mirror of
https://github.com/zama-ai/tfhe-rs.git
synced 2026-01-07 22:04:10 -05:00
feat(gpu): aes 128
This commit is contained in:
committed by
enzodimaria
parent
0604d237eb
commit
f0f3dd76eb
@@ -84,6 +84,7 @@ fn main() {
|
||||
"cuda/include/ciphertext.h",
|
||||
"cuda/include/integer/compression/compression.h",
|
||||
"cuda/include/integer/integer.h",
|
||||
"cuda/include/aes/aes.h",
|
||||
"cuda/include/zk/zk.h",
|
||||
"cuda/include/keyswitch/keyswitch.h",
|
||||
"cuda/include/keyswitch/ks_enums.h",
|
||||
|
||||
44
backends/tfhe-cuda-backend/cuda/include/aes/aes.h
Normal file
44
backends/tfhe-cuda-backend/cuda/include/aes/aes.h
Normal file
@@ -0,0 +1,44 @@
|
||||
#ifndef AES_H
|
||||
#define AES_H
|
||||
#include "../integer/integer.h"
|
||||
|
||||
extern "C" {
|
||||
uint64_t scratch_cuda_integer_aes_encrypt_64(
|
||||
CudaStreamsFFI streams, int8_t **mem_ptr, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t lwe_dimension, uint32_t ks_level,
|
||||
uint32_t ks_base_log, uint32_t pbs_level, uint32_t pbs_base_log,
|
||||
uint32_t grouping_factor, uint32_t message_modulus, uint32_t carry_modulus,
|
||||
PBS_TYPE pbs_type, bool allocate_gpu_memory,
|
||||
PBS_MS_REDUCTION_T noise_reduction_type, uint32_t num_aes_inputs,
|
||||
uint32_t sbox_parallelism);
|
||||
|
||||
void cuda_integer_aes_ctr_encrypt_64(CudaStreamsFFI streams,
|
||||
CudaRadixCiphertextFFI *output,
|
||||
CudaRadixCiphertextFFI const *iv,
|
||||
CudaRadixCiphertextFFI const *round_keys,
|
||||
const uint64_t *counter_bits_le_all_blocks,
|
||||
uint32_t num_aes_inputs, int8_t *mem_ptr,
|
||||
void *const *bsks, void *const *ksks);
|
||||
|
||||
void cleanup_cuda_integer_aes_encrypt_64(CudaStreamsFFI streams,
|
||||
int8_t **mem_ptr_void);
|
||||
|
||||
uint64_t scratch_cuda_integer_key_expansion_64(
|
||||
CudaStreamsFFI streams, int8_t **mem_ptr, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t lwe_dimension, uint32_t ks_level,
|
||||
uint32_t ks_base_log, uint32_t pbs_level, uint32_t pbs_base_log,
|
||||
uint32_t grouping_factor, uint32_t message_modulus, uint32_t carry_modulus,
|
||||
PBS_TYPE pbs_type, bool allocate_gpu_memory,
|
||||
PBS_MS_REDUCTION_T noise_reduction_type);
|
||||
|
||||
void cuda_integer_key_expansion_64(CudaStreamsFFI streams,
|
||||
CudaRadixCiphertextFFI *expanded_keys,
|
||||
CudaRadixCiphertextFFI const *key,
|
||||
int8_t *mem_ptr, void *const *bsks,
|
||||
void *const *ksks);
|
||||
|
||||
void cleanup_cuda_integer_key_expansion_64(CudaStreamsFFI streams,
|
||||
int8_t **mem_ptr_void);
|
||||
}
|
||||
|
||||
#endif
|
||||
440
backends/tfhe-cuda-backend/cuda/include/aes/aes_utilities.h
Normal file
440
backends/tfhe-cuda-backend/cuda/include/aes/aes_utilities.h
Normal file
@@ -0,0 +1,440 @@
|
||||
#ifndef AES_UTILITIES
|
||||
#define AES_UTILITIES
|
||||
#include "../integer/integer_utilities.h"
|
||||
|
||||
/**
|
||||
* This structure holds pre-computed LUTs for essential bitwise operations
|
||||
* required by the homomorphic AES circuit. Pre-computing these tables allows
|
||||
* for efficient application of non-linear functions like AND during the PBS
|
||||
* process. It includes LUTs for:
|
||||
* - AND: for the non-linear part of the S-Box.
|
||||
* - FLUSH: to clear carry bits and isolate the message bit (x -> x & 1).
|
||||
* - CARRY: to extract the carry bit for additions (x -> (x >> 1) & 1).
|
||||
*/
|
||||
template <typename Torus> struct int_aes_lut_buffers {
|
||||
int_radix_lut<Torus> *and_lut;
|
||||
int_radix_lut<Torus> *flush_lut;
|
||||
int_radix_lut<Torus> *carry_lut;
|
||||
|
||||
int_aes_lut_buffers(CudaStreams streams, const int_radix_params ¶ms,
|
||||
bool allocate_gpu_memory, uint32_t num_aes_inputs,
|
||||
uint32_t sbox_parallelism, uint64_t &size_tracker) {
|
||||
|
||||
constexpr uint32_t AES_STATE_BITS = 128;
|
||||
constexpr uint32_t SBOX_MAX_AND_GATES = 18;
|
||||
|
||||
this->and_lut = new int_radix_lut<Torus>(
|
||||
streams, params, 1,
|
||||
SBOX_MAX_AND_GATES * num_aes_inputs * sbox_parallelism,
|
||||
allocate_gpu_memory, size_tracker);
|
||||
std::function<Torus(Torus, Torus)> and_lambda =
|
||||
[](Torus a, Torus b) -> Torus { return a & b; };
|
||||
generate_device_accumulator_bivariate<Torus>(
|
||||
streams.stream(0), streams.gpu_index(0), this->and_lut->get_lut(0, 0),
|
||||
this->and_lut->get_degree(0), this->and_lut->get_max_degree(0),
|
||||
params.glwe_dimension, params.polynomial_size, params.message_modulus,
|
||||
params.carry_modulus, and_lambda, allocate_gpu_memory);
|
||||
auto active_streams_and_lut = streams.active_gpu_subset(
|
||||
SBOX_MAX_AND_GATES * num_aes_inputs * sbox_parallelism);
|
||||
this->and_lut->broadcast_lut(active_streams_and_lut);
|
||||
|
||||
this->flush_lut = new int_radix_lut<Torus>(
|
||||
streams, params, 1, AES_STATE_BITS * num_aes_inputs,
|
||||
allocate_gpu_memory, size_tracker);
|
||||
std::function<Torus(Torus)> flush_lambda = [](Torus x) -> Torus {
|
||||
return x & 1;
|
||||
};
|
||||
generate_device_accumulator(
|
||||
streams.stream(0), streams.gpu_index(0), this->flush_lut->get_lut(0, 0),
|
||||
this->flush_lut->get_degree(0), this->flush_lut->get_max_degree(0),
|
||||
params.glwe_dimension, params.polynomial_size, params.message_modulus,
|
||||
params.carry_modulus, flush_lambda, allocate_gpu_memory);
|
||||
auto active_streams_flush_lut =
|
||||
streams.active_gpu_subset(AES_STATE_BITS * num_aes_inputs);
|
||||
this->flush_lut->broadcast_lut(active_streams_flush_lut);
|
||||
|
||||
this->carry_lut = new int_radix_lut<Torus>(
|
||||
streams, params, 1, num_aes_inputs, allocate_gpu_memory, size_tracker);
|
||||
std::function<Torus(Torus)> carry_lambda = [](Torus x) -> Torus {
|
||||
return (x >> 1) & 1;
|
||||
};
|
||||
generate_device_accumulator(
|
||||
streams.stream(0), streams.gpu_index(0), this->carry_lut->get_lut(0, 0),
|
||||
this->carry_lut->get_degree(0), this->carry_lut->get_max_degree(0),
|
||||
params.glwe_dimension, params.polynomial_size, params.message_modulus,
|
||||
params.carry_modulus, carry_lambda, allocate_gpu_memory);
|
||||
auto active_streams_carry_lut = streams.active_gpu_subset(num_aes_inputs);
|
||||
this->carry_lut->broadcast_lut(active_streams_carry_lut);
|
||||
}
|
||||
|
||||
void release(CudaStreams streams) {
|
||||
this->and_lut->release(streams);
|
||||
delete this->and_lut;
|
||||
this->and_lut = nullptr;
|
||||
|
||||
this->flush_lut->release(streams);
|
||||
delete this->flush_lut;
|
||||
this->flush_lut = nullptr;
|
||||
|
||||
this->carry_lut->release(streams);
|
||||
delete this->carry_lut;
|
||||
this->carry_lut = nullptr;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* The operations within an AES round, particularly MixColumns, require
|
||||
* intermediate storage for calculations. These buffers are designed to hold
|
||||
* temporary values like copies of columns or the results of multiplications,
|
||||
* avoiding overwriting data that is still needed in the same round.
|
||||
*/
|
||||
template <typename Torus> struct int_aes_round_workspaces {
|
||||
CudaRadixCiphertextFFI *mix_columns_col_copy_buffer;
|
||||
CudaRadixCiphertextFFI *mix_columns_mul_workspace_buffer;
|
||||
CudaRadixCiphertextFFI *vec_tmp_bit_buffer;
|
||||
|
||||
int_aes_round_workspaces(CudaStreams streams, const int_radix_params ¶ms,
|
||||
bool allocate_gpu_memory, uint32_t num_aes_inputs,
|
||||
uint64_t &size_tracker) {
|
||||
|
||||
constexpr uint32_t BITS_PER_BYTE = 8;
|
||||
constexpr uint32_t BYTES_PER_COLUMN = 4;
|
||||
constexpr uint32_t BITS_PER_COLUMN = BITS_PER_BYTE * BYTES_PER_COLUMN;
|
||||
constexpr uint32_t MIX_COLUMNS_MUL_WORKSPACE_BYTES = BYTES_PER_COLUMN + 1;
|
||||
|
||||
this->mix_columns_col_copy_buffer = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams.stream(0), streams.gpu_index(0),
|
||||
this->mix_columns_col_copy_buffer, BITS_PER_COLUMN * num_aes_inputs,
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
|
||||
this->mix_columns_mul_workspace_buffer = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams.stream(0), streams.gpu_index(0),
|
||||
this->mix_columns_mul_workspace_buffer,
|
||||
MIX_COLUMNS_MUL_WORKSPACE_BYTES * BITS_PER_BYTE * num_aes_inputs,
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
|
||||
this->vec_tmp_bit_buffer = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams.stream(0), streams.gpu_index(0), this->vec_tmp_bit_buffer,
|
||||
num_aes_inputs, params.big_lwe_dimension, size_tracker,
|
||||
allocate_gpu_memory);
|
||||
}
|
||||
|
||||
void release(CudaStreams streams, bool allocate_gpu_memory) {
|
||||
release_radix_ciphertext_async(streams.stream(0), streams.gpu_index(0),
|
||||
this->mix_columns_col_copy_buffer,
|
||||
allocate_gpu_memory);
|
||||
delete this->mix_columns_col_copy_buffer;
|
||||
this->mix_columns_col_copy_buffer = nullptr;
|
||||
|
||||
release_radix_ciphertext_async(streams.stream(0), streams.gpu_index(0),
|
||||
this->mix_columns_mul_workspace_buffer,
|
||||
allocate_gpu_memory);
|
||||
delete this->mix_columns_mul_workspace_buffer;
|
||||
this->mix_columns_mul_workspace_buffer = nullptr;
|
||||
|
||||
release_radix_ciphertext_async(streams.stream(0), streams.gpu_index(0),
|
||||
this->vec_tmp_bit_buffer,
|
||||
allocate_gpu_memory);
|
||||
delete this->vec_tmp_bit_buffer;
|
||||
this->vec_tmp_bit_buffer = nullptr;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* In CTR mode, a counter is homomorphically added to the encrypted IV. This
|
||||
* structure holds the necessary buffers for this 128-bit ripple-carry
|
||||
* addition, such as the buffer for the propagating carry bit
|
||||
* (`vec_tmp_carry_buffer`) across the addition chain.
|
||||
*/
|
||||
template <typename Torus> struct int_aes_counter_workspaces {
|
||||
CudaRadixCiphertextFFI *vec_tmp_carry_buffer;
|
||||
CudaRadixCiphertextFFI *vec_tmp_sum_buffer;
|
||||
CudaRadixCiphertextFFI *vec_trivial_b_bits_buffer;
|
||||
Torus *h_counter_bits_buffer;
|
||||
Torus *d_counter_bits_buffer;
|
||||
|
||||
int_aes_counter_workspaces(CudaStreams streams,
|
||||
const int_radix_params ¶ms,
|
||||
bool allocate_gpu_memory, uint32_t num_aes_inputs,
|
||||
uint64_t &size_tracker) {
|
||||
|
||||
this->vec_tmp_carry_buffer = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams.stream(0), streams.gpu_index(0), this->vec_tmp_carry_buffer,
|
||||
num_aes_inputs, params.big_lwe_dimension, size_tracker,
|
||||
allocate_gpu_memory);
|
||||
|
||||
this->vec_tmp_sum_buffer = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams.stream(0), streams.gpu_index(0), this->vec_tmp_sum_buffer,
|
||||
num_aes_inputs, params.big_lwe_dimension, size_tracker,
|
||||
allocate_gpu_memory);
|
||||
|
||||
this->vec_trivial_b_bits_buffer = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams.stream(0), streams.gpu_index(0),
|
||||
this->vec_trivial_b_bits_buffer, num_aes_inputs,
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
|
||||
this->h_counter_bits_buffer =
|
||||
(Torus *)malloc(num_aes_inputs * sizeof(Torus));
|
||||
size_tracker += num_aes_inputs * sizeof(Torus);
|
||||
this->d_counter_bits_buffer = (Torus *)cuda_malloc_with_size_tracking_async(
|
||||
num_aes_inputs * sizeof(Torus), streams.stream(0), streams.gpu_index(0),
|
||||
size_tracker, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
void release(CudaStreams streams, bool allocate_gpu_memory) {
|
||||
release_radix_ciphertext_async(streams.stream(0), streams.gpu_index(0),
|
||||
this->vec_tmp_carry_buffer,
|
||||
allocate_gpu_memory);
|
||||
delete this->vec_tmp_carry_buffer;
|
||||
this->vec_tmp_carry_buffer = nullptr;
|
||||
|
||||
release_radix_ciphertext_async(streams.stream(0), streams.gpu_index(0),
|
||||
this->vec_tmp_sum_buffer,
|
||||
allocate_gpu_memory);
|
||||
delete this->vec_tmp_sum_buffer;
|
||||
this->vec_tmp_sum_buffer = nullptr;
|
||||
|
||||
release_radix_ciphertext_async(streams.stream(0), streams.gpu_index(0),
|
||||
this->vec_trivial_b_bits_buffer,
|
||||
allocate_gpu_memory);
|
||||
delete this->vec_trivial_b_bits_buffer;
|
||||
this->vec_trivial_b_bits_buffer = nullptr;
|
||||
|
||||
free(this->h_counter_bits_buffer);
|
||||
if (allocate_gpu_memory) {
|
||||
cuda_drop_async(this->d_counter_bits_buffer, streams.stream(0),
|
||||
streams.gpu_index(0));
|
||||
streams.synchronize();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* This structure allocates the most significant memory blocks:
|
||||
* - `sbox_internal_workspace`: A large workspace for the complex, parallel
|
||||
* evaluation of the S-Box circuit.
|
||||
* - `main_bitsliced_states_buffer`: Holds the entire set of AES states in a
|
||||
* bitsliced layout, which is optimal for parallel bitwise operations on the
|
||||
* GPU.
|
||||
* - Other buffers are used for data layout transformations (transposition) and
|
||||
* for batching small operations into larger, more efficient launches.
|
||||
*/
|
||||
template <typename Torus> struct int_aes_main_workspaces {
|
||||
CudaRadixCiphertextFFI *sbox_internal_workspace;
|
||||
CudaRadixCiphertextFFI *initial_states_and_jit_key_workspace;
|
||||
CudaRadixCiphertextFFI *main_bitsliced_states_buffer;
|
||||
CudaRadixCiphertextFFI *tmp_tiled_key_buffer;
|
||||
CudaRadixCiphertextFFI *batch_processing_buffer;
|
||||
|
||||
int_aes_main_workspaces(CudaStreams streams, const int_radix_params ¶ms,
|
||||
bool allocate_gpu_memory, uint32_t num_aes_inputs,
|
||||
uint32_t sbox_parallelism, uint64_t &size_tracker) {
|
||||
|
||||
constexpr uint32_t AES_STATE_BITS = 128;
|
||||
constexpr uint32_t SBOX_MAX_AND_GATES = 18;
|
||||
constexpr uint32_t BATCH_BUFFER_OPERANDS = 3;
|
||||
|
||||
this->sbox_internal_workspace = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams.stream(0), streams.gpu_index(0), this->sbox_internal_workspace,
|
||||
num_aes_inputs * AES_STATE_BITS * sbox_parallelism,
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
|
||||
this->initial_states_and_jit_key_workspace = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams.stream(0), streams.gpu_index(0),
|
||||
this->initial_states_and_jit_key_workspace,
|
||||
num_aes_inputs * AES_STATE_BITS, params.big_lwe_dimension, size_tracker,
|
||||
allocate_gpu_memory);
|
||||
|
||||
this->main_bitsliced_states_buffer = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams.stream(0), streams.gpu_index(0),
|
||||
this->main_bitsliced_states_buffer, num_aes_inputs * AES_STATE_BITS,
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
|
||||
this->tmp_tiled_key_buffer = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams.stream(0), streams.gpu_index(0), this->tmp_tiled_key_buffer,
|
||||
num_aes_inputs * AES_STATE_BITS, params.big_lwe_dimension, size_tracker,
|
||||
allocate_gpu_memory);
|
||||
|
||||
this->batch_processing_buffer = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams.stream(0), streams.gpu_index(0), this->batch_processing_buffer,
|
||||
num_aes_inputs * SBOX_MAX_AND_GATES * BATCH_BUFFER_OPERANDS *
|
||||
sbox_parallelism,
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
void release(CudaStreams streams, bool allocate_gpu_memory) {
|
||||
release_radix_ciphertext_async(streams.stream(0), streams.gpu_index(0),
|
||||
this->sbox_internal_workspace,
|
||||
allocate_gpu_memory);
|
||||
delete this->sbox_internal_workspace;
|
||||
this->sbox_internal_workspace = nullptr;
|
||||
|
||||
release_radix_ciphertext_async(streams.stream(0), streams.gpu_index(0),
|
||||
this->initial_states_and_jit_key_workspace,
|
||||
allocate_gpu_memory);
|
||||
delete this->initial_states_and_jit_key_workspace;
|
||||
this->initial_states_and_jit_key_workspace = nullptr;
|
||||
|
||||
release_radix_ciphertext_async(streams.stream(0), streams.gpu_index(0),
|
||||
this->main_bitsliced_states_buffer,
|
||||
allocate_gpu_memory);
|
||||
delete this->main_bitsliced_states_buffer;
|
||||
this->main_bitsliced_states_buffer = nullptr;
|
||||
|
||||
release_radix_ciphertext_async(streams.stream(0), streams.gpu_index(0),
|
||||
this->tmp_tiled_key_buffer,
|
||||
allocate_gpu_memory);
|
||||
delete this->tmp_tiled_key_buffer;
|
||||
this->tmp_tiled_key_buffer = nullptr;
|
||||
|
||||
release_radix_ciphertext_async(streams.stream(0), streams.gpu_index(0),
|
||||
this->batch_processing_buffer,
|
||||
allocate_gpu_memory);
|
||||
delete this->batch_processing_buffer;
|
||||
this->batch_processing_buffer = nullptr;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* This structure acts as a container, holding instances of all the other buffer
|
||||
* management structs. It provides a
|
||||
* single object to manage the entire lifecycle of memory needed for a complete
|
||||
* AES-CTR encryption operation.
|
||||
*/
|
||||
template <typename Torus> struct int_aes_encrypt_buffer {
|
||||
int_radix_params params;
|
||||
bool allocate_gpu_memory;
|
||||
uint32_t num_aes_inputs;
|
||||
uint32_t sbox_parallel_instances;
|
||||
|
||||
int_aes_lut_buffers<Torus> *luts;
|
||||
int_aes_round_workspaces<Torus> *round_workspaces;
|
||||
int_aes_counter_workspaces<Torus> *counter_workspaces;
|
||||
int_aes_main_workspaces<Torus> *main_workspaces;
|
||||
|
||||
int_aes_encrypt_buffer(CudaStreams streams, const int_radix_params ¶ms,
|
||||
bool allocate_gpu_memory, uint32_t num_aes_inputs,
|
||||
uint32_t sbox_parallelism, uint64_t &size_tracker) {
|
||||
|
||||
PANIC_IF_FALSE(num_aes_inputs >= 1,
|
||||
"num_aes_inputs should be greater or equal to 1");
|
||||
|
||||
this->params = params;
|
||||
this->allocate_gpu_memory = allocate_gpu_memory;
|
||||
this->num_aes_inputs = num_aes_inputs;
|
||||
this->sbox_parallel_instances = sbox_parallelism;
|
||||
|
||||
this->luts = new int_aes_lut_buffers<Torus>(
|
||||
streams, params, allocate_gpu_memory, num_aes_inputs, sbox_parallelism,
|
||||
size_tracker);
|
||||
|
||||
this->round_workspaces = new int_aes_round_workspaces<Torus>(
|
||||
streams, params, allocate_gpu_memory, num_aes_inputs, size_tracker);
|
||||
|
||||
this->counter_workspaces = new int_aes_counter_workspaces<Torus>(
|
||||
streams, params, allocate_gpu_memory, num_aes_inputs, size_tracker);
|
||||
|
||||
this->main_workspaces = new int_aes_main_workspaces<Torus>(
|
||||
streams, params, allocate_gpu_memory, num_aes_inputs, sbox_parallelism,
|
||||
size_tracker);
|
||||
}
|
||||
|
||||
void release(CudaStreams streams) {
|
||||
luts->release(streams);
|
||||
delete luts;
|
||||
luts = nullptr;
|
||||
|
||||
round_workspaces->release(streams, allocate_gpu_memory);
|
||||
delete round_workspaces;
|
||||
round_workspaces = nullptr;
|
||||
|
||||
counter_workspaces->release(streams, allocate_gpu_memory);
|
||||
delete counter_workspaces;
|
||||
counter_workspaces = nullptr;
|
||||
|
||||
main_workspaces->release(streams, allocate_gpu_memory);
|
||||
delete main_workspaces;
|
||||
main_workspaces = nullptr;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* This structure holds the buffer for the 44 words of the expanded key
|
||||
* and temporary storage for word manipulations.
|
||||
* It contains its own instance of `int_aes_encrypt_buffer` because the
|
||||
* key expansion algorithm itself requires using the S-Box.
|
||||
* This separation ensures that memory for key expansion can be allocated and
|
||||
* freed independently of the main encryption process.
|
||||
*/
|
||||
template <typename Torus> struct int_key_expansion_buffer {
|
||||
int_radix_params params;
|
||||
bool allocate_gpu_memory;
|
||||
|
||||
CudaRadixCiphertextFFI *words_buffer;
|
||||
|
||||
CudaRadixCiphertextFFI *tmp_word_buffer;
|
||||
CudaRadixCiphertextFFI *tmp_rotated_word_buffer;
|
||||
|
||||
int_aes_encrypt_buffer<Torus> *aes_encrypt_buffer;
|
||||
|
||||
int_key_expansion_buffer(CudaStreams streams, const int_radix_params ¶ms,
|
||||
bool allocate_gpu_memory, uint64_t &size_tracker) {
|
||||
this->params = params;
|
||||
this->allocate_gpu_memory = allocate_gpu_memory;
|
||||
|
||||
constexpr uint32_t TOTAL_WORDS = 44;
|
||||
constexpr uint32_t BITS_PER_WORD = 32;
|
||||
constexpr uint32_t TOTAL_BITS = TOTAL_WORDS * BITS_PER_WORD;
|
||||
|
||||
this->words_buffer = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams.stream(0), streams.gpu_index(0), this->words_buffer, TOTAL_BITS,
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
|
||||
this->tmp_word_buffer = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams.stream(0), streams.gpu_index(0), this->tmp_word_buffer,
|
||||
BITS_PER_WORD, params.big_lwe_dimension, size_tracker,
|
||||
allocate_gpu_memory);
|
||||
|
||||
this->tmp_rotated_word_buffer = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams.stream(0), streams.gpu_index(0), this->tmp_rotated_word_buffer,
|
||||
BITS_PER_WORD, params.big_lwe_dimension, size_tracker,
|
||||
allocate_gpu_memory);
|
||||
|
||||
this->aes_encrypt_buffer = new int_aes_encrypt_buffer<Torus>(
|
||||
streams, params, allocate_gpu_memory, 1, 4, size_tracker);
|
||||
}
|
||||
|
||||
void release(CudaStreams streams) {
|
||||
release_radix_ciphertext_async(streams.stream(0), streams.gpu_index(0),
|
||||
this->words_buffer, allocate_gpu_memory);
|
||||
delete this->words_buffer;
|
||||
|
||||
release_radix_ciphertext_async(streams.stream(0), streams.gpu_index(0),
|
||||
this->tmp_word_buffer, allocate_gpu_memory);
|
||||
delete this->tmp_word_buffer;
|
||||
|
||||
release_radix_ciphertext_async(streams.stream(0), streams.gpu_index(0),
|
||||
this->tmp_rotated_word_buffer,
|
||||
allocate_gpu_memory);
|
||||
delete this->tmp_rotated_word_buffer;
|
||||
|
||||
this->aes_encrypt_buffer->release(streams);
|
||||
delete this->aes_encrypt_buffer;
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
88
backends/tfhe-cuda-backend/cuda/src/aes/aes.cu
Normal file
88
backends/tfhe-cuda-backend/cuda/src/aes/aes.cu
Normal file
@@ -0,0 +1,88 @@
|
||||
#include "../../include/aes/aes.h"
|
||||
#include "aes.cuh"
|
||||
|
||||
uint64_t scratch_cuda_integer_aes_encrypt_64(
|
||||
CudaStreamsFFI streams, int8_t **mem_ptr, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t lwe_dimension, uint32_t ks_level,
|
||||
uint32_t ks_base_log, uint32_t pbs_level, uint32_t pbs_base_log,
|
||||
uint32_t grouping_factor, uint32_t message_modulus, uint32_t carry_modulus,
|
||||
PBS_TYPE pbs_type, bool allocate_gpu_memory,
|
||||
PBS_MS_REDUCTION_T noise_reduction_type, uint32_t num_aes_inputs,
|
||||
uint32_t sbox_parallelism) {
|
||||
|
||||
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
|
||||
glwe_dimension * polynomial_size, lwe_dimension,
|
||||
ks_level, ks_base_log, pbs_level, pbs_base_log,
|
||||
grouping_factor, message_modulus, carry_modulus,
|
||||
noise_reduction_type);
|
||||
|
||||
return scratch_cuda_integer_aes_encrypt<uint64_t>(
|
||||
CudaStreams(streams), (int_aes_encrypt_buffer<uint64_t> **)mem_ptr,
|
||||
params, allocate_gpu_memory, num_aes_inputs, sbox_parallelism);
|
||||
}
|
||||
|
||||
void cuda_integer_aes_ctr_encrypt_64(CudaStreamsFFI streams,
|
||||
CudaRadixCiphertextFFI *output,
|
||||
CudaRadixCiphertextFFI const *iv,
|
||||
CudaRadixCiphertextFFI const *round_keys,
|
||||
const uint64_t *counter_bits_le_all_blocks,
|
||||
uint32_t num_aes_inputs, int8_t *mem_ptr,
|
||||
void *const *bsks, void *const *ksks) {
|
||||
|
||||
host_integer_aes_ctr_encrypt<uint64_t>(
|
||||
CudaStreams(streams), output, iv, round_keys, counter_bits_le_all_blocks,
|
||||
num_aes_inputs, (int_aes_encrypt_buffer<uint64_t> *)mem_ptr, bsks,
|
||||
(uint64_t **)ksks);
|
||||
}
|
||||
|
||||
void cleanup_cuda_integer_aes_encrypt_64(CudaStreamsFFI streams,
|
||||
int8_t **mem_ptr_void) {
|
||||
|
||||
int_aes_encrypt_buffer<uint64_t> *mem_ptr =
|
||||
(int_aes_encrypt_buffer<uint64_t> *)(*mem_ptr_void);
|
||||
|
||||
mem_ptr->release(CudaStreams(streams));
|
||||
|
||||
delete mem_ptr;
|
||||
*mem_ptr_void = nullptr;
|
||||
}
|
||||
|
||||
uint64_t scratch_cuda_integer_key_expansion_64(
|
||||
CudaStreamsFFI streams, int8_t **mem_ptr, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t lwe_dimension, uint32_t ks_level,
|
||||
uint32_t ks_base_log, uint32_t pbs_level, uint32_t pbs_base_log,
|
||||
uint32_t grouping_factor, uint32_t message_modulus, uint32_t carry_modulus,
|
||||
PBS_TYPE pbs_type, bool allocate_gpu_memory,
|
||||
PBS_MS_REDUCTION_T noise_reduction_type) {
|
||||
|
||||
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
|
||||
glwe_dimension * polynomial_size, lwe_dimension,
|
||||
ks_level, ks_base_log, pbs_level, pbs_base_log,
|
||||
grouping_factor, message_modulus, carry_modulus,
|
||||
noise_reduction_type);
|
||||
|
||||
return scratch_cuda_integer_key_expansion<uint64_t>(
|
||||
CudaStreams(streams), (int_key_expansion_buffer<uint64_t> **)mem_ptr,
|
||||
params, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
void cuda_integer_key_expansion_64(CudaStreamsFFI streams,
|
||||
CudaRadixCiphertextFFI *expanded_keys,
|
||||
CudaRadixCiphertextFFI const *key,
|
||||
int8_t *mem_ptr, void *const *bsks,
|
||||
void *const *ksks) {
|
||||
|
||||
host_integer_key_expansion<uint64_t>(
|
||||
CudaStreams(streams), expanded_keys, key,
|
||||
(int_key_expansion_buffer<uint64_t> *)mem_ptr, bsks, (uint64_t **)ksks);
|
||||
}
|
||||
|
||||
void cleanup_cuda_integer_key_expansion_64(CudaStreamsFFI streams,
|
||||
int8_t **mem_ptr_void) {
|
||||
int_key_expansion_buffer<uint64_t> *mem_ptr =
|
||||
(int_key_expansion_buffer<uint64_t> *)(*mem_ptr_void);
|
||||
|
||||
mem_ptr->release(CudaStreams(streams));
|
||||
delete mem_ptr;
|
||||
*mem_ptr_void = nullptr;
|
||||
}
|
||||
1254
backends/tfhe-cuda-backend/cuda/src/aes/aes.cuh
Normal file
1254
backends/tfhe-cuda-backend/cuda/src/aes/aes.cuh
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1729,6 +1729,78 @@ unsafe extern "C" {
|
||||
mem_ptr_void: *mut *mut i8,
|
||||
);
|
||||
}
|
||||
unsafe extern "C" {
|
||||
pub fn scratch_cuda_integer_aes_encrypt_64(
|
||||
streams: CudaStreamsFFI,
|
||||
mem_ptr: *mut *mut i8,
|
||||
glwe_dimension: u32,
|
||||
polynomial_size: u32,
|
||||
lwe_dimension: u32,
|
||||
ks_level: u32,
|
||||
ks_base_log: u32,
|
||||
pbs_level: u32,
|
||||
pbs_base_log: u32,
|
||||
grouping_factor: u32,
|
||||
message_modulus: u32,
|
||||
carry_modulus: u32,
|
||||
pbs_type: PBS_TYPE,
|
||||
allocate_gpu_memory: bool,
|
||||
noise_reduction_type: PBS_MS_REDUCTION_T,
|
||||
num_aes_inputs: u32,
|
||||
sbox_parallelism: u32,
|
||||
) -> u64;
|
||||
}
|
||||
unsafe extern "C" {
|
||||
pub fn cuda_integer_aes_ctr_encrypt_64(
|
||||
streams: CudaStreamsFFI,
|
||||
output: *mut CudaRadixCiphertextFFI,
|
||||
iv: *const CudaRadixCiphertextFFI,
|
||||
round_keys: *const CudaRadixCiphertextFFI,
|
||||
counter_bits_le_all_blocks: *const u64,
|
||||
num_aes_inputs: u32,
|
||||
mem_ptr: *mut i8,
|
||||
bsks: *const *mut ffi::c_void,
|
||||
ksks: *const *mut ffi::c_void,
|
||||
);
|
||||
}
|
||||
unsafe extern "C" {
|
||||
pub fn cleanup_cuda_integer_aes_encrypt_64(streams: CudaStreamsFFI, mem_ptr_void: *mut *mut i8);
|
||||
}
|
||||
unsafe extern "C" {
|
||||
pub fn scratch_cuda_integer_key_expansion_64(
|
||||
streams: CudaStreamsFFI,
|
||||
mem_ptr: *mut *mut i8,
|
||||
glwe_dimension: u32,
|
||||
polynomial_size: u32,
|
||||
lwe_dimension: u32,
|
||||
ks_level: u32,
|
||||
ks_base_log: u32,
|
||||
pbs_level: u32,
|
||||
pbs_base_log: u32,
|
||||
grouping_factor: u32,
|
||||
message_modulus: u32,
|
||||
carry_modulus: u32,
|
||||
pbs_type: PBS_TYPE,
|
||||
allocate_gpu_memory: bool,
|
||||
noise_reduction_type: PBS_MS_REDUCTION_T,
|
||||
) -> u64;
|
||||
}
|
||||
unsafe extern "C" {
|
||||
pub fn cuda_integer_key_expansion_64(
|
||||
streams: CudaStreamsFFI,
|
||||
expanded_keys: *mut CudaRadixCiphertextFFI,
|
||||
key: *const CudaRadixCiphertextFFI,
|
||||
mem_ptr: *mut i8,
|
||||
bsks: *const *mut ffi::c_void,
|
||||
ksks: *const *mut ffi::c_void,
|
||||
);
|
||||
}
|
||||
unsafe extern "C" {
|
||||
pub fn cleanup_cuda_integer_key_expansion_64(
|
||||
streams: CudaStreamsFFI,
|
||||
mem_ptr_void: *mut *mut i8,
|
||||
);
|
||||
}
|
||||
pub const KS_TYPE_BIG_TO_SMALL: KS_TYPE = 0;
|
||||
pub const KS_TYPE_SMALL_TO_BIG: KS_TYPE = 1;
|
||||
pub type KS_TYPE = ffi::c_uint;
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
#include "cuda/include/ciphertext.h"
|
||||
#include "cuda/include/integer/compression/compression.h"
|
||||
#include "cuda/include/integer/integer.h"
|
||||
#include "cuda/include/aes/aes.h"
|
||||
#include "cuda/include/zk/zk.h"
|
||||
#include "cuda/include/keyswitch/keyswitch.h"
|
||||
#include "cuda/include/keyswitch/ks_enums.h"
|
||||
|
||||
154
tfhe-benchmark/benches/integer/aes.rs
Normal file
154
tfhe-benchmark/benches/integer/aes.rs
Normal file
@@ -0,0 +1,154 @@
|
||||
#[cfg(feature = "gpu")]
|
||||
pub mod cuda {
|
||||
use benchmark::params_aliases::BENCH_PARAM_GPU_MULTI_BIT_GROUP_4_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M128;
|
||||
use benchmark::utilities::{get_bench_type, write_to_json, BenchmarkType, OperatorType};
|
||||
use criterion::{black_box, Criterion, Throughput};
|
||||
use tfhe::core_crypto::gpu::CudaStreams;
|
||||
use tfhe::integer::gpu::ciphertext::CudaUnsignedRadixCiphertext;
|
||||
use tfhe::integer::gpu::CudaServerKey;
|
||||
use tfhe::integer::keycache::KEY_CACHE;
|
||||
use tfhe::integer::{IntegerKeyKind, RadixClientKey};
|
||||
use tfhe::keycache::NamedParam;
|
||||
use tfhe::shortint::AtomicPatternParameters;
|
||||
|
||||
pub fn cuda_aes(c: &mut Criterion) {
|
||||
let bench_name = "integer::cuda::aes";
|
||||
|
||||
let mut bench_group = c.benchmark_group(bench_name);
|
||||
bench_group
|
||||
.sample_size(15)
|
||||
.measurement_time(std::time::Duration::from_secs(60))
|
||||
.warm_up_time(std::time::Duration::from_secs(60));
|
||||
|
||||
let param = BENCH_PARAM_GPU_MULTI_BIT_GROUP_4_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M128;
|
||||
let atomic_param: AtomicPatternParameters = param.into();
|
||||
|
||||
let key: u128 = 0x2b7e151628aed2a6abf7158809cf4f3c;
|
||||
let iv: u128 = 0xf0f1f2f3f4f5f6f7f8f9fafbfcfdfeff;
|
||||
let aes_op_bit_size = 128;
|
||||
|
||||
let param_name = param.name();
|
||||
|
||||
match get_bench_type() {
|
||||
BenchmarkType::Latency => {
|
||||
let streams = CudaStreams::new_multi_gpu();
|
||||
let (cpu_cks, _) = KEY_CACHE.get_from_params(atomic_param, IntegerKeyKind::Radix);
|
||||
let sks = CudaServerKey::new(&cpu_cks, &streams);
|
||||
let cks = RadixClientKey::from((cpu_cks, 1));
|
||||
|
||||
let ct_key = cks.encrypt_u128_for_aes_ctr(key);
|
||||
let ct_iv = cks.encrypt_u128_for_aes_ctr(iv);
|
||||
|
||||
let d_key = CudaUnsignedRadixCiphertext::from_radix_ciphertext(&ct_key, &streams);
|
||||
let d_iv = CudaUnsignedRadixCiphertext::from_radix_ciphertext(&ct_iv, &streams);
|
||||
|
||||
{
|
||||
const NUM_AES_INPUTS: usize = 1;
|
||||
const SBOX_PARALLELISM: usize = 16;
|
||||
let bench_id = format!("{param_name}::{NUM_AES_INPUTS}_input_encryption");
|
||||
|
||||
let round_keys = unsafe { sks.key_expansion_async(&d_key, &streams) };
|
||||
streams.synchronize();
|
||||
|
||||
bench_group.bench_function(&bench_id, |b| {
|
||||
b.iter(|| {
|
||||
unsafe {
|
||||
black_box(sks.aes_encrypt_async(
|
||||
&d_iv,
|
||||
&round_keys,
|
||||
0,
|
||||
NUM_AES_INPUTS,
|
||||
SBOX_PARALLELISM,
|
||||
&streams,
|
||||
));
|
||||
}
|
||||
streams.synchronize();
|
||||
})
|
||||
});
|
||||
|
||||
write_to_json::<u64, _>(
|
||||
&bench_id,
|
||||
atomic_param,
|
||||
param.name(),
|
||||
"aes_encryption",
|
||||
&OperatorType::Atomic,
|
||||
aes_op_bit_size,
|
||||
vec![atomic_param.message_modulus().0.ilog2(); aes_op_bit_size as usize],
|
||||
);
|
||||
}
|
||||
|
||||
{
|
||||
let bench_id = format!("{param_name}::key_expansion");
|
||||
|
||||
bench_group.bench_function(&bench_id, |b| {
|
||||
b.iter(|| {
|
||||
unsafe {
|
||||
black_box(sks.key_expansion_async(&d_key, &streams));
|
||||
}
|
||||
streams.synchronize();
|
||||
})
|
||||
});
|
||||
|
||||
write_to_json::<u64, _>(
|
||||
&bench_id,
|
||||
atomic_param,
|
||||
param.name(),
|
||||
"aes_key_expansion",
|
||||
&OperatorType::Atomic,
|
||||
aes_op_bit_size,
|
||||
vec![atomic_param.message_modulus().0.ilog2(); aes_op_bit_size as usize],
|
||||
);
|
||||
}
|
||||
}
|
||||
BenchmarkType::Throughput => {
|
||||
const NUM_AES_INPUTS: usize = 192;
|
||||
const SBOX_PARALLELISM: usize = 16;
|
||||
let bench_id = format!("throughput::{param_name}::{NUM_AES_INPUTS}_inputs");
|
||||
|
||||
let streams = CudaStreams::new_multi_gpu();
|
||||
let (cpu_cks, _) = KEY_CACHE.get_from_params(atomic_param, IntegerKeyKind::Radix);
|
||||
let sks = CudaServerKey::new(&cpu_cks, &streams);
|
||||
let cks = RadixClientKey::from((cpu_cks, 1));
|
||||
|
||||
bench_group.throughput(Throughput::Elements(NUM_AES_INPUTS as u64));
|
||||
|
||||
let ct_key = cks.encrypt_u128_for_aes_ctr(key);
|
||||
let ct_iv = cks.encrypt_u128_for_aes_ctr(iv);
|
||||
|
||||
let d_key = CudaUnsignedRadixCiphertext::from_radix_ciphertext(&ct_key, &streams);
|
||||
let d_iv = CudaUnsignedRadixCiphertext::from_radix_ciphertext(&ct_iv, &streams);
|
||||
|
||||
let round_keys = unsafe { sks.key_expansion_async(&d_key, &streams) };
|
||||
streams.synchronize();
|
||||
|
||||
bench_group.bench_function(&bench_id, |b| {
|
||||
b.iter(|| {
|
||||
unsafe {
|
||||
black_box(sks.aes_encrypt_async(
|
||||
&d_iv,
|
||||
&round_keys,
|
||||
0,
|
||||
NUM_AES_INPUTS,
|
||||
SBOX_PARALLELISM,
|
||||
&streams,
|
||||
));
|
||||
}
|
||||
streams.synchronize();
|
||||
})
|
||||
});
|
||||
|
||||
write_to_json::<u64, _>(
|
||||
&bench_id,
|
||||
atomic_param,
|
||||
param.name(),
|
||||
"aes_encryption",
|
||||
&OperatorType::Atomic,
|
||||
aes_op_bit_size,
|
||||
vec![atomic_param.message_modulus().0.ilog2(); aes_op_bit_size as usize],
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
bench_group.finish();
|
||||
}
|
||||
}
|
||||
@@ -1,5 +1,6 @@
|
||||
#![allow(dead_code)]
|
||||
|
||||
mod aes;
|
||||
mod oprf;
|
||||
|
||||
use benchmark::params::ParamsAndNumBlocksIter;
|
||||
@@ -2795,6 +2796,7 @@ mod cuda {
|
||||
cuda_trailing_ones,
|
||||
cuda_ilog2,
|
||||
oprf::cuda::cuda_unsigned_oprf,
|
||||
aes::cuda::cuda_aes,
|
||||
);
|
||||
|
||||
criterion_group!(
|
||||
@@ -2823,6 +2825,7 @@ mod cuda {
|
||||
cuda_scalar_div,
|
||||
cuda_scalar_rem,
|
||||
oprf::cuda::cuda_unsigned_oprf,
|
||||
aes::cuda::cuda_aes,
|
||||
);
|
||||
|
||||
criterion_group!(
|
||||
|
||||
@@ -7403,3 +7403,289 @@ pub unsafe fn expand_async<T: UnsignedInteger, B: Numeric>(
|
||||
);
|
||||
cleanup_expand_without_verification_64(streams.ffi(), std::ptr::addr_of_mut!(mem_ptr));
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
/// # Safety
|
||||
///
|
||||
/// - [CudaStreams::synchronize] __must__ be called after this function as soon as synchronization
|
||||
/// is required
|
||||
pub unsafe fn unchecked_aes_ctr_encrypt_integer_radix_kb_assign_async<
|
||||
T: UnsignedInteger,
|
||||
B: Numeric,
|
||||
>(
|
||||
streams: &CudaStreams,
|
||||
output: &mut CudaRadixCiphertext,
|
||||
iv: &CudaRadixCiphertext,
|
||||
round_keys: &CudaRadixCiphertext,
|
||||
start_counter: u128,
|
||||
num_aes_inputs: u32,
|
||||
sbox_parallelism: u32,
|
||||
bootstrapping_key: &CudaVec<B>,
|
||||
keyswitch_key: &CudaVec<T>,
|
||||
message_modulus: MessageModulus,
|
||||
carry_modulus: CarryModulus,
|
||||
glwe_dimension: GlweDimension,
|
||||
polynomial_size: PolynomialSize,
|
||||
lwe_dimension: LweDimension,
|
||||
ks_level: DecompositionLevelCount,
|
||||
ks_base_log: DecompositionBaseLog,
|
||||
pbs_level: DecompositionLevelCount,
|
||||
pbs_base_log: DecompositionBaseLog,
|
||||
grouping_factor: LweBskGroupingFactor,
|
||||
pbs_type: PBSType,
|
||||
ms_noise_reduction_configuration: Option<&CudaModulusSwitchNoiseReductionConfiguration>,
|
||||
) {
|
||||
let mut output_degrees = output.info.blocks.iter().map(|b| b.degree.0).collect();
|
||||
let mut output_noise_levels = output.info.blocks.iter().map(|b| b.noise_level.0).collect();
|
||||
let mut cuda_ffi_output =
|
||||
prepare_cuda_radix_ffi(output, &mut output_degrees, &mut output_noise_levels);
|
||||
|
||||
let mut iv_degrees = iv.info.blocks.iter().map(|b| b.degree.0).collect();
|
||||
let mut iv_noise_levels = iv.info.blocks.iter().map(|b| b.noise_level.0).collect();
|
||||
let cuda_ffi_iv = prepare_cuda_radix_ffi(iv, &mut iv_degrees, &mut iv_noise_levels);
|
||||
|
||||
let mut round_keys_degrees = round_keys.info.blocks.iter().map(|b| b.degree.0).collect();
|
||||
let mut round_keys_noise_levels = round_keys
|
||||
.info
|
||||
.blocks
|
||||
.iter()
|
||||
.map(|b| b.noise_level.0)
|
||||
.collect();
|
||||
let cuda_ffi_round_keys = prepare_cuda_radix_ffi(
|
||||
round_keys,
|
||||
&mut round_keys_degrees,
|
||||
&mut round_keys_noise_levels,
|
||||
);
|
||||
|
||||
let noise_reduction_type = resolve_noise_reduction_type(ms_noise_reduction_configuration);
|
||||
|
||||
let counter_bits_le: Vec<u64> = (0..num_aes_inputs)
|
||||
.flat_map(|i| {
|
||||
let current_counter = start_counter + i as u128;
|
||||
(0..128).map(move |bit_index| ((current_counter >> bit_index) & 1) as u64)
|
||||
})
|
||||
.collect();
|
||||
|
||||
let mut mem_ptr: *mut i8 = std::ptr::null_mut();
|
||||
scratch_cuda_integer_aes_encrypt_64(
|
||||
streams.ffi(),
|
||||
std::ptr::addr_of_mut!(mem_ptr),
|
||||
glwe_dimension.0 as u32,
|
||||
polynomial_size.0 as u32,
|
||||
lwe_dimension.0 as u32,
|
||||
ks_level.0 as u32,
|
||||
ks_base_log.0 as u32,
|
||||
pbs_level.0 as u32,
|
||||
pbs_base_log.0 as u32,
|
||||
grouping_factor.0 as u32,
|
||||
message_modulus.0 as u32,
|
||||
carry_modulus.0 as u32,
|
||||
pbs_type as u32,
|
||||
true,
|
||||
noise_reduction_type as u32,
|
||||
num_aes_inputs,
|
||||
sbox_parallelism,
|
||||
);
|
||||
|
||||
cuda_integer_aes_ctr_encrypt_64(
|
||||
streams.ffi(),
|
||||
&raw mut cuda_ffi_output,
|
||||
&raw const cuda_ffi_iv,
|
||||
&raw const cuda_ffi_round_keys,
|
||||
counter_bits_le.as_ptr(),
|
||||
num_aes_inputs,
|
||||
mem_ptr,
|
||||
bootstrapping_key.ptr.as_ptr(),
|
||||
keyswitch_key.ptr.as_ptr(),
|
||||
);
|
||||
|
||||
cleanup_cuda_integer_aes_encrypt_64(streams.ffi(), std::ptr::addr_of_mut!(mem_ptr));
|
||||
|
||||
update_noise_degree(output, &cuda_ffi_output);
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
/// # Safety
|
||||
///
|
||||
/// - [CudaStreams::synchronize] __must__ be called after this function as soon as synchronization
|
||||
/// is required
|
||||
pub unsafe fn get_aes_ctr_encrypt_integer_radix_size_on_gpu(
|
||||
streams: &CudaStreams,
|
||||
num_aes_inputs: u32,
|
||||
sbox_parallelism: u32,
|
||||
message_modulus: MessageModulus,
|
||||
carry_modulus: CarryModulus,
|
||||
glwe_dimension: GlweDimension,
|
||||
polynomial_size: PolynomialSize,
|
||||
lwe_dimension: LweDimension,
|
||||
ks_level: DecompositionLevelCount,
|
||||
ks_base_log: DecompositionBaseLog,
|
||||
pbs_level: DecompositionLevelCount,
|
||||
pbs_base_log: DecompositionBaseLog,
|
||||
grouping_factor: LweBskGroupingFactor,
|
||||
pbs_type: PBSType,
|
||||
ms_noise_reduction_configuration: Option<&CudaModulusSwitchNoiseReductionConfiguration>,
|
||||
) -> u64 {
|
||||
let noise_reduction_type = resolve_noise_reduction_type(ms_noise_reduction_configuration);
|
||||
|
||||
let mut mem_ptr: *mut i8 = std::ptr::null_mut();
|
||||
let size = unsafe {
|
||||
scratch_cuda_integer_aes_encrypt_64(
|
||||
streams.ffi(),
|
||||
std::ptr::addr_of_mut!(mem_ptr),
|
||||
glwe_dimension.0 as u32,
|
||||
polynomial_size.0 as u32,
|
||||
lwe_dimension.0 as u32,
|
||||
ks_level.0 as u32,
|
||||
ks_base_log.0 as u32,
|
||||
pbs_level.0 as u32,
|
||||
pbs_base_log.0 as u32,
|
||||
grouping_factor.0 as u32,
|
||||
message_modulus.0 as u32,
|
||||
carry_modulus.0 as u32,
|
||||
pbs_type as u32,
|
||||
false,
|
||||
noise_reduction_type as u32,
|
||||
num_aes_inputs,
|
||||
sbox_parallelism,
|
||||
)
|
||||
};
|
||||
|
||||
unsafe { cleanup_cuda_integer_aes_encrypt_64(streams.ffi(), std::ptr::addr_of_mut!(mem_ptr)) };
|
||||
|
||||
size
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
/// # Safety
|
||||
///
|
||||
/// - [CudaStreams::synchronize] __must__ be called after this function as soon as synchronization
|
||||
/// is required
|
||||
pub unsafe fn unchecked_key_expansion_integer_radix_kb_assign_async<
|
||||
T: UnsignedInteger,
|
||||
B: Numeric,
|
||||
>(
|
||||
streams: &CudaStreams,
|
||||
expanded_keys: &mut CudaRadixCiphertext,
|
||||
key: &CudaRadixCiphertext,
|
||||
bootstrapping_key: &CudaVec<B>,
|
||||
keyswitch_key: &CudaVec<T>,
|
||||
message_modulus: MessageModulus,
|
||||
carry_modulus: CarryModulus,
|
||||
glwe_dimension: GlweDimension,
|
||||
polynomial_size: PolynomialSize,
|
||||
lwe_dimension: LweDimension,
|
||||
ks_level: DecompositionLevelCount,
|
||||
ks_base_log: DecompositionBaseLog,
|
||||
pbs_level: DecompositionLevelCount,
|
||||
pbs_base_log: DecompositionBaseLog,
|
||||
grouping_factor: LweBskGroupingFactor,
|
||||
pbs_type: PBSType,
|
||||
ms_noise_reduction_configuration: Option<&CudaModulusSwitchNoiseReductionConfiguration>,
|
||||
) {
|
||||
let mut expanded_keys_degrees = expanded_keys
|
||||
.info
|
||||
.blocks
|
||||
.iter()
|
||||
.map(|b| b.degree.0)
|
||||
.collect();
|
||||
let mut expanded_keys_noise_levels = expanded_keys
|
||||
.info
|
||||
.blocks
|
||||
.iter()
|
||||
.map(|b| b.noise_level.0)
|
||||
.collect();
|
||||
let mut cuda_ffi_expanded_keys = prepare_cuda_radix_ffi(
|
||||
expanded_keys,
|
||||
&mut expanded_keys_degrees,
|
||||
&mut expanded_keys_noise_levels,
|
||||
);
|
||||
|
||||
let mut key_degrees = key.info.blocks.iter().map(|b| b.degree.0).collect();
|
||||
let mut key_noise_levels = key.info.blocks.iter().map(|b| b.noise_level.0).collect();
|
||||
let cuda_ffi_key = prepare_cuda_radix_ffi(key, &mut key_degrees, &mut key_noise_levels);
|
||||
|
||||
let noise_reduction_type = resolve_ms_noise_reduction_config(ms_noise_reduction_configuration);
|
||||
|
||||
let mut mem_ptr: *mut i8 = std::ptr::null_mut();
|
||||
scratch_cuda_integer_key_expansion_64(
|
||||
streams.ffi(),
|
||||
std::ptr::addr_of_mut!(mem_ptr),
|
||||
glwe_dimension.0 as u32,
|
||||
polynomial_size.0 as u32,
|
||||
lwe_dimension.0 as u32,
|
||||
ks_level.0 as u32,
|
||||
ks_base_log.0 as u32,
|
||||
pbs_level.0 as u32,
|
||||
pbs_base_log.0 as u32,
|
||||
grouping_factor.0 as u32,
|
||||
message_modulus.0 as u32,
|
||||
carry_modulus.0 as u32,
|
||||
pbs_type as u32,
|
||||
true,
|
||||
noise_reduction_type as u32,
|
||||
);
|
||||
|
||||
cuda_integer_key_expansion_64(
|
||||
streams.ffi(),
|
||||
&raw mut cuda_ffi_expanded_keys,
|
||||
&raw const cuda_ffi_key,
|
||||
mem_ptr,
|
||||
bootstrapping_key.ptr.as_ptr(),
|
||||
keyswitch_key.ptr.as_ptr(),
|
||||
);
|
||||
|
||||
cleanup_cuda_integer_key_expansion_64(streams.ffi(), std::ptr::addr_of_mut!(mem_ptr));
|
||||
|
||||
update_noise_degree(expanded_keys, &cuda_ffi_expanded_keys);
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
/// # Safety
|
||||
///
|
||||
/// - [CudaStreams::synchronize] __must__ be called after this function as soon as synchronization
|
||||
/// is required
|
||||
pub unsafe fn get_key_expansion_integer_radix_size_on_gpu(
|
||||
streams: &CudaStreams,
|
||||
message_modulus: MessageModulus,
|
||||
carry_modulus: CarryModulus,
|
||||
glwe_dimension: GlweDimension,
|
||||
polynomial_size: PolynomialSize,
|
||||
lwe_dimension: LweDimension,
|
||||
ks_level: DecompositionLevelCount,
|
||||
ks_base_log: DecompositionBaseLog,
|
||||
pbs_level: DecompositionLevelCount,
|
||||
pbs_base_log: DecompositionBaseLog,
|
||||
grouping_factor: LweBskGroupingFactor,
|
||||
pbs_type: PBSType,
|
||||
ms_noise_reduction_configuration: Option<&CudaModulusSwitchNoiseReductionConfiguration>,
|
||||
) -> u64 {
|
||||
let noise_reduction_type = resolve_noise_reduction_type(ms_noise_reduction_configuration);
|
||||
|
||||
let mut mem_ptr: *mut i8 = std::ptr::null_mut();
|
||||
let size = {
|
||||
scratch_cuda_integer_key_expansion_64(
|
||||
streams.ffi(),
|
||||
std::ptr::addr_of_mut!(mem_ptr),
|
||||
glwe_dimension.0 as u32,
|
||||
polynomial_size.0 as u32,
|
||||
lwe_dimension.0 as u32,
|
||||
ks_level.0 as u32,
|
||||
ks_base_log.0 as u32,
|
||||
pbs_level.0 as u32,
|
||||
pbs_base_log.0 as u32,
|
||||
grouping_factor.0 as u32,
|
||||
message_modulus.0 as u32,
|
||||
carry_modulus.0 as u32,
|
||||
pbs_type as u32,
|
||||
true,
|
||||
noise_reduction_type as u32,
|
||||
)
|
||||
};
|
||||
|
||||
unsafe {
|
||||
cleanup_cuda_integer_key_expansion_64(streams.ffi(), std::ptr::addr_of_mut!(mem_ptr))
|
||||
};
|
||||
|
||||
size
|
||||
}
|
||||
|
||||
465
tfhe/src/integer/gpu/server_key/radix/aes.rs
Normal file
465
tfhe/src/integer/gpu/server_key/radix/aes.rs
Normal file
@@ -0,0 +1,465 @@
|
||||
use crate::core_crypto::gpu::{
|
||||
check_valid_cuda_malloc, check_valid_cuda_malloc_assert_oom, CudaStreams,
|
||||
};
|
||||
use crate::integer::gpu::ciphertext::{CudaIntegerRadixCiphertext, CudaUnsignedRadixCiphertext};
|
||||
use crate::integer::gpu::server_key::{CudaBootstrappingKey, CudaServerKey};
|
||||
|
||||
use crate::core_crypto::prelude::LweBskGroupingFactor;
|
||||
use crate::integer::gpu::{
|
||||
get_aes_ctr_encrypt_integer_radix_size_on_gpu, get_key_expansion_integer_radix_size_on_gpu,
|
||||
unchecked_aes_ctr_encrypt_integer_radix_kb_assign_async,
|
||||
unchecked_key_expansion_integer_radix_kb_assign_async, PBSType,
|
||||
};
|
||||
use crate::integer::{RadixCiphertext, RadixClientKey};
|
||||
use crate::shortint::Ciphertext;
|
||||
|
||||
const NUM_BITS: usize = 128;
|
||||
|
||||
impl RadixClientKey {
|
||||
/// Encrypts a 128-bit block for homomorphic AES evaluation.
|
||||
///
|
||||
/// This function prepares a 128-bit plaintext block (like an AES key or IV)
|
||||
/// for homomorphic processing by decomposing it into its 128 constituent bits
|
||||
/// and encrypting each bit individually with FHE.
|
||||
///
|
||||
/// The process is as follows:
|
||||
/// ```text
|
||||
/// // INPUT: A 128-bit plaintext block
|
||||
/// Plaintext block (u128): 0x2b7e1516...
|
||||
/// |
|
||||
/// V
|
||||
/// // 1. Decompose the block into individual bits
|
||||
/// Individual bits: [b127, b126, ..., b1, b0]
|
||||
/// |
|
||||
/// V
|
||||
/// // 2. Encrypt each bit individually using FHE
|
||||
/// `self.encrypt(bit)` is applied to each bit
|
||||
/// |
|
||||
/// V
|
||||
/// // 3. Collect the resulting bit-ciphertexts
|
||||
/// Ciphertexts: [Ct(b127), Ct(b126), ..., Ct(b0)]
|
||||
/// |
|
||||
/// V
|
||||
/// // 4. Group the bit-ciphertexts into a single RadixCiphertext
|
||||
/// // representing the full encrypted block.
|
||||
/// // OUTPUT: A RadixCiphertext
|
||||
/// ```
|
||||
pub fn encrypt_u128_for_aes_ctr(&self, data: u128) -> RadixCiphertext {
|
||||
let mut blocks: Vec<Ciphertext> = Vec::with_capacity(NUM_BITS);
|
||||
for i in 0..NUM_BITS {
|
||||
let bit = ((data >> (NUM_BITS - 1 - i)) & 1) as u64;
|
||||
blocks.extend(self.encrypt(bit).blocks);
|
||||
}
|
||||
RadixCiphertext::from(blocks)
|
||||
}
|
||||
|
||||
/// Decrypts a `RadixCiphertext` containing one or more 128-bit blocks
|
||||
/// that were homomorphically processed.
|
||||
///
|
||||
/// This function reverses the encryption process by decrypting each individual
|
||||
/// bit-ciphertext and reassembling them into 128-bit plaintext blocks.
|
||||
///
|
||||
/// The process is as follows:
|
||||
/// ```text
|
||||
/// // INPUT: RadixCiphertext containing one or more encrypted blocks
|
||||
/// Ciphertext collection: [Ct(b127), ..., Ct(b0), Ct(b'127), ..., Ct(b'0), ...]
|
||||
/// |
|
||||
/// | (For each sequence of 128 bit-ciphertexts)
|
||||
/// V
|
||||
/// // 1. Decrypt each bit's ciphertext individually
|
||||
/// `self.decrypt(Ct)` is applied to each bit-ciphertext
|
||||
/// |
|
||||
/// V
|
||||
/// // 2. Collect the resulting plaintext bits
|
||||
/// Plaintext bits: [b127, b126, ..., b0]
|
||||
/// |
|
||||
/// V
|
||||
/// // 3. Assemble the bits back into a 128-bit block
|
||||
/// Reconstruction: ( ...((b127 << 1) | b126) << 1 | ... ) | b0
|
||||
/// |
|
||||
/// V
|
||||
/// // OUTPUT: A vector of plaintext u128 blocks
|
||||
/// Plaintext u128s: [0x..., ...]
|
||||
/// ```
|
||||
pub fn decrypt_u128_from_aes_ctr(
|
||||
&self,
|
||||
encrypted_result: &RadixCiphertext,
|
||||
num_aes_inputs: usize,
|
||||
) -> Vec<u128> {
|
||||
let mut plaintext_results = Vec::with_capacity(num_aes_inputs);
|
||||
for i in 0..num_aes_inputs {
|
||||
let mut current_block_plaintext: u128 = 0;
|
||||
let block_start_index = i * NUM_BITS;
|
||||
for j in 0..NUM_BITS {
|
||||
let block_slice =
|
||||
&encrypted_result.blocks[block_start_index + j..block_start_index + j + 1];
|
||||
let block_radix_ct = RadixCiphertext::from(block_slice.to_vec());
|
||||
let decrypted_bit: u128 = self.decrypt(&block_radix_ct);
|
||||
current_block_plaintext = (current_block_plaintext << 1) | decrypted_bit;
|
||||
}
|
||||
plaintext_results.push(current_block_plaintext);
|
||||
}
|
||||
plaintext_results
|
||||
}
|
||||
}
|
||||
|
||||
impl CudaServerKey {
|
||||
pub fn aes_ctr(
|
||||
&self,
|
||||
key: &CudaUnsignedRadixCiphertext,
|
||||
iv: &CudaUnsignedRadixCiphertext,
|
||||
start_counter: u128,
|
||||
num_aes_inputs: usize,
|
||||
streams: &CudaStreams,
|
||||
) -> CudaUnsignedRadixCiphertext {
|
||||
let gpu_index = streams.gpu_indexes[0];
|
||||
|
||||
let key_expansion_size = self.get_key_expansion_size_on_gpu(streams);
|
||||
check_valid_cuda_malloc_assert_oom(key_expansion_size, gpu_index);
|
||||
|
||||
// `parallelism` refers to level of parallelization of the S-box.
|
||||
// S-box should process 16 bytes of data: sequentially, or in groups of 2,
|
||||
// or in groups of 4, or in groups of 8, or all 16 at the same time.
|
||||
// More parallelization leads to higher memory usage. Therefore, we must find a way
|
||||
// to maximize parallelization while ensuring that there is still enough memory remaining on
|
||||
// the GPU.
|
||||
//
|
||||
let mut parallelism = 16;
|
||||
|
||||
while parallelism > 0 {
|
||||
// `num_aes_inputs` refers to the number of 128-bit ciphertexts that AES will produce.
|
||||
//
|
||||
let aes_encrypt_size =
|
||||
self.get_aes_encrypt_size_on_gpu(num_aes_inputs, parallelism, streams);
|
||||
|
||||
if check_valid_cuda_malloc(aes_encrypt_size, streams.gpu_indexes[0]) {
|
||||
let round_keys = unsafe { self.key_expansion_async(key, streams) };
|
||||
let res = unsafe {
|
||||
self.aes_encrypt_async(
|
||||
iv,
|
||||
&round_keys,
|
||||
start_counter,
|
||||
num_aes_inputs,
|
||||
parallelism,
|
||||
streams,
|
||||
)
|
||||
};
|
||||
streams.synchronize();
|
||||
return res;
|
||||
}
|
||||
parallelism /= 2;
|
||||
}
|
||||
|
||||
panic!("Failed to allocate GPU memory for AES, even with the lowest parallelism setting.");
|
||||
}
|
||||
|
||||
pub fn aes_ctr_with_fixed_parallelism(
|
||||
&self,
|
||||
key: &CudaUnsignedRadixCiphertext,
|
||||
iv: &CudaUnsignedRadixCiphertext,
|
||||
start_counter: u128,
|
||||
num_aes_inputs: usize,
|
||||
sbox_parallelism: usize,
|
||||
streams: &CudaStreams,
|
||||
) -> CudaUnsignedRadixCiphertext {
|
||||
assert!(
|
||||
[1, 2, 4, 8, 16].contains(&sbox_parallelism),
|
||||
"Invalid S-Box parallelism: must be one of [1, 2, 4, 8, 16], got {sbox_parallelism}"
|
||||
);
|
||||
|
||||
let gpu_index = streams.gpu_indexes[0];
|
||||
|
||||
let key_expansion_size = self.get_key_expansion_size_on_gpu(streams);
|
||||
check_valid_cuda_malloc_assert_oom(key_expansion_size, gpu_index);
|
||||
|
||||
let aes_encrypt_size =
|
||||
self.get_aes_encrypt_size_on_gpu(num_aes_inputs, sbox_parallelism, streams);
|
||||
check_valid_cuda_malloc_assert_oom(aes_encrypt_size, gpu_index);
|
||||
|
||||
let round_keys = unsafe { self.key_expansion_async(key, streams) };
|
||||
let res = unsafe {
|
||||
self.aes_encrypt_async(
|
||||
iv,
|
||||
&round_keys,
|
||||
start_counter,
|
||||
num_aes_inputs,
|
||||
sbox_parallelism,
|
||||
streams,
|
||||
)
|
||||
};
|
||||
streams.synchronize();
|
||||
res
|
||||
}
|
||||
|
||||
/// # Safety
|
||||
///
|
||||
/// - [CudaStreams::synchronize] __must__ be called after this function as soon as
|
||||
/// synchronization is required
|
||||
pub unsafe fn aes_encrypt_async(
|
||||
&self,
|
||||
iv: &CudaUnsignedRadixCiphertext,
|
||||
round_keys: &CudaUnsignedRadixCiphertext,
|
||||
start_counter: u128,
|
||||
num_aes_inputs: usize,
|
||||
sbox_parallelism: usize,
|
||||
streams: &CudaStreams,
|
||||
) -> CudaUnsignedRadixCiphertext {
|
||||
let mut result: CudaUnsignedRadixCiphertext =
|
||||
self.create_trivial_zero_radix(num_aes_inputs * 128, streams);
|
||||
|
||||
let num_round_key_blocks = 11 * NUM_BITS;
|
||||
|
||||
assert_eq!(
|
||||
iv.as_ref().d_blocks.lwe_ciphertext_count().0,
|
||||
NUM_BITS,
|
||||
"AES IV must contain {NUM_BITS} encrypted bits, but contains {}",
|
||||
iv.as_ref().d_blocks.lwe_ciphertext_count().0
|
||||
);
|
||||
assert_eq!(
|
||||
round_keys.as_ref().d_blocks.lwe_ciphertext_count().0,
|
||||
num_round_key_blocks,
|
||||
"AES round_keys must contain {num_round_key_blocks} encrypted bits, but contains {}",
|
||||
round_keys.as_ref().d_blocks.lwe_ciphertext_count().0
|
||||
);
|
||||
assert_eq!(
|
||||
result.as_ref().d_blocks.lwe_ciphertext_count().0,
|
||||
num_aes_inputs * 128,
|
||||
"AES result must contain {} encrypted bits for {num_aes_inputs} blocks, but contains {}",
|
||||
num_aes_inputs * 128,
|
||||
result.as_ref().d_blocks.lwe_ciphertext_count().0
|
||||
);
|
||||
|
||||
match &self.bootstrapping_key {
|
||||
CudaBootstrappingKey::Classic(d_bsk) => {
|
||||
unchecked_aes_ctr_encrypt_integer_radix_kb_assign_async(
|
||||
streams,
|
||||
result.as_mut(),
|
||||
iv.as_ref(),
|
||||
round_keys.as_ref(),
|
||||
start_counter,
|
||||
num_aes_inputs as u32,
|
||||
sbox_parallelism as u32,
|
||||
&d_bsk.d_vec,
|
||||
&self.key_switching_key.d_vec,
|
||||
self.message_modulus,
|
||||
self.carry_modulus,
|
||||
d_bsk.glwe_dimension,
|
||||
d_bsk.polynomial_size,
|
||||
d_bsk.input_lwe_dimension,
|
||||
self.key_switching_key.decomposition_level_count(),
|
||||
self.key_switching_key.decomposition_base_log(),
|
||||
d_bsk.decomp_level_count,
|
||||
d_bsk.decomp_base_log,
|
||||
LweBskGroupingFactor(0),
|
||||
PBSType::Classical,
|
||||
d_bsk.ms_noise_reduction_configuration.as_ref(),
|
||||
);
|
||||
}
|
||||
CudaBootstrappingKey::MultiBit(d_multibit_bsk) => {
|
||||
unchecked_aes_ctr_encrypt_integer_radix_kb_assign_async(
|
||||
streams,
|
||||
result.as_mut(),
|
||||
iv.as_ref(),
|
||||
round_keys.as_ref(),
|
||||
start_counter,
|
||||
num_aes_inputs as u32,
|
||||
sbox_parallelism as u32,
|
||||
&d_multibit_bsk.d_vec,
|
||||
&self.key_switching_key.d_vec,
|
||||
self.message_modulus,
|
||||
self.carry_modulus,
|
||||
d_multibit_bsk.glwe_dimension,
|
||||
d_multibit_bsk.polynomial_size,
|
||||
d_multibit_bsk.input_lwe_dimension,
|
||||
self.key_switching_key.decomposition_level_count(),
|
||||
self.key_switching_key.decomposition_base_log(),
|
||||
d_multibit_bsk.decomp_level_count,
|
||||
d_multibit_bsk.decomp_base_log,
|
||||
d_multibit_bsk.grouping_factor,
|
||||
PBSType::MultiBit,
|
||||
None,
|
||||
);
|
||||
}
|
||||
}
|
||||
result
|
||||
}
|
||||
|
||||
fn get_aes_encrypt_size_on_gpu(
|
||||
&self,
|
||||
num_aes_inputs: usize,
|
||||
sbox_parallelism: usize,
|
||||
streams: &CudaStreams,
|
||||
) -> u64 {
|
||||
let size = unsafe {
|
||||
self.get_aes_encrypt_size_on_gpu_async(num_aes_inputs, sbox_parallelism, streams)
|
||||
};
|
||||
streams.synchronize();
|
||||
size
|
||||
}
|
||||
|
||||
/// # Safety
|
||||
///
|
||||
/// - [CudaStreams::synchronize] __must__ be called after this function as soon as
|
||||
/// synchronization is required
|
||||
unsafe fn get_aes_encrypt_size_on_gpu_async(
|
||||
&self,
|
||||
num_aes_inputs: usize,
|
||||
sbox_parallelism: usize,
|
||||
streams: &CudaStreams,
|
||||
) -> u64 {
|
||||
match &self.bootstrapping_key {
|
||||
CudaBootstrappingKey::Classic(d_bsk) => get_aes_ctr_encrypt_integer_radix_size_on_gpu(
|
||||
streams,
|
||||
num_aes_inputs as u32,
|
||||
sbox_parallelism as u32,
|
||||
self.message_modulus,
|
||||
self.carry_modulus,
|
||||
d_bsk.glwe_dimension,
|
||||
d_bsk.polynomial_size,
|
||||
d_bsk.input_lwe_dimension,
|
||||
self.key_switching_key.decomposition_level_count(),
|
||||
self.key_switching_key.decomposition_base_log(),
|
||||
d_bsk.decomp_level_count,
|
||||
d_bsk.decomp_base_log,
|
||||
LweBskGroupingFactor(0),
|
||||
PBSType::Classical,
|
||||
d_bsk.ms_noise_reduction_configuration.as_ref(),
|
||||
),
|
||||
CudaBootstrappingKey::MultiBit(d_multibit_bsk) => {
|
||||
get_aes_ctr_encrypt_integer_radix_size_on_gpu(
|
||||
streams,
|
||||
num_aes_inputs as u32,
|
||||
sbox_parallelism as u32,
|
||||
self.message_modulus,
|
||||
self.carry_modulus,
|
||||
d_multibit_bsk.glwe_dimension,
|
||||
d_multibit_bsk.polynomial_size,
|
||||
d_multibit_bsk.input_lwe_dimension,
|
||||
self.key_switching_key.decomposition_level_count(),
|
||||
self.key_switching_key.decomposition_base_log(),
|
||||
d_multibit_bsk.decomp_level_count,
|
||||
d_multibit_bsk.decomp_base_log,
|
||||
d_multibit_bsk.grouping_factor,
|
||||
PBSType::MultiBit,
|
||||
None,
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// # Safety
|
||||
///
|
||||
/// - [CudaStreams::synchronize] __must__ be called after this function as soon as
|
||||
/// synchronization is required
|
||||
pub unsafe fn key_expansion_async(
|
||||
&self,
|
||||
key: &CudaUnsignedRadixCiphertext,
|
||||
streams: &CudaStreams,
|
||||
) -> CudaUnsignedRadixCiphertext {
|
||||
let num_round_keys = 11;
|
||||
let num_key_bits = 128;
|
||||
let mut expanded_keys: CudaUnsignedRadixCiphertext =
|
||||
self.create_trivial_zero_radix(num_round_keys * num_key_bits, streams);
|
||||
|
||||
assert_eq!(
|
||||
key.as_ref().d_blocks.lwe_ciphertext_count().0,
|
||||
num_key_bits,
|
||||
"Input key must contain {} encrypted bits, but contains {}",
|
||||
num_key_bits,
|
||||
key.as_ref().d_blocks.lwe_ciphertext_count().0
|
||||
);
|
||||
|
||||
match &self.bootstrapping_key {
|
||||
CudaBootstrappingKey::Classic(d_bsk) => {
|
||||
unchecked_key_expansion_integer_radix_kb_assign_async(
|
||||
streams,
|
||||
expanded_keys.as_mut(),
|
||||
key.as_ref(),
|
||||
&d_bsk.d_vec,
|
||||
&self.key_switching_key.d_vec,
|
||||
self.message_modulus,
|
||||
self.carry_modulus,
|
||||
d_bsk.glwe_dimension,
|
||||
d_bsk.polynomial_size,
|
||||
d_bsk.input_lwe_dimension,
|
||||
self.key_switching_key.decomposition_level_count(),
|
||||
self.key_switching_key.decomposition_base_log(),
|
||||
d_bsk.decomp_level_count,
|
||||
d_bsk.decomp_base_log,
|
||||
LweBskGroupingFactor(0),
|
||||
PBSType::Classical,
|
||||
d_bsk.ms_noise_reduction_configuration.as_ref(),
|
||||
);
|
||||
}
|
||||
CudaBootstrappingKey::MultiBit(d_multibit_bsk) => {
|
||||
unchecked_key_expansion_integer_radix_kb_assign_async(
|
||||
streams,
|
||||
expanded_keys.as_mut(),
|
||||
key.as_ref(),
|
||||
&d_multibit_bsk.d_vec,
|
||||
&self.key_switching_key.d_vec,
|
||||
self.message_modulus,
|
||||
self.carry_modulus,
|
||||
d_multibit_bsk.glwe_dimension,
|
||||
d_multibit_bsk.polynomial_size,
|
||||
d_multibit_bsk.input_lwe_dimension,
|
||||
self.key_switching_key.decomposition_level_count(),
|
||||
self.key_switching_key.decomposition_base_log(),
|
||||
d_multibit_bsk.decomp_level_count,
|
||||
d_multibit_bsk.decomp_base_log,
|
||||
d_multibit_bsk.grouping_factor,
|
||||
PBSType::MultiBit,
|
||||
None,
|
||||
);
|
||||
}
|
||||
}
|
||||
expanded_keys
|
||||
}
|
||||
|
||||
fn get_key_expansion_size_on_gpu(&self, streams: &CudaStreams) -> u64 {
|
||||
let size = unsafe { self.get_key_expansion_size_on_gpu_async(streams) };
|
||||
streams.synchronize();
|
||||
size
|
||||
}
|
||||
|
||||
/// # Safety
|
||||
///
|
||||
/// - [CudaStreams::synchronize] __must__ be called after this function as soon as
|
||||
/// synchronization is required
|
||||
unsafe fn get_key_expansion_size_on_gpu_async(&self, streams: &CudaStreams) -> u64 {
|
||||
match &self.bootstrapping_key {
|
||||
CudaBootstrappingKey::Classic(d_bsk) => get_key_expansion_integer_radix_size_on_gpu(
|
||||
streams,
|
||||
self.message_modulus,
|
||||
self.carry_modulus,
|
||||
d_bsk.glwe_dimension,
|
||||
d_bsk.polynomial_size,
|
||||
d_bsk.input_lwe_dimension,
|
||||
self.key_switching_key.decomposition_level_count(),
|
||||
self.key_switching_key.decomposition_base_log(),
|
||||
d_bsk.decomp_level_count,
|
||||
d_bsk.decomp_base_log,
|
||||
LweBskGroupingFactor(0),
|
||||
PBSType::Classical,
|
||||
d_bsk.ms_noise_reduction_configuration.as_ref(),
|
||||
),
|
||||
CudaBootstrappingKey::MultiBit(d_multibit_bsk) => {
|
||||
get_key_expansion_integer_radix_size_on_gpu(
|
||||
streams,
|
||||
self.message_modulus,
|
||||
self.carry_modulus,
|
||||
d_multibit_bsk.glwe_dimension,
|
||||
d_multibit_bsk.polynomial_size,
|
||||
d_multibit_bsk.input_lwe_dimension,
|
||||
self.key_switching_key.decomposition_level_count(),
|
||||
self.key_switching_key.decomposition_base_log(),
|
||||
d_multibit_bsk.decomp_level_count,
|
||||
d_multibit_bsk.decomp_base_log,
|
||||
d_multibit_bsk.grouping_factor,
|
||||
PBSType::MultiBit,
|
||||
None,
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -57,6 +57,7 @@ mod sub;
|
||||
mod vector_comparisons;
|
||||
mod vector_find;
|
||||
|
||||
mod aes;
|
||||
#[cfg(test)]
|
||||
mod tests_long_run;
|
||||
#[cfg(test)]
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
pub(crate) mod test_add;
|
||||
pub(crate) mod test_aes;
|
||||
pub(crate) mod test_bitwise_op;
|
||||
pub(crate) mod test_cmux;
|
||||
pub(crate) mod test_comparison;
|
||||
@@ -82,6 +83,98 @@ impl<F> GpuFunctionExecutor<F> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, F>
|
||||
FunctionExecutor<
|
||||
(&'a RadixCiphertext, &'a RadixCiphertext, u128, usize, usize),
|
||||
RadixCiphertext,
|
||||
> for GpuFunctionExecutor<F>
|
||||
where
|
||||
F: Fn(
|
||||
&CudaServerKey,
|
||||
&CudaUnsignedRadixCiphertext,
|
||||
&CudaUnsignedRadixCiphertext,
|
||||
u128,
|
||||
usize,
|
||||
usize,
|
||||
&CudaStreams,
|
||||
) -> CudaUnsignedRadixCiphertext,
|
||||
{
|
||||
fn setup(&mut self, cks: &RadixClientKey, sks: Arc<ServerKey>) {
|
||||
self.setup_from_keys(cks, &sks);
|
||||
}
|
||||
|
||||
fn execute(
|
||||
&mut self,
|
||||
input: (&'a RadixCiphertext, &'a RadixCiphertext, u128, usize, usize),
|
||||
) -> RadixCiphertext {
|
||||
let context = self
|
||||
.context
|
||||
.as_ref()
|
||||
.expect("setup was not properly called");
|
||||
|
||||
let d_ctxt_1 =
|
||||
CudaUnsignedRadixCiphertext::from_radix_ciphertext(input.0, &context.streams);
|
||||
let d_ctxt_2 =
|
||||
CudaUnsignedRadixCiphertext::from_radix_ciphertext(input.1, &context.streams);
|
||||
|
||||
let gpu_result = (self.func)(
|
||||
&context.sks,
|
||||
&d_ctxt_1,
|
||||
&d_ctxt_2,
|
||||
input.2,
|
||||
input.3,
|
||||
input.4,
|
||||
&context.streams,
|
||||
);
|
||||
|
||||
gpu_result.to_radix_ciphertext(&context.streams)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, F>
|
||||
FunctionExecutor<(&'a RadixCiphertext, &'a RadixCiphertext, u128, usize), RadixCiphertext>
|
||||
for GpuFunctionExecutor<F>
|
||||
where
|
||||
F: Fn(
|
||||
&CudaServerKey,
|
||||
&CudaUnsignedRadixCiphertext,
|
||||
&CudaUnsignedRadixCiphertext,
|
||||
u128,
|
||||
usize,
|
||||
&CudaStreams,
|
||||
) -> CudaUnsignedRadixCiphertext,
|
||||
{
|
||||
fn setup(&mut self, cks: &RadixClientKey, sks: Arc<ServerKey>) {
|
||||
self.setup_from_keys(cks, &sks);
|
||||
}
|
||||
|
||||
fn execute(
|
||||
&mut self,
|
||||
input: (&'a RadixCiphertext, &'a RadixCiphertext, u128, usize),
|
||||
) -> RadixCiphertext {
|
||||
let context = self
|
||||
.context
|
||||
.as_ref()
|
||||
.expect("setup was not properly called");
|
||||
|
||||
let d_ctxt_1 =
|
||||
CudaUnsignedRadixCiphertext::from_radix_ciphertext(input.0, &context.streams);
|
||||
let d_ctxt_2 =
|
||||
CudaUnsignedRadixCiphertext::from_radix_ciphertext(input.1, &context.streams);
|
||||
|
||||
let gpu_result = (self.func)(
|
||||
&context.sks,
|
||||
&d_ctxt_1,
|
||||
&d_ctxt_2,
|
||||
input.2,
|
||||
input.3,
|
||||
&context.streams,
|
||||
);
|
||||
|
||||
gpu_result.to_radix_ciphertext(&context.streams)
|
||||
}
|
||||
}
|
||||
|
||||
/// For default/unchecked binary functions
|
||||
impl<'a, F> FunctionExecutor<(&'a RadixCiphertext, &'a RadixCiphertext), RadixCiphertext>
|
||||
for GpuFunctionExecutor<F>
|
||||
|
||||
@@ -0,0 +1,59 @@
|
||||
use crate::integer::gpu::server_key::radix::tests_unsigned::{
|
||||
create_gpu_parameterized_test, GpuFunctionExecutor,
|
||||
};
|
||||
use crate::integer::gpu::CudaServerKey;
|
||||
use crate::integer::server_key::radix_parallel::tests_cases_unsigned::{
|
||||
aes_dynamic_parallelism_many_inputs_test, aes_fixed_parallelism_1_input_test,
|
||||
aes_fixed_parallelism_2_inputs_test,
|
||||
};
|
||||
use crate::shortint::parameters::{
|
||||
TestParameters, PARAM_GPU_MULTI_BIT_GROUP_4_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128,
|
||||
PARAM_GPU_MULTI_BIT_GROUP_4_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M128,
|
||||
};
|
||||
|
||||
create_gpu_parameterized_test!(integer_aes_fixed_parallelism_1_input {
|
||||
PARAM_GPU_MULTI_BIT_GROUP_4_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128,
|
||||
PARAM_GPU_MULTI_BIT_GROUP_4_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M128
|
||||
});
|
||||
|
||||
create_gpu_parameterized_test!(integer_aes_fixed_parallelism_2_inputs {
|
||||
PARAM_GPU_MULTI_BIT_GROUP_4_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128,
|
||||
PARAM_GPU_MULTI_BIT_GROUP_4_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M128
|
||||
});
|
||||
|
||||
create_gpu_parameterized_test!(integer_aes_dynamic_parallelism_many_inputs {
|
||||
PARAM_GPU_MULTI_BIT_GROUP_4_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128,
|
||||
PARAM_GPU_MULTI_BIT_GROUP_4_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M128
|
||||
});
|
||||
|
||||
// The following two tests are referred to as "fixed_parallelism" because the objective is to test
|
||||
// AES, in CTR mode, across all possible parallelizations of the S-box. The S-box must process 16
|
||||
// bytes; the parallelization refers to the number of bytes it will process in parallel in one call:
|
||||
// 1, 2, 4, 8, or 16.
|
||||
//
|
||||
fn integer_aes_fixed_parallelism_1_input<P>(param: P)
|
||||
where
|
||||
P: Into<TestParameters>,
|
||||
{
|
||||
let executor = GpuFunctionExecutor::new(&CudaServerKey::aes_ctr_with_fixed_parallelism);
|
||||
aes_fixed_parallelism_1_input_test(param, executor);
|
||||
}
|
||||
|
||||
fn integer_aes_fixed_parallelism_2_inputs<P>(param: P)
|
||||
where
|
||||
P: Into<TestParameters>,
|
||||
{
|
||||
let executor = GpuFunctionExecutor::new(&CudaServerKey::aes_ctr_with_fixed_parallelism);
|
||||
aes_fixed_parallelism_2_inputs_test(param, executor);
|
||||
}
|
||||
|
||||
// The test referred to as "dynamic_parallelism" will seek the maximum s-box parallelization that
|
||||
// the machine can support.
|
||||
//
|
||||
fn integer_aes_dynamic_parallelism_many_inputs<P>(param: P)
|
||||
where
|
||||
P: Into<TestParameters>,
|
||||
{
|
||||
let executor = GpuFunctionExecutor::new(&CudaServerKey::aes_ctr);
|
||||
aes_dynamic_parallelism_many_inputs_test(param, executor);
|
||||
}
|
||||
@@ -43,6 +43,11 @@ pub(crate) use crate::integer::server_key::radix_parallel::tests_unsigned::test_
|
||||
default_add_test, unchecked_add_assign_test,
|
||||
};
|
||||
#[cfg(feature = "gpu")]
|
||||
pub(crate) use crate::integer::server_key::radix_parallel::tests_unsigned::test_aes::{
|
||||
aes_dynamic_parallelism_many_inputs_test, aes_fixed_parallelism_1_input_test,
|
||||
aes_fixed_parallelism_2_inputs_test,
|
||||
};
|
||||
#[cfg(feature = "gpu")]
|
||||
pub(crate) use crate::integer::server_key::radix_parallel::tests_unsigned::test_neg::default_neg_test;
|
||||
pub(crate) use crate::integer::server_key::radix_parallel::tests_unsigned::test_neg::unchecked_neg_test;
|
||||
#[cfg(feature = "gpu")]
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
mod modulus_switch_compression;
|
||||
pub(crate) mod test_add;
|
||||
pub(crate) mod test_aes;
|
||||
pub(crate) mod test_bitwise_op;
|
||||
mod test_block_rotate;
|
||||
mod test_block_shift;
|
||||
|
||||
@@ -0,0 +1,225 @@
|
||||
#![cfg(feature = "gpu")]
|
||||
|
||||
use crate::integer::keycache::KEY_CACHE;
|
||||
use crate::integer::server_key::radix_parallel::tests_cases_unsigned::FunctionExecutor;
|
||||
use crate::integer::{IntegerKeyKind, RadixCiphertext, RadixClientKey};
|
||||
use crate::shortint::parameters::TestParameters;
|
||||
use std::sync::Arc;
|
||||
|
||||
const S_BOX: [u8; 256] = [
|
||||
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
|
||||
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
|
||||
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
|
||||
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
|
||||
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
|
||||
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
|
||||
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
|
||||
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
|
||||
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
|
||||
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
|
||||
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
|
||||
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
|
||||
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
|
||||
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
|
||||
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
|
||||
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,
|
||||
];
|
||||
|
||||
fn plain_key_expansion(key: u128) -> Vec<u128> {
|
||||
const RCON: [u32; 10] = [
|
||||
0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000,
|
||||
0x80000000, 0x1B000000, 0x36000000,
|
||||
];
|
||||
let mut words = [0u32; 44];
|
||||
for (i, word) in words.iter_mut().enumerate().take(4) {
|
||||
*word = (key >> (96 - (i * 32))) as u32;
|
||||
}
|
||||
for i in 4..44 {
|
||||
let mut temp = words[i - 1];
|
||||
if i % 4 == 0 {
|
||||
temp = temp.rotate_left(8);
|
||||
let mut sub_bytes = 0u32;
|
||||
for j in 0..4 {
|
||||
let byte = (temp >> (24 - j * 8)) as u8;
|
||||
sub_bytes |= (S_BOX[byte as usize] as u32) << (24 - j * 8);
|
||||
}
|
||||
temp = sub_bytes ^ RCON[i / 4 - 1];
|
||||
}
|
||||
words[i] = words[i - 4] ^ temp;
|
||||
}
|
||||
words
|
||||
.chunks_exact(4)
|
||||
.map(|chunk| {
|
||||
((chunk[0] as u128) << 96)
|
||||
| ((chunk[1] as u128) << 64)
|
||||
| ((chunk[2] as u128) << 32)
|
||||
| (chunk[3] as u128)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
fn sub_bytes(state: &mut [u8; 16]) {
|
||||
for byte in state.iter_mut() {
|
||||
*byte = S_BOX[*byte as usize];
|
||||
}
|
||||
}
|
||||
fn shift_rows(state: &mut [u8; 16]) {
|
||||
let original = *state;
|
||||
state[1] = original[5];
|
||||
state[5] = original[9];
|
||||
state[9] = original[13];
|
||||
state[13] = original[1];
|
||||
state[2] = original[10];
|
||||
state[6] = original[14];
|
||||
state[10] = original[2];
|
||||
state[14] = original[6];
|
||||
state[3] = original[15];
|
||||
state[7] = original[3];
|
||||
state[11] = original[7];
|
||||
state[15] = original[11];
|
||||
}
|
||||
fn gmul(mut a: u8, mut b: u8) -> u8 {
|
||||
let mut p = 0;
|
||||
for _ in 0..8 {
|
||||
if (b & 1) != 0 {
|
||||
p ^= a;
|
||||
}
|
||||
let hi_bit_set = (a & 0x80) != 0;
|
||||
a <<= 1;
|
||||
if hi_bit_set {
|
||||
a ^= 0x1B;
|
||||
}
|
||||
b >>= 1;
|
||||
}
|
||||
p
|
||||
}
|
||||
fn mix_columns(state: &mut [u8; 16]) {
|
||||
let original = *state;
|
||||
for i in 0..4 {
|
||||
let col = i * 4;
|
||||
state[col] = gmul(original[col], 2)
|
||||
^ gmul(original[col + 1], 3)
|
||||
^ original[col + 2]
|
||||
^ original[col + 3];
|
||||
state[col + 1] = original[col]
|
||||
^ gmul(original[col + 1], 2)
|
||||
^ gmul(original[col + 2], 3)
|
||||
^ original[col + 3];
|
||||
state[col + 2] = original[col]
|
||||
^ original[col + 1]
|
||||
^ gmul(original[col + 2], 2)
|
||||
^ gmul(original[col + 3], 3);
|
||||
state[col + 3] = gmul(original[col], 3)
|
||||
^ original[col + 1]
|
||||
^ original[col + 2]
|
||||
^ gmul(original[col + 3], 2);
|
||||
}
|
||||
}
|
||||
fn add_round_key(state: &mut [u8; 16], round_key: u128) {
|
||||
let key_bytes = round_key.to_be_bytes();
|
||||
for i in 0..16 {
|
||||
state[i] ^= key_bytes[i];
|
||||
}
|
||||
}
|
||||
fn plain_aes_encrypt_block(block_bytes: &mut [u8; 16], expanded_keys: &[u128]) {
|
||||
add_round_key(block_bytes, expanded_keys[0]);
|
||||
for round_key in expanded_keys.iter().take(10).skip(1) {
|
||||
sub_bytes(block_bytes);
|
||||
shift_rows(block_bytes);
|
||||
mix_columns(block_bytes);
|
||||
add_round_key(block_bytes, *round_key);
|
||||
}
|
||||
sub_bytes(block_bytes);
|
||||
shift_rows(block_bytes);
|
||||
add_round_key(block_bytes, expanded_keys[10]);
|
||||
}
|
||||
fn plain_aes_ctr(num_aes_inputs: usize, iv: u128, key: u128) -> Vec<u128> {
|
||||
let expanded_keys = plain_key_expansion(key);
|
||||
let mut results = Vec::with_capacity(num_aes_inputs);
|
||||
for i in 0..num_aes_inputs {
|
||||
let counter_value = iv.wrapping_add(i as u128);
|
||||
let mut block = counter_value.to_be_bytes();
|
||||
plain_aes_encrypt_block(&mut block, &expanded_keys);
|
||||
results.push(u128::from_be_bytes(block));
|
||||
}
|
||||
results
|
||||
}
|
||||
|
||||
fn internal_aes_fixed_parallelism_test<P, E>(param: P, mut executor: E, num_aes_inputs: usize)
|
||||
where
|
||||
P: Into<TestParameters>,
|
||||
E: for<'a> FunctionExecutor<
|
||||
(&'a RadixCiphertext, &'a RadixCiphertext, u128, usize, usize),
|
||||
RadixCiphertext,
|
||||
>,
|
||||
{
|
||||
let param = param.into();
|
||||
let (cks, sks) = KEY_CACHE.get_from_params(param, IntegerKeyKind::Radix);
|
||||
let cks = RadixClientKey::from((cks, 1));
|
||||
let sks = Arc::new(sks);
|
||||
executor.setup(&cks, sks);
|
||||
|
||||
let key: u128 = 0x2b7e151628aed2a6abf7158809cf4f3c;
|
||||
let iv: u128 = 0xf0f1f2f3f4f5f6f7f8f9fafbfcfdfeff;
|
||||
|
||||
let plain_results = plain_aes_ctr(num_aes_inputs, iv, key);
|
||||
|
||||
let ctxt_key = cks.encrypt_u128_for_aes_ctr(key);
|
||||
let ctxt_iv = cks.encrypt_u128_for_aes_ctr(iv);
|
||||
|
||||
for sbox_parallelism in [1, 2, 4, 8, 16] {
|
||||
let encrypted_result =
|
||||
executor.execute((&ctxt_key, &ctxt_iv, 0, num_aes_inputs, sbox_parallelism));
|
||||
let fhe_results = cks.decrypt_u128_from_aes_ctr(&encrypted_result, num_aes_inputs);
|
||||
assert_eq!(fhe_results, plain_results);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn aes_fixed_parallelism_1_input_test<P, E>(param: P, executor: E)
|
||||
where
|
||||
P: Into<TestParameters>,
|
||||
E: for<'a> FunctionExecutor<
|
||||
(&'a RadixCiphertext, &'a RadixCiphertext, u128, usize, usize),
|
||||
RadixCiphertext,
|
||||
>,
|
||||
{
|
||||
internal_aes_fixed_parallelism_test(param, executor, 1);
|
||||
}
|
||||
|
||||
pub fn aes_fixed_parallelism_2_inputs_test<P, E>(param: P, executor: E)
|
||||
where
|
||||
P: Into<TestParameters>,
|
||||
E: for<'a> FunctionExecutor<
|
||||
(&'a RadixCiphertext, &'a RadixCiphertext, u128, usize, usize),
|
||||
RadixCiphertext,
|
||||
>,
|
||||
{
|
||||
internal_aes_fixed_parallelism_test(param, executor, 2);
|
||||
}
|
||||
|
||||
pub fn aes_dynamic_parallelism_many_inputs_test<P, E>(param: P, mut executor: E)
|
||||
where
|
||||
P: Into<TestParameters>,
|
||||
E: for<'a> FunctionExecutor<
|
||||
(&'a RadixCiphertext, &'a RadixCiphertext, u128, usize),
|
||||
RadixCiphertext,
|
||||
>,
|
||||
{
|
||||
let param = param.into();
|
||||
let (cks, sks) = KEY_CACHE.get_from_params(param, IntegerKeyKind::Radix);
|
||||
let cks = RadixClientKey::from((cks, 1));
|
||||
let sks = Arc::new(sks);
|
||||
executor.setup(&cks, sks);
|
||||
|
||||
let key: u128 = 0x2b7e151628aed2a6abf7158809cf4f3c;
|
||||
let iv: u128 = 0xf0f1f2f3f4f5f6f7f8f9fafbfcfdfeff;
|
||||
|
||||
let ctxt_key = cks.encrypt_u128_for_aes_ctr(key);
|
||||
let ctxt_iv = cks.encrypt_u128_for_aes_ctr(iv);
|
||||
|
||||
for num_aes_inputs in [4, 8, 16, 32] {
|
||||
let plain_results = plain_aes_ctr(num_aes_inputs, iv, key);
|
||||
let encrypted_result = executor.execute((&ctxt_key, &ctxt_iv, 0, num_aes_inputs));
|
||||
let fhe_results = cks.decrypt_u128_from_aes_ctr(&encrypted_result, num_aes_inputs);
|
||||
assert_eq!(fhe_results, plain_results);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user