhost:1313/posts/efficient-ecdsa-1/
* https://personaelabs.org/posts/efficient-ecdsa-1/
*/
export const computeEffEcdsaPubInput = (
r: bigint,
@@ -144,15 +144,18 @@ export const computeEffEcdsaPubInput = (
/**
* Verify the public values of the efficient ECDSA circuit
*/
export const verifyEffEcdsaPubInput = (pubInput: PublicInput): boolean => {
export const verifyEffEcdsaPubInput = ({
r,
rV,
msgHash,
circuitPubInput
}: PublicInput): boolean => {
const expectedCircuitInput = computeEffEcdsaPubInput(
pubInput.r,
pubInput.rV,
pubInput.msgHash
r,
rV,
msgHash
);
const circuitPubInput = pubInput.circuitPubInput;
const isValid =
expectedCircuitInput.Tx === circuitPubInput.Tx &&
expectedCircuitInput.Ty === circuitPubInput.Ty &&

View File

@@ -1,7 +1,6 @@
import { IncrementalMerkleTree } from "@zk-kit/incremental-merkle-tree";
import { Poseidon } from "./poseidon";
import { MerkleProof } from "../types";
import { bytesToBigInt } from "./utils";
export class Tree {
depth: number;
@@ -20,6 +19,14 @@ export class Tree {
this.treeInner.insert(leaf);
}
delete(index: number) {
this.treeInner.delete(index);
}
leaves(): bigint[] {
return this.treeInner.leaves;
}
root(): bigint {
return this.treeInner.root;
}
@@ -30,17 +37,14 @@ export class Tree {
createProof(index: number): MerkleProof {
const proof = this.treeInner.createProof(index);
const siblings = proof.siblings.map(s =>
typeof s[0] === "bigint" ? s : bytesToBigInt(s[0])
);
return {
siblings,
siblings: proof.siblings,
pathIndices: proof.pathIndices,
root: proof.root
};
}
// TODO: Add more functions that expose the IncrementalMerkleTree API
verifyProof(proof: MerkleProof, leaf: bigint): boolean {
return this.treeInner.verifyProof({ ...proof, leaf });
}
}

View File

@@ -18,9 +18,11 @@ export const snarkJsWitnessGen = async (input: any, wasmFile: string) => {
/**
* Load a circuit from a file or URL
*/
export const loadCircuit = async (pathOrUrl: string): Promise<Uint8Array> => {
const isWeb = typeof window !== "undefined";
if (isWeb) {
export const loadCircuit = async (
pathOrUrl: string,
useRemoteCircuit: boolean
): Promise<Uint8Array> => {
if (useRemoteCircuit) {
return await fetchCircuit(pathOrUrl);
} else {
return await readCircuitFromFs(pathOrUrl);

View File

@@ -0,0 +1,8 @@
export { MembershipProver } from "@src/core/prover";
export { MembershipVerifier } from "@src/core/verifier";
export { CircuitPubInput, PublicInput, computeEffEcdsaPubInput, verifyEffEcdsaPubInput } from "@src/helpers/publicInputs";
export { Tree } from "@src/helpers/tree";
export { Poseidon } from "@src/helpers/poseidon";
export { init, wasm } from "@src/wasm/index";
export { defaultPubkeyProverConfig as defaultPubkeyMembershipPConfig, defaultPubkeyVerifierConfig as defaultPubkeyMembershipVConfig, defaultAddressProverConfig as defaultAddressMembershipPConfig, defaultAddressVerifierConfig as defaultAddressMembershipVConfig } from "@src/config";
export type { MerkleProof, EffECDSAPubInput, NIZK, ProverConfig, VerifyConfig, IProver, IVerifier } from "@src/types";

View File

@@ -1,8 +0,0 @@
export * from "./types";
export * from "./helpers/public_input";
export * from "./core/membership_prover";
export * from "./core/membership_verifier";
export * from "./helpers/tree";
export * from "./helpers/poseidon";
export * from "./wasm/index";
export * from "./config";

View File

@@ -1,45 +0,0 @@
import { PublicInput } from "./helpers/public_input";
// The same structure as MerkleProof in @zk-kit/incremental-merkle-tree.
// Not directly using MerkleProof defined in @zk-kit/incremental-merkle-tree so
// library users can choose whatever merkle tree management method they want.
export interface MerkleProof {
root: bigint;
siblings: bigint[];
pathIndices: number[];
}
export interface EffECDSAPubInput {
Tx: bigint;
Ty: bigint;
Ux: bigint;
Uy: bigint;
}
export interface NIZK {
proof: Uint8Array;
publicInput: PublicInput;
}
export interface ProverConfig {
witnessGenWasm: string;
circuit: string;
enableProfiler?: boolean;
}
export interface VerifyConfig {
circuit: string; // Path to circuit file compiled by Nova-Scotia
enableProfiler?: boolean;
}
export interface IProver {
circuit: string; // Path to circuit file compiled by Nova-Scotia
witnessGenWasm: string; // Path to witness generator wasm file generated by Circom
prove(...args: any): Promise<NIZK>;
}
export interface IVerifier {
circuit: string; // Path to circuit file compiled by Nova-Scotia
verify(proof: Uint8Array, publicInput: Uint8Array): Promise<boolean>;
}

View File

@@ -0,0 +1,58 @@
import { PublicInput } from "@src/helpers/publicInputs";
// The same structure as MerkleProof in @zk-kit/incremental-merkle-tree.
// Not directly using MerkleProof defined in @zk-kit/incremental-merkle-tree so
// library users can choose whatever merkle tree management method they want.
export interface MerkleProof {
root: bigint;
siblings: [bigint][];
pathIndices: number[];
}
export interface EffECDSAPubInput {
Tx: bigint;
Ty: bigint;
Ux: bigint;
Uy: bigint;
}
export interface NIZK {
proof: Uint8Array;
publicInput: PublicInput;
}
export interface ProverConfig {
witnessGenWasm: string;
circuit: string;
enableProfiler?: boolean;
useRemoteCircuit?: boolean;
}
export interface ProveArgs {
sig: string;
msgHash: Buffer,
merkleProof: MerkleProof;
}
export interface VerifyArgs {
proof: Uint8Array,
publicInputSer: Uint8Array
}
export interface VerifyConfig {
circuit: string; // Path to circuit file compiled by Nova-Scotia
enableProfiler?: boolean;
useRemoteCircuit?: boolean;
}
export interface IProver {
circuit: string; // Path to circuit file compiled by Nova-Scotia
witnessGenWasm: string; // Path to witness generator wasm file generated by Circom
prove({ sig, msgHash, merkleProof }: ProveArgs): Promise<NIZK>;
}
export interface IVerifier {
circuit: string; // Path to circuit file compiled by Nova-Scotia
verify({ proof, publicInputSer }: VerifyArgs): Promise<boolean>;
}

View File

@@ -1,10 +1,10 @@
import * as wasm from "./wasm";
import { wasmBytes } from "./wasm_bytes";
import { wasmBytes } from "./wasmBytes";
export const init = async () => {
await wasm.initSync(wasmBytes.buffer);
wasm.init_panic_hook();
};
export default wasm;
export { wasm };

View File

@@ -26,18 +26,16 @@ export function poseidon(input_bytes: Uint8Array): Uint8Array;
export type InitInput = RequestInfo | URL | Response | BufferSource | WebAssembly.Module;
export interface InitOutput {
readonly memory: WebAssembly.Memory;
readonly prove: (a: number, b: number, c: number, d: number, e: number, f: number, g: number) => void;
readonly verify: (a: number, b: number, c: number, d: number, e: number, f: number, g: number) => void;
readonly poseidon: (a: number, b: number, c: number) => void;
readonly init_panic_hook: () => void;
readonly memory: WebAssembly.Memory;
readonly __wbindgen_add_to_stack_pointer: (a: number) => number;
readonly __wbindgen_malloc: (a: number) => number;
readonly __wbindgen_free: (a: number, b: number) => void;
readonly __wbindgen_exn_store: (a: number) => void;
readonly __wbindgen_realloc: (a: number, b: number, c: number) => number;
readonly __wbindgen_thread_destroy: () => void;
readonly __wbindgen_start: () => void;
}
export type SyncInitInput = BufferSource | WebAssembly.Module;
@@ -46,12 +44,10 @@ export type SyncInitInput = BufferSource | WebAssembly.Module;
* a precompiled `WebAssembly.Module`.
*
* @param {SyncInitInput} module
* @param {WebAssembly.Memory} maybe_memory
*
* @returns {InitOutput}
*/
export function initSync(module: SyncInitInput, maybe_memory?: WebAssembly.Memory): InitOutput;
export function initSync(module: SyncInitInput): InitOutput;
/**
* If `module_or_path` is {RequestInfo} or {URL}, makes a request and
* for everything else, calls `WebAssembly.instantiate` directly.
@@ -61,4 +57,4 @@ export function initSync(module: SyncInitInput, maybe_memory?: WebAssembly.Memor
*
* @returns {Promise<InitOutput>}
*/
export default function init (module_or_path?: InitInput | Promise<InitInput>, maybe_memory?: WebAssembly.Memory): Promise<InitOutput>;
export default function __wbg_init (module_or_path?: InitInput | Promise<InitInput>, maybe_memory?: WebAssembly.Memory): Promise<InitOutput>;

View File

@@ -1,7 +1,6 @@
let wasm;
const heap = new Array(32).fill(undefined);
const heap = new Array(128).fill(undefined);
heap.push(undefined, null, true, false);
@@ -10,7 +9,7 @@ function getObject(idx) { return heap[idx]; }
let heap_next = heap.length;
function dropObject(idx) {
if (idx < 36) return;
if (idx < 132) return;
heap[idx] = heap_next;
heap_next = idx;
}
@@ -21,21 +20,22 @@ function takeObject(idx) {
return ret;
}
const cachedTextDecoder = new TextDecoder('utf-8', { ignoreBOM: true, fatal: true });
const cachedTextDecoder = (typeof TextDecoder !== 'undefined' ? new TextDecoder('utf-8', { ignoreBOM: true, fatal: true }) : { decode: () => { throw Error('TextDecoder not available') } } );
cachedTextDecoder.decode();
if (typeof TextDecoder !== 'undefined') { cachedTextDecoder.decode(); };
let cachedUint8Memory0 = new Uint8Array();
let cachedUint8Memory0 = null;
function getUint8Memory0() {
if (cachedUint8Memory0.buffer !== wasm.memory.buffer) {
if (cachedUint8Memory0 === null || cachedUint8Memory0.byteLength === 0) {
cachedUint8Memory0 = new Uint8Array(wasm.memory.buffer);
}
return cachedUint8Memory0;
}
function getStringFromWasm0(ptr, len) {
return cachedTextDecoder.decode(getUint8Memory0().slice(ptr, ptr + len));
ptr = ptr >>> 0;
return cachedTextDecoder.decode(getUint8Memory0().subarray(ptr, ptr + len));
}
function addHeapObject(obj) {
@@ -55,22 +55,23 @@ export function init_panic_hook() {
let WASM_VECTOR_LEN = 0;
function passArray8ToWasm0(arg, malloc) {
const ptr = malloc(arg.length * 1);
const ptr = malloc(arg.length * 1) >>> 0;
getUint8Memory0().set(arg, ptr / 1);
WASM_VECTOR_LEN = arg.length;
return ptr;
}
let cachedInt32Memory0 = new Int32Array();
let cachedInt32Memory0 = null;
function getInt32Memory0() {
if (cachedInt32Memory0.buffer !== wasm.memory.buffer) {
if (cachedInt32Memory0 === null || cachedInt32Memory0.byteLength === 0) {
cachedInt32Memory0 = new Int32Array(wasm.memory.buffer);
}
return cachedInt32Memory0;
}
function getArrayU8FromWasm0(ptr, len) {
ptr = ptr >>> 0;
return getUint8Memory0().subarray(ptr / 1, ptr / 1 + len);
}
/**
@@ -96,9 +97,9 @@ export function prove(circuit, vars, public_inputs) {
if (r3) {
throw takeObject(r2);
}
var v3 = getArrayU8FromWasm0(r0, r1).slice();
var v4 = getArrayU8FromWasm0(r0, r1).slice();
wasm.__wbindgen_free(r0, r1 * 1);
return v3;
return v4;
} finally {
wasm.__wbindgen_add_to_stack_pointer(16);
}
@@ -149,9 +150,9 @@ export function poseidon(input_bytes) {
if (r3) {
throw takeObject(r2);
}
var v1 = getArrayU8FromWasm0(r0, r1).slice();
var v2 = getArrayU8FromWasm0(r0, r1).slice();
wasm.__wbindgen_free(r0, r1 * 1);
return v1;
return v2;
} finally {
wasm.__wbindgen_add_to_stack_pointer(16);
}
@@ -165,29 +166,33 @@ function handleError(f, args) {
}
}
const cachedTextEncoder = new TextEncoder('utf-8');
const cachedTextEncoder = (typeof TextEncoder !== 'undefined' ? new TextEncoder('utf-8') : { encode: () => { throw Error('TextEncoder not available') } } );
const encodeString = function (arg, view) {
const encodeString = (typeof cachedTextEncoder.encodeInto === 'function'
? function (arg, view) {
return cachedTextEncoder.encodeInto(arg, view);
}
: function (arg, view) {
const buf = cachedTextEncoder.encode(arg);
view.set(buf);
return {
read: arg.length,
written: buf.length
};
};
});
function passStringToWasm0(arg, malloc, realloc) {
if (realloc === undefined) {
const buf = cachedTextEncoder.encode(arg);
const ptr = malloc(buf.length);
const ptr = malloc(buf.length) >>> 0;
getUint8Memory0().subarray(ptr, ptr + buf.length).set(buf);
WASM_VECTOR_LEN = buf.length;
return ptr;
}
let len = arg.length;
let ptr = malloc(len);
let ptr = malloc(len) >>> 0;
const mem = getUint8Memory0();
@@ -203,7 +208,7 @@ function passStringToWasm0(arg, malloc, realloc) {
if (offset !== 0) {
arg = arg.slice(offset);
}
ptr = realloc(ptr, len, len = offset + arg.length * 3);
ptr = realloc(ptr, len, len = offset + arg.length * 3) >>> 0;
const view = getUint8Memory0().subarray(ptr + offset, ptr + len);
const ret = encodeString(arg, view);
@@ -214,7 +219,7 @@ function passStringToWasm0(arg, malloc, realloc) {
return ptr;
}
async function load(module, imports) {
async function __wbg_load(module, imports) {
if (typeof Response === 'function' && module instanceof Response) {
if (typeof WebAssembly.instantiateStreaming === 'function') {
try {
@@ -245,10 +250,10 @@ async function load(module, imports) {
}
}
function getImports() {
function __wbg_get_imports() {
const imports = {};
imports.wbg = {};
imports.wbg.__wbg_crypto_e1d53a1d73fb10b8 = function(arg0) {
imports.wbg.__wbg_crypto_70a96de3b6b73dac = function(arg0) {
const ret = getObject(arg0).crypto;
return addHeapObject(ret);
};
@@ -257,15 +262,15 @@ function getImports() {
const ret = typeof(val) === 'object' && val !== null;
return ret;
};
imports.wbg.__wbg_process_038c26bf42b093f8 = function(arg0) {
imports.wbg.__wbg_process_dd1577445152112e = function(arg0) {
const ret = getObject(arg0).process;
return addHeapObject(ret);
};
imports.wbg.__wbg_versions_ab37218d2f0b24a8 = function(arg0) {
imports.wbg.__wbg_versions_58036bec3add9e6f = function(arg0) {
const ret = getObject(arg0).versions;
return addHeapObject(ret);
};
imports.wbg.__wbg_node_080f4b19d15bc1fe = function(arg0) {
imports.wbg.__wbg_node_6a9d28205ed5b0d8 = function(arg0) {
const ret = getObject(arg0).node;
return addHeapObject(ret);
};
@@ -276,11 +281,11 @@ function getImports() {
imports.wbg.__wbindgen_object_drop_ref = function(arg0) {
takeObject(arg0);
};
imports.wbg.__wbg_msCrypto_6e7d3e1f92610cbb = function(arg0) {
imports.wbg.__wbg_msCrypto_adbc770ec9eca9c7 = function(arg0) {
const ret = getObject(arg0).msCrypto;
return addHeapObject(ret);
};
imports.wbg.__wbg_require_78a3dcfbdba9cbce = function() { return handleError(function () {
imports.wbg.__wbg_require_f05d779769764e82 = function() { return handleError(function () {
const ret = module.require;
return addHeapObject(ret);
}, arguments) };
@@ -292,17 +297,17 @@ function getImports() {
const ret = getStringFromWasm0(arg0, arg1);
return addHeapObject(ret);
};
imports.wbg.__wbg_getRandomValues_805f1c3d65988a5a = function() { return handleError(function (arg0, arg1) {
imports.wbg.__wbg_getRandomValues_3774744e221a22ad = function() { return handleError(function (arg0, arg1) {
getObject(arg0).getRandomValues(getObject(arg1));
}, arguments) };
imports.wbg.__wbg_randomFillSync_6894564c2c334c42 = function() { return handleError(function (arg0, arg1, arg2) {
getObject(arg0).randomFillSync(getArrayU8FromWasm0(arg1, arg2));
imports.wbg.__wbg_randomFillSync_e950366c42764a07 = function() { return handleError(function (arg0, arg1) {
getObject(arg0).randomFillSync(takeObject(arg1));
}, arguments) };
imports.wbg.__wbg_newnoargs_b5b063fc6c2f0376 = function(arg0, arg1) {
imports.wbg.__wbg_newnoargs_e643855c6572a4a8 = function(arg0, arg1) {
const ret = new Function(getStringFromWasm0(arg0, arg1));
return addHeapObject(ret);
};
imports.wbg.__wbg_call_97ae9d8645dc388b = function() { return handleError(function (arg0, arg1) {
imports.wbg.__wbg_call_f96b398515635514 = function() { return handleError(function (arg0, arg1) {
const ret = getObject(arg0).call(getObject(arg1));
return addHeapObject(ret);
}, arguments) };
@@ -310,19 +315,19 @@ function getImports() {
const ret = getObject(arg0);
return addHeapObject(ret);
};
imports.wbg.__wbg_self_6d479506f72c6a71 = function() { return handleError(function () {
imports.wbg.__wbg_self_b9aad7f1c618bfaf = function() { return handleError(function () {
const ret = self.self;
return addHeapObject(ret);
}, arguments) };
imports.wbg.__wbg_window_f2557cc78490aceb = function() { return handleError(function () {
imports.wbg.__wbg_window_55e469842c98b086 = function() { return handleError(function () {
const ret = window.window;
return addHeapObject(ret);
}, arguments) };
imports.wbg.__wbg_globalThis_7f206bda628d5286 = function() { return handleError(function () {
imports.wbg.__wbg_globalThis_d0957e302752547e = function() { return handleError(function () {
const ret = globalThis.globalThis;
return addHeapObject(ret);
}, arguments) };
imports.wbg.__wbg_global_ba75c50d1cf384f4 = function() { return handleError(function () {
imports.wbg.__wbg_global_ae2f87312b8987fb = function() { return handleError(function () {
const ret = global.global;
return addHeapObject(ret);
}, arguments) };
@@ -330,30 +335,30 @@ function getImports() {
const ret = getObject(arg0) === undefined;
return ret;
};
imports.wbg.__wbg_call_168da88779e35f61 = function() { return handleError(function (arg0, arg1, arg2) {
imports.wbg.__wbg_call_35782e9a1aa5e091 = function() { return handleError(function (arg0, arg1, arg2) {
const ret = getObject(arg0).call(getObject(arg1), getObject(arg2));
return addHeapObject(ret);
}, arguments) };
imports.wbg.__wbg_buffer_3f3d764d4747d564 = function(arg0) {
imports.wbg.__wbg_buffer_fcbfb6d88b2732e9 = function(arg0) {
const ret = getObject(arg0).buffer;
return addHeapObject(ret);
};
imports.wbg.__wbg_new_8c3f0052272a457a = function(arg0) {
imports.wbg.__wbg_newwithbyteoffsetandlength_92c251989c485785 = function(arg0, arg1, arg2) {
const ret = new Uint8Array(getObject(arg0), arg1 >>> 0, arg2 >>> 0);
return addHeapObject(ret);
};
imports.wbg.__wbg_new_bc5d9aad3f9ac80e = function(arg0) {
const ret = new Uint8Array(getObject(arg0));
return addHeapObject(ret);
};
imports.wbg.__wbg_set_83db9690f9353e79 = function(arg0, arg1, arg2) {
imports.wbg.__wbg_set_4b3aa8445ac1e91c = function(arg0, arg1, arg2) {
getObject(arg0).set(getObject(arg1), arg2 >>> 0);
};
imports.wbg.__wbg_length_9e1ae1900cb0fbd5 = function(arg0) {
const ret = getObject(arg0).length;
return ret;
};
imports.wbg.__wbg_newwithlength_f5933855e4f48a19 = function(arg0) {
imports.wbg.__wbg_newwithlength_89eca18f2603a999 = function(arg0) {
const ret = new Uint8Array(arg0 >>> 0);
return addHeapObject(ret);
};
imports.wbg.__wbg_subarray_58ad4efbb5bcb886 = function(arg0, arg1, arg2) {
imports.wbg.__wbg_subarray_7649d027b2b141b3 = function(arg0, arg1, arg2) {
const ret = getObject(arg0).subarray(arg1 >>> 0, arg2 >>> 0);
return addHeapObject(ret);
};
@@ -363,16 +368,20 @@ function getImports() {
};
imports.wbg.__wbg_stack_658279fe44541cf6 = function(arg0, arg1) {
const ret = getObject(arg1).stack;
const ptr0 = passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc);
const len0 = WASM_VECTOR_LEN;
getInt32Memory0()[arg0 / 4 + 1] = len0;
getInt32Memory0()[arg0 / 4 + 0] = ptr0;
const ptr1 = passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc);
const len1 = WASM_VECTOR_LEN;
getInt32Memory0()[arg0 / 4 + 1] = len1;
getInt32Memory0()[arg0 / 4 + 0] = ptr1;
};
imports.wbg.__wbg_error_f851667af71bcfc6 = function(arg0, arg1) {
let deferred0_0;
let deferred0_1;
try {
deferred0_0 = arg0;
deferred0_1 = arg1;
console.error(getStringFromWasm0(arg0, arg1));
} finally {
wasm.__wbindgen_free(arg0, arg1);
wasm.__wbindgen_free(deferred0_0, deferred0_1);
}
};
imports.wbg.__wbindgen_throw = function(arg0, arg1) {
@@ -386,57 +395,60 @@ function getImports() {
return imports;
}
function initMemory(imports, maybe_memory) {
imports.wbg.memory = maybe_memory || new WebAssembly.Memory({initial:18,maximum:65536,shared:true});
function __wbg_init_memory(imports, maybe_memory) {
}
function finalizeInit(instance, module) {
function __wbg_finalize_init(instance, module) {
wasm = instance.exports;
init.__wbindgen_wasm_module = module;
cachedInt32Memory0 = new Int32Array();
cachedUint8Memory0 = new Uint8Array();
__wbg_init.__wbindgen_wasm_module = module;
cachedInt32Memory0 = null;
cachedUint8Memory0 = null;
wasm.__wbindgen_start();
return wasm;
}
async function initSync(module, maybe_memory) {
if (!wasm) {
const imports = getImports();
if (wasm !== undefined) return wasm;
initMemory(imports, maybe_memory);
/*
if (!(module instanceof WebAssembly.Module)) {
module = new WebAssembly.Module(module);
}
*/
const compiled = WebAssembly.compile(module);
const instance = await WebAssembly.instantiate(await compiled, imports);
return finalizeInit(instance, module);
const imports = __wbg_get_imports();
__wbg_init_memory(imports, maybe_memory);
/*
if (!(module instanceof WebAssembly.Module)) {
module = new WebAssembly.Module(module);
}
*/
const compiled = WebAssembly.compile(module);
const instance = await WebAssembly.instantiate(await compiled, imports);
return __wbg_finalize_init(instance, module);
}
async function init(input, maybe_memory) {
async function __wbg_init(input, maybe_memory) {
if (wasm !== undefined) return wasm;
/*
if (typeof input === 'undefined') {
input = new URL('spartan_wasm_bg.wasm', import.meta.url);
}
*/
const imports = getImports();
const imports = __wbg_get_imports();
if (typeof input === 'string' || (typeof Request === 'function' && input instanceof Request) || (typeof URL === 'function' && input instanceof URL)) {
input = fetch(input);
}
initMemory(imports, maybe_memory);
__wbg_init_memory(imports, maybe_memory);
const { instance, module } = await load(await input, imports);
const { instance, module } = await __wbg_load(await input, imports);
return finalizeInit(instance, module);
return __wbg_finalize_init(instance, module);
}
export { initSync }
export default init;
export default __wbg_init;

View File

@@ -1,9 +1,10 @@
import { hashPersonalMessage } from "@ethereumjs/util";
import {
CircuitPubInput,
PublicInput,
verifyEffEcdsaPubInput
} from "../src/helpers/public_input";
import { hashPersonalMessage } from "@ethereumjs/util";
} from "../src/helpers/publicInputs";
describe("public_input", () => {
/**

View File

@@ -1,19 +1,20 @@
import {
MembershipProver,
MembershipVerifier,
Tree,
Poseidon,
NIZK
} from "../src/lib";
import {
hashPersonalMessage,
ecsign,
privateToAddress,
privateToPublic
} from "@ethereumjs/util";
var EC = require("elliptic").ec;
import * as path from "path";
import {
MembershipProver,
MembershipVerifier,
Tree,
Poseidon,
NIZK
} from "../src";
describe("membership prove and verify", () => {
// Init prover
const treeDepth = 20;
@@ -25,7 +26,6 @@ describe("membership prove and verify", () => {
// Sign (Use privKeys[0] for proving)
const proverIndex = 0;
const proverPrivKey = privKeys[proverIndex];
let proverAddress: bigint;
let msg = Buffer.from("harry potter");
const msgHash = hashPersonalMessage(msg);
@@ -84,11 +84,14 @@ describe("membership prove and verify", () => {
const index = pubKeyTree.indexOf(proverPubKeyHash as bigint);
const merkleProof = pubKeyTree.createProof(index);
nizk = await pubKeyMembershipProver.prove(sig, msgHash, merkleProof);
nizk = await pubKeyMembershipProver.prove({ sig, msgHash, merkleProof });
const { proof, publicInput } = nizk;
expect(
await pubKeyMembershipVerifier.verify(proof, publicInput.serialize())
await pubKeyMembershipVerifier.verify({
proof,
publicInputSer: publicInput.serialize()
})
).toBe(true);
});
@@ -97,17 +100,23 @@ describe("membership prove and verify", () => {
let proof = nizk.proof;
proof[0] = proof[0] += 1;
expect(
await pubKeyMembershipVerifier.verify(proof, publicInput.serialize())
await pubKeyMembershipVerifier.verify({
proof,
publicInputSer: publicInput.serialize()
})
).toBe(false);
});
it("should assert invalid public input", async () => {
const { proof } = nizk;
let publicInput = nizk.publicInput.serialize();
publicInput[0] = publicInput[0] += 1;
expect(await pubKeyMembershipVerifier.verify(proof, publicInput)).toBe(
false
);
let publicInputSer = nizk.publicInput.serialize();
publicInputSer[0] = publicInputSer[0] += 1;
expect(
await pubKeyMembershipVerifier.verify({
proof,
publicInputSer
})
).toBe(false);
});
});
@@ -154,14 +163,14 @@ describe("membership prove and verify", () => {
await addressMembershipProver.initWasm();
nizk = await addressMembershipProver.prove(sig, msgHash, merkleProof);
nizk = await addressMembershipProver.prove({ sig, msgHash, merkleProof });
await addressMembershipVerifier.initWasm();
expect(
await addressMembershipVerifier.verify(
nizk.proof,
nizk.publicInput.serialize()
)
await addressMembershipVerifier.verify({
proof: nizk.proof,
publicInputSer: nizk.publicInput.serialize()
})
).toBe(true);
});
@@ -170,17 +179,23 @@ describe("membership prove and verify", () => {
let proof = nizk.proof;
proof[0] = proof[0] += 1;
expect(
await addressMembershipVerifier.verify(proof, publicInput.serialize())
await addressMembershipVerifier.verify({
proof,
publicInputSer: publicInput.serialize()
})
).toBe(false);
});
it("should assert invalid public input", async () => {
const { proof } = nizk;
let publicInput = nizk.publicInput.serialize();
publicInput[0] = publicInput[0] += 1;
expect(await addressMembershipVerifier.verify(proof, publicInput)).toBe(
false
);
let publicInputSer = nizk.publicInput.serialize();
publicInputSer[0] = publicInputSer[0] += 1;
expect(
await addressMembershipVerifier.verify({
proof,
publicInputSer
})
).toBe(false);
});
});
});

View File

@@ -0,0 +1,31 @@
import { Tree, Poseidon } from "../src";
describe("Merkle tree prove and verify", () => {
let poseidon: Poseidon;
let tree: Tree;
const members = new Array(10).fill(0).map((_, i) => BigInt(i));
beforeAll(async () => {
// Init Poseidon
poseidon = new Poseidon();
await poseidon.initWasm();
const treeDepth = 20;
tree = new Tree(treeDepth, poseidon);
for (const member of members) {
tree.insert(member);
}
});
it("should prove and verify a valid Merkle proof", async () => {
const proof = tree.createProof(0);
expect(tree.verifyProof(proof, members[0])).toBe(true);
});
it("should assert an invalid Merkle proof", async () => {
const proof = tree.createProof(0);
proof.siblings[0][0] = proof.siblings[0][0] += BigInt(1);
expect(tree.verifyProof(proof, members[0])).toBe(false);
proof.siblings[0][0] = proof.siblings[0][0] -= BigInt(1);
});
});

View File

@@ -0,0 +1,6 @@
{
"extends": "./tsconfig.json",
"exclude": [
"./tests/**/*"
],
}

View File

@@ -1,25 +1,31 @@
{
"compilerOptions": {
"baseUrl": ".",
"rootDir": ".",
"outDir": "./dist",
"declaration": true,
"target": "ES6",
"module": "CommonJS",
"moduleResolution": "node",
"allowJs": true,
"esModuleInterop": true,
"forceConsistentCasingInFileNames": true,
"strict": true,
"skipLibCheck": true,
"paths": {
"@src/*": [
"src/*"
]
},
},
"include": [
"./src/**/*",
"./src/**/*.wasm",
"./tests/**/*"
],
"exclude": [
"./jest.config.js",
"./node_modules",
"./tests",
"./build"
"./dist"
],
"compilerOptions": {
"declaration": true,
"target": "ES6",
"module": "CommonJS",
"rootDir": "./src",
"moduleResolution": "node",
"allowJs": true,
"outDir": "./build",
"esModuleInterop": true,
"forceConsistentCasingInFileNames": true,
"strict": true,
"skipLibCheck": true
}
}

View File

@@ -10,6 +10,7 @@ hex = "0.4.3"
hex-literal = "0.3.4"
secq256k1 = { path = "../secq256k1" }
getrandom = { version = "0.2.8", features = ["js"] }
lazy_static = "1.4.0"
#typenum = { version = "1.16.0", optional = true }
#neptune = { version = "8.1.0", optional = true }
#blstrs = { version = "0.6.0", optional = true }

View File

@@ -1,215 +1,224 @@
pub const NUM_FULL_ROUNDS: usize = 8;
pub const NUM_PARTIAL_ROUNDS: usize = 56;
use ff::PrimeField;
use lazy_static::lazy_static;
pub use secq256k1::field::field_secp::FieldElement;
pub static MDS_MATRIX: &'static [[&str; 3]; 3] = &[
[
"92469348809186613947252340883344274339611751744959319352506666082431267346705",
"100938028378191533449096235266991198229563815869344032449592738345766724371160",
"77486311749148948616988559783475694076613010381924638436641318334458515006661",
],
[
"110352262556914082363749654180080464794716701228558638957603951672835474954408",
"27607004873684391669404739690441550149894883072418944161048725383958774443141",
"29671705769502357195586268679831947082918094959101307962374709600277676341325",
],
[
"77762103796341032609398578911486222569419103128091016773380377798879650228751",
"1753012011204964731088925227042671869111026487299375073665493007998674391999",
"70274477372358662369456035572054501601454406272695978931839980644925236550307",
],
];
pub(crate) const NUM_FULL_ROUNDS: usize = 8;
pub(crate) const NUM_PARTIAL_ROUNDS: usize = 56;
pub static ROUND_CONSTANTS: &'static [&str; 192] = &[
"15180568604901803243989155929934437997245952775071395385994322939386074967328",
"98155933184944822056372510812105826951789406432246960633912199752807271851218",
"32585497418154084368870158853355239726261349829448673320273043226636389078017",
"66713968576806622579829258440960693099797917756640662361943757758980796487698",
"61296025743283504825054745787375839406507895949474930140819919915792438454216",
"64548089412749542282115556935384382035671782881737715696939837764375912217104",
"108421562972909537718478936575770973463273651828765393113349044862621092658552",
"93957623861448681916560847065407918286434708744548934125771289238599801659600",
"31886767595881910145119755249133120645312710313371225820300496900248094187131",
"36511615103248888903406040506250394762206798360602726106046630438239169384653",
"21193239787133737740669439860809806837993750509086389566475677877580362491125",
"15159189447883181997488877417695825734356570617827322308691834229181804753656",
"19272373877630561389686073945290625876718814210798194797601715657476609730306",
"23132197996397121955527964729507651432518694856862854469217474256539272053037",
"9869753235007825662020275771343858285582964429845049469800863115040150206544",
"36536341316285671890133896506951910369952562161551585116256678375995315827743",
"62582239167707347777855528698896708360409296899261565735324151945083720570858",
"96597358901965097853721114962031771931271685249979807653919643952343419105640",
"99475971754252188104003224702005940217163363685728394033034788135108600073953",
"52080483875928847502018688921126796935417602445765802481027972679966274137987",
"101922748752417217354391348649359865075718358385248454632698502400961567227929",
"26980595292132221181330746499613907829041623688147011560382352796984836870749",
"7059991836806083192408106370472821784612460308866802565871813230060135266390",
"19329812920723038526370491239817117039289784665617181727933894076969997926129",
"65570620823578601926240439251563587376966657231502120214692324496443514623818",
"58403733332589349613112270854204921427257113546270812628317365115158685715742",
"45021021211732634759643776743541935700591354899980928498981462362035961745443",
"313468157086800401026946312285365733155132234906935411743639256319782592571",
"101316949793045093761117346380310841944294663456931203380573537653884068660109",
"23683935571424619534194393788101669168630123784066421490798386323411538828592",
"45470730427236677197026094498490008082250264942279323465121581539984407294442",
"48141067373531800337373447278127981363951468257064369512416205750641258258193",
"42554919225040466028330117313396362347164995917041931400909482795914116747618",
"11551941832988244108260444347046942236051939264069344013774353630451796870907",
"60185799182545404739011626517355854847787627814101363386450657535504094743765",
"81823160578900678880708744457872721685515019032370491632046212317701226128393",
"7165646831054215773988859638722974820791178194871546344315162343128362695647",
"75289707601640398424243937567716657896680380639974371761136292031415717685949",
"7150842764562742184396161198129263121409208675362553300851082062734889620953",
"24380904705269761063866540342138412601132455197711667167747524315310027386226",
"9728986075621437350131504894128984146939551938810073671231633620616345344412",
"10579382052089733216628873394134968879891026686695240299956972154694558493896",
"8171994519466002143995890536756742287314780571933910736618431096190430536601",
"30420144259409274775063072923609924427757612539094840146996944760708902708570",
"63962155989812703023698320394024694856871261481871757094333286947755599007133",
"25280070391177856032024336895094721131222985610587247589336316615596140400436",
"15305872319988027006162258914083163651002306183917888172691618513722838997098",
"51545603291342006705870081001071419395633279951502747769141857387796043104608",
"91109680756552587805002537489407348773333405839144382221272597323798859182191",
"72175452855185658158184807496160149169667221240389196996344579971523681433202",
"30361989157454953234766224747536334157139256334148153290771332849307087761025",
"38169634499980959088614671703639492517637815232220682121652135514105493936992",
"49591153263237620796156788742811547511792615129981565620486914545749079774827",
"47403873018260745456113868791119169163627014766514972598212646481717066065016",
"93989849689047144228924801010853106857960399638657695410345207191739048300111",
"10590240512802509131776989274411792739339398409955259174829387591089799115255",
"29183703335869638067547208413224742887766212046438654772943025958628178245227",
"4131650227136944095885036960767735080970262672750406866066212532739784907379",
"43395510588213653537697670365796375057855260611965666448183946252832290017444",
"95246795133940226900907730059125298420936467652619708443128629427116119621152",
"6012209003558496814495903476753006089125143165365334812097313083703216071080",
"26183233284429251459198269925441295879550203824094631575778521083706115817955",
"26058994700533582730528567480051558438548299522338811756875396252016497202713",
"107240485663145290290374164860301805857261278222480421976433215167444496066511",
"84412820763898503096477800002865877536719992495674955119188074297975154406587",
"52386303852182662900790700046090769869460994629239741773176060026198900130384",
"95746062835936512160025091603469309809932540674474329021370075533568318932379",
"22711334660013961010382652754865456251782349529764119853461446587583972054666",
"16959835233095757670013367728627149851239789174357906293937455553277911805495",
"15116421110200928832147360650392633091242147433006813656250997138988179879750",
"107878787525302837370688492081178689950008165750500003692400517211520334656293",
"44210105558575948369921579518078229089923760124167628288943900602376706136436",
"90305995748749060889452130219544332384396626628663475498252761213618628372367",
"104941997925797907872686462815914481945432760720471803254797908465921520138024",
"100036855232527386145662094141100441220151775745916101660987264242446845728894",
"103285582836474146806606752170525767341430483568396209591447274936228630298052",
"82197692939371228160449741709034077803239992888716859217989995857278406253737",
"10040764964044995095453717286623030376397745892179877153575434454090155545240",
"27304226040425863042893623786832369758179176309230053449707879364285977952630",
"42627232144930751842910170221862679057276668485045156742021958050665662768084",
"76972394926916659428228833084621905890924612368412796262119501852346293848159",
"39796921406297542196667238133893946368231540421737718098283349901435707131075",
"14745047092916651495052563068083093689676472592445845983334785004125684263162",
"43421479365783318841667739359312715738029447177150400204380817518608837765863",
"107871536756946365977710326147511195471121248998432910212631960353348700694610",
"39505942243687894211614489736115535754716239859353578295470352855493707198619",
"59676442091621150164811367352362126934419932715789994860508056194143441226580",
"94470526851498636320865653968033227263836954414283116133326109455334870036212",
"15044796858044094866329855531761112645684343559112419720568996573556805975600",
"67157729293641241473980125231288476062565688273917759533572275886277269201651",
"72911083146182058225942884942982388217243826839805061121973109250798137784134",
"102973386186208530972563015865701244407271836208547629083437627219683649557477",
"57485522356347377122696081086816661784954498123948319434326439317393351620564",
"23112275556906805064863694321486306070917598599342299357379251070160695202292",
"107618884362423342584703700349292347754139538760798319916678240538294838342400",
"83961260400031958812820990908241261093246389047082613562825737834833753517337",
"42726953951733266282750892844947149703751388034177248277671157488506520215317",
"39379570934119946602507737250800178347029772561352879974941214627084076473292",
"72203650529122342092280763801468513707870760755235719535090090101623606334441",
"13389660788942842724553143053013919883368472759564135119390935439369513690496",
"101745263541280877725997503552978999350831489463993178838531539940805924817361",
"76849182334465191824607032600721023780793694103840553871800174717760598910761",
"53896256317996838683363773836826653859512780625932638736752563553878867538095",
"24688792501674999263943657175455335814404948006469220532686392550824320454904",
"69132683906595821927803530074656979217668636557563597358799899743174233903941",
"2861982085506615225917620192781928414994576134281371548401916333754363567986",
"37311353286221616083824584705974993449107063556724405440534160586561042968316",
"83718085796857523832195255218519255973031752296424117786202083986118546906913",
"103633177691684814414226251117070754499104739002759424774194851613917008856616",
"84968411062305024171594435878414659990735518025357685215223731503921265946461",
"41865099330909055069143724769818364262362915440371474104937435863183989905059",
"46156624920251322979270606388518884047396423747179340919303543598300663968593",
"64416327466854458915398302811825971539792429791049027619471115285308743811583",
"94942471312481523091911417289540395651121558150571128515230470225155209280585",
"109682618775735319282534546194470743032129102295907200313471041846112653687024",
"61531999191737540795124202104235799899980935519651613893518293245268304980543",
"17797352534596268622733030076742840951214734697361029060619245779495726996632",
"2323150752778983462106829021155031678603044899339819935981200101818542000989",
"16998018904363448507967526489917057882529252665835717172712095240271574074587",
"110634872413902251217040490777568744431854972018399530234679399294372694506842",
"31639545145649753705216327198217551838008233610574104460826956396569310697060",
"107845103764339268987018917144483935480716224058844669233389185480836000033760",
"46240297572174662698030819651333060930818959915797061274854448535534474175039",
"53065607123105696930220421963755520777674094852857308823370049733888025985616",
"16931881300947470270453776207625163368485560075525342751440832370220475352149",
"79254110800481916763656344422402393723573490114487681345184594841431920461089",
"42268569642639492314994307446626647824927989776691987788682655102426770655233",
"9749633319307409894058984489496091535125232227316143918000642155415596066903",
"57606597628648270579042266322415267200058617178318601782866227410456726724976",
"56082250485913115488341301630850455009935943641292622301678990296508134206571",
"17957245764842844288802777667800779232762688847417238921175068882796163705248",
"94356229516444419318132697346021621194464273500135725160277725602263001442644",
"52536631226748676066386651084538409050048707922045928887930261833545619358914",
"107794922118166328243581272159394479176678094739027519706768813902978100436849",
"92984368734102511759118281503078145182557799453616537383408606074187034371208",
"59652553897137603386525572460411404882917571255327541516871354737502335133690",
"49012645345644326995052653072578673750516379655033952006121214224119466671764",
"79025576845143484310735291619293962982804358365838961371044480386743856799994",
"5437377540613244374799729812489584777222423091155743557287567155811057717409",
"100687592213090267900708728796310211082532607828753010566886681655775031329660",
"99074462968857696481475128596339544396152341206708424767062829343406495063192",
"67476872698289965626550204192782761730653024363949045140720348870736942130242",
"103307125141718054130755829916960708430672826104789971350239945481960770107890",
"74087383014714668160537499936376991041273055222568604413015844459913259357334",
"40924049099780965904051946083599822761993164889139026432053420731164022206736",
"32594924940463736641240515015317856157169105212942308502676422036626316673214",
"98990663138035055774586216545398054668349058134877723031747421828753359974443",
"55821766022768786066770462759796825978667805772707620106340033118519147871694",
"4001942224536365489828915551180230767516454384395893814399938353050969198154",
"30136373426492646221252150708518703998248891683881870400906269276900707426865",
"34943205764464817266133164313915763122699935186597909347522822673832250079664",
"27737330737483170511275902246508559278973986181590368845166383812793468814968",
"96292398813565494438359802278723334615526914389306923046282571355958508916558",
"97147334956505986101750230325438660094766812949748276042292963837380833668274",
"24754519562402723848413674701792328284127274989440581643644298347747941238812",
"76111103490248669364580390783887028636436246028943665707064153006971943621186",
"33764090322658516047637223655525551979364055499647855895233821795694749902854",
"100536990630540359004783976190215234627391515555181073681294901127179838732969",
"55991997435987096996680289872758998763908676069536901375395297778729059185671",
"32860959903680178324832991459746631238726690317249285658471597044247794502256",
"70074816806976994707467706079200635184034023598764203123459335544110485476930",
"46213940675829172331116620705134022102338250410334045747023950259088879662946",
"77000624259024986585504351395777746568094934279771127334532438603183524642061",
"21719649576090832101273013788716623377603297433777804572370785470329817725170",
"29209622978540575483991966565508890231057362045066230397327380085945876837821",
"2445742484263083651472035320255578071935687960412507452207899496253120999364",
"86846812580007547526361109808384103509272544750564766849178767957571523649544",
"43025640639926253696325070988523609146060819319830735794100778654425057363895",
"108957662689228031021948854644435971168708642184764962508575441689859324862868",
"83891545396650121758556392255189778590486277180642660527000882403085396114823",
"42527013475786190604202451803064937203698027000671529418992521798122995373551",
"115180194520889678365425151865713593680657747284471744934804370945935167043862",
"28979598171177052880917135045920701144584888536299261666846302083645491369348",
"68351312608110279019109436395199010412431777911149851157132527077210966351650",
"61759623963943995967580147094342313397376358019837276043205235302342147116585",
"80714625408576660514217469096827255752431164791924432025682445176737446783085",
"33048555646676368266608424610100449208381357250300222636992099726804869416731",
"50682223610667325089810868083131721901859473966415125289975106060759036109476",
"4271213571706787092297985431667190050727614825584809797590204884727103716461",
"101314046722405990971733763321368296660561930294000591067108115987088407142646",
"55565500177602146197728150332647093173137211885612327122425918553270191254877",
"65556764608648687291293889343854786421750589271167654521933267288313526422497",
"66877533773422945979143954094644173219583178339199697252673545117318799706373",
"30511098623357801425494143655999121699575856091238269679669864984061501512835",
"95900192636363991637086954986559552472749485926252879461208179855482821976623",
"37879946127489462347049192209554168578320892231852882971030128420645686965013",
"80479504274334215471057938992198620419540634144266821121799003865782336406529",
"13326262422954139210095783388743602482455840337093117010479445267213907605425",
"16047106134611124637925332265703907202779549268127518502853950466090054176776",
"71499356105233640605079063493613576024353801558965221134519779175477723594865",
"28438981751956157476540225984733791304599172905715743025543841239013139121102",
"56066317647068426981453448715118237747130321302262827290362392918472904421147",
];
lazy_static! {
pub(crate) static ref MDS_MATRIX: [[FieldElement; 3]; 3] = [
[
"92469348809186613947252340883344274339611751744959319352506666082431267346705",
"100938028378191533449096235266991198229563815869344032449592738345766724371160",
"77486311749148948616988559783475694076613010381924638436641318334458515006661",
]
.map(|y| FieldElement::from_str_vartime(y).unwrap()),
[
"110352262556914082363749654180080464794716701228558638957603951672835474954408",
"27607004873684391669404739690441550149894883072418944161048725383958774443141",
"29671705769502357195586268679831947082918094959101307962374709600277676341325",
]
.map(|y| FieldElement::from_str_vartime(y).unwrap()),
[
"77762103796341032609398578911486222569419103128091016773380377798879650228751",
"1753012011204964731088925227042671869111026487299375073665493007998674391999",
"70274477372358662369456035572054501601454406272695978931839980644925236550307",
]
.map(|y| FieldElement::from_str_vartime(y).unwrap()),
];
pub(crate) static ref ROUND_CONSTANTS: [FieldElement; 192] = [
"15180568604901803243989155929934437997245952775071395385994322939386074967328",
"98155933184944822056372510812105826951789406432246960633912199752807271851218",
"32585497418154084368870158853355239726261349829448673320273043226636389078017",
"66713968576806622579829258440960693099797917756640662361943757758980796487698",
"61296025743283504825054745787375839406507895949474930140819919915792438454216",
"64548089412749542282115556935384382035671782881737715696939837764375912217104",
"108421562972909537718478936575770973463273651828765393113349044862621092658552",
"93957623861448681916560847065407918286434708744548934125771289238599801659600",
"31886767595881910145119755249133120645312710313371225820300496900248094187131",
"36511615103248888903406040506250394762206798360602726106046630438239169384653",
"21193239787133737740669439860809806837993750509086389566475677877580362491125",
"15159189447883181997488877417695825734356570617827322308691834229181804753656",
"19272373877630561389686073945290625876718814210798194797601715657476609730306",
"23132197996397121955527964729507651432518694856862854469217474256539272053037",
"9869753235007825662020275771343858285582964429845049469800863115040150206544",
"36536341316285671890133896506951910369952562161551585116256678375995315827743",
"62582239167707347777855528698896708360409296899261565735324151945083720570858",
"96597358901965097853721114962031771931271685249979807653919643952343419105640",
"99475971754252188104003224702005940217163363685728394033034788135108600073953",
"52080483875928847502018688921126796935417602445765802481027972679966274137987",
"101922748752417217354391348649359865075718358385248454632698502400961567227929",
"26980595292132221181330746499613907829041623688147011560382352796984836870749",
"7059991836806083192408106370472821784612460308866802565871813230060135266390",
"19329812920723038526370491239817117039289784665617181727933894076969997926129",
"65570620823578601926240439251563587376966657231502120214692324496443514623818",
"58403733332589349613112270854204921427257113546270812628317365115158685715742",
"45021021211732634759643776743541935700591354899980928498981462362035961745443",
"313468157086800401026946312285365733155132234906935411743639256319782592571",
"101316949793045093761117346380310841944294663456931203380573537653884068660109",
"23683935571424619534194393788101669168630123784066421490798386323411538828592",
"45470730427236677197026094498490008082250264942279323465121581539984407294442",
"48141067373531800337373447278127981363951468257064369512416205750641258258193",
"42554919225040466028330117313396362347164995917041931400909482795914116747618",
"11551941832988244108260444347046942236051939264069344013774353630451796870907",
"60185799182545404739011626517355854847787627814101363386450657535504094743765",
"81823160578900678880708744457872721685515019032370491632046212317701226128393",
"7165646831054215773988859638722974820791178194871546344315162343128362695647",
"75289707601640398424243937567716657896680380639974371761136292031415717685949",
"7150842764562742184396161198129263121409208675362553300851082062734889620953",
"24380904705269761063866540342138412601132455197711667167747524315310027386226",
"9728986075621437350131504894128984146939551938810073671231633620616345344412",
"10579382052089733216628873394134968879891026686695240299956972154694558493896",
"8171994519466002143995890536756742287314780571933910736618431096190430536601",
"30420144259409274775063072923609924427757612539094840146996944760708902708570",
"63962155989812703023698320394024694856871261481871757094333286947755599007133",
"25280070391177856032024336895094721131222985610587247589336316615596140400436",
"15305872319988027006162258914083163651002306183917888172691618513722838997098",
"51545603291342006705870081001071419395633279951502747769141857387796043104608",
"91109680756552587805002537489407348773333405839144382221272597323798859182191",
"72175452855185658158184807496160149169667221240389196996344579971523681433202",
"30361989157454953234766224747536334157139256334148153290771332849307087761025",
"38169634499980959088614671703639492517637815232220682121652135514105493936992",
"49591153263237620796156788742811547511792615129981565620486914545749079774827",
"47403873018260745456113868791119169163627014766514972598212646481717066065016",
"93989849689047144228924801010853106857960399638657695410345207191739048300111",
"10590240512802509131776989274411792739339398409955259174829387591089799115255",
"29183703335869638067547208413224742887766212046438654772943025958628178245227",
"4131650227136944095885036960767735080970262672750406866066212532739784907379",
"43395510588213653537697670365796375057855260611965666448183946252832290017444",
"95246795133940226900907730059125298420936467652619708443128629427116119621152",
"6012209003558496814495903476753006089125143165365334812097313083703216071080",
"26183233284429251459198269925441295879550203824094631575778521083706115817955",
"26058994700533582730528567480051558438548299522338811756875396252016497202713",
"107240485663145290290374164860301805857261278222480421976433215167444496066511",
"84412820763898503096477800002865877536719992495674955119188074297975154406587",
"52386303852182662900790700046090769869460994629239741773176060026198900130384",
"95746062835936512160025091603469309809932540674474329021370075533568318932379",
"22711334660013961010382652754865456251782349529764119853461446587583972054666",
"16959835233095757670013367728627149851239789174357906293937455553277911805495",
"15116421110200928832147360650392633091242147433006813656250997138988179879750",
"107878787525302837370688492081178689950008165750500003692400517211520334656293",
"44210105558575948369921579518078229089923760124167628288943900602376706136436",
"90305995748749060889452130219544332384396626628663475498252761213618628372367",
"104941997925797907872686462815914481945432760720471803254797908465921520138024",
"100036855232527386145662094141100441220151775745916101660987264242446845728894",
"103285582836474146806606752170525767341430483568396209591447274936228630298052",
"82197692939371228160449741709034077803239992888716859217989995857278406253737",
"10040764964044995095453717286623030376397745892179877153575434454090155545240",
"27304226040425863042893623786832369758179176309230053449707879364285977952630",
"42627232144930751842910170221862679057276668485045156742021958050665662768084",
"76972394926916659428228833084621905890924612368412796262119501852346293848159",
"39796921406297542196667238133893946368231540421737718098283349901435707131075",
"14745047092916651495052563068083093689676472592445845983334785004125684263162",
"43421479365783318841667739359312715738029447177150400204380817518608837765863",
"107871536756946365977710326147511195471121248998432910212631960353348700694610",
"39505942243687894211614489736115535754716239859353578295470352855493707198619",
"59676442091621150164811367352362126934419932715789994860508056194143441226580",
"94470526851498636320865653968033227263836954414283116133326109455334870036212",
"15044796858044094866329855531761112645684343559112419720568996573556805975600",
"67157729293641241473980125231288476062565688273917759533572275886277269201651",
"72911083146182058225942884942982388217243826839805061121973109250798137784134",
"102973386186208530972563015865701244407271836208547629083437627219683649557477",
"57485522356347377122696081086816661784954498123948319434326439317393351620564",
"23112275556906805064863694321486306070917598599342299357379251070160695202292",
"107618884362423342584703700349292347754139538760798319916678240538294838342400",
"83961260400031958812820990908241261093246389047082613562825737834833753517337",
"42726953951733266282750892844947149703751388034177248277671157488506520215317",
"39379570934119946602507737250800178347029772561352879974941214627084076473292",
"72203650529122342092280763801468513707870760755235719535090090101623606334441",
"13389660788942842724553143053013919883368472759564135119390935439369513690496",
"101745263541280877725997503552978999350831489463993178838531539940805924817361",
"76849182334465191824607032600721023780793694103840553871800174717760598910761",
"53896256317996838683363773836826653859512780625932638736752563553878867538095",
"24688792501674999263943657175455335814404948006469220532686392550824320454904",
"69132683906595821927803530074656979217668636557563597358799899743174233903941",
"2861982085506615225917620192781928414994576134281371548401916333754363567986",
"37311353286221616083824584705974993449107063556724405440534160586561042968316",
"83718085796857523832195255218519255973031752296424117786202083986118546906913",
"103633177691684814414226251117070754499104739002759424774194851613917008856616",
"84968411062305024171594435878414659990735518025357685215223731503921265946461",
"41865099330909055069143724769818364262362915440371474104937435863183989905059",
"46156624920251322979270606388518884047396423747179340919303543598300663968593",
"64416327466854458915398302811825971539792429791049027619471115285308743811583",
"94942471312481523091911417289540395651121558150571128515230470225155209280585",
"109682618775735319282534546194470743032129102295907200313471041846112653687024",
"61531999191737540795124202104235799899980935519651613893518293245268304980543",
"17797352534596268622733030076742840951214734697361029060619245779495726996632",
"2323150752778983462106829021155031678603044899339819935981200101818542000989",
"16998018904363448507967526489917057882529252665835717172712095240271574074587",
"110634872413902251217040490777568744431854972018399530234679399294372694506842",
"31639545145649753705216327198217551838008233610574104460826956396569310697060",
"107845103764339268987018917144483935480716224058844669233389185480836000033760",
"46240297572174662698030819651333060930818959915797061274854448535534474175039",
"53065607123105696930220421963755520777674094852857308823370049733888025985616",
"16931881300947470270453776207625163368485560075525342751440832370220475352149",
"79254110800481916763656344422402393723573490114487681345184594841431920461089",
"42268569642639492314994307446626647824927989776691987788682655102426770655233",
"9749633319307409894058984489496091535125232227316143918000642155415596066903",
"57606597628648270579042266322415267200058617178318601782866227410456726724976",
"56082250485913115488341301630850455009935943641292622301678990296508134206571",
"17957245764842844288802777667800779232762688847417238921175068882796163705248",
"94356229516444419318132697346021621194464273500135725160277725602263001442644",
"52536631226748676066386651084538409050048707922045928887930261833545619358914",
"107794922118166328243581272159394479176678094739027519706768813902978100436849",
"92984368734102511759118281503078145182557799453616537383408606074187034371208",
"59652553897137603386525572460411404882917571255327541516871354737502335133690",
"49012645345644326995052653072578673750516379655033952006121214224119466671764",
"79025576845143484310735291619293962982804358365838961371044480386743856799994",
"5437377540613244374799729812489584777222423091155743557287567155811057717409",
"100687592213090267900708728796310211082532607828753010566886681655775031329660",
"99074462968857696481475128596339544396152341206708424767062829343406495063192",
"67476872698289965626550204192782761730653024363949045140720348870736942130242",
"103307125141718054130755829916960708430672826104789971350239945481960770107890",
"74087383014714668160537499936376991041273055222568604413015844459913259357334",
"40924049099780965904051946083599822761993164889139026432053420731164022206736",
"32594924940463736641240515015317856157169105212942308502676422036626316673214",
"98990663138035055774586216545398054668349058134877723031747421828753359974443",
"55821766022768786066770462759796825978667805772707620106340033118519147871694",
"4001942224536365489828915551180230767516454384395893814399938353050969198154",
"30136373426492646221252150708518703998248891683881870400906269276900707426865",
"34943205764464817266133164313915763122699935186597909347522822673832250079664",
"27737330737483170511275902246508559278973986181590368845166383812793468814968",
"96292398813565494438359802278723334615526914389306923046282571355958508916558",
"97147334956505986101750230325438660094766812949748276042292963837380833668274",
"24754519562402723848413674701792328284127274989440581643644298347747941238812",
"76111103490248669364580390783887028636436246028943665707064153006971943621186",
"33764090322658516047637223655525551979364055499647855895233821795694749902854",
"100536990630540359004783976190215234627391515555181073681294901127179838732969",
"55991997435987096996680289872758998763908676069536901375395297778729059185671",
"32860959903680178324832991459746631238726690317249285658471597044247794502256",
"70074816806976994707467706079200635184034023598764203123459335544110485476930",
"46213940675829172331116620705134022102338250410334045747023950259088879662946",
"77000624259024986585504351395777746568094934279771127334532438603183524642061",
"21719649576090832101273013788716623377603297433777804572370785470329817725170",
"29209622978540575483991966565508890231057362045066230397327380085945876837821",
"2445742484263083651472035320255578071935687960412507452207899496253120999364",
"86846812580007547526361109808384103509272544750564766849178767957571523649544",
"43025640639926253696325070988523609146060819319830735794100778654425057363895",
"108957662689228031021948854644435971168708642184764962508575441689859324862868",
"83891545396650121758556392255189778590486277180642660527000882403085396114823",
"42527013475786190604202451803064937203698027000671529418992521798122995373551",
"115180194520889678365425151865713593680657747284471744934804370945935167043862",
"28979598171177052880917135045920701144584888536299261666846302083645491369348",
"68351312608110279019109436395199010412431777911149851157132527077210966351650",
"61759623963943995967580147094342313397376358019837276043205235302342147116585",
"80714625408576660514217469096827255752431164791924432025682445176737446783085",
"33048555646676368266608424610100449208381357250300222636992099726804869416731",
"50682223610667325089810868083131721901859473966415125289975106060759036109476",
"4271213571706787092297985431667190050727614825584809797590204884727103716461",
"101314046722405990971733763321368296660561930294000591067108115987088407142646",
"55565500177602146197728150332647093173137211885612327122425918553270191254877",
"65556764608648687291293889343854786421750589271167654521933267288313526422497",
"66877533773422945979143954094644173219583178339199697252673545117318799706373",
"30511098623357801425494143655999121699575856091238269679669864984061501512835",
"95900192636363991637086954986559552472749485926252879461208179855482821976623",
"37879946127489462347049192209554168578320892231852882971030128420645686965013",
"80479504274334215471057938992198620419540634144266821121799003865782336406529",
"13326262422954139210095783388743602482455840337093117010479445267213907605425",
"16047106134611124637925332265703907202779549268127518502853950466090054176776",
"71499356105233640605079063493613576024353801558965221134519779175477723594865",
"28438981751956157476540225984733791304599172905715743025543841239013139121102",
"56066317647068426981453448715118237747130321302262827290362392918472904421147",
]
.map(|y| FieldElement::from_str_vartime(y).unwrap());
}

View File

@@ -27,14 +27,14 @@ impl<F: PrimeField> PoseidonConstants<F> {
}
pub struct Poseidon<F: PrimeField> {
pub state: Vec<F>,
pub state: [F; 3],
pub constants: PoseidonConstants<F>,
pub pos: usize,
}
impl<F: PrimeField> Poseidon<F> {
pub fn new(constants: PoseidonConstants<F>) -> Self {
let state = vec![F::zero(); 3];
let state = [F::zero(); 3];
Self {
state,
constants,
@@ -42,12 +42,10 @@ impl<F: PrimeField> Poseidon<F> {
}
}
pub fn hash(&mut self, input: Vec<F>) -> F {
// add padding
let mut input = input.clone();
let domain_tag = 3; // 2^arity - 1
input.insert(0, F::from(domain_tag));
pub fn hash(&mut self, input: &[F; 2]) -> F {
// add the domain tag
let domain_tag = F::from(3); // 2^arity - 1
let input = [domain_tag, input[0], input[1]];
self.state = input;
@@ -80,14 +78,14 @@ impl<F: PrimeField> Poseidon<F> {
// MDS matrix multiplication
fn matrix_mul(&mut self) {
let mut result = Vec::new();
let mut result = [F::zero(); 3];
for val in self.constants.mds_matrix.iter() {
for (i, val) in self.constants.mds_matrix.iter().enumerate() {
let mut tmp = F::zero();
for (j, element) in self.state.iter().enumerate() {
tmp += val[j] * element
}
result.push(tmp)
result[i] = tmp;
}
self.state = result;
@@ -124,40 +122,30 @@ impl<F: PrimeField> Poseidon<F> {
#[cfg(test)]
mod tests {
use super::*;
use k256_consts::*;
use secq256k1::field::{field_secp, BaseField};
#[test]
fn test_k256() {
type Scalar = field_secp::FieldElement;
let input = vec![
let input = [
Scalar::from_str_vartime("1234567").unwrap(),
Scalar::from_str_vartime("109987").unwrap(),
];
let round_constants: Vec<Scalar> = k256_consts::ROUND_CONSTANTS
.iter()
.map(|x| Scalar::from_str_vartime(x).unwrap())
.collect();
let mds_matrix: Vec<Vec<Scalar>> = k256_consts::MDS_MATRIX
.iter()
.map(|x| {
x.iter()
.map(|y| Scalar::from_str_vartime(y).unwrap())
.collect::<Vec<Scalar>>()
})
.collect();
let constants = PoseidonConstants::<Scalar>::new(
round_constants,
mds_matrix,
k256_consts::NUM_FULL_ROUNDS,
k256_consts::NUM_PARTIAL_ROUNDS,
let constants = PoseidonConstants::<FieldElement>::new(
ROUND_CONSTANTS.to_vec(),
vec![
MDS_MATRIX[0].to_vec(),
MDS_MATRIX[1].to_vec(),
MDS_MATRIX[2].to_vec(),
],
NUM_FULL_ROUNDS,
NUM_PARTIAL_ROUNDS,
);
let mut poseidon = Poseidon::new(constants);
let digest = poseidon.hash(input);
let digest = poseidon.hash(&input);
assert_eq!(
digest,

View File

@@ -1,28 +1,18 @@
use crate::{k256_consts, Poseidon, PoseidonConstants};
use ff::PrimeField;
use crate::k256_consts::*;
use crate::{Poseidon, PoseidonConstants};
pub use secq256k1::field::field_secp::FieldElement;
#[allow(dead_code)]
pub fn hash(input: Vec<FieldElement>) -> FieldElement {
let round_constants: Vec<FieldElement> = k256_consts::ROUND_CONSTANTS
.iter()
.map(|x| FieldElement::from_str_vartime(x).unwrap())
.collect();
let mds_matrix: Vec<Vec<FieldElement>> = k256_consts::MDS_MATRIX
.iter()
.map(|x| {
x.iter()
.map(|y| FieldElement::from_str_vartime(y).unwrap())
.collect::<Vec<FieldElement>>()
})
.collect();
pub fn hash(input: &[FieldElement; 2]) -> FieldElement {
let constants = PoseidonConstants::<FieldElement>::new(
round_constants,
mds_matrix,
k256_consts::NUM_FULL_ROUNDS,
k256_consts::NUM_PARTIAL_ROUNDS,
ROUND_CONSTANTS.to_vec(),
vec![
MDS_MATRIX[0].to_vec(),
MDS_MATRIX[1].to_vec(),
MDS_MATRIX[2].to_vec(),
],
NUM_FULL_ROUNDS,
NUM_PARTIAL_ROUNDS,
);
let mut poseidon = Poseidon::new(constants);

View File

@@ -11,7 +11,7 @@ crate-type = ["cdylib", "rlib"]
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
spartan = { git = "https://github.com/DanTehrani/Spartan-secq.git", branch="master" }
spartan = { path = "../Spartan-secq" }
wasm-bindgen = { version = "0.2.81", features = ["serde-serialize"]}
console_error_panic_hook = "0.1.7"
merlin = "3.0.0"
@@ -32,14 +32,3 @@ poseidon = { path = "../poseidon" }
itertools = "0.9.0"
group = "0.12.0"
# Do not compile these dependencies when targeting wasm
#[target.'cfg(not(target_family = "wasm"))'.dependencies]
#nova-scotia = { git = "https://github.com/DanTehrani/Nova-Scotia.git" }
#nova-snark = "0.9.0"
#ff = "0.12.1"
#ark-std = { version = "0.3.0", features = ["print-trace"] }
[[bin]]
name = "gen_spartan_inst"
path = "src/bin/gen_spartan_inst.rs"

View File

@@ -1,4 +1 @@
pub mod wasm;
#[cfg(not(target_family = "wasm"))]
pub mod circom_reader;

View File

@@ -84,14 +84,14 @@ pub fn verify(circuit: &[u8], proof: &[u8], public_input: &[u8]) -> Result<bool,
#[wasm_bindgen]
pub fn poseidon(input_bytes: &[u8]) -> Result<Vec<u8>, JsValue> {
let mut input = Vec::new();
for i in 0..(input_bytes.len() / 32) {
let f: [u8; 32] = input_bytes[(i * 32)..(i + 1) * 32].try_into().unwrap();
let val = FieldElement::from_bytes(&f).unwrap();
input.push(FieldElement::from(val));
}
assert_eq!(input_bytes.len(), 64);
let result = hash(input);
let input = [
FieldElement::from_bytes(&input_bytes[0..32].try_into().unwrap()).unwrap(),
FieldElement::from_bytes(&input_bytes[32..64].try_into().unwrap()).unwrap(),
];
let result = hash(&input);
Ok(result.to_bytes().to_vec())
}

2
scripts/test.sh Normal file
View File

@@ -0,0 +1,2 @@
cargo test --release &&
yarn lerna run test

View File

@@ -2057,6 +2057,14 @@
node-addon-api "^3.2.1"
node-gyp-build "^4.3.0"
"@personaelabs/spartan-ecdsa@file:./packages/lib":
version "2.3.0"
dependencies:
"@ethereumjs/util" "^8.0.3"
"@zk-kit/incremental-merkle-tree" "^1.0.0"
elliptic "^6.5.4"
snarkjs "^0.7.1"
"@phenomnomnominal/tsquery@4.1.1":
version "4.1.1"
resolved "https://registry.npmjs.org/@phenomnomnominal/tsquery/-/tsquery-4.1.1.tgz"
@@ -3136,6 +3144,13 @@ circom_runtime@0.1.21:
dependencies:
ffjavascript "0.2.56"
circom_runtime@0.1.24:
version "0.1.24"
resolved "https://registry.yarnpkg.com/circom_runtime/-/circom_runtime-0.1.24.tgz#60ca8a31c3675802fbab5a0bcdeb02556e510733"
integrity sha512-H7/7I2J/cBmRnZm9docOCGhfxzS61BEm4TMCWcrZGsWNBQhePNfQq88Oj2XpUfzmBTCd8pRvRb3Mvazt3TMrJw==
dependencies:
ffjavascript "0.2.60"
circom_tester@^0.0.19:
version "0.0.19"
resolved "https://registry.npmjs.org/circom_tester/-/circom_tester-0.0.19.tgz"
@@ -4300,6 +4315,15 @@ ffjavascript@0.2.56:
wasmcurves "0.2.0"
web-worker "^1.2.0"
ffjavascript@0.2.60:
version "0.2.60"
resolved "https://registry.yarnpkg.com/ffjavascript/-/ffjavascript-0.2.60.tgz#4d8ae613d6bf4e98b3cc29ba10c626f5853854cf"
integrity sha512-T/9bnEL5xAZRDbQoEMf+pM9nrhK+C3JyZNmqiWub26EQorW7Jt+jR54gpqDhceA4Nj0YctPQwYnl8xa52/A26A==
dependencies:
wasmbuilder "0.0.16"
wasmcurves "0.2.2"
web-worker "^1.2.0"
ffjavascript@^0.2.45, ffjavascript@^0.2.48, ffjavascript@^0.2.56, ffjavascript@^0.2.57:
version "0.2.57"
resolved "https://registry.npmjs.org/ffjavascript/-/ffjavascript-0.2.57.tgz"
@@ -7070,6 +7094,16 @@ r1csfile@0.0.41, r1csfile@^0.0.41:
fastfile "0.0.20"
ffjavascript "0.2.56"
r1csfile@0.0.47:
version "0.0.47"
resolved "https://registry.yarnpkg.com/r1csfile/-/r1csfile-0.0.47.tgz#ed95a0dc8e910e9c070253906f7a31bd8c5333c8"
integrity sha512-oI4mAwuh1WwuFg95eJDNDDL8hCaZkwnPuNZrQdLBWvDoRU7EG+L/MOHL7SwPW2Y+ZuYcTLpj3rBkgllBQZN/JA==
dependencies:
"@iden3/bigarray" "0.0.2"
"@iden3/binfileutils" "0.0.11"
fastfile "0.0.20"
ffjavascript "0.2.60"
react-dom@18.2.0:
version "18.2.0"
resolved "https://registry.npmjs.org/react-dom/-/react-dom-18.2.0.tgz"
@@ -7446,7 +7480,7 @@ smart-buffer@^4.2.0:
resolved "https://registry.npmjs.org/smart-buffer/-/smart-buffer-4.2.0.tgz"
integrity sha512-94hK0Hh8rPqQl2xXc3HsaBoOXKV20MToPkcXvwbISWLEs+64sBq5kFgn2kJDHb1Pry9yrP0dxrCI9RRci7RXKg==
snarkjs@0.5.0, snarkjs@^0.5.0:
snarkjs@0.5.0:
version "0.5.0"
resolved "https://registry.npmjs.org/snarkjs/-/snarkjs-0.5.0.tgz"
integrity sha512-KWz8mZ2Y+6wvn6GGkQo6/ZlKwETdAGohd40Lzpwp5TUZCn6N6O4Az1SuX1rw/qREGL6Im+ycb19suCFE8/xaKA==
@@ -7462,6 +7496,22 @@ snarkjs@0.5.0, snarkjs@^0.5.0:
logplease "^1.2.15"
r1csfile "0.0.41"
snarkjs@^0.7.1:
version "0.7.1"
resolved "https://registry.yarnpkg.com/snarkjs/-/snarkjs-0.7.1.tgz#c96ecaf4db8c2eb44d60b17ee02f37ed39c821bb"
integrity sha512-Qs1oxssa135WZkzfARgEp5SuKHKvKNtcspeJbE5je6MurUpBylD1rzcAzQSTGWA/EH/BV/TmUyTaTD64xScvbA==
dependencies:
"@iden3/binfileutils" "0.0.11"
bfj "^7.0.2"
blake2b-wasm "^2.4.0"
circom_runtime "0.1.24"
ejs "^3.1.6"
fastfile "0.0.20"
ffjavascript "0.2.60"
js-sha3 "^0.8.0"
logplease "^1.2.15"
r1csfile "0.0.47"
socks-proxy-agent@^7.0.0:
version "7.0.0"
resolved "https://registry.npmjs.org/socks-proxy-agent/-/socks-proxy-agent-7.0.0.tgz"
@@ -8133,6 +8183,13 @@ wasmcurves@0.2.0:
dependencies:
wasmbuilder "0.0.16"
wasmcurves@0.2.2:
version "0.2.2"
resolved "https://registry.yarnpkg.com/wasmcurves/-/wasmcurves-0.2.2.tgz#ca444f6a6f6e2a5cbe6629d98ff478a62b4ccb2b"
integrity sha512-JRY908NkmKjFl4ytnTu5ED6AwPD+8VJ9oc94kdq7h5bIwbj0L4TDJ69mG+2aLs2SoCmGfqIesMWTEJjtYsoQXQ==
dependencies:
wasmbuilder "0.0.16"
wcwidth@^1.0.0, wcwidth@^1.0.1:
version "1.0.1"
resolved "https://registry.npmjs.org/wcwidth/-/wcwidth-1.0.1.tgz"