Compare commits

...

340 Commits
0.1.5 ... 0.2.4

Author SHA1 Message Date
Arthur Meyre
cb1a95e20d chore(tfhe): bump version to 0.2.4 2023-05-09 16:07:55 +02:00
dependabot[bot]
1d19fcfdb9 chore(deps): bump JS-DevTools/npm-publish from 2.0.0 to 2.1.0
Bumps [JS-DevTools/npm-publish](https://github.com/JS-DevTools/npm-publish) from 2.0.0 to 2.1.0.
- [Release notes](https://github.com/JS-DevTools/npm-publish/releases)
- [Changelog](https://github.com/JS-DevTools/npm-publish/blob/main/CHANGELOG.md)
- [Commits](0be441d808...541aa6b21b)

---
updated-dependencies:
- dependency-name: JS-DevTools/npm-publish
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-05-09 12:01:49 +02:00
sarah el kazdadi
c93bb51714 fix(pbs): fix bug in rounding code in f128 pbs 2023-05-09 11:21:30 +02:00
Arthur Meyre
b1788cc9df chore(core): re-enable split pbs for u128 2023-04-26 09:23:17 +02:00
Arthur Meyre
6000ef39ab chore(doc): fix docstring ref 2023-04-26 09:23:17 +02:00
Arthur Meyre
c087858f65 refactor(integer): remove usage of Mutex for determinism 2023-04-25 17:16:30 +02:00
sarah el kazdadi
62d6852d07 fix(split): fix split pbs backward conversion 2023-04-25 11:17:44 +02:00
Arthur Meyre
85e8988f29 chore(core): change rng tests to better avoid false failures
- we still check we generate non zero values but add retry conditions or
have less stringent checks, to allow some values to be zero for example as
it's a valid value that can be generated
- each test suite (test and doctest) for these tests ran 1000 times without
failure
2023-04-24 14:49:14 +02:00
dependabot[bot]
ac04ed0893 chore(deps): bump JS-DevTools/npm-publish from 1.4.3 to 2.0.0
Bumps [JS-DevTools/npm-publish](https://github.com/JS-DevTools/npm-publish) from 1.4.3 to 2.0.0.
- [Release notes](https://github.com/JS-DevTools/npm-publish/releases)
- [Changelog](https://github.com/JS-DevTools/npm-publish/blob/main/CHANGELOG.md)
- [Commits](0f451a9417...0be441d808)

---
updated-dependencies:
- dependency-name: JS-DevTools/npm-publish
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-24 14:49:01 +02:00
Arthur Meyre
60385f1489 chore(tfhe): bump version to 0.2.3 2023-04-24 10:48:30 +02:00
Arthur Meyre
7c8926b645 chore(doc): fix typo 2023-04-24 09:30:08 +02:00
David Testé
e5cf51230a chore(ci): publish tfhe release on-demand
This will perform on-demand release publication.
It will publish on the following channels:
 * crates.io
 * web and node package on npmjs

(cherry picked from commit 25a2586eae)
2023-04-21 15:56:09 +02:00
Arthur Meyre
cdc25d6c60 chore(core): add more sanity checks on RNG 2023-04-21 13:16:18 +02:00
Arthur Meyre
ab59514b0d fix(core): fix rng 2023-04-21 13:16:18 +02:00
tmontaigu
7c2fa7529c feat(boolean): add BooleanEngine::replace_thread_local
This new associated function allows to replace
the engine used in the thread.
2023-04-20 17:22:37 +02:00
Arthur Meyre
945ce4617f chore(tfhe): bump version to 0.2.2 2023-04-20 09:21:53 +02:00
Arthur Meyre
ff84e70ca9 chore(core): disable split pbs128 2023-04-20 09:21:53 +02:00
tmontaigu
956c4080f5 feat(hlapi): add trivial encryptions 2023-04-19 11:12:45 +02:00
tmontaigu
fea1b4db92 feat(integer): add trivial encryption 2023-04-19 11:12:45 +02:00
Arthur Meyre
13c1fcb6e7 chore(tfhe): bump version to 0.2.1 2023-04-19 10:18:51 +02:00
tmontaigu
69b9bd3860 fix(hlapi): use correct number of blocks for FheUint32
The FheUint32 was wrongly defined as being 32 blocks of 2 bits
when it should have been 16 blocks.
2023-04-19 10:18:30 +02:00
Arthur Meyre
747693e889 chore(doc): updated benchmarks for min to reflect the fix done to min/max 2023-04-19 10:16:44 +02:00
Arthur Meyre
e452d5d6d2 chore(bench): only run avx512 benches 2023-04-18 16:37:38 +02:00
Arthur Meyre
5425ba5199 fix(integer): fix mul correctness
- update benches accordingly
2023-04-18 16:37:38 +02:00
dependabot[bot]
aeda381f12 chore(deps): bump actions/checkout from 3.5.0 to 3.5.2
Bumps [actions/checkout](https://github.com/actions/checkout) from 3.5.0 to 3.5.2.
- [Release notes](https://github.com/actions/checkout/releases)
- [Changelog](https://github.com/actions/checkout/blob/main/CHANGELOG.md)
- [Commits](8f4b7f8486...8e5e7e5ab8)

---
updated-dependencies:
- dependency-name: actions/checkout
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-04-18 10:46:04 +02:00
Arthur Meyre
9b2cccfee6 chore(integer): restore empty carry check for default comparator tests
- only extract assign message instead of doing a full propagate as carries
are not supposed to be non zero (though the degree will have grown)
2023-04-18 10:35:20 +02:00
J-B Orfila
b534f6a406 chore(doc): fix typo 2023-04-14 15:28:29 +02:00
J-B Orfila
7a72dd2619 chore(doc): fix TOML 2023-04-14 14:50:50 +02:00
J-B Orfila
343f31e070 chore(doc): fix dead links 2023-04-13 17:56:01 +02:00
J-B Orfila
a2384e0d1f chore(doc): last fixes 2023-04-13 14:38:42 +02:00
J-B Orfila
37da2f1f1e chore(doc): bench integers added 2023-04-13 14:38:42 +02:00
J-B Orfila
8c775e5a27 chore(doc): add default benches 2023-04-13 14:38:42 +02:00
J-B Orfila
43ba7e103d chore(doc): 0.2 doc 2023-04-13 14:38:42 +02:00
Arthur Meyre
448e634748 fix(integer): fix scalar mul bug when representing integers > 64 bits
- a product was overflowing, we now compute a progressive division with
the same effect and stop once we reach zero to limit the number of
generated tasks
2023-04-13 13:26:48 +02:00
Arthur Meyre
6268752ac9 fix(integer): fix radix wopbs table size issue 2023-04-13 11:03:33 +02:00
David Testé
e0ed2d91c6 chore(ci): add shortint default ops to benchmarks 2023-04-12 19:11:15 +02:00
Arthur Meyre
fef389e002 chore(core): more reasonable LWE sub test
- otherwise we are just checking that x.wrapping_sub(x) == 0
2023-04-12 16:21:20 +02:00
Arthur Meyre
ae30f7c086 chore(bench): use clean inputs for default ops bench
- by design default ops are made to work best on clean CTs
2023-04-12 15:48:00 +02:00
Arthur Meyre
3f719a30f6 chore(tfhe): update check toolchain 2023-04-12 15:47:46 +02:00
tmontaigu
d28880ac30 chore(makefile): allow passing cargo profile
This allows to invoke the Makefile with a cargo profile
eg:
- `make CARGO_PROFILE=devo build_integer`
- `make CARGO_PROFILE=dev build_integer`
- `make CARGO_PROFILE=release build_integer`

By default still use release profile.
2023-04-12 12:39:54 +02:00
Arthur Meyre
ca9cdc0e73 chore(tfhe): add fpcc target to have a fast pcc locally 2023-04-12 11:21:10 +02:00
Arthur Meyre
f768e62d89 refactor(tfhe): add support for power of 2 q for LWE linalg + KS + PBS 2023-04-11 23:01:25 +02:00
tmontaigu
ee96a0ff18 chore(hlapi): use 'default' ops 2023-04-11 21:56:01 +02:00
J-B Orfila
ee944b3129 chore(ci): add default op 2023-04-11 21:35:56 +02:00
David Testé
672f855770 chore(ci): make curl based job step fails upon 4xx or 5xx response 2023-04-11 21:35:56 +02:00
David Testé
362992a4ba chore(ci): benchmark only fastest integer operations
This is done to speed-up execution and to avoid having benchmark
job running for more than 6 hours in GitHub Actions. The selected
operations set gathers the ones that most user would look for, i.e
the fastest and smartest ones.
2023-04-11 21:35:56 +02:00
David Testé
2b24eb304d chore(ci): record benchmarks parameters to be stored in database
This is done to comply with the new Zama benchmark standard.
Exhaustive parameters list is stored so once it's parsed and send
to database, one can easily filter results on such parameters in
visualization tool.
2023-04-11 21:35:56 +02:00
Arthur Meyre
b484b8a851 chore(core): add multi bit PBS bench structure 2023-04-11 21:35:56 +02:00
Arthur Meyre
6dea738725 chore(integer): fix default scalar_mul missing full propagate 2023-04-11 21:29:12 +02:00
Arthur Meyre
3bb342879f chore(tfhe): temporarily disable integer 3_3 tests 2023-04-11 21:29:12 +02:00
Jérémy Zaccherini
9f024e2dac chore(tfhe): update design and links of the README.md 2023-04-11 21:28:44 +02:00
tmontaigu
190b483d23 chore(tfhe): rename typed_api to high_level_api
high_level_api makes it easier to understand
what this api brings (at least more than typed_api does)
and is term used in the documenation
2023-04-11 20:57:36 +02:00
Arthur Meyre
e799d240a7 chore(c_api): allow to build in a simple cargo command, requires nightly 2023-04-11 19:51:51 +02:00
Arthur Meyre
16596137c1 chore(integer): disable smart_add for params 1_1 which is very slow 2023-04-11 19:05:17 +02:00
Arthur Meyre
03cd7ef15a feat(integer): add default scalar shift ops 2023-04-11 19:05:17 +02:00
Arthur Meyre
4cda0a7211 feat(integer): add default sub op 2023-04-11 19:05:17 +02:00
Arthur Meyre
9b668c1d50 feat(integer): add default scalar ops 2023-04-11 19:05:17 +02:00
Arthur Meyre
dc4d9c7968 feat(integer): add default neg op 2023-04-11 19:05:17 +02:00
Arthur Meyre
e3e7abd652 feat(integer): add default mul ops 2023-04-11 19:05:17 +02:00
Arthur Meyre
4265fbe67e feat(integer): add "default" radix_parallel comparison ops 2023-04-11 19:05:17 +02:00
Arthur Meyre
337400ce3d feat(integer): add "default" radix_parallel bitwise ops 2023-04-11 19:05:17 +02:00
Arthur Meyre
be650d8e6b feat(integer): add "default" radix_parallel add ops 2023-04-11 19:05:17 +02:00
Arthur Meyre
47604a6297 feat(shortint): add "default" sub operations 2023-04-11 19:01:12 +02:00
Arthur Meyre
95d6fc5b1b feat(shortint): add "default" shift operations 2023-04-11 19:01:12 +02:00
Arthur Meyre
19a6855b82 chore(shortint): add default scalar ops tests 2023-04-11 19:01:12 +02:00
Arthur Meyre
f894c33bfd feat(shortint): add "default" scalar sub operations 2023-04-11 19:01:12 +02:00
Arthur Meyre
6578aff8a4 feat(shortint): add "default" scalar mul operations 2023-04-11 19:01:12 +02:00
Arthur Meyre
9096c62f32 feat(shortint): add "default" scalar add operations 2023-04-11 19:01:12 +02:00
Arthur Meyre
22f186af17 feat(shortint): add "default" neg operations 2023-04-11 19:01:12 +02:00
Arthur Meyre
7820523d1f feat(shortint): add "default" mul ops 2023-04-11 19:01:12 +02:00
Arthur Meyre
c0386c7e54 feat(shortint): add "default" div and mod operations 2023-04-11 19:01:12 +02:00
Arthur Meyre
1ea73a68c4 feat(shortint): add "default" comp_op 2023-04-11 19:01:12 +02:00
Arthur Meyre
6a02ae04e1 feat(shortint): add "default" bitwise ops 2023-04-11 19:01:12 +02:00
Arthur Meyre
becd11b45f feat(shortint): add "default" add and add_assign operators 2023-04-11 19:01:12 +02:00
Arthur Meyre
366964f1e6 feat(shortint): add function to check if a ciphertext has an empty carry 2023-04-11 19:01:12 +02:00
Arthur Meyre
32f8561af1 chore(tfhe): add devo profile to be able to iterate faster on tests 2023-04-11 19:01:12 +02:00
tmontaigu
063ad26b9e feat(tfhe): add CompressedPublicKey 2023-04-11 18:04:42 +02:00
tmontaigu
dba18a889a feat(hlapi): add 32, 64, 128 bits types 2023-04-11 16:58:32 +02:00
tmontaigu
0f5e1f0141 feat(c_api): add a C API of the high level API
One notable change is that since this C API
relies a lot on macro_rules! to be generated
we have to activate cbindgen's `expand` option,
which will use cargo-expand to expand macros.

However this means we can't call bindgen from the build.rs
as it seems to lead to a infinite-loop
(build.rs calls bindgen which calls cargo-expand which calls build.rs...)

So we call the cbindgen binary via the makefile.
2023-04-11 13:41:18 +02:00
J-B Orfila
d4c7aff90b fix(integer): fix unchecked_add in unchecked_mul 2023-04-07 15:55:08 +02:00
Arthur Meyre
1d9f8c57da chore(core): fix multi bit parameters 2023-04-07 11:55:33 +02:00
J-B Orfila
aa58748d33 refactor(integer): simplify PubliKey API 2023-04-07 11:55:33 +02:00
tmontaigu
412463ed27 chore(shortint): remove the Default impl for Parameters
The rationale behind this is that, `shortint::Parameters::default()`
does not convey the information about how much bit of message
and carry this parameter provides, and so might lead to
errors/confusions.

Instead user will be forced to use the param name like
`PARAM_MESSAGE_2_CARRY_2` which is less ambiguous.

This is obviously a breaking change.
2023-04-07 10:26:33 +02:00
sarah el kazdadi
72e7f16179 feat(core): implement 128bit pbs 2023-04-06 17:14:11 +02:00
Arthur Meyre
a1fcfcc55e chore(core): lower the noise in multibit test to avoid bad decryptions 2023-04-06 15:50:03 +02:00
Arthur Meyre
5ede4d6b0c chore(core): reverse the order in which we encrypt KS levels
- allows to avoid reversing the iterator, potentially improving cache
access during a keyswitch

BREAKING CHANGE: the keyswitch key level order has been reversed

TODO: fix the mismatch between DecompositionTerm and DecompositionIter for
the meaning of a decomposition level see
https://github.com/zama-ai/tfhe-rs-internal/issues/72
2023-04-06 14:47:29 +02:00
tmontaigu
9430e6dcf8 chore(integer): annotate decrypt_radix type in tests
When working on the integer part of the crate,
if you introduced a compile error (as is common when working stuff out)
the type inference of rust would not fully work and call to
`let dec = cks.decrypt_radix(&ctxt);` would fail to deduce the type
of `dec`.

This resulted on many errors in the compiler output about
"type annotation needed", requiring to scroll up a certain amount
to be able to see the errors messages you actually care about.

This commit adds these missing type annotation the the errors won't
appear, so as to have less noise.
2023-04-06 10:56:19 +02:00
tmontaigu
74f47e3655 feat(tfhe): add compressed ciphertexts in HL API 2023-04-05 16:55:28 +02:00
tmontaigu
0d57da7608 chore(tfhe): add typed_api test in ci 2023-04-05 16:48:42 +02:00
tmontaigu
25a43181e0 doc(tfhe): add high level api docs 2023-04-05 16:14:43 +02:00
tmontaigu
b8e64377fa doc(tfhe): add integer example + mention --release 2023-04-04 13:45:01 +02:00
David Testé
c206aa89b8 chore(ci): test core_crypto with avx512 2023-04-04 09:03:27 +02:00
Arthur Meyre
f39e318019 chore(core): update parameters for multi-bit PBS tests 2023-04-03 17:41:59 +02:00
Arthur Meyre
40b9497dbf chore(core): remove feature gate for multi-bit PBS 2023-04-03 17:41:59 +02:00
tmontaigu
e1cfb0e3f7 doc(integer): reorganize user documentation 2023-04-03 13:32:28 +02:00
tmontaigu
a410aaaed6 feat(typed_api): add missing Serialize/Deserialize
The "top level" key types (ClientKey, ServerKey and PublicKey)
were missing serde::{Serialize, Deserialize} implementations
2023-03-31 18:02:54 +02:00
tmontaigu
d7a4e87efb feat(typed_api): plug choice of big/small ciphertext 2023-03-31 16:29:34 +02:00
tmontaigu
3bc1536fa6 feat(integer): improve RadixClientKey 2023-03-31 16:29:33 +02:00
Arthur Meyre
6633496e7b chore(tfhe): remove mut keyword for cks and sks that don't need them 2023-03-30 16:19:17 +02:00
tmontaigu
14f7ca7492 feat(integer): plug shortint big/small in integer 2023-03-30 12:06:56 +02:00
David Testé
accd3cfb3f chore(ci): add windows as target build platform 2023-03-29 15:44:59 +02:00
Arthur Meyre
7f050c0fe9 chore(core_crypto): enable the choice of a single fixed fft algorithm 2023-03-29 12:48:49 +02:00
tmontaigu
c4769cbc0f fix(js): bump nvm 2023-03-27 12:17:07 +02:00
tmontaigu
1633eb573f feat(integer): parallelized bitwise operations 2023-03-27 12:17:07 +02:00
sarah el kazdadi
10174cdac6 feat(fft): update concrete-fft to 0.2.1 2023-03-27 11:00:37 +02:00
tmontaigu
475b838943 chore(makefile): add --all-targets switch to build command
This adds the --all-targets to the cargo build commands
invoked by the makefile so that when running
`make build_boolean`, lib, tests, benches, examples are built.

See the `cargo help build`

```
--all-targets
    Build all targets. This is equivalent to specifying --lib --bins --tests --benches --examples.
```
2023-03-27 10:59:49 +02:00
dependabot[bot]
1bdc447915 chore(deps): bump actions/checkout from 3.4.0 to 3.5.0
Bumps [actions/checkout](https://github.com/actions/checkout) from 3.4.0 to 3.5.0.
- [Release notes](https://github.com/actions/checkout/releases)
- [Changelog](https://github.com/actions/checkout/blob/main/CHANGELOG.md)
- [Commits](24cb908017...8f4b7f8486)

---
updated-dependencies:
- dependency-name: actions/checkout
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-27 09:49:45 +02:00
Arthur Meyre
a04d68f1fb feat(shortint): add support for small LWE key encryption 2023-03-23 16:45:39 +01:00
tmontaigu
42b569bcd7 feat(tfhe): add typed API
the `typed_api` module is basically the concrete 0.2 codebase
with modifications
2023-03-23 11:49:50 +01:00
tmontaigu
8999ea3766 chore(integer): add getters to client keys 2023-03-22 13:14:17 +01:00
tmontaigu
b0d059eef1 chore(boolean): add missing PublicKey derives 2023-03-22 13:14:16 +01:00
Arthur Meyre
64f9dc0813 refactor(tfhe): rename with_z function to with_correcting_term 2023-03-22 11:40:58 +01:00
David Testé
52afc382a0 fix(integer): stop decomposing before overflow
This only happens on binary scalar operations over 64bits of
precision.
2023-03-22 10:43:57 +01:00
tmontaigu
1e94d80044 fix(shortint): correct incoherences in bivariate pbs shifts
A bivariate PBS is a univariate PBS where we encode
the lhs, and rhs values into a singular value:
`univariate_value = (lhs * shift) + rhs`

Some places shifted the lhs by the parameter's message modulus
while others shifted by rhs.degree + 1, this could leed to incoherences
and wrong result in some cases.

The commits adds a `BivariateAccumulator` that stores the shift
value that was used to create the LUT, to avoid said incoherences.

Also, bivariate function family that expected
a univariate closure `Fn(u64) -> u64` will now expect a
bivariate closure `Fn(u64, u64) -> u64` so that they are less
error prone as the user does not need to figure out the
shift to be used.
2023-03-21 13:25:48 +01:00
Arthur Meyre
68fa6b78a4 feat(tfhe): introduce experimental feature approach for multi_bit_pbs 2023-03-20 16:47:33 +01:00
Arthur Meyre
75f05c0f3a feat(core): add multi-bit BSK generation and PBS threaded implementation 2023-03-20 16:47:33 +01:00
Arthur Meyre
bf6f699e8c refactor(fft): update fft code to use FourierPolynomialSize 2023-03-20 16:47:33 +01:00
Arthur Meyre
d3b3c5ab21 chore(core): fix ciphertext typo 2023-03-20 16:47:33 +01:00
Arthur Meyre
ceb26def05 feat(core): add constant GGSW ciphertext decryption 2023-03-20 16:47:33 +01:00
Arthur Meyre
638f210555 chore(core): fix typo 2023-03-20 16:47:33 +01:00
tmontaigu
1294727b11 chore(core_crypto): fix overflows in tests
These overflows appeared in debug builds,
and are easly fixed by using explicit wrapping operation
or correct values.
2023-03-20 12:44:15 +01:00
Arthur Meyre
e954247f1b chore(ci): CI at the speed of ligth
- use a 128 vcpu instance
- update script to have a no compromise test run
- update Makefile to be able to run the "no compromise" CI mode
2023-03-20 11:24:37 +01:00
dependabot[bot]
8d9ba2a1f9 chore(deps): bump actions/checkout from 3.3.0 to 3.4.0
Bumps [actions/checkout](https://github.com/actions/checkout) from 3.3.0 to 3.4.0.
- [Release notes](https://github.com/actions/checkout/releases)
- [Changelog](https://github.com/actions/checkout/blob/main/CHANGELOG.md)
- [Commits](ac59398561...24cb908017)

---
updated-dependencies:
- dependency-name: actions/checkout
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-03-20 10:16:16 +01:00
sarah el kazdadi
34fc96319d fix(tfhe): fix faulty comparison in avx512 code 2023-03-17 16:14:41 +01:00
Arthur Meyre
13ad7d5468 chore(ci): change ubuntu mirror urls as the original ones are too slow 2023-03-16 17:18:08 +01:00
Arthur Meyre
9151eb72b3 chore(ci): silence skipped M1 tests due to cla-bot label 2023-03-16 17:17:57 +01:00
Rui LOPES
8d8b8ab511 fix(build): remove -- flag from make targets that do not use wasm-pack 2023-03-16 17:09:15 +01:00
Rui LOPES
0c30e7525a fix(build): pass the --features arguments to the wasm-pack command in Makefile js targets 2023-03-16 17:09:15 +01:00
tmontaigu
385c907807 fix(shortint): remove wrong large_mod in cmp operations 2023-03-13 13:22:02 +01:00
Arthur Meyre
6266d18211 chore(tfhe): fix typos 2023-03-13 09:54:41 +01:00
tmontaigu
0a39f369d2 fix(integer): make radix encryption / decryption work on big endian 2023-03-10 14:09:13 +01:00
tmontaigu
bb6663cfe5 chore(integer): simplify radix decryption 2023-03-09 15:44:33 +01:00
tmontaigu
06713fa42d fix(integer): make radix encryption work on big endian 2023-03-09 15:44:33 +01:00
tmontaigu
b59afc7eee feat(integer): add PublicKey 2023-03-09 15:44:33 +01:00
tmontaigu
2ede9fb852 chore(integer): move u256 into its own mod 2023-03-09 15:44:33 +01:00
tmontaigu
ccf21c1716 feat(integer): add compressed ciphertexts 2023-03-09 15:44:33 +01:00
tmontaigu
f3dc9e52f6 feat(integer): add min,max and comparisons ops 2023-03-09 15:44:33 +01:00
tmontaigu
195efaf09c chore(integer): refactor benches 2023-03-09 15:44:32 +01:00
tmontaigu
3c9325f939 feat(tfhe): arbitrary sized integer encryption 2023-03-08 09:47:19 +01:00
aquint-zama
a542b64dea chore(docs): minor fixes 2023-03-07 15:53:00 +01:00
Arthur Meyre
e8a560b887 refactor(integer): rewrite extract_bits to avoid ciphertext copies 2023-03-07 10:08:53 +01:00
Arthur Meyre
14da0ca001 feat(integer): add concrete-integer as integer module 2023-03-07 10:08:53 +01:00
Arthur Meyre
5d8a138c69 chore(tfhe): update copyright year 2023-03-03 15:44:31 +01:00
David Testé
10b0ff7f8b chore(ci): split sync repo url into several secrets
Enforcing usage of fine-grained token means that a token always
have an expiration date. Thus it must be update fromp time to time.
The seldom SYNC_DEST_REPO secrets would have contained such fine
grained token. By spliting this seldom secret and using
CONCRETE_ACTIONS_TOKEN there is no need to update SYNC_DEST_REPO
each time the token is updated.
2023-03-03 10:08:13 +01:00
David Testé
2279da604b chore(ci): benchmark more operations in shortint
The following operations have been added:
 * unchecked_neg
 * unchecked_div
 * unchecked_greater
 * unchecked_less
 * unchecked_equal
 * unchecked_scalar_div
 * unchecked_scalar_mod
 * unchecked_scalar_left_shift
 * unchecked_scalar_right_shift
2023-03-02 14:41:00 +01:00
David Testé
f21fb9068c chore(ci): benchmark some operations with more crypto parameters 2023-03-01 14:21:24 +01:00
Arthur Meyre
87b9431881 chore(thfe): add integer workflow to make it availble for slab-ci 2023-03-01 08:58:24 +01:00
tmontaigu
c2c43a2313 refactor(shortint): reduce memory usage of buffers
Replace the BTreeMap of buffers with a Memory struct
that contains a Vec that is resized/sliced and converted
to views, akin to what already exists in boolean module.

This has the advantage of making the memory held by the engine smaller
when using multiple keys.
Now, the memory held will be the maximum of buffer size needed out of all the parameters used
instead of being the sum of the buffer size of all the parameters used.
2023-02-28 18:06:45 +01:00
tmontaigu
9db7a42f8b fix(shortint): use correct lwe dimension in key id
In the KeyId that we used as to identify buffers needed
for the bootstrap/keyswitch we were storing the lwe dimension
of the output of a lwe bootstrap.

However what is stored and used as a value of the BTreeMap is a buffer
meant to store the ouput of a lwe keyswitch.

The fix is to store the output lwe keyswitch dimension as part
of the KeyId instead as its the correct one.
2023-02-28 18:06:45 +01:00
David Testé
a47d8e3ee1 chore(ci): reduce pbs benchmark execution duration
When using a criterion sample size of 5000, the benchmark duration
for PBS using shortint can be very long (3620s for
MESSAGE_4_CARRY_4). Switching to a sample size of 2000 would cut
down all of the benchmarks duration by a factor of at least 2.
2023-02-24 15:47:00 +01:00
David Testé
b2407d530e chore(ci): provide hardware name for benchmarks with avx512
This also print a human friendly error from parser if the hardware
cannot be found in the product list.
2023-02-24 12:28:53 +01:00
David Testé
97830e934a chore(ci): compute throughput on boolean and shortint benchmarks 2023-02-24 11:41:20 +01:00
David Testé
91d04d97e9 chore(ci): add aws profile for pbs benchmarks using slab 2023-02-24 11:41:20 +01:00
David Testé
a228f24abc chore(ci): make cli argument --throughput optional 2023-02-24 11:41:20 +01:00
David Testé
8ee7b14abe chore(ci): benchmark pbs with cost per ms and per dollar spent
Here we benchmark a fixed number of PBS with boolean and shortint
flavors on AWS EC2 instance. Once measurements are done, we compute
the number of operations per millisecond and also operations per
dollar we can perform for a given set of cryptographic parameters
and EC2 instance type. Data are then set to Slab that in turn send
them to a database to be plotted in Grafana.
2023-02-23 18:31:23 +01:00
Arthur Meyre
85dc0f0164 fix(core_crypto): correct PFPKSK list serial generation
- add equivalence keygen test between serial and parallel as we now near
exclusively use the parallel version ourselves
2023-02-21 17:06:10 +01:00
aquint-zama
c6eb6da0a0 chore(doc): fix shortint params example 2023-02-21 16:48:57 +01:00
sarah el kazdadi
acfe8697b7 feat(core): speed up karatsuba multiplication 2023-02-14 10:24:22 +01:00
Arthur Meyre
8c4ecb805f chore(tfhe): bump criterion version to remove outdated dep from dep tree 2023-02-10 15:57:05 +01:00
Arthur Meyre
0ad2d8cef2 chore(tfhe): upgrade csprng version to avoid indirect deprecated aes dep 2023-02-09 17:12:58 +01:00
Arthur Meyre
1931315f73 chore(ci): change docker image mirrors for JS test for faster CI 2023-02-08 11:07:51 +01:00
Arthur Meyre
af865f8d75 refactor(polynomials): plug karatsuba algorithm for polynomial mul
- remove key cache as generating is faster and incurs less issues for cache
coherency and re-use
2023-02-08 11:07:51 +01:00
Arthur Meyre
f8f6323ad4 chore(ci): re-organize tests a bit for better parallelism usage 2023-02-08 11:07:51 +01:00
Arthur Meyre
b29008830c refactor(core): implement missing traits for u128/i128 to make them usable
- enables the use of u128 in ciphertexts
- add encryption test based on shortint 2_2 params
2023-02-06 11:08:04 +01:00
Arthur Meyre
a43dbebd1b chore(tfhe): TFHE-rs uses GATs, so needs rust >= 1.65 2023-02-02 17:34:37 +01:00
Arthur Meyre
d224821aaa chore(tfhe): update testing script to allow custom RUSTFLAGS 2023-02-02 17:34:08 +01:00
Arthur Meyre
d24896ed09 chore(doc): fix code example where useless mut were used 2023-02-02 17:33:53 +01:00
tmontaigu
106624048c refactor(all): only depend on bincode when needed 2023-02-01 10:03:41 +01:00
tmontaigu
5849cc9e7d refactor(all): derive serde::{Serialize, Deserialize}
This replaces our manual implementations of serde's
Serialize and Deserialize trait with 'derives'.

The manual implementetions were needed when using concrete-core
but as tfhe-rs does not use concrete-core's engines we can
simply derive the implementations.
2023-02-01 10:03:41 +01:00
Arthur Meyre
02e6d3c955 feat(c_api): expose create_trivial for shortint in C api 2023-01-31 11:22:06 +01:00
Arthur Meyre
3acaa2e242 chore(ci): make no_tfhe_typo mac friendly 2023-01-31 10:18:35 +01:00
Arthur Meyre
e293dc2bc1 chore(tfhe): update check toolchain after new stable rust release 2023-01-31 10:18:35 +01:00
Arthur Meyre
d9e0220dce chore(shortint): update CI test cases 2023-01-30 17:00:10 +01:00
J-B Orfila
2539e3e0c7 fix(shortint): add degree management in KS-PBS 2023-01-30 11:49:28 +01:00
Arthur Meyre
28cacfca86 chore(doc): fix docstring add some links to methods in lwe_wopbs 2023-01-27 15:58:29 +01:00
Arthur Meyre
e894bb0b11 docs(core): add blind_rotate_assign doctest 2023-01-27 15:58:29 +01:00
Arthur Meyre
313ccf3014 feat(core): add add_external_product_assign 2023-01-27 15:58:29 +01:00
Arthur Meyre
305baa1a6b feat(core): expose the cmux operation 2023-01-27 15:58:29 +01:00
Arthur Meyre
357dee3197 feat(core): add conversion functions for GgswCiphertext 2023-01-27 15:58:29 +01:00
Arthur Meyre
6580d652bb chore(core): fix an import in lwe_bootstrap_key_conversion 2023-01-27 15:58:29 +01:00
Arthur Meyre
5db0584356 refactor(fft): rename new and add an Owned alias for fourier GGSW 2023-01-27 15:58:29 +01:00
J-B Orfila
b691bc9820 feat(core_crypto): lwe_sub 2023-01-26 09:55:07 +01:00
aquint-zama
0653c7c896 chore(doc): update README twitter badge
twitter API closed to 3rd party
see https://github.com/badges/shields/issues/8837
2023-01-24 18:33:20 +01:00
J-B Orfila
bd9e453615 fix(shortint): fix smart_mul_lsb conditions 2023-01-23 10:31:37 +01:00
Arthur Meyre
4673a6349e chore(tfhe): harden github actions versions, enable dependabot for GHA 2023-01-13 17:22:45 +01:00
aquint-zama
b63181b21a chore(doc): update cover image 2023-01-13 14:29:43 +01:00
Arthur Meyre
0ae2722729 chore(tfhe): update README 2023-01-13 09:21:32 +01:00
Arthur Meyre
5945a52eba feat(tfhe): add WASM and C API bindings and tests 2023-01-13 09:21:19 +01:00
Arthur Meyre
384850f7fa feat(boolean): add CompressedCiphertext 2023-01-13 09:21:19 +01:00
Arthur Meyre
4a88290a97 feat(shortint): add CompressedCiphertext 2023-01-13 09:21:19 +01:00
Arthur Meyre
62843a4ef6 feat(tfhe): add SeededLweCiphertext in core_crypto 2023-01-13 09:21:19 +01:00
J-B Orfila
f5653f551d doc(core_crypto): gitbook 2023-01-12 17:41:35 +01:00
Arthur Meyre
43670d7b15 docs(tfhe): add user docs for JS on WASM API and limitations in a tutorial 2023-01-12 10:49:07 +01:00
Arthur Meyre
97e2d96661 doc(tfhe): update PBS docstring to demnonstrate seeded bsk decompression 2023-01-12 10:49:07 +01:00
Arthur Meyre
c90e0626f9 refactor(tfhe): update wopbs primitive docstring and arg order 2023-01-12 10:49:07 +01:00
Arthur Meyre
da9ae6a70d refactor(tfhe): move SeededLwePublicKey generation
- match the organization of other seeded/generation modules
- update module docstring to include Seeded entities where relevant
2023-01-12 10:49:07 +01:00
Arthur Meyre
c5dbbaa071 docs(core): update docstrings, add missing doctests for lwe_linear_algebra 2023-01-12 10:49:07 +01:00
Arthur Meyre
a0dae1c9ae docs(tfhe): updated user documentation and API documentation 2023-01-12 10:49:07 +01:00
Arthur Meyre
b2e3773c40 feat(tfhe): add CompressedServerKey to Boolean +C API +WASM API
- rename wasm functions to remove redundant boolean and shortint naming
- update C API tests for Boolean to include CompressedServerKey generation
and serde
2023-01-05 15:22:54 +01:00
Arthur Meyre
a66d377599 feat(shortint): add CompressedServerKey to shortint +C API +WASM API 2023-01-05 15:22:54 +01:00
Arthur Meyre
8b7b3d02b7 refactor(tfhe): change new method naming for secret keys
- new -> new_empty_key so that it's obvious the key will be empty
- add static methods on secret keys to easily generate them
2023-01-05 15:22:54 +01:00
Arthur Meyre
82b3d2154e refactor(tfhe): make the seeders module more ergonomic to use 2023-01-05 15:22:54 +01:00
Arthur Meyre
702360c03f chore(tfhe): correct docstrings 2023-01-05 15:22:54 +01:00
Arthur Meyre
d065e98888 chore(ci): rustdoc warnings as error 2023-01-05 15:22:54 +01:00
Arthur Meyre
7dee0a9202 chore(ci): sync tags from public to internal repo 2023-01-04 10:14:53 +01:00
Arthur Meyre
4a5be86cfa test(c_api): add public key serde in shortint test 2023-01-04 09:38:31 +01:00
Arthur Meyre
ccc41a89af refactor(core_crypto): add several useful structs to the prelude
- add main high level random generators as well as the underlying activated
byte random generator
- add SignedDecomposer which helps with rounding
2023-01-04 09:38:31 +01:00
Arthur Meyre
c9258e7515 chore(tfhe): add doc test for new_seeder 2023-01-04 09:38:31 +01:00
Arthur Meyre
00c31f4802 refactor(tfhe): move seeders module to core_crypto and add to prelude 2023-01-04 09:38:31 +01:00
Arthur Meyre
d09169d6bc chore(tfhe): rename scratch -> requirement
- renamed wopbs primitives which did not follow the naming convention
2023-01-04 09:38:31 +01:00
Arthur Meyre
729d019bc1 chore(tfhe): rename some primitives whose functionality changed 2023-01-04 09:38:31 +01:00
Arthur Meyre
823fb6d989 chore(tools): add .editorconfig 2023-01-04 09:38:31 +01:00
David Testé
0876d7fec0 chore(ci): measure and report key sizes used in benchmarks
Size of boostrapping and key switching keys used in benchmarks are
measured and then sent to Slab to be stored into our benchmark
database.
2023-01-03 18:34:41 +01:00
Arthur Meyre
c302a4f871 chore(tfhe): fix thfe typo 2023-01-03 16:55:47 +01:00
Arthur Meyre
8f12073bce feat(tfhe): add SeededLweKeyswitchKey
- add generation equivalence test
2023-01-02 13:42:09 +01:00
Arthur Meyre
2614d6430a chore(tfhe): update check toolchain 2023-01-02 13:42:09 +01:00
Arthur Meyre
87c153423e feat(tfhe): add missing encryption functions for CompressedPublicKey 2023-01-02 13:42:09 +01:00
Arthur Meyre
c94922d6a2 feat(tfhe): add SeededGgswCiphertextList, SeededLweBootstrapKey 2023-01-02 13:42:09 +01:00
J-B Orfila
aeff001bf6 docs(crypto_api): add lwe_bootstrap_key gen doctest 2023-01-02 13:42:09 +01:00
Arthur Meyre
f3d1b1bc49 feat(tfhe): add SeededGgswCiphertext 2023-01-02 13:42:09 +01:00
Arthur Meyre
4e4b15a8be feat(tfhe): add SeededGlweCiphertextList 2023-01-02 13:42:09 +01:00
Arthur Meyre
268371fda6 feat(tfhe): add SeededGlweCiphertext 2023-01-02 13:42:09 +01:00
Arthur Meyre
d773d3e7ff feat(tfhe): add CompressedPublicKey for Shortint 2023-01-02 13:42:09 +01:00
Arthur Meyre
d2392e887f feat(tfhe): js tests, remove server key requirement for shortint PK 2023-01-02 13:42:09 +01:00
Arthur Meyre
6cf14a5161 feat(core): add SeededLwePublicKey 2023-01-02 13:42:09 +01:00
Arthur Meyre
ae76230bd9 feat(core): add SeededLweCiphertextList 2023-01-02 13:42:09 +01:00
Arthur Meyre
cbf846dea7 chore(docs): fix a clippy lint for docstrings 2023-01-02 13:42:09 +01:00
Arthur Meyre
952f70fdf9 chore(tfhe): rename lwe_linear_algebra algorithms 2023-01-02 13:42:09 +01:00
Arthur Meyre
914007383f chore(ci): fix shellcheck lints in workflows 2023-01-02 13:42:09 +01:00
Arthur Meyre
3fd6b0d917 chore(ci): update m1 workflow 2023-01-02 13:42:09 +01:00
Arthur Meyre
fd4139dadc chore(ci): target to check all targets (bench, test, etc.) for clippy lints 2023-01-02 13:42:09 +01:00
Arthur Meyre
5c81e04c0b docs(tfhe): add various docstrings
- add docstring for lwe_keyswitch
- add docstring for lwe_keyswitch_key_generation
- add docstring for lwe_secret_key_generation
2023-01-02 13:42:09 +01:00
Arthur Meyre
c6fb496ea1 chore(ci): restore boolean tests on CPU machine
- fix exit code of toolchain installation in case of failure
2023-01-02 13:42:09 +01:00
Arthur Meyre
d7226bcfb9 docs(tfhe): add docstrings for lwe_encryption 2023-01-02 13:42:09 +01:00
Arthur Meyre
f792cc2737 fix(tfhe): fix various docstring content and LweMask creation bug 2023-01-02 13:42:09 +01:00
Arthur Meyre
3a2434b5ff chore(tfhe): rename some buffers to avoid confusion about their usage 2023-01-02 13:42:09 +01:00
Arthur Meyre
712af5d2b9 docs(tfhe): add docstring for glwe_sample_extraction 2023-01-02 13:42:09 +01:00
Arthur Meyre
2bdad26a9a docs(tfhe): add PolynomialList docstrings 2023-01-02 13:42:09 +01:00
Arthur Meyre
bd1a5b9a87 docs(tfhe): add docstring for Polynomial 2023-01-02 13:42:09 +01:00
Arthur Meyre
ad59566621 fix(tfhe): make seeders module public 2023-01-02 13:42:09 +01:00
Arthur Meyre
62803dfb82 docs(tfhe): add docstring for glwe_secret_key_generation module 2023-01-02 13:42:09 +01:00
Arthur Meyre
913f1d517a docs(tfhe): add glwe encryption formal definitions and docstrings
- correct some an -> a
2023-01-02 13:42:09 +01:00
Arthur Meyre
e624a74871 chore(docs): fix GGSW docstring to have actual GlweSecretKey generation 2023-01-02 13:42:09 +01:00
Arthur Meyre
5d52a23c0b docs(tfhe): add link for GGSW encryption algorithm definition
- document helper function for ggsw encryption
2023-01-02 13:42:09 +01:00
Arthur Meyre
a6091682d1 docs(tfhe): docstring for Plaintext
- add more sensible bounds for Plaintext and add PlaintextRef and
PlaintextRefMut for a more homogeneous and less confusing dev experience
2023-01-02 13:42:09 +01:00
J-B Orfila
7e3cc2d6e9 docs(crypto_api): add ggsw encryption doctest 2023-01-02 13:42:09 +01:00
Arthur Meyre
0e64b38f30 docs(tfhe): docstring for LweSecretKey 2023-01-02 13:42:09 +01:00
Arthur Meyre
f0165e62d3 docs(tfhe): correct a -> an 2023-01-02 13:42:09 +01:00
Arthur Meyre
db2a7a4582 docs(tfhe): add disclaimer about parameters being toy example parameters 2023-01-02 13:42:09 +01:00
Arthur Meyre
0e1f54ef54 docs(tfhe): add docstrings for LwePublicKey 2023-01-02 13:42:09 +01:00
Arthur Meyre
44091cb038 docs(tfhe): docstring for LwePrivateFunctionalPackingKeyswitchKey 2023-01-02 13:42:09 +01:00
Arthur Meyre
3c6c90b0c5 docs(tfhe): docstring for LwePrivateFunctionalPackingKeyswitchKeyList 2023-01-02 13:42:09 +01:00
Arthur Meyre
c43d84491a docs(tfhe): add LweKeyswitchKey docstring
- fix method naming
2023-01-02 13:42:09 +01:00
Arthur Meyre
4ef7a73efe chore(tools): add tasks tools to escape latex equations in docs
- add all checks to pcc and run that in CI
2023-01-02 13:42:09 +01:00
Arthur Meyre
1a72c4a814 docs(tfhe): add GswCiphertext for formal definitions 2023-01-02 13:42:09 +01:00
Arthur Meyre
d8abb9c2b2 docs(tfhe): add docstrings for LweCiphertext 2023-01-02 13:42:09 +01:00
Arthur Meyre
740dee2267 docs(tfhe): add LweCiphertextList docstring 2023-01-02 13:42:09 +01:00
Arthur Meyre
387c025e90 docs(tfhe): add LweBootstrapKey docstrings
- update wording for `new` functions, the allocated vector is not empty.
2023-01-02 13:42:09 +01:00
Arthur Meyre
a0dee63a2f docs(tfhe): add docstring for GlweSecretKey
- update docstring to indicate useful functions to fill structs
- fix GlweMask docstring
2023-01-02 13:42:09 +01:00
Arthur Meyre
9d9c407f7f chore(tfhe): update wording to use imperative form in docstrings 2023-01-02 13:42:09 +01:00
Arthur Meyre
ff062a33f9 refactor(core): use from_le_bytes for gaussian RNG (see uniform RNG)
- avoids small allocations, uses std::mem::size_of for size
2023-01-02 13:42:09 +01:00
Arthur Meyre
e353af5a72 docs(tfhe): add GlweCiphertext documentation 2023-01-02 13:42:09 +01:00
Arthur Meyre
d274891948 chore(tfhe): finish GlweSize/PolynomialSize ordering consistency 2023-01-02 13:42:09 +01:00
Arthur Meyre
3129d18247 chore(ci): add test compilation checks 2023-01-02 13:42:09 +01:00
Arthur Meyre
59925e4273 docs(tfhe): add docstring for GlweCiphertextList
- uniformize orders of GlweSize and PolynomialSize arguments for GLWE-like
entities
2023-01-02 13:42:09 +01:00
Arthur Meyre
15864202d7 chore(tfhe): change update wording for in place random noise addition 2023-01-02 13:42:09 +01:00
Arthur Meyre
68dce4eeb8 chore(tfhe): change "in place" naming for "assign" following rust style 2023-01-02 13:42:09 +01:00
Arthur Meyre
390fffac88 docs(tfhe): add docstrings for GgswCiphertext, import formal definition 2023-01-02 13:42:09 +01:00
Arthur Meyre
1cb8aa026f chore(tfhe): misc fixes 2023-01-02 13:42:09 +01:00
Arthur Meyre
7db702cebf docs(core): bring back some doc strings for random generators 2023-01-02 13:42:09 +01:00
Arthur Meyre
583bfaa643 feat(tfhe): add karatsuba multiplication for polynomials 2023-01-02 13:42:09 +01:00
Arthur Meyre
1b3baf5635 docs(tfhe): update polynomial and slice algorithms naming
- update docstrings to be better rendered in html.
2023-01-02 13:42:09 +01:00
Arthur Meyre
0481fdadfb docs(tfhe): update name in module documentation 2023-01-02 13:42:09 +01:00
Arthur Meyre
3ce9017784 docs(tfhe): update entities documentation 2023-01-02 13:42:09 +01:00
Arthur Meyre
9e5de38050 docs(tfhe): update common traits docs 2023-01-02 13:42:09 +01:00
Arthur Meyre
afc19a9b5b docs(core): add docstring and tests for GgswCiphertextList 2023-01-02 13:42:09 +01:00
Arthur Meyre
48f7457330 feat(core): add prelude 2023-01-02 13:42:09 +01:00
Arthur Meyre
fe31bbf7c1 chore(core): update Plaintext docstring 2023-01-02 13:42:09 +01:00
J-B Orfila
80a426f1df docs(crypto): doctests slice algorithms 2023-01-02 13:42:09 +01:00
Arthur Meyre
525225a4b2 refactor(tfhe): rename polynomial primitives and add docstrings + tests 2023-01-02 13:42:09 +01:00
Arthur Meyre
c222459d07 chore(tfhe): derive PartialEq and Eq for all entities by default 2023-01-02 13:42:09 +01:00
Arthur Meyre
aec0a17a1c chore(tfhe): update rand to avoid deprecation warnings 2023-01-02 13:42:09 +01:00
Arthur Meyre
dbfc0b969b refactor(thfe): remove deprecation on MonomialDegree 2023-01-02 13:42:09 +01:00
Arthur Meyre
499f904a61 refactor(tfhe): move parameters and dispersion modules 2023-01-02 13:42:09 +01:00
Arthur Meyre
778414da89 refactor(tfhe): only one instance of FftBuffers, use for simple PBS algo 2023-01-02 13:42:09 +01:00
Arthur Meyre
a31087badf chore(doc): deny doc broken links crate-wide 2023-01-02 13:42:09 +01:00
Arthur Meyre
2dd6c237f9 chore(tfhe): add convenience traits to commons::traits for glob import 2023-01-02 13:42:09 +01:00
Arthur Meyre
286d016003 chore(tools): add convenience pcc and conformance targets 2023-01-02 13:42:09 +01:00
Arthur Meyre
03f63ec202 chore(tfhe): fix refactor TODOs 2023-01-02 13:42:09 +01:00
Arthur Meyre
4d08b61064 refactor(tfhe): unplug core and remove unused parts 2023-01-02 13:42:09 +01:00
Arthur Meyre
91b310289d refactor(boolean): unplug core engines 2023-01-02 13:42:09 +01:00
Arthur Meyre
bdd4461702 refactor(tfhe): unplug CUDA from boolean and remove the CUDA backend 2023-01-02 13:42:09 +01:00
Arthur Meyre
c6060eb478 refactor(tfhe): refactor serizalization, unplug core_crypto::prelude 2023-01-02 13:42:09 +01:00
Arthur Meyre
8ac33a9f63 refactor(tfhe): entities Clone + Debug and default parallel + serialization 2023-01-02 13:42:09 +01:00
J-B Orfila
ba984c2537 feat(core): blind rotate binding 2023-01-02 13:42:09 +01:00
Arthur Meyre
c933f6d900 refactor(tfhe): Change Base naming scheme 2023-01-02 13:42:09 +01:00
Arthur Meyre
b182d8ef05 refactor(tfhe): remove core engines from ShortintEngine 2023-01-02 13:42:09 +01:00
Arthur Meyre
4aef755a81 refactor(tfhe): migrate PFPKSK 2023-01-02 13:42:09 +01:00
Arthur Meyre
67e9b02283 refactor(tfhe): plug woPBS primitives 2023-01-02 13:42:09 +01:00
Arthur Meyre
00bbfd1545 refactor(tfhe): plug fft backend with new primitives
- uniformize fft caches to avoid serialization problems
2023-01-02 13:42:09 +01:00
Arthur Meyre
a239b9e386 chore(tfhe): remove binary naming 2023-01-02 13:42:09 +01:00
Arthur Meyre
04415320d9 refactor(tfhe): add allocate and encrypt for BSK
- use new generation when creating ServerKey in shortint
- next step requires taking parts of the FFT backend for the refactor
2023-01-02 13:42:09 +01:00
Arthur Meyre
4a0fb6b42e refactor(tfhe): add parallel bootstrap key generation
- add equivalence test between refactored sequential and parallel BSK
generation
2023-01-02 13:42:09 +01:00
Arthur Meyre
b445e349a6 chore(tfhe): update associated types name for contiguous container traits 2023-01-02 13:42:09 +01:00
Arthur Meyre
2aa84d2b3c refactor(tfhe): reproduce sequential BSK generation 2023-01-02 13:42:09 +01:00
Arthur Meyre
d0d0b542ac refactor(tfhe): add GGSW encryption with coherency test between old and new 2023-01-02 13:42:09 +01:00
Arthur Meyre
07f496ac23 chore(tfhe): minor fixes 2023-01-02 13:42:09 +01:00
Arthur Meyre
b3e456de28 refactor(tfhe): rewrite lwe keyswitch algorithm with new system 2023-01-02 13:42:09 +01:00
Arthur Meyre
4bdb507086 chore(tfhe): make imports globs for ease of use 2023-01-02 13:42:09 +01:00
Arthur Meyre
98d2e358bb chore(ci): fix tooling with minimum version for GATs requirements 2023-01-02 13:42:09 +01:00
Arthur Meyre
be4e1a878d refactor(tfhe): add refactored LweKeyswitchKey generation algorithm 2023-01-02 13:42:09 +01:00
Arthur Meyre
120e7b5a6b refactor(tfhe): transition GlweSecretKey
- serialization work still pending
2023-01-02 13:42:09 +01:00
Arthur Meyre
3185310610 refactor(shortint): change the LweCiphertext type 2023-01-02 13:42:09 +01:00
Arthur Meyre
1c40890aeb refactor(tfhe): first step of progressive refactor
- provide new structs and compatibility layers (as much as possible) to
convert between types as much as possible
- we are missing key view types in public APIs making this a bit tricky in
that particular case
2023-01-02 13:42:09 +01:00
Arthur Meyre
be7f26a30f refactor(core): introduce new modules for progressive rework
- strategy is to have new entities for which required algorithms will be
implemented re-using existing private implementations
- when algorithms are missing at first conversion functions will be used to
be able to switch back to the old system and use existing primitives
2023-01-02 13:42:09 +01:00
Petar Ivanov
6a3d579749 fix(tools): fix arch detection script for aarch64
On Linux with Apple M1, the output of `uname -a` is:

```
Linux ... aarch64 aarch64 aarch64 GNU/Linux
```

Therefore, recognize that output as aarch64.
2022-12-16 13:53:13 +01:00
Jeremy Bradley-Silverio Donato
9e04f031e8 chore(tfhe): Update README.md 2022-12-14 16:18:05 +01:00
Arthur Meyre
506fd88468 chore(ci): sync repos on push 2022-12-05 17:51:04 +01:00
J-B Orfila
da1592f997 chore(all): update root licence 2022-12-02 15:06:00 +01:00
David Testé
d38edb5096 chore(ci): do not parse report dir when walking subdirectories 2022-11-30 18:03:25 +01:00
J-B Orfila
6d6fcb9562 chore(all): licence updated 2022-11-30 17:43:19 +01:00
David Testé
9a2212e305 chore(ci): parse subdirectories for shortint benchmark results 2022-11-30 15:53:42 +01:00
J-B Orfila
b8d437cbde fix(doc): update pk encryption example for shortint 2022-11-30 15:00:56 +01:00
Alexandre Quint
b89ca6fd87 chore(doc): language edits
GitBook: [#1] TFHE-rs edits - JS
2022-11-30 14:14:56 +01:00
David Testé
d92bcb3ef4 chore(ci): create benchmark aws profile using ec2 m6i.metal 2022-11-23 19:01:36 +01:00
David Testé
34011798f5 chore(ci): change benchmark parser input name
The use of "schema" was incorrect since it's meant to be used as
database name when sending data to Slab.
2022-11-23 19:01:36 +01:00
David Testé
3e192630d5 chore(ci): fix repositories checkout
There are no submodules in tfhe-rs nor the need to authenticate
to get access to it. The right secret is used to checkout Slab.
2022-11-23 19:01:36 +01:00
David Testé
76ec565217 chore(ci): add workflow to trigger all benchmarks automatically 2022-11-23 19:01:36 +01:00
Arthur Meyre
0c7159c040 chore(tfhe): fix README 2022-11-23 13:32:06 +01:00
David Testé
8ea446a105 chore(ci): add benchmark workflow for boolean and shortint
These workflows are meant to be triggered by Slab CI bot server.
2022-11-23 11:46:36 +01:00
Arthur Meyre
3c5ffca775 chore(ci): add clippy_all, upgrade slab workflows, change cpu instance 2022-11-22 14:59:59 +01:00
Arthur Meyre
cc67dc9bb6 feat(wasm): add boolean server key primitives 2022-11-16 13:21:27 +01:00
Arthur Meyre
0891ea5551 chore(wasm): fix clippy lints 2022-11-16 13:21:27 +01:00
Arthur Meyre
45fb747c20 chore(ci): add commit checks for all branches 2022-11-16 11:13:58 +01:00
Arthur Meyre
dc9c651d3b chore(tfhe): fix Makefile typo 2022-11-16 11:13:58 +01:00
Arthur Meyre
95646ca03a chore(ci): update workflows 2022-11-16 11:13:58 +01:00
Arthur Meyre
2d4b8e3aa3 chore(tfhe): update version to 0.2.0 2022-11-14 09:56:22 +01:00
Arthur Meyre
352a2c69ab chore(doc): fix docs.rs build by adding katex header 2022-11-14 09:22:38 +01:00
J-B Orfila
d7b7b84f5b fix(thfe): update public key parameters 2022-11-10 20:16:30 +01:00
Arthur Meyre
ca16a80dfb chore(crate): fix description metadata 2022-11-10 20:15:35 +01:00
655 changed files with 79634 additions and 47021 deletions

2
.cargo/config.toml Normal file
View File

@@ -0,0 +1,2 @@
[alias]
xtask = "run --manifest-path ./tasks/Cargo.toml --"

15
.editorconfig Normal file
View File

@@ -0,0 +1,15 @@
# EditorConfig is awesome: https://EditorConfig.org
# top-most EditorConfig file
root = true
# Unix-style newlines with a newline ending every file
[*]
end_of_line = lf
insert_final_newline = true
# 4 space indentation
[*.rs]
charset = utf-8
indent_style = space
indent_size = 4

9
.github/dependabot.yaml vendored Normal file
View File

@@ -0,0 +1,9 @@
version: 2
updates:
- package-ecosystem: "github-actions"
directory: "/"
schedule:
# Check for updates to GitHub Actions every sunday
interval: "weekly"
day: "sunday"

View File

@@ -0,0 +1,77 @@
name: AWS Integer Tests on CPU
env:
CARGO_TERM_COLOR: always
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
RUSTFLAGS: "-C target-cpu=native"
on:
# Allows you to run this workflow manually from the Actions tab as an alternative.
workflow_dispatch:
# All the inputs are provided by Slab
inputs:
instance_id:
description: "AWS instance ID"
type: string
instance_image_id:
description: "AWS instance AMI ID"
type: string
instance_type:
description: "AWS instance product type"
type: string
runner_name:
description: "Action runner name"
type: string
request_id:
description: 'Slab request ID'
type: string
matrix_item:
description: 'Build matrix item'
type: string
jobs:
integer-tests:
concurrency:
group: ${{ github.workflow }}_${{ github.ref }}_${{ github.event.inputs.instance_image_id }}_${{ github.event.inputs.instance_type }}
cancel-in-progress: true
runs-on: ${{ github.event.inputs.runner_name }}
steps:
# Step used for log purpose.
- name: Instance configuration used
run: |
echo "ID: ${{ github.event.inputs.instance_id }}"
echo "AMI: ${{ github.event.inputs.instance_image_id }}"
echo "Type: ${{ github.event.inputs.instance_type }}"
echo "Request ID: ${{ github.event.inputs.request_id }}"
- uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab
- name: Set up home
run: |
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
- name: Install latest stable
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
with:
toolchain: stable
default: true
- name: Gen Keys if required
run: |
make gen_key_cache
- name: Run integer tests
run: |
BIG_TESTS_INSTANCE=TRUE make test_integer_ci
- name: Slack Notification
if: ${{ always() }}
continue-on-error: true
uses: rtCamp/action-slack-notify@12e36fc18b0689399306c2e0b3e0f2978b7f1ee7
env:
SLACK_COLOR: ${{ job.status }}
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
SLACK_MESSAGE: "Integer tests finished with status: ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}

View File

@@ -22,11 +22,17 @@ on:
runner_name:
description: "Action runner name"
type: string
request_id:
description: 'Slab request ID'
type: string
matrix_item:
description: 'Build matrix item'
type: string
jobs:
shortint-tests:
concurrency:
group: ${{ github.ref }}_${{ github.event.inputs.instance_image_id }}_${{ github.event.inputs.instance_type }}
group: ${{ github.workflow }}_${{ github.ref }}_${{ github.event.inputs.instance_image_id }}_${{ github.event.inputs.instance_type }}
cancel-in-progress: true
runs-on: ${{ github.event.inputs.runner_name }}
steps:
@@ -36,22 +42,27 @@ jobs:
echo "ID: ${{ github.event.inputs.instance_id }}"
echo "AMI: ${{ github.event.inputs.instance_image_id }}"
echo "Type: ${{ github.event.inputs.instance_type }}"
echo "Request ID: ${{ github.event.inputs.request_id }}"
- uses: actions/checkout@v2
- uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab
- name: Set up home
run: |
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
- name: Install latest stable
uses: actions-rs/toolchain@v1
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
with:
toolchain: stable
default: true
- name: Run core tests
run: |
make test_core_crypto
AVX512_SUPPORT=ON make test_core_crypto
- name: Run boolean tests
run: |
make test_boolean
- name: Run C API tests
run: |
@@ -61,33 +72,21 @@ jobs:
run: |
make test_user_doc
- name: Install AWS CLI
- name: Run js on wasm API tests
run: |
apt update
apt install -y awscli
- name: Configure AWS credentials from Test account
uses: aws-actions/configure-aws-credentials@v1
with:
aws-access-key-id: ${{ secrets.AWS_IAM_ID }}
aws-secret-access-key: ${{ secrets.AWS_IAM_KEY }}
role-to-assume: concrete-lib-ci
aws-region: eu-west-3
role-duration-seconds: 10800
- name: Download keys locally
run: aws s3 cp --recursive --no-progress s3://concrete-libs-keycache ./keys
make test_nodejs_wasm_api_in_docker
- name: Gen Keys if required
run: |
make gen_key_cache
- name: Sync keys
run: aws s3 sync ./keys s3://concrete-libs-keycache
- name: Run shortint tests
run: |
make test_shortint_ci
BIG_TESTS_INSTANCE=TRUE make test_shortint_ci
- name: Run high-level API tests
run: |
BIG_TESTS_INSTANCE=TRUE make test_high_level_api
- name: Slack Notification
if: ${{ always() }}

View File

@@ -1,113 +0,0 @@
# Compile and test project on an AWS instance
name: AWS tests on GPU
# This workflow is meant to be run via Zama CI bot Slab.
on:
workflow_dispatch:
inputs:
instance_id:
description: "AWS instance ID"
type: string
instance_image_id:
description: "AWS instance AMI ID"
type: string
instance_type:
description: "AWS EC2 instance product type"
type: string
runner_name:
description: "Action runner name"
type: string
env:
CARGO_TERM_COLOR: always
RUSTFLAGS: "-C target-cpu=native"
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
jobs:
run-tests-linux:
concurrency:
group: ${{ github.ref }}_${{ github.event.inputs.instance_image_id }}_${{ github.event.inputs.instance_type }}
cancel-in-progress: true
name: Test code in EC2
runs-on: ${{ github.event.inputs.runner_name }}
strategy:
fail-fast: false
# explicit include-based build matrix, of known valid options
matrix:
include:
- os: ubuntu-20.04
cuda: "11.8"
old_cuda: "11.1"
cuda_arch: "70"
gcc: 8
env:
CUDA_PATH: /usr/local/cuda-${{ matrix.cuda }}
OLD_CUDA_PATH: /usr/local/cuda-${{ matrix.old_cuda }}
steps:
- name: EC2 instance configuration used
run: |
echo "IDs: ${{ github.event.inputs.instance_id }}"
echo "AMI: ${{ github.event.inputs.instance_image_id }}"
echo "Type: ${{ github.event.inputs.instance_type }}"
- uses: actions/checkout@v2
- name: Set up home
run: |
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
- name: Export CUDA variables
run: |
echo "CUDA_PATH=$CUDA_PATH" >> "${GITHUB_ENV}"
echo "$CUDA_PATH/bin" >> "${GITHUB_PATH}"
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib:$LD_LIBRARY_PATH" >> "${GITHUB_ENV}"
# Specify the correct host compilers
- name: Export gcc and g++ variables
run: |
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}" >> "${GITHUB_ENV}"
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}" >> "${GITHUB_ENV}"
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}" >> "${GITHUB_ENV}"
echo "CUDACXX=$CUDA_PATH/bin/nvcc" >> "${GITHUB_ENV}"
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
- name: Install latest stable
uses: actions-rs/toolchain@v1
with:
toolchain: stable
default: true
- name: Cuda clippy
run: |
make clippy_cuda
- name: Run core cuda tests
run: |
make test_core_crypto_cuda
- name: Test tfhe-rs/boolean with cpu
run: |
make test_boolean
- name: Test tfhe-rs/boolean with cuda backend with CUDA 11.8
run: |
make test_boolean_cuda
- name: Export variables for CUDA 11.1
run: |
echo "CUDA_PATH=$OLD_CUDA_PATH" >> "${GITHUB_ENV}"
echo "LD_LIBRARY_PATH=$OLD_CUDA_PATH/lib:$LD_LIBRARY_PATH" >> "${GITHUB_ENV}"
echo "CUDACXX=$OLD_CUDA_PATH/bin/nvcc" >> "${GITHUB_ENV}"
- name: Test tfhe-rs/boolean with cuda backend with CUDA 11.1
run: |
cargo clean
make test_boolean_cuda
- name: Slack Notification
if: ${{ always() }}
continue-on-error: true
uses: rtCamp/action-slack-notify@12e36fc18b0689399306c2e0b3e0f2978b7f1ee7
env:
SLACK_COLOR: ${{ job.status }}
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
SLACK_MESSAGE: "(Slab ci-bot beta) AWS tests GPU finished with status ${{ job.status }}. (${{ env.ACTION_RUN_URL }})"
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}

116
.github/workflows/boolean_benchmark.yml vendored Normal file
View File

@@ -0,0 +1,116 @@
# Run boolean benchmarks on an AWS instance and return parsed results to Slab CI bot.
name: Boolean benchmarks
on:
workflow_dispatch:
inputs:
instance_id:
description: "Instance ID"
type: string
instance_image_id:
description: "Instance AMI ID"
type: string
instance_type:
description: "Instance product type"
type: string
runner_name:
description: "Action runner name"
type: string
request_id:
description: "Slab request ID"
type: string
env:
CARGO_TERM_COLOR: always
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
jobs:
run-boolean-benchmarks:
name: Execute boolean benchmarks in EC2
runs-on: ${{ github.event.inputs.runner_name }}
if: ${{ !cancelled() }}
steps:
- name: Instance configuration used
run: |
echo "IDs: ${{ inputs.instance_id }}"
echo "AMI: ${{ inputs.instance_image_id }}"
echo "Type: ${{ inputs.instance_type }}"
echo "Request ID: ${{ inputs.request_id }}"
- name: Get benchmark date
run: |
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
- name: Checkout tfhe-rs repo with tags
uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab
with:
fetch-depth: 0
- name: Set up home
# "Install rust" step require root user to have a HOME directory which is not set.
run: |
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
- name: Install rust
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
with:
toolchain: nightly
override: true
- name: Run benchmarks with AVX512
run: |
make AVX512_SUPPORT=ON bench_boolean
- name: Parse results
run: |
COMMIT_DATE="$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})"
COMMIT_HASH="$(git describe --tags --dirty)"
python3 ./ci/benchmark_parser.py target/criterion ${{ env.RESULTS_FILENAME }} \
--database tfhe_rs \
--hardware ${{ inputs.instance_type }} \
--project-version "${COMMIT_HASH}" \
--branch ${{ github.ref_name }} \
--commit-date "${COMMIT_DATE}" \
--bench-date "${{ env.BENCH_DATE }}" \
--walk-subdirs \
--name-suffix avx512 \
--throughput
- name: Measure key sizes
run: |
make measure_boolean_key_sizes
- name: Parse key sizes results
run: |
python3 ./ci/benchmark_parser.py tfhe/boolean_key_sizes.csv ${{ env.RESULTS_FILENAME }} \
--key-sizes \
--append-results
- name: Upload parsed results artifact
uses: actions/upload-artifact@0b7f8abb1508181956e8e162db84b466c27e18ce
with:
name: ${{ github.sha }}_boolean
path: ${{ env.RESULTS_FILENAME }}
- name: Checkout Slab repo
uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab
with:
repository: zama-ai/slab
path: slab
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
- name: Send data to Slab
shell: bash
env:
COMPRESSED_RESULTS: ${{ env.RESULTS_FILENAME }}.gz
run: |
echo "Computing HMac on results file"
SIGNATURE="$(slab/scripts/hmac_calculator.sh ${{ env.RESULTS_FILENAME }} '${{ secrets.JOB_SECRET }}')"
echo "Sending results to Slab..."
curl -v -k \
-H "Content-Type: application/json" \
-H "X-Slab-Repository: ${{ github.repository }}" \
-H "X-Slab-Command: store_data_v2" \
-H "X-Hub-Signature-256: sha256=${SIGNATURE}" \
-d @${{ env.RESULTS_FILENAME }} \
${{ secrets.SLAB_URL }}

View File

@@ -17,53 +17,40 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest, macos-latest]
os: [ubuntu-latest, macos-latest, windows-latest]
fail-fast: false
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab
- name: Get rust toolchain to use for checks and lints
id: toolchain
- name: Run pcc checks
run: |
echo "rs-toolchain=$(make rs_toolchain)" >> "${GITHUB_OUTPUT}"
make pcc
- name: Check format
- name: Build Release core
run: |
make check_fmt
- name: Build doc
run: |
make doc
- name: Clippy boolean
run: |
make clippy_boolean
make build_core AVX512_SUPPORT=ON
make build_core_experimental AVX512_SUPPORT=ON
- name: Build Release boolean
run: |
make build_boolean
- name: Clippy shortint
run: |
make clippy_shortint
- name: Build Release shortint
run: |
make build_shortint
- name: Clippy shortint and boolean
- name: Build Release integer
run: |
make clippy
make build_integer
- name: Build Release shortint and boolean
- name: Build Release tfhe full
run: |
make build_boolean_and_shortint
- name: C API Clippy
run: |
make clippy_c_api
make build_tfhe_full
- name: Build Release c_api
run: |
make build_c_api
# The wasm build check is a bit annoying to set-up here and is done during the tests in
# aws_tfhe_tests.yml

View File

@@ -2,16 +2,13 @@
name: Check commit and PR compliance
on:
pull_request:
branches:
- main
- dev
jobs:
check-commit-pr:
name: Check commit and PR
runs-on: ubuntu-latest
steps:
- name: Check first line
uses: gsactions/commit-message-checker@v1
uses: gsactions/commit-message-checker@16fa2d5de096ae0d35626443bcd24f1e756cafee
with:
pattern: '^((feat|fix|chore|refactor|style|test|docs|doc)\(\w+\)\:) .+$'
flags: "gs"
@@ -22,7 +19,7 @@ jobs:
accessToken: ${{ secrets.GITHUB_TOKEN }} # github access token is only required if checkAllCommitMessages is true
- name: Check line length
uses: gsactions/commit-message-checker@v1
uses: gsactions/commit-message-checker@16fa2d5de096ae0d35626443bcd24f1e756cafee
with:
pattern: '(^.{0,74}$\r?\n?){0,20}'
flags: "gm"

104
.github/workflows/integer_benchmark.yml vendored Normal file
View File

@@ -0,0 +1,104 @@
# Run integer benchmarks on an AWS instance and return parsed results to Slab CI bot.
name: Integer benchmarks
on:
workflow_dispatch:
inputs:
instance_id:
description: "Instance ID"
type: string
instance_image_id:
description: "Instance AMI ID"
type: string
instance_type:
description: "Instance product type"
type: string
runner_name:
description: "Action runner name"
type: string
request_id:
description: "Slab request ID"
type: string
env:
CARGO_TERM_COLOR: always
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
jobs:
run-integer-benchmarks:
name: Execute integer benchmarks in EC2
runs-on: ${{ github.event.inputs.runner_name }}
if: ${{ !cancelled() }}
steps:
- name: Instance configuration used
run: |
echo "IDs: ${{ inputs.instance_id }}"
echo "AMI: ${{ inputs.instance_image_id }}"
echo "Type: ${{ inputs.instance_type }}"
echo "Request ID: ${{ inputs.request_id }}"
- name: Get benchmark date
run: |
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
- name: Checkout tfhe-rs repo with tags
uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab
with:
fetch-depth: 0
- name: Set up home
# "Install rust" step require root user to have a HOME directory which is not set.
run: |
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
- name: Install rust
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
with:
toolchain: nightly
override: true
- name: Run benchmarks with AVX512
run: |
make AVX512_SUPPORT=ON bench_integer
- name: Parse results
run: |
COMMIT_DATE="$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})"
COMMIT_HASH="$(git describe --tags --dirty)"
python3 ./ci/benchmark_parser.py target/criterion ${{ env.RESULTS_FILENAME }} \
--database tfhe_rs \
--hardware ${{ inputs.instance_type }} \
--project-version "${COMMIT_HASH}" \
--branch ${{ github.ref_name }} \
--commit-date "${COMMIT_DATE}" \
--bench-date "${{ env.BENCH_DATE }}" \
--walk-subdirs \
--name-suffix avx512 \
--throughput
- name: Upload parsed results artifact
uses: actions/upload-artifact@0b7f8abb1508181956e8e162db84b466c27e18ce
with:
name: ${{ github.sha }}_integer
path: ${{ env.RESULTS_FILENAME }}
- name: Checkout Slab repo
uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab
with:
repository: zama-ai/slab
path: slab
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
- name: Send data to Slab
shell: bash
run: |
echo "Computing HMac on results file"
SIGNATURE="$(slab/scripts/hmac_calculator.sh ${{ env.RESULTS_FILENAME }} '${{ secrets.JOB_SECRET }}')"
echo "Sending results to Slab..."
curl -v -k \
-H "Content-Type: application/json" \
-H "X-Slab-Repository: ${{ github.repository }}" \
-H "X-Slab-Command: store_data_v2" \
-H "X-Hub-Signature-256: sha256=${SIGNATURE}" \
-d @${{ env.RESULTS_FILENAME }} \
${{ secrets.SLAB_URL }}

View File

@@ -20,58 +20,50 @@ jobs:
runs-on: ["self-hosted", "m1mac"]
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab
- name: Install latest stable
uses: actions-rs/toolchain@v1
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
with:
toolchain: stable
default: true
- name: Build doc
- name: Run pcc checks
run: |
make doc
make pcc
- name: Clippy boolean
- name: Build Release core
run: |
make clippy_boolean
make build_core
- name: Build Release boolean
run: |
make build_boolean
- name: Clippy shortint
run: |
make clippy_shortint
- name: Build Release shortint
run: |
make build_shortint
- name: Clippy shortint and boolean
- name: Build Release integer
run: |
make clippy
make build_integer
- name: Build Release shortint and boolean
- name: Build Release tfhe full
run: |
make build_boolean_and_shortint
- name: C API Clippy
run: |
make clippy_c_api
make build_tfhe_full
- name: Build Release c_api
run: |
make build_c_api
- name: Test tfhe-rs/boolean with cpu
run: |
make test_boolean
- name: Run core tests
run: |
make test_core_crypto
- name: Run boolean tests
run: |
make test_boolean
- name: Run C API tests
run: |
make test_c_api
@@ -80,29 +72,21 @@ jobs:
run: |
make test_user_doc
- name: Configure AWS credentials from Test account
uses: aws-actions/configure-aws-credentials@v1
with:
aws-access-key-id: ${{ secrets.AWS_IAM_ID }}
aws-secret-access-key: ${{ secrets.AWS_IAM_KEY }}
role-to-assume: concrete-lib-ci
aws-region: eu-west-3
role-duration-seconds: 10800
- name: Download keys locally
run: aws s3 cp --recursive --no-progress s3://concrete-libs-keycache ./keys
# JS tests are more easily launched in docker, we won't test that on M1 as docker is pretty
# slow on Apple machines due to the virtualization layer.
- name: Gen Keys if required
run: |
make gen_key_cache
- name: Sync keys
run: aws s3 sync ./keys s3://concrete-libs-keycache
- name: Run shortint tests
run: |
make test_shortint_ci
- name: Run integer tests
run: |
make test_integer_ci
remove_label:
name: Remove m1_test label
runs-on: ubuntu-latest
@@ -110,13 +94,13 @@ jobs:
- cargo-builds
if: ${{ always() }}
steps:
- uses: actions-ecosystem/action-remove-labels@v1
- uses: actions-ecosystem/action-remove-labels@2ce5d41b4b6aa8503e285553f75ed56e0a40bae0
with:
labels: m1_test
github_token: ${{ secrets.GITHUB_TOKEN }}
- name: Slack Notification
if: ${{ always() }}
if: ${{ needs.cargo-builds.result != 'skipped' }}
continue-on-error: true
uses: rtCamp/action-slack-notify@12e36fc18b0689399306c2e0b3e0f2978b7f1ee7
env:

52
.github/workflows/make_release.yml vendored Normal file
View File

@@ -0,0 +1,52 @@
# Publish new release of tfhe-rs on various platform.
name: Publish release
on:
workflow_dispatch:
inputs:
dry_run:
description: "Dry-run"
type: boolean
default: true
jobs:
publish_release:
name: Publish Release
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab
with:
fetch-depth: 0
- name: Publish crate.io package
env:
CRATES_TOKEN: ${{ secrets.CARGO_REGISTRY_TOKEN }}
DRY_RUN: ${{ inputs.dry_run && '--dry-run' || '' }}
run: |
cargo publish -p tfhe --token ${{ env.CRATES_TOKEN }} ${{ env.DRY_RUN }}
- name: Build web package
run: |
make build_web_js_api
- name: Publish web package
uses: JS-DevTools/npm-publish@541aa6b21b4a1e9990c95a92c21adc16b35e9551
with:
token: ${{ secrets.NPM_TOKEN }}
package: tfhe/pkg/package.json
dry-run: ${{ inputs.dry_run }}
- name: Build Node package
run: |
rm -rf tfhe/pkg
make build_node_js_api
sed -i 's/"tfhe"/"node-tfhe"/g' tfhe/pkg/package.json
- name: Publish Node package
uses: JS-DevTools/npm-publish@541aa6b21b4a1e9990c95a92c21adc16b35e9551
with:
token: ${{ secrets.NPM_TOKEN }}
package: tfhe/pkg/package.json
dry-run: ${{ inputs.dry_run }}

104
.github/workflows/pbs_benchmark.yml vendored Normal file
View File

@@ -0,0 +1,104 @@
# Run PBS benchmarks on an AWS instance and return parsed results to Slab CI bot.
name: PBS benchmarks
on:
workflow_dispatch:
inputs:
instance_id:
description: "Instance ID"
type: string
instance_image_id:
description: "Instance AMI ID"
type: string
instance_type:
description: "Instance product type"
type: string
runner_name:
description: "Action runner name"
type: string
request_id:
description: "Slab request ID"
type: string
env:
CARGO_TERM_COLOR: always
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
jobs:
run-pbs-benchmarks:
name: Execute PBS benchmarks in EC2
runs-on: ${{ github.event.inputs.runner_name }}
if: ${{ !cancelled() }}
steps:
- name: Instance configuration used
run: |
echo "IDs: ${{ inputs.instance_id }}"
echo "AMI: ${{ inputs.instance_image_id }}"
echo "Type: ${{ inputs.instance_type }}"
echo "Request ID: ${{ inputs.request_id }}"
- name: Get benchmark date
run: |
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
- name: Checkout tfhe-rs repo with tags
uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab
with:
fetch-depth: 0
- name: Set up home
# "Install rust" step require root user to have a HOME directory which is not set.
run: |
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
- name: Install rust
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
with:
toolchain: nightly
override: true
- name: Run benchmarks with AVX512
run: |
make AVX512_SUPPORT=ON bench_pbs
- name: Parse results
run: |
COMMIT_DATE="$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})"
COMMIT_HASH="$(git describe --tags --dirty)"
python3 ./ci/benchmark_parser.py target/criterion ${{ env.RESULTS_FILENAME }} \
--database tfhe_rs \
--hardware ${{ inputs.instance_type }} \
--project-version "${COMMIT_HASH}" \
--branch ${{ github.ref_name }} \
--commit-date "${COMMIT_DATE}" \
--bench-date "${{ env.BENCH_DATE }}" \
--name-suffix avx512 \
--walk-subdirs \
--throughput
- name: Upload parsed results artifact
uses: actions/upload-artifact@0b7f8abb1508181956e8e162db84b466c27e18ce
with:
name: ${{ github.sha }}_pbs
path: ${{ env.RESULTS_FILENAME }}
- name: Checkout Slab repo
uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab
with:
repository: zama-ai/slab
path: slab
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
- name: Send data to Slab
shell: bash
run: |
echo "Computing HMac on downloaded artifact"
SIGNATURE="$(slab/scripts/hmac_calculator.sh ${{ env.RESULTS_FILENAME }} '${{ secrets.JOB_SECRET }}')"
echo "Sending results to Slab..."
curl -v -k \
-H "Content-Type: application/json" \
-H "X-Slab-Repository: ${{ github.repository }}" \
-H "X-Slab-Command: store_data_v2" \
-H "X-Hub-Signature-256: sha256=${SIGNATURE}" \
-d @${{ env.RESULTS_FILENAME }} \
${{ secrets.SLAB_URL }}

114
.github/workflows/shortint_benchmark.yml vendored Normal file
View File

@@ -0,0 +1,114 @@
# Run shortint benchmarks on an AWS instance and return parsed results to Slab CI bot.
name: Shortint benchmarks
on:
workflow_dispatch:
inputs:
instance_id:
description: "Instance ID"
type: string
instance_image_id:
description: "Instance AMI ID"
type: string
instance_type:
description: "Instance product type"
type: string
runner_name:
description: "Action runner name"
type: string
request_id:
description: "Slab request ID"
type: string
env:
CARGO_TERM_COLOR: always
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
jobs:
run-shortint-benchmarks:
name: Execute shortint benchmarks in EC2
runs-on: ${{ github.event.inputs.runner_name }}
if: ${{ !cancelled() }}
steps:
- name: Instance configuration used
run: |
echo "IDs: ${{ inputs.instance_id }}"
echo "AMI: ${{ inputs.instance_image_id }}"
echo "Type: ${{ inputs.instance_type }}"
echo "Request ID: ${{ inputs.request_id }}"
- name: Get benchmark date
run: |
echo "BENCH_DATE=$(date --iso-8601=seconds)" >> "${GITHUB_ENV}"
- name: Checkout tfhe-rs repo with tags
uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab
with:
fetch-depth: 0
- name: Set up home
# "Install rust" step require root user to have a HOME directory which is not set.
run: |
echo "HOME=/home/ubuntu" >> "${GITHUB_ENV}"
- name: Install rust
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
with:
toolchain: nightly
override: true
- name: Run benchmarks with AVX512
run: |
make AVX512_SUPPORT=ON bench_shortint
- name: Parse results
run: |
COMMIT_DATE="$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})"
COMMIT_HASH="$(git describe --tags --dirty)"
python3 ./ci/benchmark_parser.py target/criterion ${{ env.RESULTS_FILENAME }} \
--database tfhe_rs \
--hardware ${{ inputs.instance_type }} \
--project-version "${COMMIT_HASH}" \
--branch ${{ github.ref_name }} \
--commit-date "${COMMIT_DATE}" \
--bench-date "${{ env.BENCH_DATE }}" \
--walk-subdirs \
--name-suffix avx512 \
--throughput
- name: Measure key sizes
run: |
make measure_shortint_key_sizes
- name: Parse key sizes results
run: |
python3 ./ci/benchmark_parser.py tfhe/shortint_key_sizes.csv ${{ env.RESULTS_FILENAME }} \
--key-sizes \
--append-results
- name: Upload parsed results artifact
uses: actions/upload-artifact@0b7f8abb1508181956e8e162db84b466c27e18ce
with:
name: ${{ github.sha }}_shortint
path: ${{ env.RESULTS_FILENAME }}
- name: Checkout Slab repo
uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab
with:
repository: zama-ai/slab
path: slab
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
- name: Send data to Slab
shell: bash
run: |
echo "Computing HMac on results file"
SIGNATURE="$(slab/scripts/hmac_calculator.sh ${{ env.RESULTS_FILENAME }} '${{ secrets.JOB_SECRET }}')"
echo "Sending results to Slab..."
curl -v -k \
-H "Content-Type: application/json" \
-H "X-Slab-Repository: ${{ github.repository }}" \
-H "X-Slab-Command: store_data_v2" \
-H "X-Hub-Signature-256: sha256=${SIGNATURE}" \
-d @${{ env.RESULTS_FILENAME }} \
${{ secrets.SLAB_URL }}

36
.github/workflows/start_benchmarks.yml vendored Normal file
View File

@@ -0,0 +1,36 @@
# Start all benchmark jobs on Slab CI bot.
name: Start all benchmarks
on:
push:
branches:
- 'main'
workflow_dispatch:
jobs:
start-benchmarks:
strategy:
matrix:
command: [boolean_bench, shortint_bench, integer_bench, pbs_bench]
runs-on: ubuntu-latest
steps:
- name: Checkout Slab repo
uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab
with:
repository: zama-ai/slab
path: slab
token: ${{ secrets.CONCRETE_ACTIONS_TOKEN }}
- name: Start AWS job in Slab
shell: bash
run: |
echo -n '{"command": "${{ matrix.command }}", "git_ref": "${{ github.ref }}", "sha": "${{ github.sha }}"}' > command.json
SIGNATURE="$(slab/scripts/hmac_calculator.sh command.json '${{ secrets.JOB_SECRET }}')"
curl -v -k \
--fail-with-body \
-H "Content-Type: application/json" \
-H "X-Slab-Repository: ${{ github.repository }}" \
-H "X-Slab-Command: start_aws" \
-H "X-Hub-Signature-256: sha256=${SIGNATURE}" \
-d @command.json \
${{ secrets.SLAB_URL }}

37
.github/workflows/sync_on_push.yml vendored Normal file
View File

@@ -0,0 +1,37 @@
# Sync repos
name: Sync repos
on:
push:
branches:
- 'main'
workflow_dispatch:
jobs:
sync-repo:
if: ${{ github.repository == 'zama-ai/tfhe-rs' }}
runs-on: ubuntu-latest
steps:
- name: Checkout repo
uses: actions/checkout@8e5e7e5ab8b370d6c329ec480221332ada57f0ab
with:
fetch-depth: 0
- name: Save repo
uses: actions/upload-artifact@0b7f8abb1508181956e8e162db84b466c27e18ce
with:
name: repo-archive
path: '.'
- name: git-sync
uses: wei/git-sync@55c6b63b4f21607da0e9877ca9b4d11a29fc6d83
with:
source_repo: "zama-ai/tfhe-rs"
source_branch: "main"
destination_repo: "https://${{ secrets.BOT_USERNAME }}:${{ secrets.CONCRETE_ACTIONS_TOKEN }}@github.com/${{ secrets.SYNC_DEST_REPO }}"
destination_branch: "main"
- name: git-sync tags
uses: wei/git-sync@55c6b63b4f21607da0e9877ca9b4d11a29fc6d83
with:
source_repo: "zama-ai/tfhe-rs"
source_branch: "refs/tags/*"
destination_repo: "https://${{ secrets.BOT_USERNAME }}:${{ secrets.CONCRETE_ACTIONS_TOKEN }}@github.com/${{ secrets.SYNC_DEST_REPO }}"
destination_branch: "refs/tags/*"

View File

@@ -0,0 +1,18 @@
# Trigger an AWS build each time commits are pushed to a pull request.
name: PR AWS build trigger
on:
pull_request:
jobs:
test:
runs-on: ubuntu-latest
permissions:
pull-requests: write
steps:
- uses: mshick/add-pr-comment@a65df5f64fc741e91c59b8359a4bc56e57aaf5b1
with:
allow-repeats: true
message: |
@slab-ci cpu_test
@slab-ci cpu_integer_test

7
.gitignore vendored
View File

@@ -3,7 +3,12 @@ target/
.vscode/
# Path we use for internal-keycache during tests
keys/
./keys/
# In case of symlinked keys
./keys
**/Cargo.lock
**/*.bin
# Some of our bench outputs
/tfhe/benchmarks_parameters

View File

@@ -1,9 +1,15 @@
[workspace]
resolver = "2"
members = ["tfhe"]
members = ["tfhe", "tasks"]
[profile.bench]
lto = "fat"
[profile.release]
lto = "fat"
# Compiles much faster for tests and allows reasonable performance for iterating
[profile.devo]
inherits = "dev"
opt-level = 3
lto = "off"

View File

@@ -1,6 +1,6 @@
BSD 3-Clause Clear License
Copyright © 2022 ZAMA.
Copyright © 2023 ZAMA.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
@@ -16,7 +16,7 @@ materials provided with the distribution.
3. Neither the name of ZAMA nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE*.
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
THIS SOFTWARE IS PROVIDED BY THE ZAMA AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
@@ -26,8 +26,3 @@ OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CA
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*In addition to the rights carried by this license, ZAMA grants to the user a non-exclusive,
free and non-commercial license on all patents filed in its name relating to the open-source
code (the "Patents") for the sole purpose of evaluation, development, research, prototyping
and experimentation.

289
Makefile
View File

@@ -1,13 +1,25 @@
SHELL:=$(shell /usr/bin/env which bash)
RS_CHECK_TOOLCHAIN:=$(shell cat toolchain.txt)
OS:=$(shell uname)
RS_CHECK_TOOLCHAIN:=$(shell cat toolchain.txt | tr -d '\n')
CARGO_RS_CHECK_TOOLCHAIN:=+$(RS_CHECK_TOOLCHAIN)
TARGET_ARCH_FEATURE:=$(shell ./scripts/get_arch_feature.sh)
RS_BUILD_TOOLCHAIN:=$(shell \
( (echo $(TARGET_ARCH_FEATURE) | grep -q x86) && echo stable) || echo $(RS_CHECK_TOOLCHAIN))
CARGO_RS_BUILD_TOOLCHAIN:=+$(RS_BUILD_TOOLCHAIN)
CARGO_PROFILE?=release
MIN_RUST_VERSION:=1.65
AVX512_SUPPORT?=OFF
WASM_RUSTFLAGS:=
BIG_TESTS_INSTANCE?=FALSE
# This is done to avoid forgetting it, we still precise the RUSTFLAGS in the commands to be able to
# copy paste the command in the termianl and change them if required without forgetting the flags
export RUSTFLAGS:=-C target-cpu=native
# copy paste the command in the terminal and change them if required without forgetting the flags
export RUSTFLAGS?=-C target-cpu=native
ifeq ($(AVX512_SUPPORT),ON)
AVX512_FEATURE=nightly-avx512
else
AVX512_FEATURE=
endif
.PHONY: rs_check_toolchain # Echo the rust toolchain used for checks
rs_check_toolchain:
@@ -21,21 +33,30 @@ rs_build_toolchain:
install_rs_check_toolchain:
@rustup toolchain list | grep -q "$(RS_CHECK_TOOLCHAIN)" || \
rustup toolchain install --profile default "$(RS_CHECK_TOOLCHAIN)" || \
echo "Unable to install $(RS_CHECK_TOOLCHAIN) toolchain, check your rustup installation. \
Rustup can be downloaded at https://rustup.rs/"
( echo "Unable to install $(RS_CHECK_TOOLCHAIN) toolchain, check your rustup installation. \
Rustup can be downloaded at https://rustup.rs/" && exit 1 )
.PHONY: install_rs_build_toolchain # Install the toolchain used for builds
install_rs_build_toolchain:
@rustup toolchain list | grep -q "$(RS_BUILD_TOOLCHAIN)" || \
@( rustup toolchain list | grep -q "$(RS_BUILD_TOOLCHAIN)" && \
./scripts/check_cargo_min_ver.sh \
--rust-toolchain "$(CARGO_RS_BUILD_TOOLCHAIN)" \
--min-rust-version "$(MIN_RUST_VERSION)" ) || \
rustup toolchain install --profile default "$(RS_BUILD_TOOLCHAIN)" || \
echo "Unable to install $(RS_BUILD_TOOLCHAIN) toolchain, check your rustup installation. \
Rustup can be downloaded at https://rustup.rs/"
( echo "Unable to install $(RS_BUILD_TOOLCHAIN) toolchain, check your rustup installation. \
Rustup can be downloaded at https://rustup.rs/" && exit 1 )
.PHONY: install_cargo_nextest # Install cargo nextest used for shortint tests
install_cargo_nextest: install_rs_build_toolchain
@cargo nextest --version > /dev/null 2>&1 || \
cargo $(CARGO_RS_BUILD_TOOLCHAIN) install cargo-nextest --locked || \
echo "Unable to install cargo nextest, unknown error."
( echo "Unable to install cargo nextest, unknown error." && exit 1 )
.PHONY: install_wasm_pack # Install wasm-pack to build JS packages
install_wasm_pack: install_rs_build_toolchain
@wasm-pack --version > /dev/null 2>&1 || \
cargo $(CARGO_RS_BUILD_TOOLCHAIN) install wasm-pack || \
( echo "Unable to install cargo wasm-pack, unknown error." && exit 1 )
.PHONY: fmt # Format rust code
fmt: install_rs_check_toolchain
@@ -45,6 +66,15 @@ fmt: install_rs_check_toolchain
check_fmt: install_rs_check_toolchain
cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" fmt --check
.PHONY: clippy_core # Run clippy lints on core_crypto with and without experimental features
clippy_core: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
--features=$(TARGET_ARCH_FEATURE) \
-p tfhe -- --no-deps -D warnings
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
--features=$(TARGET_ARCH_FEATURE),experimental \
-p tfhe -- --no-deps -D warnings
.PHONY: clippy_boolean # Run clippy lints enabling the boolean features
clippy_boolean: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
@@ -57,10 +87,16 @@ clippy_shortint: install_rs_check_toolchain
--features=$(TARGET_ARCH_FEATURE),shortint \
-p tfhe -- --no-deps -D warnings
.PHONY: clippy # Run clippy lints enabling the boolean, shortint
clippy: install_rs_check_toolchain
.PHONY: clippy_integer # Run clippy lints enabling the integer features
clippy_integer: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
--features=$(TARGET_ARCH_FEATURE),boolean,shortint \
--features=$(TARGET_ARCH_FEATURE),integer \
-p tfhe -- --no-deps -D warnings
.PHONY: clippy # Run clippy lints enabling the boolean, shortint, integer
clippy: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy --all-targets \
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer \
-p tfhe -- --no-deps -D warnings
.PHONY: clippy_c_api # Run clippy lints enabling the boolean, shortint and the C API
@@ -69,83 +105,236 @@ clippy_c_api: install_rs_check_toolchain
--features=$(TARGET_ARCH_FEATURE),boolean-c-api,shortint-c-api \
-p tfhe -- --no-deps -D warnings
.PHONY: clippy_cuda # Run clippy lints enabling the boolean, shortint, cuda and c API features
clippy_cuda: install_rs_check_toolchain
.PHONY: clippy_js_wasm_api # Run clippy lints enabling the boolean, shortint and the js wasm API
clippy_js_wasm_api: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
--features=$(TARGET_ARCH_FEATURE),cuda,boolean-c-api,shortint-c-api \
--features=boolean-client-js-wasm-api,shortint-client-js-wasm-api \
-p tfhe -- --no-deps -D warnings
.PHONY: clippy_tasks # Run clippy lints on helper tasks crate.
clippy_tasks:
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
-p tasks -- --no-deps -D warnings
.PHONY: clippy_all_targets # Run clippy lints on all targets (benches, examples, etc.)
clippy_all_targets:
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy --all-targets \
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer,internal-keycache \
-p tfhe -- --no-deps -D warnings
.PHONY: clippy_all # Run all clippy targets
clippy_all: clippy clippy_boolean clippy_shortint clippy_integer clippy_all_targets clippy_c_api \
clippy_js_wasm_api clippy_tasks clippy_core
.PHONY: clippy_fast # Run main clippy targets
clippy_fast: clippy clippy_all_targets clippy_c_api clippy_js_wasm_api clippy_tasks clippy_core
.PHONY: gen_key_cache # Run the script to generate keys and cache them for shortint tests
gen_key_cache: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) run --release \
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) run --profile $(CARGO_PROFILE) \
--example generates_test_keys \
--features=$(TARGET_ARCH_FEATURE),shortint,internal-keycache -p tfhe
.PHONY: build_core # Build core_crypto without experimental features
build_core: install_rs_build_toolchain install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) build --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE) -p tfhe
@if [[ "$(AVX512_SUPPORT)" == "ON" ]]; then \
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) build --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE),$(AVX512_FEATURE) -p tfhe; \
fi
.PHONY: build_core_experimental # Build core_crypto with experimental features
build_core_experimental: install_rs_build_toolchain install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) build --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE),experimental -p tfhe
@if [[ "$(AVX512_SUPPORT)" == "ON" ]]; then \
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) build --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE),experimental,$(AVX512_FEATURE) -p tfhe; \
fi
.PHONY: build_boolean # Build with boolean enabled
build_boolean: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) build --release \
--features=$(TARGET_ARCH_FEATURE),boolean -p tfhe
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) build --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE),boolean -p tfhe --all-targets
.PHONY: build_shortint # Build with shortint enabled
build_shortint: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) build --release \
--features=$(TARGET_ARCH_FEATURE),shortint -p tfhe
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) build --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE),shortint -p tfhe --all-targets
.PHONY: build_boolean_and_shortint # Build with boolean and shortint enabled
build_boolean_and_shortint: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) build --release \
--features=$(TARGET_ARCH_FEATURE),boolean,shortint -p tfhe
.PHONY: build_integer # Build with integer enabled
build_integer: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) build --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE),integer -p tfhe --all-targets
.PHONY: build_tfhe_full # Build with boolean, shortint and integer enabled
build_tfhe_full: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) build --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer -p tfhe --all-targets
.PHONY: build_c_api # Build the C API for boolean and shortint
build_c_api: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) build --release
--features=$(TARGET_ARCH_FEATURE),boolean-c-api,shortint-c-api -p tfhe
build_c_api: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) build --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE),boolean-c-api,shortint-c-api,high-level-c-api \
-p tfhe
.PHONY: test_core_crypto # Run the tests of the core_crypto module
test_core_crypto: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --release \
--features=$(TARGET_ARCH_FEATURE) -p tfhe -- core_crypto::
.PHONY: build_web_js_api # Build the js API targeting the web browser
build_web_js_api: install_rs_build_toolchain install_wasm_pack
cd tfhe && \
RUSTFLAGS="$(WASM_RUSTFLAGS)" rustup run "$(RS_BUILD_TOOLCHAIN)" \
wasm-pack build --release --target=web \
-- --features=boolean-client-js-wasm-api,shortint-client-js-wasm-api
.PHONY: test_core_crypto_cuda # Run the tests of the core_crypto module with cuda enabled
test_core_crypto_cuda: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --release \
--features=$(TARGET_ARCH_FEATURE),cuda -p tfhe -- core_crypto::backends::cuda::
.PHONY: build_node_js_api # Build the js API targeting nodejs
build_node_js_api: install_rs_build_toolchain install_wasm_pack
cd tfhe && \
RUSTFLAGS="$(WASM_RUSTFLAGS)" rustup run "$(RS_BUILD_TOOLCHAIN)" \
wasm-pack build --release --target=nodejs \
-- --features=boolean-client-js-wasm-api,shortint-client-js-wasm-api
.PHONY: test_core_crypto # Run the tests of the core_crypto module including experimental ones
test_core_crypto: install_rs_build_toolchain install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE),experimental -p tfhe -- core_crypto::
@if [[ "$(AVX512_SUPPORT)" == "ON" ]]; then \
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE),experimental,$(AVX512_FEATURE) -p tfhe -- core_crypto::; \
fi
.PHONY: test_boolean # Run the tests of the boolean module
test_boolean: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --release \
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE),boolean -p tfhe -- boolean::
.PHONY: test_boolean_cuda # Run the tests of the boolean module with cuda enabled
test_boolean_cuda: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --release \
--features=$(TARGET_ARCH_FEATURE),boolean,cuda -p tfhe -- boolean::
.PHONY: test_c_api # Run the tests for the C API
test_c_api: install_rs_build_toolchain
./scripts/c_api_tests.sh $(CARGO_RS_BUILD_TOOLCHAIN)
test_c_api: build_c_api
./scripts/c_api_tests.sh
.PHONY: test_shortint_ci # Run the tests for shortint ci
test_shortint_ci: install_rs_build_toolchain install_cargo_nextest
./scripts/shortint-tests.sh $(CARGO_RS_BUILD_TOOLCHAIN)
BIG_TESTS_INSTANCE="$(BIG_TESTS_INSTANCE)" \
./scripts/shortint-tests.sh $(CARGO_RS_BUILD_TOOLCHAIN)
.PHONY: test_shortint # Run all the tests for shortint
test_shortint: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --release \
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE),shortint,internal-keycache -p tfhe -- shortint::
.PHONY: test_integer_ci # Run the tests for integer ci
test_integer_ci: install_rs_build_toolchain install_cargo_nextest
BIG_TESTS_INSTANCE="$(BIG_TESTS_INSTANCE)" \
./scripts/integer-tests.sh $(CARGO_RS_BUILD_TOOLCHAIN)
.PHONY: test_integer # Run all the tests for integer
test_integer: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE),integer,internal-keycache -p tfhe -- integer::
.PHONY: test_high_level_api # Run all the tests for high_level_api
test_high_level_api: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer,internal-keycache -p tfhe -- high_level_api::
.PHONY: test_user_doc # Run tests from the .md documentation
test_user_doc: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --release --doc \
--features=$(TARGET_ARCH_FEATURE),shortint,boolean,internal-keycache -p tfhe \
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) --doc \
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer,internal-keycache -p tfhe \
-- test_user_docs::
.PHONY: doc # Build rust doc
doc: install_rs_check_toolchain
RUSTDOCFLAGS="--html-in-header katex-header.html" \
RUSTDOCFLAGS="--html-in-header katex-header.html -Dwarnings" \
cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" doc \
--features=$(TARGET_ARCH_FEATURE),boolean,shortint --no-deps
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,integer --no-deps
.PHONY: format_doc_latex # Format the documentation latex equations to avoid broken rendering.
format_doc_latex:
cargo xtask format_latex_doc
@"$(MAKE)" --no-print-directory fmt
@printf "\n===============================\n\n"
@printf "Please manually inspect changes made by format_latex_doc, rustfmt can break equations \
if the line length is exceeded\n"
@printf "\n===============================\n"
.PHONY: check_compile_tests # Build tests in debug without running them
check_compile_tests: build_c_api
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --no-run \
--features=$(TARGET_ARCH_FEATURE),experimental,boolean,shortint,integer,internal-keycache \
-p tfhe
@if [[ "$(OS)" == "Linux" || "$(OS)" == "Darwin" ]]; then \
./scripts/c_api_tests.sh --build-only; \
fi
.PHONY: build_nodejs_test_docker # Build a docker image with tools to run nodejs tests for wasm API
build_nodejs_test_docker:
DOCKER_BUILDKIT=1 docker build --build-arg RUST_TOOLCHAIN="$(RS_BUILD_TOOLCHAIN)" \
-f docker/Dockerfile.wasm_tests -t tfhe-wasm-tests .
.PHONY: test_nodejs_wasm_api_in_docker # Run tests for the nodejs on wasm API in a docker container
test_nodejs_wasm_api_in_docker: build_nodejs_test_docker
if [[ -t 1 ]]; then RUN_FLAGS="-it"; else RUN_FLAGS="-i"; fi && \
docker run --rm "$${RUN_FLAGS}" \
-v "$$(pwd)":/tfhe-wasm-tests/tfhe-rs \
-v tfhe-rs-root-target-cache:/root/tfhe-rs-target \
-v tfhe-rs-pkg-cache:/tfhe-wasm-tests/tfhe-rs/tfhe/pkg \
-v tfhe-rs-root-cargo-registry-cache:/root/.cargo/registry \
-v tfhe-rs-root-cache:/root/.cache \
tfhe-wasm-tests /bin/bash -i -c 'make test_nodejs_wasm_api'
.PHONY: test_nodejs_wasm_api # Run tests for the nodejs on wasm API
test_nodejs_wasm_api: build_node_js_api
cd tfhe && node --test js_on_wasm_tests
.PHONY: no_tfhe_typo # Check we did not invert the h and f in tfhe
no_tfhe_typo:
@./scripts/no_tfhe_typo.sh
.PHONY: bench_integer # Run benchmarks for integer
bench_integer: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
--bench integer-bench \
--features=$(TARGET_ARCH_FEATURE),integer,internal-keycache,$(AVX512_FEATURE) -p tfhe
.PHONY: bench_shortint # Run benchmarks for shortint
bench_shortint: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
--bench shortint-bench \
--features=$(TARGET_ARCH_FEATURE),shortint,internal-keycache,$(AVX512_FEATURE) -p tfhe
.PHONY: bench_boolean # Run benchmarks for boolean
bench_boolean: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
--bench boolean-bench \
--features=$(TARGET_ARCH_FEATURE),boolean,internal-keycache,$(AVX512_FEATURE) -p tfhe
.PHONY: bench_pbs # Run benchmarks for PBS
bench_pbs: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
--bench pbs-bench \
--features=$(TARGET_ARCH_FEATURE),boolean,shortint,internal-keycache,$(AVX512_FEATURE) -p tfhe
.PHONY: measure_shortint_key_sizes # Measure sizes of bootstrapping and key switching keys for shortint
measure_shortint_key_sizes: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) run \
--example shortint_key_sizes \
--features=$(TARGET_ARCH_FEATURE),shortint,internal-keycache
.PHONY: measure_boolean_key_sizes # Measure sizes of bootstrapping and key switching keys for boolean
measure_boolean_key_sizes: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) run \
--example boolean_key_sizes \
--features=$(TARGET_ARCH_FEATURE),boolean,internal-keycache
.PHONY: pcc # pcc stands for pre commit checks
pcc: no_tfhe_typo check_fmt doc clippy_all check_compile_tests
.PHONY: fpcc # pcc stands for pre commit checks, the f stands for fast
fpcc: no_tfhe_typo check_fmt doc clippy_fast check_compile_tests
.PHONY: conformance # Automatically fix problems that can be fixed
conformance: fmt
.PHONY: help # Generate list of targets with descriptions
help:
@grep '^.PHONY: .* #' Makefile | sed 's/\.PHONY: \(.*\) # \(.*\)/\1\t\2/' | expand -t30 | sort
@grep '^\.PHONY: .* #' Makefile | sed 's/\.PHONY: \(.*\) # \(.*\)/\1\t\2/' | expand -t30 | sort

131
README.md
View File

@@ -1,31 +1,25 @@
<p align="center">
<!-- product name logo -->
<img width=600 src="https://user-images.githubusercontent.com/86411313/201107820-b1b861be-6b3f-46cc-bccd-ed051201781a.png">
<img width=600 src="https://user-images.githubusercontent.com/5758427/231206749-8f146b97-3c5a-4201-8388-3ffa88580415.png">
</p>
<hr/>
<p align="center">
<a href="https://docs.zama.ai/tfhe-rs"> 📒 Read documentation</a> | <a href="https://zama.ai/community"> 💛 Community support</a>
</p>
<p align="center">
<!-- Version badge using shields.io -->
<a href="https://github.com/zama-ai/tfhe-rs/releases">
<img src="https://img.shields.io/github/v/release/zama-ai/tfhe-rs?style=flat-square">
</a>
<!-- Link to docs badge using shields.io -->
<a href="https://docs.zama.ai/tfhe-rs">
<img src="https://img.shields.io/badge/read-documentation-yellow?style=flat-square">
</a>
<!-- Community forum badge using shields.io -->
<a href="https://community.zama.ai">
<img src="https://img.shields.io/badge/community%20forum-online-brightgreen?style=flat-square">
</a>
<!-- Open source badge using shields.io -->
<a href="https://docs.zama.ai/tfhe-rs/developers/contributing">
<img src="https://img.shields.io/badge/we're%20open%20source-contributing.md-blue?style=flat-square">
</a>
<!-- Follow on twitter badge using shields.io -->
<a href="https://twitter.com/zama_fhe">
<img src="https://img.shields.io/twitter/follow/zama_fhe?color=blue&style=flat-square">
<!-- Zama Bounty Program -->
<a href="https://github.com/zama-ai/bounty-program">
<img src="https://img.shields.io/badge/Contribute-Zama%20Bounty%20Program-yellow?style=flat-square">
</a>
</p>
<hr/>
**TFHE-rs** is a pure Rust implementation of TFHE for boolean and small integer
**TFHE-rs** is a pure Rust implementation of TFHE for boolean and integer
arithmetics over encrypted data. It includes:
- a **Rust** API
- a **C** API
@@ -33,38 +27,61 @@ arithmetics over encrypted data. It includes:
**TFHE-rs** is meant for developers and researchers who want full control over
what they can do with TFHE, while not having to worry about the low level
implementation. The goal is to have a stable, simple, high-performance and
implementation. The goal is to have a stable, simple, high-performance, and
production-ready library for all the advanced features of TFHE.
## Getting Started
To use `TFHE-rs` in your project, you first need to add it as a dependency in your `Cargo.toml`:
To use the latest version of `TFHE-rs` in your project, you first need to add it as a dependency in your `Cargo.toml`:
+ For x86_64-based machines running Unix-like OSes:
```toml
tfhe = { version = "0.1.0", features = [ "boolean","shortint","x86_64-unix" ] }
tfhe = { version = "*", features = ["boolean", "shortint", "integer", "x86_64-unix"] }
```
+ For Apple Silicon or aarch64-based machines running Unix-like OSes:
```toml
tfhe = { version = "*", features = ["boolean", "shortint", "integer", "aarch64-unix"] }
```
Note: users with ARM devices must use `TFHE-rs` by compiling using the `nightly` toolchain.
+ For x86_64-based machines with the [`rdseed instruction`](https://en.wikipedia.org/wiki/RDRAND)
running Windows:
```toml
tfhe = { version = "*", features = ["boolean", "shortint", "integer", "x86_64"] }
```
Note: aarch64-based machines are not yet supported for Windows as it's currently missing an entropy source to be able to seed the [CSPRNGs](https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator) used in TFHE-rs
Note that when running code that uses `tfhe-rs`, it is highly recommended
to run in release mode with cargo's `--release` flag to have the best performances possible,
eg: `cargo run --release`.
Here is a full example evaluating a Boolean circuit:
```rust
use tfhe::boolean::prelude::*;
fn main() {
// We generate a set of client/server keys, using the default parameters:
// We generate a set of client/server keys, using the default parameters:
let (mut client_key, mut server_key) = gen_keys();
// We use the client secret key to encrypt two messages:
// We use the client secret key to encrypt two messages:
let ct_1 = client_key.encrypt(true);
let ct_2 = client_key.encrypt(false);
// We use the server public key to execute a boolean circuit:
// if ((NOT ct_2) NAND (ct_1 AND ct_2)) then (NOT ct_2) else (ct_1 AND ct_2)
// We use the server public key to execute a boolean circuit:
// if ((NOT ct_2) NAND (ct_1 AND ct_2)) then (NOT ct_2) else (ct_1 AND ct_2)
let ct_3 = server_key.not(&ct_2);
let ct_4 = server_key.and(&ct_1, &ct_2);
let ct_5 = server_key.nand(&ct_3, &ct_4);
let ct_6 = server_key.mux(&ct_5, &ct_3, &ct_4);
// We use the client key to decrypt the output of the circuit:
// We use the client key to decrypt the output of the circuit:
let output = client_key.decrypt(&ct_6);
assert_eq!(output, true);
}
@@ -76,24 +93,57 @@ Another example of how the library can be used with shortints:
use tfhe::shortint::prelude::*;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let (client_key, server_key) = gen_keys(Parameters::default());
// Generate a set of client/server keys
// with 2 bits of message and 2 bits of carry
let (client_key, server_key) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
let msg1 = 1;
let msg2 = 0;
let msg1 = 3;
let msg2 = 2;
let modulus = client_key.parameters.message_modulus.0;
// We use the client key to encrypt two messages:
// Encrypt two messages using the (private) client key:
let ct_1 = client_key.encrypt(msg1);
let ct_2 = client_key.encrypt(msg2);
// We use the server public key to execute an integer circuit:
let ct_3 = server_key.unchecked_add(&ct_1, &ct_2);
// Homomorphically compute an addition
let ct_add = server_key.unchecked_add(&ct_1, &ct_2);
// We use the client key to decrypt the output of the circuit:
let output = client_key.decrypt(&ct_3);
assert_eq!(output, (msg1 + msg2) % modulus as u64);
// Define the Hamming weight function
// f: x -> sum of the bits of x
let f = |x:u64| x.count_ones() as u64;
// Generate the accumulator for the function
let acc = server_key.generate_accumulator(f);
// Compute the function over the ciphertext using the PBS
let ct_res = server_key.apply_lookup_table(&ct_add, &acc);
// Decrypt the ciphertext using the (private) client key
let output = client_key.decrypt(&ct_res);
assert_eq!(output, f(msg1 + msg2));
}
```
An example using integer:
```rust
use tfhe::integer::gen_keys_radix;
use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
// We create keys to create 16 bits integers
// using 8 blocks of 2 bits
let (cks, sks) = gen_keys_radix(&PARAM_MESSAGE_2_CARRY_2, 8);
let clear_a = 2382u16;
let clear_b = 29374u16;
let mut a = cks.encrypt(clear_a as u64);
let mut b = cks.encrypt(clear_b as u64);
let encrypted_max = sks.smart_max_parallelized(&mut a, &mut b);
let decrypted_max: u64 = cks.decrypt(&encrypted_max);
assert_eq!(decrypted_max as u16, clear_a.max(clear_b))
}
```
@@ -101,7 +151,7 @@ fn main() {
There are two ways to contribute to TFHE-rs:
- you can open issues to report bugs or typos and to suggest new ideas
- you can open issues to report bugs or typos, or to suggest new ideas
- you can ask to become an official contributor by emailing [hello@zama.ai](mailto:hello@zama.ai).
(becoming an approved contributor involves signing our Contributor License Agreement (CLA))
@@ -112,6 +162,11 @@ Only approved contributors can send pull requests, so please make sure to get in
This library uses several dependencies and we would like to thank the contributors of those
libraries.
## Need support?
<a target="_blank" href="https://community.zama.ai">
<img src="https://user-images.githubusercontent.com/5758427/231115030-21195b55-2629-4c01-9809-be5059243999.png">
</a>
## License
This software is distributed under the BSD-3-Clause-Clear license. If you have any questions,

353
ci/benchmark_parser.py Normal file
View File

@@ -0,0 +1,353 @@
"""
benchmark_parser
----------------
Parse criterion benchmark or keys size results.
"""
import argparse
import csv
import pathlib
import json
import sys
ONE_HOUR_IN_NANOSECONDS = 3600E9
parser = argparse.ArgumentParser()
parser.add_argument('results',
help='Location of criterion benchmark results directory.'
'If the --key-size option is used, then the value would have to point to'
'a CSV file.')
parser.add_argument('output_file', help='File storing parsed results')
parser.add_argument('-d', '--database', dest='database',
help='Name of the database used to store results')
parser.add_argument('-w', '--hardware', dest='hardware',
help='Hardware reference used to perform benchmark')
parser.add_argument('-V', '--project-version', dest='project_version',
help='Commit hash reference')
parser.add_argument('-b', '--branch', dest='branch',
help='Git branch name on which benchmark was performed')
parser.add_argument('--commit-date', dest='commit_date',
help='Timestamp of commit hash used in project_version')
parser.add_argument('--bench-date', dest='bench_date',
help='Timestamp when benchmark was run')
parser.add_argument('--name-suffix', dest='name_suffix', default='',
help='Suffix to append to each of the result test names')
parser.add_argument('--append-results', dest='append_results', action='store_true',
help='Append parsed results to an existing file')
parser.add_argument('--walk-subdirs', dest='walk_subdirs', action='store_true',
help='Check for results in subdirectories')
parser.add_argument('--key-sizes', dest='key_sizes', action='store_true',
help='Parse only the results regarding keys size measurements')
parser.add_argument('--throughput', dest='throughput', action='store_true',
help='Compute and append number of operations per millisecond and'
'operations per dollar')
parser.add_argument('--backend', dest='backend', default='cpu',
help='Backend on which benchmarks have run')
def recursive_parse(directory, walk_subdirs=False, name_suffix="", compute_throughput=False,
hardware_hourly_cost=None):
"""
Parse all the benchmark results in a directory. It will attempt to parse all the files having a
.json extension at the top-level of this directory.
:param directory: path to directory that contains raw results as :class:`pathlib.Path`
:param walk_subdirs: traverse results subdirectories if parameters changes for benchmark case.
:param name_suffix: a :class:`str` suffix to apply to each test name found
:param compute_throughput: compute number of operations per millisecond and operations per
dollar
:param hardware_hourly_cost: hourly cost of the hardware used in dollar
:return: tuple of :class:`list` as (data points, parsing failures)
"""
excluded_directories = ["child_generate", "fork", "parent_generate", "report"]
result_values = []
parsing_failures = []
bench_class = "evaluate"
for dire in directory.iterdir():
if dire.name in excluded_directories or not dire.is_dir():
continue
for subdir in dire.iterdir():
if walk_subdirs:
if subdir.name == "new":
pass
else:
subdir = subdir.joinpath("new")
if not subdir.exists():
continue
elif subdir.name != "new":
continue
full_name, test_name = parse_benchmark_file(subdir)
if test_name is None:
parsing_failures.append((full_name, "'function_id' field is null in report"))
continue
try:
params, display_name, operator = get_parameters(test_name)
except Exception as err:
parsing_failures.append((full_name, f"failed to get parameters: {err}"))
continue
for stat_name, value in parse_estimate_file(subdir).items():
test_name_parts = list(filter(None, [test_name, stat_name, name_suffix]))
result_values.append(
_create_point(
value,
"_".join(test_name_parts),
bench_class,
"latency",
operator,
params,
display_name=display_name
)
)
if stat_name == "mean" and compute_throughput:
test_suffix = "ops-per-ms"
test_name_parts.append(test_suffix)
result_values.append(
_create_point(
compute_ops_per_millisecond(value),
"_".join(test_name_parts),
bench_class,
"throughput",
operator,
params,
display_name="_".join([display_name, test_suffix])
)
)
test_name_parts.pop()
if hardware_hourly_cost is not None:
test_suffix = "ops-per-dollar"
test_name_parts.append(test_suffix)
result_values.append(
_create_point(
compute_ops_per_dollar(value, hardware_hourly_cost),
"_".join(test_name_parts),
bench_class,
"throughput",
operator,
params,
display_name="_".join([display_name, test_suffix])
)
)
return result_values, parsing_failures
def _create_point(value, test_name, bench_class, bench_type, operator, params, display_name=None):
return {
"value": value,
"test": test_name,
"name": display_name,
"class": bench_class,
"type": bench_type,
"operator": operator,
"params": params}
def parse_benchmark_file(directory):
"""
Parse file containing details of the parameters used for a benchmark.
:param directory: directory where a benchmark case results are located as :class:`pathlib.Path`
:return: name of the test as :class:`str`
"""
raw_res = _parse_file_to_json(directory, "benchmark.json")
return raw_res["full_id"], raw_res["function_id"]
def parse_estimate_file(directory):
"""
Parse file containing timing results for a benchmark.
:param directory: directory where a benchmark case results are located as :class:`pathlib.Path`
:return: :class:`dict` of data points
"""
raw_res = _parse_file_to_json(directory, "estimates.json")
return {
stat_name: raw_res[stat_name]["point_estimate"]
for stat_name in ("mean", "std_dev")
}
def parse_key_sizes(result_file):
"""
Parse file containing key sizes results. The file must be formatted as CSV.
:param result_file: results file as :class:`pathlib.Path`
:return: tuple of :class:`list` as (data points, parsing failures)
"""
result_values = []
parsing_failures = []
with result_file.open() as csv_file:
reader = csv.reader(csv_file)
for (test_name, value) in reader:
try:
params, display_name, operator = get_parameters(test_name)
except Exception as err:
parsing_failures.append((test_name, f"failed to get parameters: {err}"))
continue
result_values.append({
"value": int(value),
"test": test_name,
"name": display_name,
"class": "keygen",
"type": "keysize",
"operator": operator,
"params": params})
return result_values, parsing_failures
def get_parameters(bench_id):
"""
Get benchmarks parameters recorded for a given benchmark case.
:param bench_id: function name used for the benchmark case
:return: :class:`tuple` as ``(benchmark parameters, display name, operator type)``
"""
params_dir = pathlib.Path("tfhe", "benchmarks_parameters", bench_id)
params = _parse_file_to_json(params_dir, "parameters.json")
display_name = params.pop("display_name")
operator = params.pop("operator_type")
# Put cryptographic parameters at the same level as the others parameters
crypto_params = params.pop("crypto_parameters")
params.update(crypto_params)
return params, display_name, operator
def compute_ops_per_dollar(data_point, product_hourly_cost):
"""
Compute numbers of operations per dollar for a given ``data_point``.
:param data_point: timing value measured during benchmark in nanoseconds
:param product_hourly_cost: cost in dollar per hour of hardware used
:return: number of operations per dollar
"""
return ONE_HOUR_IN_NANOSECONDS / (product_hourly_cost * data_point)
def compute_ops_per_millisecond(data_point):
"""
Compute numbers of operations per millisecond for a given ``data_point``.
:param data_point: timing value measured during benchmark in nanoseconds
:return: number of operations per millisecond
"""
return 1E6 / data_point
def _parse_file_to_json(directory, filename):
result_file = directory.joinpath(filename)
return json.loads(result_file.read_text())
def dump_results(parsed_results, filename, input_args):
"""
Dump parsed results formatted as JSON to file.
:param parsed_results: :class:`list` of data points
:param filename: filename for dump file as :class:`pathlib.Path`
:param input_args: CLI input arguments
"""
for point in parsed_results:
point["backend"] = input_args.backend
if input_args.append_results:
parsed_content = json.loads(filename.read_text())
parsed_content["points"].extend(parsed_results)
filename.write_text(json.dumps(parsed_content))
else:
filename.parent.mkdir(parents=True, exist_ok=True)
series = {
"database": input_args.database,
"hardware": input_args.hardware,
"project_version": input_args.project_version,
"branch": input_args.branch,
"insert_date": input_args.bench_date,
"commit_date": input_args.commit_date,
"points": parsed_results,
}
filename.write_text(json.dumps(series))
def check_mandatory_args(input_args):
"""
Check for availability of required input arguments, the program will exit if one of them is
not present. If `append_results` flag is set, all the required arguments will be ignored.
:param input_args: CLI input arguments
"""
if input_args.append_results:
return
missing_args = []
for arg_name in vars(input_args):
if arg_name in ["results_dir", "output_file", "name_suffix",
"append_results", "walk_subdirs", "key_sizes",
"throughput"]:
continue
if not getattr(input_args, arg_name):
missing_args.append(arg_name)
if missing_args:
for arg_name in missing_args:
print(f"Missing required argument: --{arg_name.replace('_', '-')}")
sys.exit(1)
if __name__ == "__main__":
args = parser.parse_args()
check_mandatory_args(args)
#failures = []
raw_results = pathlib.Path(args.results)
if not args.key_sizes:
print("Parsing benchmark results... ")
hardware_cost = None
if args.throughput:
print("Throughput computation enabled")
ec2_costs = json.loads(
pathlib.Path("ci/ec2_products_cost.json").read_text(encoding="utf-8"))
try:
hardware_cost = abs(ec2_costs[args.hardware])
print(f"Hardware hourly cost: {hardware_cost} $/h")
except KeyError:
print(f"Cannot find hardware hourly cost for '{args.hardware}'")
sys.exit(1)
results, failures = recursive_parse(raw_results, args.walk_subdirs, args.name_suffix,
args.throughput, hardware_cost)
else:
print("Parsing key sizes results... ")
results, failures = parse_key_sizes(raw_results)
print("Parsing results done")
output_file = pathlib.Path(args.output_file)
print(f"Dump parsed results into '{output_file.resolve()}' ... ", end="")
dump_results(results, output_file, args)
print("Done")
if failures:
print("\nParsing failed for some results")
print("-------------------------------")
for name, error in failures:
print(f"[{name}] {error}")
sys.exit(1)

View File

@@ -0,0 +1,3 @@
{
"m6i.metal": 7.168
}

View File

@@ -1,21 +1,39 @@
[profile.cpu-big]
region = "eu-west-3"
image_id = "ami-04deffe45b5b236fd"
instance_type = "c5a.8xlarge"
instance_type = "m6i.32xlarge"
[profile.gpu]
region = "us-east-1"
image_id = "ami-0ae662beb44082155"
instance_type = "p3.2xlarge"
subnet_id = "subnet-8123c9e7"
security_group = "sg-0466d33ced960ba35"
[profile.bench]
region = "eu-west-3"
image_id = "ami-04deffe45b5b236fd"
instance_type = "m6i.metal"
[command.cpu_test]
workflow = "aws_tfhe_tests.yml"
profile = "cpu-big"
check_run_name = "Shortint CPU AWS Tests"
check_run_name = "CPU AWS Tests"
[command.gpu_test]
workflow = "aws_tfhe_tests_w_gpu.yml"
profile = "gpu"
check_run_name = "AWS tests GPU (Slab)"
[command.cpu_integer_test]
workflow = "aws_tfhe_integer_tests.yml"
profile = "cpu-big"
check_run_name = "CPU Integer AWS Tests"
[command.integer_bench]
workflow = "integer_benchmark.yml"
profile = "bench"
check_run_name = "Integer CPU AWS Benchmarks"
[command.shortint_bench]
workflow = "shortint_benchmark.yml"
profile = "bench"
check_run_name = "Shortint CPU AWS Benchmarks"
[command.boolean_bench]
workflow = "boolean_benchmark.yml"
profile = "bench"
check_run_name = "Boolean CPU AWS Benchmarks"
[command.pbs_bench]
workflow = "pbs_benchmark.yml"
profile = "bench"
check_run_name = "PBS CPU AWS Benchmarks"

View File

@@ -0,0 +1,41 @@
FROM ubuntu:22.04
ENV TZ=Europe/Paris
RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone
# Replace default archive.ubuntu.com with fr mirror
# original archive showed performance issues and is farther away
RUN sed -i 's|^deb http://archive.ubuntu.com/ubuntu/|deb http://mirror.ubuntu.ikoula.com/|g' /etc/apt/sources.list && \
sed -i 's|^deb http://security.ubuntu.com/ubuntu/|deb http://mirror.ubuntu.ikoula.com/|g' /etc/apt/sources.list
ENV CARGO_TARGET_DIR=/root/tfhe-rs-target
ARG RUST_TOOLCHAIN="stable"
WORKDIR /tfhe-wasm-tests
RUN apt-get update && \
apt-get install -y \
build-essential \
curl \
git \
python3 \
python3-pip \
python3-venv && \
rm -rf /var/lib/apt/lists/*
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs > install-rustup.sh && \
chmod +x install-rustup.sh && \
./install-rustup.sh -y --default-toolchain "${RUST_TOOLCHAIN}" \
-c rust-src -t wasm32-unknown-unknown && \
curl https://rustwasm.github.io/wasm-pack/installer/init.sh -sSf > install-wasm-pack.sh && \
chmod +x install-wasm-pack.sh && \
. "$HOME/.cargo/env" && \
./install-wasm-pack.sh -y && \
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.3/install.sh > install-node.sh && \
chmod +x install-node.sh && \
./install-node.sh && \
. "$HOME/.nvm/nvm.sh" && \
bash -i -c 'nvm install node && nvm use node'
WORKDIR /tfhe-wasm-tests/tfhe-rs/

View File

@@ -2,8 +2,37 @@
set -e
function usage() {
echo "$0: build and/or run the C API tests"
echo
echo "--help Print this message"
echo "--build-only Pass to only build the tests without running them"
echo
}
BUILD_ONLY=0
while [ -n "$1" ]
do
case "$1" in
"--help" | "-h" )
usage
exit 0
;;
"--build-only" )
BUILD_ONLY=1
;;
*)
echo "Unknown param : $1"
exit 1
;;
esac
shift
done
CURR_DIR="$(dirname "$0")"
ARCH_FEATURE="$("${CURR_DIR}/get_arch_feature.sh")"
REPO_ROOT="${CURR_DIR}/.."
TFHE_BUILD_DIR="${REPO_ROOT}/tfhe/build/"
@@ -13,8 +42,18 @@ cd "${TFHE_BUILD_DIR}"
cmake .. -DCMAKE_BUILD_TYPE=RELEASE
RUSTFLAGS="-C target-cpu=native" cargo ${1:+"${1}"} build \
--release --features="${ARCH_FEATURE}",boolean-c-api,shortint-c-api -p tfhe
make -j
make "test"
if [[ "${BUILD_ONLY}" == "1" ]]; then
exit 0
fi
nproc_bin=nproc
# macOS detects CPUs differently
if [[ $(uname) == "Darwin" ]]; then
nproc_bin="sysctl -n hw.logicalcpu"
fi
# Let's go parallel
ARGS="-j$("${nproc_bin}")" make test

60
scripts/check_cargo_min_ver.sh Executable file
View File

@@ -0,0 +1,60 @@
#!/usr/bin/env bash
set -e
function usage() {
echo "$0: check minimum cargo version"
echo
echo "--help Print this message"
echo "--rust-toolchain The toolchain to check the version for with leading"
echo "--min-rust-version Check toolchain version is >= to this version, default is 1.65"
echo
}
RUST_TOOLCHAIN=""
# We set the default rust version 1.65 which is the minimum version required for stable GATs
MIN_RUST_VERSION="1.65"
while [ -n "$1" ]
do
case "$1" in
"--help" | "-h" )
usage
exit 0
;;
"--rust-toolchain" )
shift
RUST_TOOLCHAIN="$1"
;;
"--min-rust-version" )
shift
MIN_RUST_VERSION="$1"
;;
*)
echo "Unknown param : $1"
exit 1
;;
esac
shift
done
if [[ "${RUST_TOOLCHAIN::1}" != "+" ]]; then
RUST_TOOLCHAIN="+${RUST_TOOLCHAIN}"
fi
ver_string="$(cargo ${RUST_TOOLCHAIN:+"${RUST_TOOLCHAIN}"} --version | \
cut -d ' ' -f 2 | cut -d '-' -f 1)"
ver_major="$(echo "${ver_string}" | cut -d '.' -f 1)"
ver_minor="$(echo "${ver_string}" | cut -d '.' -f 2)"
min_ver_major="$(echo "${MIN_RUST_VERSION}" | cut -d '.' -f 1)"
min_ver_minor="$(echo "${MIN_RUST_VERSION}" | cut -d '.' -f 2)"
if [[ "${ver_major}" -ge "${min_ver_major}" ]] && [[ "${ver_minor}" -ge "${min_ver_minor}" ]]; then
exit 0
fi
exit 1

View File

@@ -4,7 +4,7 @@ set -e
ARCH_FEATURE=x86_64
IS_AARCH64="$( (uname -a | grep -c arm64) || true)"
IS_AARCH64="$( (uname -a | grep -c "arm64\|aarch64") || true)"
if [[ "${IS_AARCH64}" != "0" ]]; then
ARCH_FEATURE=aarch64

83
scripts/integer-tests.sh Executable file
View File

@@ -0,0 +1,83 @@
#!/bin/bash
set -e
CURR_DIR="$(dirname "$0")"
ARCH_FEATURE="$("${CURR_DIR}/get_arch_feature.sh")"
nproc_bin=nproc
# macOS detects CPUs differently
if [[ $(uname) == "Darwin" ]]; then
nproc_bin="sysctl -n hw.logicalcpu"
fi
n_threads="$(${nproc_bin})"
if uname -a | grep "arm64"; then
if [[ $(uname) == "Darwin" ]]; then
# Keys are 4.7 gigs at max, CI M1 macs only has 8 gigs of RAM
n_threads=1
fi
else
# Keys are 4.7 gigs at max, test machine has 32 gigs of RAM
n_threads=6
fi
if [[ "${BIG_TESTS_INSTANCE}" != TRUE ]]; then
# block pbs are too slow for high params
# mul_crt_4_4 is extremely flaky (~80% failure)
# test_wopbs_bivariate_crt_wopbs_param_message generate tables that are too big at the moment
# test_integer_smart_mul_param_message_4_carry_4 is too slow
filter_expression=''\
'test(/^integer::.*$/)'\
'and not test(/.*_block_pbs(_base)?_param_message_[34]_carry_[34]$/)'\
'and not test(~mul_crt_param_message_4_carry_4)'\
'and not test(/.*test_wopbs_bivariate_crt_wopbs_param_message_[34]_carry_[34]$/)'\
'and not test(/.*test_integer_smart_mul_param_message_4_carry_4$/)'
cargo ${1:+"${1}"} nextest run \
--tests \
--release \
--package tfhe \
--profile ci \
--features="${ARCH_FEATURE}",integer,internal-keycache \
--test-threads "${n_threads}" \
-E "$filter_expression"
cargo ${1:+"${1}"} test \
--release \
--package tfhe \
--features="${ARCH_FEATURE}",integer,internal-keycache \
--doc \
integer::
else
# block pbs are too slow for high params
# mul_crt_4_4 is extremely flaky (~80% failure)
# test_wopbs_bivariate_crt_wopbs_param_message generate tables that are too big at the moment
# test_integer_smart_mul_param_message_4_carry_4 is too slow
filter_expression=''\
'test(/^integer::.*$/)'\
'and not test(/.*_block_pbs(_base)?_param_message_[34]_carry_[34]$/)'\
'and not test(~mul_crt_param_message_4_carry_4)'\
'and not test(/.*test_wopbs_bivariate_crt_wopbs_param_message_[34]_carry_[34]$/)'\
'and not test(/.*test_integer_smart_mul_param_message_4_carry_4$/)'
cargo ${1:+"${1}"} nextest run \
--tests \
--release \
--package tfhe \
--profile ci \
--features="${ARCH_FEATURE}",integer,internal-keycache \
--test-threads "$(${nproc_bin})" \
-E "$filter_expression"
cargo ${1:+"${1}"} test \
--release \
--package tfhe \
--features="${ARCH_FEATURE}",integer,internal-keycache \
--doc \
integer:: -- --test-threads="$(${nproc_bin})"
fi
echo "Test ran in $SECONDS seconds"

20
scripts/no_tfhe_typo.sh Executable file
View File

@@ -0,0 +1,20 @@
#!/usr/bin/env bash
set -e
THIS_SCRIPT_NAME="$(basename "$0")"
TMP_FILE="$(mktemp)"
COUNT="$(git grep -rniI "thfe\|tfhr\|thfr" . | grep -v "${THIS_SCRIPT_NAME}" | \
tee "${TMP_FILE}" | wc -l | tr -d '[:space:]')"
cat "${TMP_FILE}"
rm -rf "${TMP_FILE}"
if [[ "${COUNT}" == "0" ]]; then
exit 0
else
echo "tfhe typo detected, see output log above"
exit 1
fi

View File

@@ -12,49 +12,109 @@ if [[ $(uname) == "Darwin" ]]; then
nproc_bin="sysctl -n hw.logicalcpu"
fi
n_threads="$(${nproc_bin})"
n_threads_small="$(${nproc_bin})"
n_threads_big="${n_threads_small}"
# TODO: automate thread selection by measuring host machine ram and loading the key sizes from the
# 'keys' cache directory keeping a safety margin for test execution
if uname -a | grep "arm64"; then
if [[ $(uname) == "Darwin" ]]; then
# Keys are 2 gigs at max, CI M1 macs only has 8 gigs of RAM so a bit conservative here
n_threads_small=3
# Keys are 4.7 gigs at max, CI M1 macs only has 8 gigs of RAM
n_threads=1
n_threads_big=1
fi
else
# Keys are 4.7 gigs at max, test machine has 32 gigs of RAM
n_threads=6
# Keys are 4.7 gigs at max, test machine has 64 gigs of RAM
n_threads_big=13
fi
filter_expression=''\
if [[ "${BIG_TESTS_INSTANCE}" != TRUE ]]; then
filter_expression_small_params=''\
'('\
' test(/^shortint::server_key::.*_param_message_1_carry_1$/)'\
'or test(/^shortint::server_key::.*_param_message_1_carry_2$/)'\
'or test(/^shortint::server_key::.*_param_message_1_carry_3$/)'\
'or test(/^shortint::server_key::.*_param_message_1_carry_4$/)'\
'or test(/^shortint::server_key::.*_param_message_1_carry_5$/)'\
'or test(/^shortint::server_key::.*_param_message_1_carry_6$/)'\
'or test(/^shortint::server_key::.*_param_message_2_carry_2$/)'\
'or test(/^shortint::server_key::.*_param_message_3_carry_3$/)'\
'or test(/^shortint::server_key::.*_param_message_4_carry_4$/)'\
' test(/^shortint::.*_param_message_1_carry_1$/)'\
'or test(/^shortint::.*_param_message_1_carry_2$/)'\
'or test(/^shortint::.*_param_message_1_carry_3$/)'\
'or test(/^shortint::.*_param_message_1_carry_4$/)'\
'or test(/^shortint::.*_param_message_1_carry_5$/)'\
'or test(/^shortint::.*_param_message_1_carry_6$/)'\
'or test(/^shortint::.*_param_message_2_carry_1$/)'\
'or test(/^shortint::.*_param_message_2_carry_2$/)'\
'or test(/^shortint::.*_param_message_2_carry_3$/)'\
'or test(/^shortint::.*_param_message_3_carry_1$/)'\
'or test(/^shortint::.*_param_message_3_carry_2$/)'\
'or test(/^shortint::.*_param_message_3_carry_3$/)'\
')'\
'and not test(~smart_add_and_mul)' # This test is too slow
export RUSTFLAGS="-C target-cpu=native"
# Run tests only no examples or benches with small params and more threads
cargo ${1:+"${1}"} nextest run \
--tests \
--release \
--package tfhe \
--profile ci \
--features="${ARCH_FEATURE}",shortint,internal-keycache \
--test-threads "${n_threads_small}" \
-E "${filter_expression_small_params}"
# Run tests only no examples or benches
cargo ${1:+"${1}"} nextest run \
--tests \
--release \
--package tfhe \
--profile ci \
--features="${ARCH_FEATURE}",shortint,internal-keycache \
--test-threads "${n_threads}" \
-E "${filter_expression}"
filter_expression_big_params=''\
'('\
' test(/^shortint::.*_param_message_4_carry_4$/)'\
')'\
'and not test(~smart_add_and_mul)'
cargo ${1:+"${1}"} test \
--release \
--package tfhe \
--features="${ARCH_FEATURE}",shortint,internal-keycache \
--doc \
shortint::
# Run tests only no examples or benches with big params and less threads
cargo ${1:+"${1}"} nextest run \
--tests \
--release \
--package tfhe \
--profile ci \
--features="${ARCH_FEATURE}",shortint,internal-keycache \
--test-threads "${n_threads_big}" \
-E "${filter_expression_big_params}"
cargo ${1:+"${1}"} test \
--release \
--package tfhe \
--features="${ARCH_FEATURE}",shortint,internal-keycache \
--doc \
shortint::
else
filter_expression=''\
'('\
' test(/^shortint::.*_param_message_1_carry_1$/)'\
'or test(/^shortint::.*_param_message_1_carry_2$/)'\
'or test(/^shortint::.*_param_message_1_carry_3$/)'\
'or test(/^shortint::.*_param_message_1_carry_4$/)'\
'or test(/^shortint::.*_param_message_1_carry_5$/)'\
'or test(/^shortint::.*_param_message_1_carry_6$/)'\
'or test(/^shortint::.*_param_message_2_carry_1$/)'\
'or test(/^shortint::.*_param_message_2_carry_2$/)'\
'or test(/^shortint::.*_param_message_2_carry_3$/)'\
'or test(/^shortint::.*_param_message_3_carry_1$/)'\
'or test(/^shortint::.*_param_message_3_carry_2$/)'\
'or test(/^shortint::.*_param_message_3_carry_3$/)'\
'or test(/^shortint::.*_param_message_4_carry_4$/)'\
')'\
'and not test(~smart_add_and_mul)' # This test is too slow
# Run tests only no examples or benches with small params and more threads
cargo ${1:+"${1}"} nextest run \
--tests \
--release \
--package tfhe \
--profile ci \
--features="${ARCH_FEATURE}",shortint,internal-keycache \
--test-threads "$(${nproc_bin})" \
-E "${filter_expression}"
cargo ${1:+"${1}"} test \
--release \
--package tfhe \
--features="${ARCH_FEATURE}",shortint,internal-keycache \
--doc \
shortint:: -- --test-threads="$(${nproc_bin})"
fi
echo "Test ran in $SECONDS seconds"

12
tasks/Cargo.toml Normal file
View File

@@ -0,0 +1,12 @@
[package]
name = "tasks"
version = "0.0.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
clap = "3.1"
lazy_static = "1.4"
log = "0.4"
simplelog = "0.12"

View File

@@ -0,0 +1,453 @@
use crate::utils::project_root;
use std::io::{Error, ErrorKind};
use std::{fmt, fs};
fn recurse_find_rs_files(
root_dir: std::path::PathBuf,
rs_files: &mut Vec<std::path::PathBuf>,
at_root: bool,
) {
for curr_entry in root_dir.read_dir().unwrap() {
let curr_path = curr_entry.unwrap().path().canonicalize().unwrap();
if curr_path.is_file() {
if let Some(extension) = curr_path.extension() {
if extension == "rs" {
rs_files.push(curr_path);
}
}
} else if curr_path.is_dir() {
if at_root {
// Hardcoded ignores for root .git and target
match curr_path.file_name().unwrap().to_str().unwrap() {
".git" => continue,
"target" => continue,
_ => recurse_find_rs_files(curr_path.to_path_buf(), rs_files, false),
};
} else {
recurse_find_rs_files(curr_path.to_path_buf(), rs_files, false);
}
}
}
}
#[derive(Debug)]
struct LatexEscapeToolError {
details: String,
}
impl LatexEscapeToolError {
fn new(msg: &str) -> LatexEscapeToolError {
LatexEscapeToolError {
details: msg.to_string(),
}
}
}
impl fmt::Display for LatexEscapeToolError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.details)
}
}
impl std::error::Error for LatexEscapeToolError {}
const DOC_TEST_START: &str = "///";
const DOC_COMMENT_START: &str = "//!";
const BACKSLASH_UTF8_LEN: usize = '\\'.len_utf8();
enum LineType {
DocTest { code_block_limit: bool },
DocComment { code_block_limit: bool },
EmptyLine,
Other,
}
fn get_line_type_and_trimmed_line(line: &str) -> (LineType, &str) {
let mut trimmed_line = line.trim_start();
let line_type = if trimmed_line.starts_with(DOC_COMMENT_START) {
trimmed_line = trimmed_line
.strip_prefix(DOC_COMMENT_START)
.unwrap()
.trim_start();
let has_code_block_limit = trimmed_line.starts_with("```");
LineType::DocComment {
code_block_limit: has_code_block_limit,
}
} else if trimmed_line.starts_with(DOC_TEST_START) {
trimmed_line = trimmed_line
.strip_prefix(DOC_TEST_START)
.unwrap()
.trim_start();
let has_code_block_limit = trimmed_line.starts_with("```");
LineType::DocTest {
code_block_limit: has_code_block_limit,
}
} else if trimmed_line.is_empty() {
LineType::EmptyLine
} else {
LineType::Other
};
(line_type, trimmed_line)
}
struct CommentContent<'a> {
is_in_code_block: bool,
line_start: &'a str,
line_content: &'a str,
}
fn find_contiguous_doc_comment<'a>(
lines: &[&'a str],
start_line_idx: usize,
) -> (Vec<CommentContent<'a>>, usize) {
let mut doc_comment_end_line_idx = start_line_idx + 1;
let mut is_in_code_block = false;
let mut contiguous_doc_comment = Vec::<CommentContent>::new();
for (line_idx, line) in lines.iter().enumerate().skip(start_line_idx) {
let (line_type, line_content) = get_line_type_and_trimmed_line(line);
let line_start = &line[..line.len() - line_content.len()];
// If there is an empty line we are still in the DocComment
let line_type = if let LineType::EmptyLine = line_type {
LineType::DocComment {
code_block_limit: false,
}
} else {
line_type
};
match line_type {
LineType::DocComment { code_block_limit } => {
if code_block_limit {
// We have found a code block limit, either starting or ending, toggle the
// flag
is_in_code_block = !is_in_code_block;
};
contiguous_doc_comment.push(CommentContent {
is_in_code_block,
line_start,
line_content,
});
// For now the only thing we know is that the next line is potentially the end of
// the comment block, required if a file is a giant comment block to have the proper
// bound
doc_comment_end_line_idx = line_idx + 1;
}
_ => {
// We are sure that the current line is the end of the comment block
doc_comment_end_line_idx = line_idx;
break;
}
};
}
(contiguous_doc_comment, doc_comment_end_line_idx)
}
fn find_contiguous_doc_test<'a>(
lines: &[&'a str],
start_line_idx: usize,
) -> (Vec<CommentContent<'a>>, usize) {
let mut doc_test_end_line_idx = start_line_idx + 1;
let mut is_in_code_block = false;
let mut contiguous_doc_test = Vec::<CommentContent>::new();
for (line_idx, line) in lines.iter().enumerate().skip(start_line_idx) {
let (line_type, line_content) = get_line_type_and_trimmed_line(line);
let line_start = &line[..line.len() - line_content.len()];
// If there is an empty line we are still in the DocTest
let line_type = if let LineType::EmptyLine = line_type {
LineType::DocTest {
code_block_limit: false,
}
} else {
line_type
};
match line_type {
LineType::DocTest { code_block_limit } => {
if code_block_limit {
// We have found a code block limit, either starting or ending, toggle the
// flag
is_in_code_block = !is_in_code_block;
};
contiguous_doc_test.push(CommentContent {
is_in_code_block,
line_start,
line_content,
});
// For now the only thing we know is that the next line is potentially the end of
// the comment block, required if a file is a giant comment block to have the proper
// bound
doc_test_end_line_idx = line_idx + 1;
}
_ => {
// We are sure that the current line is the end of the comment block
doc_test_end_line_idx = line_idx;
break;
}
};
}
(contiguous_doc_test, doc_test_end_line_idx)
}
fn find_contiguous_part_in_doc_test_or_comment(
part_is_code_block: bool,
full_doc_comment_content: &Vec<CommentContent>,
part_start_idx: usize,
) -> (usize, usize) {
let mut next_line_idx = part_start_idx + 1;
loop {
// We have exhausted the doc comment content, break
if next_line_idx == full_doc_comment_content.len() {
break;
}
let CommentContent {
is_in_code_block: next_line_is_in_code_block,
line_start: _,
line_content: _,
} = full_doc_comment_content[next_line_idx];
// We check if the next line is in a different part, if so we break
if next_line_is_in_code_block != part_is_code_block {
break;
}
next_line_idx += 1;
}
// next_line_idx points to the end of the part and is therefore returned as the part_stop_idx
(part_start_idx, next_line_idx)
}
enum LatexEquationKind {
Inline,
Multiline,
NotAnEquation,
}
fn escape_underscores_rewrite_equations(
comment_to_rewrite: &[CommentContent],
rewritten_content: &mut String,
) -> Result<(), LatexEscapeToolError> {
let mut latex_equation_kind = LatexEquationKind::NotAnEquation;
for CommentContent {
is_in_code_block: _,
line_start,
line_content,
} in comment_to_rewrite.iter()
{
rewritten_content.push_str(line_start);
let mut previous_char = '\0';
let mut chars = line_content.chars().peekable();
while let Some(current_char) = chars.next() {
match (previous_char, current_char) {
('$', '$') => {
match latex_equation_kind {
LatexEquationKind::Inline => {
// Problem we find an opening $$ after an opening $, return an error
return Err(LatexEscapeToolError::new(
"Found an opening '$' without a corresponding closing '$'",
));
}
LatexEquationKind::Multiline => {
// Closing $$, no more in a latex equation
latex_equation_kind = LatexEquationKind::NotAnEquation
}
LatexEquationKind::NotAnEquation => {
// Opening $$, in a multiline latex equation
latex_equation_kind = LatexEquationKind::Multiline
}
};
}
(_, '$') => {
let is_inline_marker = chars.peek() != Some(&'$');
if is_inline_marker {
match latex_equation_kind {
LatexEquationKind::Multiline => {
// Problem we find an opening $ after an opening $$, return an error
return Err(LatexEscapeToolError::new(
"Found an opening '$$' without a corresponding closing '$$'",
));
}
LatexEquationKind::Inline => {
// Closing $, no more in a latex equation
latex_equation_kind = LatexEquationKind::NotAnEquation
}
LatexEquationKind::NotAnEquation => {
// Opening $, in an inline latex equation
latex_equation_kind = LatexEquationKind::Inline
}
};
}
// If the marker is not an inline marker but a multiline marker let the other
// case manage it at the next iteration
}
// If the _ is not escaped and we are in an equation we need to escape it
(prev, '_') if prev != '\\' => match latex_equation_kind {
LatexEquationKind::NotAnEquation => (),
_ => rewritten_content.push('\\'),
},
_ => (),
}
rewritten_content.push(current_char);
previous_char = current_char;
}
}
Ok(())
}
fn process_doc_lines_until_impossible<'a>(
lines: &[&'a str],
rewritten_content: &'a mut String,
comment_search_fn: fn(&[&'a str], usize) -> (Vec<CommentContent<'a>>, usize),
start_line_idx: usize,
) -> Result<usize, LatexEscapeToolError> {
let (full_doc_content, doc_end_line_idx) = comment_search_fn(lines, start_line_idx);
// Now we find code blocks parts OR pure comments parts
let mut current_line_in_doc_idx = 0;
while current_line_in_doc_idx < full_doc_content.len() {
let CommentContent {
is_in_code_block,
line_start: _,
line_content: _,
} = full_doc_content[current_line_in_doc_idx];
let (current_part_start_idx, current_part_stop_idx) =
find_contiguous_part_in_doc_test_or_comment(
is_in_code_block,
&full_doc_content,
current_line_in_doc_idx,
);
let current_part_content = &full_doc_content[current_part_start_idx..current_part_stop_idx];
// The current part is a code block
if is_in_code_block {
for CommentContent {
is_in_code_block: _,
line_start,
line_content,
} in current_part_content.iter()
{
// We can just push the content unmodified
rewritten_content.push_str(line_start);
rewritten_content.push_str(line_content);
}
} else {
// The part is a pure comment, we need to rewrite equations
escape_underscores_rewrite_equations(current_part_content, rewritten_content)?;
}
current_line_in_doc_idx += current_part_content.len();
}
Ok(doc_end_line_idx)
}
fn process_non_doc_lines_until_impossible(
lines: &Vec<&str>,
rewritten_content: &mut String,
mut line_idx: usize,
) -> usize {
while line_idx < lines.len() {
let line = lines[line_idx];
match get_line_type_and_trimmed_line(line) {
(LineType::Other, _) => {
rewritten_content.push_str(line);
line_idx += 1;
}
_ => break,
};
}
line_idx
}
fn escape_underscore_in_latex_doc_in_file(
file_path: &std::path::Path,
) -> Result<(), LatexEscapeToolError> {
let file_name = file_path.to_str().unwrap();
let content = std::fs::read_to_string(file_name).unwrap();
let number_of_underscores = content.matches('_').count();
let potential_additional_capacity_required = number_of_underscores * BACKSLASH_UTF8_LEN;
// Enough for the length of the original string + the length if we had to escape *all* `_`
// which won't happen but avoids reallocations
let mut rewritten_content =
String::with_capacity(content.len() + potential_additional_capacity_required);
let content_by_lines: Vec<&str> = content.split_inclusive('\n').collect();
let mut line_idx = 0_usize;
while line_idx < content_by_lines.len() {
let line = content_by_lines[line_idx];
let (line_type, _) = get_line_type_and_trimmed_line(line);
line_idx = match line_type {
LineType::DocComment {
code_block_limit: _,
} => process_doc_lines_until_impossible(
&content_by_lines,
&mut rewritten_content,
find_contiguous_doc_comment,
line_idx,
)?,
LineType::DocTest {
code_block_limit: _,
} => process_doc_lines_until_impossible(
&content_by_lines,
&mut rewritten_content,
find_contiguous_doc_test,
line_idx,
)?,
LineType::Other => process_non_doc_lines_until_impossible(
&content_by_lines,
&mut rewritten_content,
line_idx,
),
LineType::EmptyLine => {
rewritten_content.push_str(line);
line_idx + 1
}
};
}
fs::write(file_name, rewritten_content).unwrap();
Ok(())
}
pub fn escape_underscore_in_latex_doc() -> Result<(), Error> {
let project_root = project_root();
let mut src_files: Vec<std::path::PathBuf> = Vec::new();
recurse_find_rs_files(project_root, &mut src_files, true);
println!("Found {} files to process.", src_files.len());
let mut files_with_problems: Vec<(std::path::PathBuf, LatexEscapeToolError)> = Vec::new();
println!("Processing...");
for file in src_files.into_iter() {
if let Err(err) = escape_underscore_in_latex_doc_in_file(&file) {
files_with_problems.push((file, err));
}
}
println!("Done!");
if !files_with_problems.is_empty() {
for (file_with_problem, error) in files_with_problems.iter() {
println!(
"File: {}, has error: {}",
file_with_problem.display(),
error
);
}
return Err(Error::new(
ErrorKind::InvalidInput,
"Issues while processing files, check log.",
));
}
Ok(())
}

88
tasks/src/main.rs Normal file
View File

@@ -0,0 +1,88 @@
#[macro_use]
extern crate lazy_static;
use clap::{Arg, Command};
use log::LevelFilter;
use simplelog::{ColorChoice, CombinedLogger, Config, TermLogger, TerminalMode};
use std::collections::HashMap;
use std::path::PathBuf;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering::Relaxed;
mod format_latex_doc;
mod utils;
// -------------------------------------------------------------------------------------------------
// CONSTANTS
// -------------------------------------------------------------------------------------------------
lazy_static! {
static ref DRY_RUN: AtomicBool = AtomicBool::new(false);
static ref ROOT_DIR: PathBuf = utils::project_root();
static ref ENV_TARGET_NATIVE: utils::Environment = {
let mut env = HashMap::new();
env.insert("RUSTFLAGS", "-Ctarget-cpu=native");
env
};
}
// -------------------------------------------------------------------------------------------------
// MACROS
// -------------------------------------------------------------------------------------------------
#[macro_export]
macro_rules! cmd {
(<$env: ident> $cmd: expr) => {
$crate::utils::execute($cmd, Some(&*$env), Some(&*$crate::ROOT_DIR))
};
($cmd: expr) => {
$crate::utils::execute($cmd, None, Some(&*$crate::ROOT_DIR))
};
}
// -------------------------------------------------------------------------------------------------
// MAIN
// -------------------------------------------------------------------------------------------------
fn main() -> Result<(), std::io::Error> {
// We parse the input args
let matches = Command::new("tasks")
.about("Rust scripts runner")
.arg(
Arg::new("verbose")
.short('v')
.long("verbose")
.help("Prints debug messages"),
)
.arg(
Arg::new("dry-run")
.long("dry-run")
.help("Do not execute the commands"),
)
.subcommand(Command::new("format_latex_doc").about("Escape underscores in latex equations"))
.arg_required_else_help(true)
.get_matches();
// We initialize the logger with proper verbosity
let verb = if matches.contains_id("verbose") {
LevelFilter::Debug
} else {
LevelFilter::Info
};
CombinedLogger::init(vec![TermLogger::new(
verb,
Config::default(),
TerminalMode::Mixed,
ColorChoice::Auto,
)])
.unwrap();
// We set the dry-run mode if present
if matches.contains_id("dry-run") {
DRY_RUN.store(true, Relaxed);
}
if matches.subcommand_matches("format_latex_doc").is_some() {
format_latex_doc::escape_underscore_in_latex_doc()?;
}
Ok(())
}

50
tasks/src/utils.rs Normal file
View File

@@ -0,0 +1,50 @@
use log::{debug, info};
use std::collections::HashMap;
use std::io::{Error, ErrorKind};
use std::path::{Path, PathBuf};
use std::process::{Command, Stdio};
use std::sync::atomic::Ordering::Relaxed;
pub type Environment = HashMap<&'static str, &'static str>;
#[allow(dead_code)]
pub fn execute(cmd: &str, env: Option<&Environment>, cwd: Option<&PathBuf>) -> Result<(), Error> {
info!("Executing {}", cmd);
debug!("Env {:?}", env);
debug!("Cwd {:?}", cwd);
if crate::DRY_RUN.load(Relaxed) {
info!("Skipping execution because of --dry-run mode");
return Ok(());
}
let mut command = Command::new("sh");
command
.arg("-c")
.arg(cmd)
.stderr(Stdio::inherit())
.stdout(Stdio::inherit());
if let Some(env) = env {
for (key, val) in env.iter() {
command.env(key, val);
}
}
if let Some(cwd) = cwd {
command.current_dir(cwd);
}
let output = command.output()?;
if !output.status.success() {
Err(Error::new(
ErrorKind::Other,
"Command exited with nonzero status.",
))
} else {
Ok(())
}
}
pub fn project_root() -> PathBuf {
Path::new(&env!("CARGO_MANIFEST_DIR"))
.ancestors()
.nth(1)
.unwrap()
.to_path_buf()
}

View File

@@ -1,6 +1,6 @@
[package]
name = "tfhe"
version = "0.1.0"
version = "0.2.4"
edition = "2021"
readme = "../README.md"
keywords = ["fully", "homomorphic", "encryption", "fhe", "cryptography"]
@@ -8,39 +8,49 @@ homepage = "https://zama.ai/"
documentation = "https://docs.zama.ai/tfhe-rs"
repository = "https://github.com/zama-ai/tfhe-rs"
license = "BSD-3-Clause-Clear"
description = "Concrete is a fully homomorphic encryption (FHE) library that implements Zama's variant of TFHE."
description = "TFHE-rs is a fully homomorphic encryption (FHE) library that implements Zama's variant of TFHE."
build = "build.rs"
exclude = ["/docs/", "/c_api_tests/", "/CMakeLists.txt"]
exclude = ["/docs/", "/c_api_tests/", "/CMakeLists.txt", "/js_on_wasm_tests/"]
rust-version = "1.65"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dev-dependencies]
rand = "0.7"
rand = "0.8.5"
rand_distr = "0.4.3"
kolmogorov_smirnov = "1.1.0"
paste = "1.0.7"
lazy_static = { version = "1.4.0" }
criterion = "0.3.5"
criterion = "0.4.0"
doc-comment = "0.3.3"
serde_json = "1.0.94"
# Used in user documentation
bincode = "1.3.3"
fs2 = { version = "0.4.3"}
fs2 = { version = "0.4.3" }
itertools = "0.10.5"
num_cpus = "1.15"
[build-dependencies]
cbindgen = { version = "0.24.3", optional = true }
[dependencies]
concrete-csprng = { version = "0.2.1" }
concrete-cuda = { version = "0.1.1", optional = true }
concrete-csprng = { version = "0.3.0", features = [
"generator_fallback",
"parallel",
] }
lazy_static = { version = "1.4.0", optional = true }
serde = { version = "1.0", optional = true }
rayon = { version = "1.5.0", optional = true }
serde = { version = "1.0", features = ["derive"] }
rayon = { version = "1.5.0" }
bincode = { version = "1.3.3", optional = true }
concrete-fft = { version = "0.1", optional = true }
aligned-vec = "0.5"
dyn-stack = { version = "0.8", optional = true }
concrete-fft = { version = "0.2.1", features = ["serde", "fft128"] }
pulp = "0.11"
aligned-vec = { version = "0.5", features = ["serde"] }
dyn-stack = { version = "0.9" }
once_cell = "1.13"
paste = "1.0.7"
fs2 = { version = "0.4.3", optional = true }
# While we wait for repeat_n in rust standard library
itertools = "0.10.5"
# wasm deps
wasm-bindgen = { version = "0.2.63", features = [
@@ -50,15 +60,23 @@ js-sys = { version = "0.3", optional = true }
console_error_panic_hook = { version = "0.1.7", optional = true }
serde-wasm-bindgen = { version = "0.4", optional = true }
getrandom = { version = "0.2.8", optional = true }
bytemuck = "1.13.1"
[features]
boolean = ["minimal_core_crypto_features"]
shortint = ["minimal_core_crypto_features"]
internal-keycache = ["lazy_static", "fs2"]
boolean = []
shortint = []
integer = ["shortint"]
internal-keycache = ["lazy_static", "fs2", "bincode"]
__c_api = ["cbindgen", "minimal_core_crypto_features"]
# Experimental section
experimental = []
experimental-force_fft_algo_dif4 = []
# End experimental section
__c_api = ["cbindgen", "bincode"]
boolean-c-api = ["boolean", "__c_api"]
shortint-c-api = ["shortint", "__c_api"]
high-level-c-api = ["boolean", "shortint", "integer", "__c_api"]
__wasm_api = [
"wasm-bindgen",
@@ -67,87 +85,40 @@ __wasm_api = [
"serde-wasm-bindgen",
"getrandom",
"getrandom/js",
"bincode",
]
boolean-client-js-wasm-api = ["boolean", "__wasm_api"]
shortint-client-js-wasm-api = ["shortint", "__wasm_api"]
cuda = ["backend_cuda"]
nightly-avx512 = ["backend_fft_nightly_avx512"]
# A pure-rust CPU backend.
backend_default = ["concrete-csprng/generator_soft"]
# An accelerated backend, using the `concrete-fft` library.
backend_fft = ["concrete-fft", "dyn-stack"]
backend_fft_serialization = [
"bincode",
"concrete-fft/serde",
"aligned-vec/serde",
"__commons_serialization",
]
backend_fft_nightly_avx512 = ["concrete-fft/nightly"]
# Enables the parallel engine in default backend.
backend_default_parallel = ["__commons_parallel"]
nightly-avx512 = ["concrete-fft/nightly", "pulp/nightly"]
# Enable the x86_64 specific accelerated implementation of the random generator for the default
# backend
backend_default_generator_x86_64_aesni = [
"concrete-csprng/generator_x86_64_aesni",
]
generator_x86_64_aesni = ["concrete-csprng/generator_x86_64_aesni"]
# Enable the aarch64 specific accelerated implementation of the random generator for the default
# backend
backend_default_generator_aarch64_aes = [
"concrete-csprng/generator_aarch64_aes",
]
# Enable the serialization engine in the default backend.
backend_default_serialization = ["bincode", "__commons_serialization"]
# A GPU backend, relying on Cuda acceleration
backend_cuda = ["concrete-cuda"]
generator_aarch64_aes = ["concrete-csprng/generator_aarch64_aes"]
# Private features
__profiling = []
__private_docs = []
__commons_parallel = ["rayon", "concrete-csprng/parallel"]
__commons_serialization = ["serde", "serde/derive"]
seeder_unix = ["concrete-csprng/seeder_unix"]
seeder_x86_64_rdseed = ["concrete-csprng/seeder_x86_64_rdseed"]
minimal_core_crypto_features = [
"backend_default",
"backend_default_parallel",
"backend_default_serialization",
"backend_fft",
"backend_fft_serialization",
]
# These target_arch features enable a set of public features for concrete-core if users want a known
# good/working configuration for concrete-core.
# These target_arch features enable a set of public features for tfhe if users want a known
# good/working configuration for tfhe.
# For a target_arch that does not yet have such a feature, one can still enable features manually or
# create a feature for said target_arch to make its use simpler.
x86_64 = [
"minimal_core_crypto_features",
"backend_default_generator_x86_64_aesni",
"seeder_x86_64_rdseed",
]
x86_64 = ["generator_x86_64_aesni", "seeder_x86_64_rdseed"]
x86_64-unix = ["x86_64", "seeder_unix"]
# CUDA builds are Unix only at the moment
x86_64-unix-cuda = ["x86_64-unix", "cuda"]
aarch64 = [
"minimal_core_crypto_features",
"backend_default_generator_aarch64_aes",
]
aarch64 = ["generator_aarch64_aes"]
aarch64-unix = ["aarch64", "seeder_unix"]
[package.metadata.docs.rs]
# TODO: manage builds for docs.rs based on their documentation https://docs.rs/about
features = ["x86_64-unix", "boolean", "shortint"]
features = ["x86_64-unix", "boolean", "shortint", "integer"]
rustdoc-args = ["--html-in-header", "katex-header.html"]
###########
@@ -156,6 +127,23 @@ rustdoc-args = ["--html-in-header", "katex-header.html"]
# #
###########
[[bench]]
name = "pbs-bench"
path = "benches/core_crypto/pbs_bench.rs"
harness = false
required-features = ["boolean", "shortint", "internal-keycache"]
[[bench]]
name = "dev-bench"
path = "benches/core_crypto/dev_bench.rs"
harness = false
required-features = ["experimental", "internal-keycache"]
[[bench]]
name = "pbs128-bench"
path = "benches/core_crypto/pbs128_bench.rs"
harness = false
[[bench]]
name = "boolean-bench"
path = "benches/boolean/bench.rs"
@@ -168,10 +156,36 @@ path = "benches/shortint/bench.rs"
harness = false
required-features = ["shortint", "internal-keycache"]
[[bench]]
name = "integer-bench"
path = "benches/integer/bench.rs"
harness = false
required-features = ["integer", "internal-keycache"]
[[bench]]
name = "keygen"
path = "benches/keygen/bench.rs"
harness = false
required-features = ["shortint", "internal-keycache"]
[[bench]]
name = "utilities"
path = "benches/utilities.rs"
harness = false
required-features = ["boolean", "shortint", "integer", "internal-keycache"]
[[example]]
name = "generates_test_keys"
required-features = ["shortint", "internal-keycache"]
[[example]]
name = "boolean_key_sizes"
required-features = ["boolean", "internal-keycache"]
[[example]]
name = "shortint_key_sizes"
required-features = ["shortint", "internal-keycache"]
[[example]]
name = "micro_bench_and"
required-features = ["boolean"]

View File

@@ -1,32 +1,28 @@
BSD 3-Clause Clear License
Copyright © 2022 ZAMA.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.
3. Neither the name of ZAMA nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE*.
THIS SOFTWARE IS PROVIDED BY THE ZAMA AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
ZAMA OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*In addition to the rights carried by this license, ZAMA grants to the user a non-exclusive,
free and non-commercial license on all patents filed in its name relating to the open-source
code (the "Patents") for the sole purpose of evaluation, development, research, prototyping
and experimentation.
BSD 3-Clause Clear License
Copyright © 2023 ZAMA.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.
3. Neither the name of ZAMA nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
THIS SOFTWARE IS PROVIDED BY THE ZAMA AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
ZAMA OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@@ -1,3 +1,7 @@
#[path = "../utilities.rs"]
mod utilities;
use crate::utilities::{write_to_json, OperatorType};
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use tfhe::boolean::client_key::ClientKey;
use tfhe::boolean::parameters::{BooleanParameters, DEFAULT_PARAMETERS, TFHE_LIB_PARAMETERS};
@@ -14,7 +18,9 @@ criterion_main!(gates_benches);
// Put all `bench_function` in one place
// so the keygen is only run once per parameters saving time.
fn bench_gates(c: &mut Criterion, params: BooleanParameters, parameter_name: &str) {
fn benchs(c: &mut Criterion, params: BooleanParameters, parameter_name: &str) {
let mut bench_group = c.benchmark_group("gates_benches");
let cks = ClientKey::new(&params);
let sks = ServerKey::new(&cks);
@@ -22,39 +28,41 @@ fn bench_gates(c: &mut Criterion, params: BooleanParameters, parameter_name: &st
let ct2 = cks.encrypt(false);
let ct3 = cks.encrypt(true);
let id = format!("AND gate {}", parameter_name);
c.bench_function(&id, |b| b.iter(|| black_box(sks.and(&ct1, &ct2))));
let operator = OperatorType::Atomic;
let id = format!("NAND gate {}", parameter_name);
c.bench_function(&id, |b| b.iter(|| black_box(sks.nand(&ct1, &ct2))));
let id = format!("AND::{parameter_name}");
bench_group.bench_function(&id, |b| b.iter(|| black_box(sks.and(&ct1, &ct2))));
write_to_json(&id, params, parameter_name, "and", &operator);
let id = format!("OR gate {}", parameter_name);
c.bench_function(&id, |b| b.iter(|| black_box(sks.or(&ct1, &ct2))));
let id = format!("NAND::{parameter_name}");
bench_group.bench_function(&id, |b| b.iter(|| black_box(sks.nand(&ct1, &ct2))));
write_to_json(&id, params, parameter_name, "nand", &operator);
let id = format!("XOR gate {}", parameter_name);
c.bench_function(&id, |b| b.iter(|| black_box(sks.xor(&ct1, &ct2))));
let id = format!("OR::{parameter_name}");
bench_group.bench_function(&id, |b| b.iter(|| black_box(sks.or(&ct1, &ct2))));
write_to_json(&id, params, parameter_name, "or", &operator);
let id = format!("XNOR gate {}", parameter_name);
c.bench_function(&id, |b| b.iter(|| black_box(sks.xnor(&ct1, &ct2))));
let id = format!("XOR::{parameter_name}");
bench_group.bench_function(&id, |b| b.iter(|| black_box(sks.xor(&ct1, &ct2))));
write_to_json(&id, params, parameter_name, "xor", &operator);
let id = format!("NOT gate {}", parameter_name);
c.bench_function(&id, |b| b.iter(|| black_box(sks.not(&ct1))));
let id = format!("XNOR::{parameter_name}");
bench_group.bench_function(&id, |b| b.iter(|| black_box(sks.xnor(&ct1, &ct2))));
write_to_json(&id, params, parameter_name, "xnor", &operator);
let id = format!("MUX gate {}", parameter_name);
c.bench_function(&id, |b| b.iter(|| black_box(sks.mux(&ct1, &ct2, &ct3))));
let id = format!("NOT::{parameter_name}");
bench_group.bench_function(&id, |b| b.iter(|| black_box(sks.not(&ct1))));
write_to_json(&id, params, parameter_name, "not", &operator);
let id = format!("MUX::{parameter_name}");
bench_group.bench_function(&id, |b| b.iter(|| black_box(sks.mux(&ct1, &ct2, &ct3))));
write_to_json(&id, params, parameter_name, "mux", &operator);
}
#[cfg(not(feature = "cuda"))]
fn bench_default_parameters(c: &mut Criterion) {
bench_gates(c, DEFAULT_PARAMETERS, "DEFAULT_PARAMETERS");
}
#[cfg(feature = "cuda")]
fn bench_default_parameters(_: &mut Criterion) {
let _ = DEFAULT_PARAMETERS; // to avoid unused import warnings
println!("DEFAULT_PARAMETERS not benched as they are not compatible with the cuda feature.");
benchs(c, DEFAULT_PARAMETERS, "DEFAULT_PARAMETERS");
}
fn bench_tfhe_lib_parameters(c: &mut Criterion) {
bench_gates(c, TFHE_LIB_PARAMETERS, "TFHE_LIB_PARAMETERS");
benchs(c, TFHE_LIB_PARAMETERS, "TFHE_LIB_PARAMETERS");
}

View File

@@ -0,0 +1,332 @@
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use tfhe::core_crypto::prelude::*;
criterion_group!(
boolean_like_pbs_group,
multi_bit_pbs::<u32>,
pbs::<u32>,
mem_optimized_pbs::<u32>
);
criterion_group!(
shortint_like_pbs_group,
multi_bit_pbs::<u64>,
pbs::<u64>,
mem_optimized_pbs::<u64>
);
criterion_main!(boolean_like_pbs_group, shortint_like_pbs_group);
fn get_bench_params<Scalar: Numeric>() -> (
LweDimension,
StandardDev,
DecompositionBaseLog,
DecompositionLevelCount,
GlweDimension,
PolynomialSize,
LweBskGroupingFactor,
ThreadCount,
) {
if Scalar::BITS == 64 {
(
LweDimension(742),
StandardDev(0.000007069849454709433),
DecompositionBaseLog(3),
DecompositionLevelCount(5),
GlweDimension(1),
PolynomialSize(1024),
LweBskGroupingFactor(2),
ThreadCount(5),
)
} else if Scalar::BITS == 32 {
(
LweDimension(778),
StandardDev(0.000003725679281679651),
DecompositionBaseLog(18),
DecompositionLevelCount(1),
GlweDimension(3),
PolynomialSize(512),
LweBskGroupingFactor(2),
ThreadCount(5),
)
} else {
unreachable!()
}
}
fn multi_bit_pbs<Scalar: UnsignedTorus + CastInto<usize> + CastFrom<usize> + Sync>(
c: &mut Criterion,
) {
// DISCLAIMER: these toy example parameters are not guaranteed to be secure or yield correct
// computations
// Define parameters for LweBootstrapKey creation
let (
mut input_lwe_dimension,
lwe_modular_std_dev,
decomp_base_log,
decomp_level_count,
glwe_dimension,
polynomial_size,
grouping_factor,
thread_count,
) = get_bench_params::<Scalar>();
let ciphertext_modulus = CiphertextModulus::new_native();
while input_lwe_dimension.0 % grouping_factor.0 != 0 {
input_lwe_dimension = LweDimension(input_lwe_dimension.0 + 1);
}
// Create the PRNG
let mut seeder = new_seeder();
let seeder = seeder.as_mut();
let mut encryption_generator =
EncryptionRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed(), seeder);
let mut secret_generator =
SecretRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed());
// Create the LweSecretKey
let input_lwe_secret_key =
allocate_and_generate_new_binary_lwe_secret_key(input_lwe_dimension, &mut secret_generator);
let output_glwe_secret_key: GlweSecretKeyOwned<Scalar> =
allocate_and_generate_new_binary_glwe_secret_key(
glwe_dimension,
polynomial_size,
&mut secret_generator,
);
let output_lwe_secret_key = output_glwe_secret_key.into_lwe_secret_key();
let multi_bit_bsk = FourierLweMultiBitBootstrapKey::new(
input_lwe_dimension,
glwe_dimension.to_glwe_size(),
polynomial_size,
decomp_base_log,
decomp_level_count,
grouping_factor,
);
// Allocate a new LweCiphertext and encrypt our plaintext
let lwe_ciphertext_in = allocate_and_encrypt_new_lwe_ciphertext(
&input_lwe_secret_key,
Plaintext(Scalar::ZERO),
lwe_modular_std_dev,
ciphertext_modulus,
&mut encryption_generator,
);
let accumulator = GlweCiphertext::new(
Scalar::ZERO,
glwe_dimension.to_glwe_size(),
polynomial_size,
ciphertext_modulus,
);
// Allocate the LweCiphertext to store the result of the PBS
let mut out_pbs_ct = LweCiphertext::new(
Scalar::ZERO,
output_lwe_secret_key.lwe_dimension().to_lwe_size(),
ciphertext_modulus,
);
let id = format!("Multi Bit PBS {}", Scalar::BITS);
#[allow(clippy::unit_arg)]
{
c.bench_function(&id, |b| {
b.iter(|| {
multi_bit_programmable_bootstrap_lwe_ciphertext(
&lwe_ciphertext_in,
&mut out_pbs_ct,
&accumulator.as_view(),
&multi_bit_bsk,
thread_count,
);
black_box(&mut out_pbs_ct);
})
});
}
}
fn pbs<Scalar: UnsignedTorus + CastInto<usize>>(c: &mut Criterion) {
// DISCLAIMER: these toy example parameters are not guaranteed to be secure or yield correct
// computations
// Define parameters for LweBootstrapKey creation
let (
input_lwe_dimension,
lwe_modular_std_dev,
decomp_base_log,
decomp_level_count,
glwe_dimension,
polynomial_size,
_,
_,
) = get_bench_params::<Scalar>();
let ciphertext_modulus = CiphertextModulus::new_native();
// Create the PRNG
let mut seeder = new_seeder();
let seeder = seeder.as_mut();
let mut encryption_generator =
EncryptionRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed(), seeder);
let mut secret_generator =
SecretRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed());
// Create the LweSecretKey
let input_lwe_secret_key =
allocate_and_generate_new_binary_lwe_secret_key(input_lwe_dimension, &mut secret_generator);
let output_glwe_secret_key: GlweSecretKeyOwned<Scalar> =
allocate_and_generate_new_binary_glwe_secret_key(
glwe_dimension,
polynomial_size,
&mut secret_generator,
);
let output_lwe_secret_key = output_glwe_secret_key.into_lwe_secret_key();
// Create the empty bootstrapping key in the Fourier domain
let fourier_bsk = FourierLweBootstrapKey::new(
input_lwe_dimension,
glwe_dimension.to_glwe_size(),
polynomial_size,
decomp_base_log,
decomp_level_count,
);
// Allocate a new LweCiphertext and encrypt our plaintext
let lwe_ciphertext_in = allocate_and_encrypt_new_lwe_ciphertext(
&input_lwe_secret_key,
Plaintext(Scalar::ZERO),
lwe_modular_std_dev,
ciphertext_modulus,
&mut encryption_generator,
);
let accumulator = GlweCiphertext::new(
Scalar::ZERO,
glwe_dimension.to_glwe_size(),
polynomial_size,
ciphertext_modulus,
);
// Allocate the LweCiphertext to store the result of the PBS
let mut out_pbs_ct = LweCiphertext::new(
Scalar::ZERO,
output_lwe_secret_key.lwe_dimension().to_lwe_size(),
ciphertext_modulus,
);
let id = format!("PBS {}", Scalar::BITS);
{
c.bench_function(&id, |b| {
b.iter(|| {
programmable_bootstrap_lwe_ciphertext(
&lwe_ciphertext_in,
&mut out_pbs_ct,
&accumulator.as_view(),
&fourier_bsk,
);
black_box(&mut out_pbs_ct);
})
});
}
}
fn mem_optimized_pbs<Scalar: UnsignedTorus + CastInto<usize>>(c: &mut Criterion) {
// DISCLAIMER: these toy example parameters are not guaranteed to be secure or yield correct
// computations
// Define parameters for LweBootstrapKey creation
let (
input_lwe_dimension,
lwe_modular_std_dev,
decomp_base_log,
decomp_level_count,
glwe_dimension,
polynomial_size,
_,
_,
) = get_bench_params::<Scalar>();
// Create the PRNG
let mut seeder = new_seeder();
let seeder = seeder.as_mut();
let mut encryption_generator =
EncryptionRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed(), seeder);
let mut secret_generator =
SecretRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed());
// Create the LweSecretKey
let input_lwe_secret_key =
allocate_and_generate_new_binary_lwe_secret_key(input_lwe_dimension, &mut secret_generator);
let output_glwe_secret_key: GlweSecretKeyOwned<Scalar> =
allocate_and_generate_new_binary_glwe_secret_key(
glwe_dimension,
polynomial_size,
&mut secret_generator,
);
let output_lwe_secret_key = output_glwe_secret_key.into_lwe_secret_key();
// Create the empty bootstrapping key in the Fourier domain
let fourier_bsk = FourierLweBootstrapKey::new(
input_lwe_dimension,
glwe_dimension.to_glwe_size(),
polynomial_size,
decomp_base_log,
decomp_level_count,
);
// Allocate a new LweCiphertext and encrypt our plaintext
let lwe_ciphertext_in = allocate_and_encrypt_new_lwe_ciphertext(
&input_lwe_secret_key,
Plaintext(Scalar::ZERO),
lwe_modular_std_dev,
ciphertext_modulus,
&mut encryption_generator,
);
let accumulator = GlweCiphertext::new(
Scalar::ZERO,
glwe_dimension.to_glwe_size(),
polynomial_size,
ciphertext_modulus,
);
// Allocate the LweCiphertext to store the result of the PBS
let mut out_pbs_ct = LweCiphertext::new(
Scalar::ZERO,
output_lwe_secret_key.lwe_dimension().to_lwe_size(),
ciphertext_modulus,
);
let mut buffers = ComputationBuffers::new();
let fft = Fft::new(fourier_bsk.polynomial_size());
let fft = fft.as_view();
buffers.resize(
programmable_bootstrap_lwe_ciphertext_mem_optimized_requirement::<Scalar>(
fourier_bsk.glwe_size(),
fourier_bsk.polynomial_size(),
fft,
)
.unwrap()
.unaligned_bytes_required(),
);
let id = format!("PBS mem-optimized {}", Scalar::BITS);
{
c.bench_function(&id, |b| {
b.iter(|| {
programmable_bootstrap_lwe_ciphertext_mem_optimized(
&lwe_ciphertext_in,
&mut out_pbs_ct,
&accumulator.as_view(),
&fourier_bsk,
fft,
buffers.stack(),
);
black_box(&mut out_pbs_ct);
})
});
}
}

View File

@@ -0,0 +1,108 @@
use criterion::{criterion_group, criterion_main, Criterion};
use dyn_stack::PodStack;
fn sqr(x: f64) -> f64 {
x * x
}
fn criterion_bench(c: &mut Criterion) {
{
use tfhe::core_crypto::fft_impl::fft128::crypto::bootstrap::bootstrap_scratch;
use tfhe::core_crypto::prelude::*;
type Scalar = u128;
let small_lwe_dimension = LweDimension(742);
let glwe_dimension = GlweDimension(1);
let polynomial_size = PolynomialSize(2048);
let lwe_modular_std_dev = StandardDev(sqr(0.000007069849454709433));
let pbs_base_log = DecompositionBaseLog(23);
let pbs_level = DecompositionLevelCount(1);
let ciphertext_modulus = CiphertextModulus::new_native();
let mut boxed_seeder = new_seeder();
let seeder = boxed_seeder.as_mut();
let mut secret_generator =
SecretRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed());
let mut encryption_generator =
EncryptionRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed(), seeder);
let small_lwe_sk =
LweSecretKey::generate_new_binary(small_lwe_dimension, &mut secret_generator);
let glwe_sk = GlweSecretKey::<Vec<Scalar>>::generate_new_binary(
glwe_dimension,
polynomial_size,
&mut secret_generator,
);
let big_lwe_sk = glwe_sk.into_lwe_secret_key();
let fourier_bsk = Fourier128LweBootstrapKey::new(
small_lwe_dimension,
glwe_dimension.to_glwe_size(),
polynomial_size,
pbs_base_log,
pbs_level,
);
let fft = Fft128::new(polynomial_size);
let fft = fft.as_view();
let message_modulus: Scalar = 1 << 4;
let input_message: Scalar = 3;
let delta: Scalar = (1 << (Scalar::BITS - 1)) / message_modulus;
let plaintext = Plaintext(input_message * delta);
let lwe_ciphertext_in: LweCiphertextOwned<Scalar> = allocate_and_encrypt_new_lwe_ciphertext(
&small_lwe_sk,
plaintext,
lwe_modular_std_dev,
ciphertext_modulus,
&mut encryption_generator,
);
let accumulator: GlweCiphertextOwned<Scalar> = GlweCiphertextOwned::new(
Scalar::ONE,
glwe_dimension.to_glwe_size(),
polynomial_size,
ciphertext_modulus,
);
let mut pbs_out: LweCiphertext<Vec<Scalar>> = LweCiphertext::new(
0,
big_lwe_sk.lwe_dimension().to_lwe_size(),
ciphertext_modulus,
);
let mut buf = vec![
0u8;
bootstrap_scratch::<Scalar>(
fourier_bsk.glwe_size(),
fourier_bsk.polynomial_size(),
fft
)
.unwrap()
.unaligned_bytes_required()
];
c.bench_function("pbs128", |b| {
b.iter(|| {
fourier_bsk.bootstrap(
&mut pbs_out,
&lwe_ciphertext_in,
&accumulator,
fft,
PodStack::new(&mut buf),
)
});
});
}
}
criterion_group!(benches, criterion_bench);
criterion_main!(benches);

View File

@@ -0,0 +1,283 @@
#[path = "../utilities.rs"]
mod utilities;
use crate::utilities::{write_to_json, CryptoParametersRecord, OperatorType};
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use tfhe::boolean::parameters::{BooleanParameters, DEFAULT_PARAMETERS, TFHE_LIB_PARAMETERS};
use tfhe::core_crypto::prelude::*;
use tfhe::shortint::keycache::NamedParam;
use tfhe::shortint::parameters::*;
use tfhe::shortint::Parameters;
const SHORTINT_BENCH_PARAMS: [Parameters; 15] = [
PARAM_MESSAGE_1_CARRY_0,
PARAM_MESSAGE_1_CARRY_1,
PARAM_MESSAGE_2_CARRY_0,
PARAM_MESSAGE_2_CARRY_1,
PARAM_MESSAGE_2_CARRY_2,
PARAM_MESSAGE_3_CARRY_0,
PARAM_MESSAGE_3_CARRY_2,
PARAM_MESSAGE_3_CARRY_3,
PARAM_MESSAGE_4_CARRY_0,
PARAM_MESSAGE_4_CARRY_3,
PARAM_MESSAGE_4_CARRY_4,
PARAM_MESSAGE_5_CARRY_0,
PARAM_MESSAGE_6_CARRY_0,
PARAM_MESSAGE_7_CARRY_0,
PARAM_MESSAGE_8_CARRY_0,
];
const BOOLEAN_BENCH_PARAMS: [(&str, BooleanParameters); 2] = [
("BOOLEAN_DEFAULT_PARAMS", DEFAULT_PARAMETERS),
("BOOLEAN_TFHE_LIB_PARAMS", TFHE_LIB_PARAMETERS),
];
criterion_group!(
name = pbs_group;
config = Criterion::default().sample_size(2000);
targets = mem_optimized_pbs::<u64>, mem_optimized_pbs::<u32>
);
criterion_group!(
name = multi_bit_pbs_group;
config = Criterion::default().sample_size(2000);
targets = multi_bit_pbs::<u64>, multi_bit_pbs::<u32>
);
criterion_main!(pbs_group, multi_bit_pbs_group);
fn benchmark_parameters<Scalar: Numeric>() -> Vec<(String, CryptoParametersRecord)> {
if Scalar::BITS == 64 {
SHORTINT_BENCH_PARAMS
.iter()
.map(|params| (params.name(), params.to_owned().into()))
.collect()
} else if Scalar::BITS == 32 {
BOOLEAN_BENCH_PARAMS
.iter()
.map(|(name, params)| (name.to_string(), params.to_owned().into()))
.collect()
} else {
vec![]
}
}
fn multi_bit_benchmark_parameters<Scalar: Numeric>(
) -> Vec<(String, (CryptoParametersRecord, LweBskGroupingFactor))> {
if Scalar::BITS == 64 {
vec![
(
"4_bits_multi_bit_group_2".to_string(),
(
CryptoParametersRecord {
lwe_dimension: Some(LweDimension(788)),
lwe_modular_std_dev: Some(StandardDev(0.000003871078133364534)),
pbs_base_log: Some(DecompositionBaseLog(22)),
pbs_level: Some(DecompositionLevelCount(1)),
glwe_dimension: Some(GlweDimension(2)),
glwe_modular_std_dev: Some(StandardDev(0.0000000000000003152931493498455)),
polynomial_size: Some(PolynomialSize(1024)),
..Default::default()
},
LweBskGroupingFactor(2),
),
),
(
"4_bits_multi_bit_group_3".to_string(),
(
CryptoParametersRecord {
lwe_dimension: Some(LweDimension(789)),
lwe_modular_std_dev: Some(StandardDev(0.0000038003596741624174)),
pbs_base_log: Some(DecompositionBaseLog(22)),
pbs_level: Some(DecompositionLevelCount(1)),
glwe_dimension: Some(GlweDimension(2)),
glwe_modular_std_dev: Some(StandardDev(0.0000000000000003152931493498455)),
polynomial_size: Some(PolynomialSize(1024)),
..Default::default()
},
LweBskGroupingFactor(3),
),
),
]
} else {
// For now there are no parameters available to test multi bit PBS on 32 bits.
vec![]
}
}
fn mem_optimized_pbs<Scalar: UnsignedTorus + CastInto<usize>>(c: &mut Criterion) {
let bench_name = "PBS_mem-optimized";
let mut bench_group = c.benchmark_group(bench_name);
// Create the PRNG
let mut seeder = new_seeder();
let seeder = seeder.as_mut();
let mut encryption_generator =
EncryptionRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed(), seeder);
let mut secret_generator =
SecretRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed());
for (name, params) in benchmark_parameters::<Scalar>().iter() {
// Create the LweSecretKey
let input_lwe_secret_key = allocate_and_generate_new_binary_lwe_secret_key(
params.lwe_dimension.unwrap(),
&mut secret_generator,
);
let output_glwe_secret_key: GlweSecretKeyOwned<Scalar> =
allocate_and_generate_new_binary_glwe_secret_key(
params.glwe_dimension.unwrap(),
params.polynomial_size.unwrap(),
&mut secret_generator,
);
let output_lwe_secret_key = output_glwe_secret_key.into_lwe_secret_key();
// Create the empty bootstrapping key in the Fourier domain
let fourier_bsk = FourierLweBootstrapKey::new(
params.lwe_dimension.unwrap(),
params.glwe_dimension.unwrap().to_glwe_size(),
params.polynomial_size.unwrap(),
params.pbs_base_log.unwrap(),
params.pbs_level.unwrap(),
);
// Allocate a new LweCiphertext and encrypt our plaintext
let lwe_ciphertext_in: LweCiphertextOwned<Scalar> = allocate_and_encrypt_new_lwe_ciphertext(
&input_lwe_secret_key,
Plaintext(Scalar::ZERO),
params.lwe_modular_std_dev.unwrap(),
tfhe::core_crypto::prelude::CiphertextModulus::new_native(),
&mut encryption_generator,
);
let accumulator = GlweCiphertext::new(
Scalar::ZERO,
params.glwe_dimension.unwrap().to_glwe_size(),
params.polynomial_size.unwrap(),
tfhe::core_crypto::prelude::CiphertextModulus::new_native(),
);
// Allocate the LweCiphertext to store the result of the PBS
let mut out_pbs_ct = LweCiphertext::new(
Scalar::ZERO,
output_lwe_secret_key.lwe_dimension().to_lwe_size(),
tfhe::core_crypto::prelude::CiphertextModulus::new_native(),
);
let mut buffers = ComputationBuffers::new();
let fft = Fft::new(fourier_bsk.polynomial_size());
let fft = fft.as_view();
buffers.resize(
programmable_bootstrap_lwe_ciphertext_mem_optimized_requirement::<Scalar>(
fourier_bsk.glwe_size(),
fourier_bsk.polynomial_size(),
fft,
)
.unwrap()
.unaligned_bytes_required(),
);
let id = format!("{bench_name}_{name}");
{
bench_group.bench_function(&id, |b| {
b.iter(|| {
programmable_bootstrap_lwe_ciphertext_mem_optimized(
&lwe_ciphertext_in,
&mut out_pbs_ct,
&accumulator.as_view(),
&fourier_bsk,
fft,
buffers.stack(),
);
black_box(&mut out_pbs_ct);
})
});
}
write_to_json(&id, *params, name, "pbs", &OperatorType::Atomic);
}
}
fn multi_bit_pbs<Scalar: UnsignedTorus + CastInto<usize> + CastFrom<usize> + Sync>(
c: &mut Criterion,
) {
// DISCLAIMER: these toy example parameters are not guaranteed to be secure or yield correct
// computations
// Define parameters for LweBootstrapKey creation
let bench_name = "multi_bits_PBS";
let mut bench_group = c.benchmark_group(bench_name);
// Create the PRNG
let mut seeder = new_seeder();
let seeder = seeder.as_mut();
let mut encryption_generator =
EncryptionRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed(), seeder);
let mut secret_generator =
SecretRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed());
for (name, (params, grouping_factor)) in multi_bit_benchmark_parameters::<Scalar>().iter() {
// Create the LweSecretKey
let input_lwe_secret_key = allocate_and_generate_new_binary_lwe_secret_key(
params.lwe_dimension.unwrap(),
&mut secret_generator,
);
let output_glwe_secret_key: GlweSecretKeyOwned<Scalar> =
allocate_and_generate_new_binary_glwe_secret_key(
params.glwe_dimension.unwrap(),
params.polynomial_size.unwrap(),
&mut secret_generator,
);
let output_lwe_secret_key = output_glwe_secret_key.into_lwe_secret_key();
let multi_bit_bsk = FourierLweMultiBitBootstrapKey::new(
params.lwe_dimension.unwrap(),
params.glwe_dimension.unwrap().to_glwe_size(),
params.polynomial_size.unwrap(),
params.pbs_base_log.unwrap(),
params.pbs_level.unwrap(),
*grouping_factor,
);
// Allocate a new LweCiphertext and encrypt our plaintext
let lwe_ciphertext_in = allocate_and_encrypt_new_lwe_ciphertext(
&input_lwe_secret_key,
Plaintext(Scalar::ZERO),
params.lwe_modular_std_dev.unwrap(),
tfhe::core_crypto::prelude::CiphertextModulus::new_native(),
&mut encryption_generator,
);
let accumulator = GlweCiphertext::new(
Scalar::ZERO,
params.glwe_dimension.unwrap().to_glwe_size(),
params.polynomial_size.unwrap(),
tfhe::core_crypto::prelude::CiphertextModulus::new_native(),
);
// Allocate the LweCiphertext to store the result of the PBS
let mut out_pbs_ct = LweCiphertext::new(
Scalar::ZERO,
output_lwe_secret_key.lwe_dimension().to_lwe_size(),
tfhe::core_crypto::prelude::CiphertextModulus::new_native(),
);
let id = format!("{bench_name}_{name}_parallelized");
bench_group.bench_function(&id, |b| {
b.iter(|| {
multi_bit_programmable_bootstrap_lwe_ciphertext(
&lwe_ciphertext_in,
&mut out_pbs_ct,
&accumulator.as_view(),
&multi_bit_bsk,
// Leave one thread to the OS and one for the ext product loop
ThreadCount(2.max(num_cpus::get_physical() - 2)),
);
black_box(&mut out_pbs_ct);
})
});
write_to_json(&id, *params, name, "pbs", &OperatorType::Atomic);
}
}

View File

@@ -0,0 +1,792 @@
#![allow(dead_code)]
#[path = "../utilities.rs"]
mod utilities;
use crate::utilities::{write_to_json, OperatorType};
use criterion::{criterion_group, criterion_main, Criterion};
use itertools::iproduct;
use rand::Rng;
use std::array::IntoIter;
use tfhe::integer::keycache::KEY_CACHE;
use tfhe::integer::{RadixCiphertextBig, ServerKey};
use tfhe::shortint::keycache::NamedParam;
#[allow(unused_imports)]
use tfhe::shortint::parameters::{
PARAM_MESSAGE_1_CARRY_1, PARAM_MESSAGE_2_CARRY_2, PARAM_MESSAGE_3_CARRY_3,
PARAM_MESSAGE_4_CARRY_4,
};
/// An iterator that yields a succession of combinations
/// of parameters and a num_block to achieve a certain bit_size ciphertext
/// in radix decomposition
struct ParamsAndNumBlocksIter {
params_and_bit_sizes:
itertools::Product<IntoIter<tfhe::shortint::Parameters, 1>, IntoIter<usize, 7>>,
}
impl Default for ParamsAndNumBlocksIter {
fn default() -> Self {
// FIXME One set of parameter is tested since we want to benchmark only quickest operations.
const PARAMS: [tfhe::shortint::Parameters; 1] = [
PARAM_MESSAGE_2_CARRY_2,
// PARAM_MESSAGE_3_CARRY_3,
// PARAM_MESSAGE_4_CARRY_4,
];
const BIT_SIZES: [usize; 7] = [8, 16, 32, 40, 64, 128, 256];
let params_and_bit_sizes = iproduct!(PARAMS, BIT_SIZES);
Self {
params_and_bit_sizes,
}
}
}
impl Iterator for ParamsAndNumBlocksIter {
type Item = (tfhe::shortint::Parameters, usize, usize);
fn next(&mut self) -> Option<Self::Item> {
let (param, bit_size) = self.params_and_bit_sizes.next()?;
let num_block =
(bit_size as f64 / (param.message_modulus.0 as f64).log(2.0)).ceil() as usize;
Some((param, num_block, bit_size))
}
}
/// Base function to bench a server key function that is a binary operation, input ciphertexts will
/// contain non zero carries
fn bench_server_key_binary_function_dirty_inputs<F>(
c: &mut Criterion,
bench_name: &str,
display_name: &str,
binary_op: F,
) where
F: Fn(&ServerKey, &mut RadixCiphertextBig, &mut RadixCiphertextBig),
{
let mut bench_group = c.benchmark_group(bench_name);
bench_group
.sample_size(15)
.measurement_time(std::time::Duration::from_secs(60));
let mut rng = rand::thread_rng();
for (param, num_block, bit_size) in ParamsAndNumBlocksIter::default() {
let param_name = param.name();
let bench_id = format!("{bench_name}::{param_name}::{bit_size}_bits");
bench_group.bench_function(&bench_id, |b| {
let (cks, sks) = KEY_CACHE.get_from_params(param);
let encrypt_two_values = || {
let clearlow = rng.gen::<u128>();
let clearhigh = rng.gen::<u128>();
let clear_0 = tfhe::integer::U256::from((clearlow, clearhigh));
let mut ct_0 = cks.encrypt_radix(clear_0, num_block);
let clearlow = rng.gen::<u128>();
let clearhigh = rng.gen::<u128>();
let clear_1 = tfhe::integer::U256::from((clearlow, clearhigh));
let mut ct_1 = cks.encrypt_radix(clear_1, num_block);
// Raise the degree, so as to ensure worst case path in operations
let mut carry_mod = param.carry_modulus.0;
while carry_mod > 0 {
// Raise the degree, so as to ensure worst case path in operations
let clearlow = rng.gen::<u128>();
let clearhigh = rng.gen::<u128>();
let clear_2 = tfhe::integer::U256::from((clearlow, clearhigh));
let ct_2 = cks.encrypt_radix(clear_2, num_block);
sks.unchecked_add_assign(&mut ct_0, &ct_2);
sks.unchecked_add_assign(&mut ct_1, &ct_2);
carry_mod -= 1;
}
(ct_0, ct_1)
};
b.iter_batched(
encrypt_two_values,
|(mut ct_0, mut ct_1)| {
binary_op(&sks, &mut ct_0, &mut ct_1);
},
criterion::BatchSize::SmallInput,
)
});
write_to_json(
&bench_id,
param,
param.name(),
display_name,
&OperatorType::Atomic,
);
}
bench_group.finish()
}
/// Base function to bench a server key function that is a binary operation, input ciphertext will
/// contain only zero carries
fn bench_server_key_binary_function_clean_inputs<F>(
c: &mut Criterion,
bench_name: &str,
display_name: &str,
binary_op: F,
) where
F: Fn(&ServerKey, &mut RadixCiphertextBig, &mut RadixCiphertextBig),
{
let mut bench_group = c.benchmark_group(bench_name);
bench_group
.sample_size(15)
.measurement_time(std::time::Duration::from_secs(60));
let mut rng = rand::thread_rng();
for (param, num_block, bit_size) in ParamsAndNumBlocksIter::default() {
let param_name = param.name();
let bench_id = format!("{bench_name}::{param_name}::{bit_size}_bits");
bench_group.bench_function(&bench_id, |b| {
let (cks, sks) = KEY_CACHE.get_from_params(param);
let encrypt_two_values = || {
let clearlow = rng.gen::<u128>();
let clearhigh = rng.gen::<u128>();
let clear_0 = tfhe::integer::U256::from((clearlow, clearhigh));
let ct_0 = cks.encrypt_radix(clear_0, num_block);
let clearlow = rng.gen::<u128>();
let clearhigh = rng.gen::<u128>();
let clear_1 = tfhe::integer::U256::from((clearlow, clearhigh));
let ct_1 = cks.encrypt_radix(clear_1, num_block);
(ct_0, ct_1)
};
b.iter_batched(
encrypt_two_values,
|(mut ct_0, mut ct_1)| {
binary_op(&sks, &mut ct_0, &mut ct_1);
},
criterion::BatchSize::SmallInput,
)
});
write_to_json(
&bench_id,
param,
param.name(),
display_name,
&OperatorType::Atomic,
);
}
bench_group.finish()
}
/// Base function to bench a server key function that is a unary operation, input ciphertexts will
/// contain non zero carries
fn bench_server_key_unary_function_dirty_inputs<F>(
c: &mut Criterion,
bench_name: &str,
display_name: &str,
unary_fn: F,
) where
F: Fn(&ServerKey, &mut RadixCiphertextBig),
{
let mut bench_group = c.benchmark_group(bench_name);
bench_group
.sample_size(15)
.measurement_time(std::time::Duration::from_secs(60));
let mut rng = rand::thread_rng();
for (param, num_block, bit_size) in ParamsAndNumBlocksIter::default() {
let param_name = param.name();
let bench_id = format!("{bench_name}::{param_name}::{bit_size}_bits");
bench_group.bench_function(&bench_id, |b| {
let (cks, sks) = KEY_CACHE.get_from_params(param);
let encrypt_one_value = || {
let clearlow = rng.gen::<u128>();
let clearhigh = rng.gen::<u128>();
let clear_0 = tfhe::integer::U256::from((clearlow, clearhigh));
let mut ct_0 = cks.encrypt_radix(clear_0, num_block);
// Raise the degree, so as to ensure worst case path in operations
let mut carry_mod = param.carry_modulus.0;
while carry_mod > 0 {
// Raise the degree, so as to ensure worst case path in operations
let clearlow = rng.gen::<u128>();
let clearhigh = rng.gen::<u128>();
let clear_2 = tfhe::integer::U256::from((clearlow, clearhigh));
let ct_2 = cks.encrypt_radix(clear_2, num_block);
sks.unchecked_add_assign(&mut ct_0, &ct_2);
carry_mod -= 1;
}
ct_0
};
b.iter_batched(
encrypt_one_value,
|mut ct_0| {
unary_fn(&sks, &mut ct_0);
},
criterion::BatchSize::SmallInput,
)
});
write_to_json(
&bench_id,
param,
param.name(),
display_name,
&OperatorType::Atomic,
);
}
bench_group.finish()
}
/// Base function to bench a server key function that is a unary operation, input ciphertext will
/// contain only zero carries
fn bench_server_key_unary_function_clean_inputs<F>(
c: &mut Criterion,
bench_name: &str,
display_name: &str,
unary_fn: F,
) where
F: Fn(&ServerKey, &mut RadixCiphertextBig),
{
let mut bench_group = c.benchmark_group(bench_name);
bench_group
.sample_size(15)
.measurement_time(std::time::Duration::from_secs(60));
let mut rng = rand::thread_rng();
for (param, num_block, bit_size) in ParamsAndNumBlocksIter::default() {
let param_name = param.name();
let bench_id = format!("{bench_name}::{param_name}::{bit_size}_bits");
bench_group.bench_function(&bench_id, |b| {
let (cks, sks) = KEY_CACHE.get_from_params(param);
let encrypt_one_value = || {
let clearlow = rng.gen::<u128>();
let clearhigh = rng.gen::<u128>();
let clear_0 = tfhe::integer::U256::from((clearlow, clearhigh));
cks.encrypt_radix(clear_0, num_block)
};
b.iter_batched(
encrypt_one_value,
|mut ct_0| {
unary_fn(&sks, &mut ct_0);
},
criterion::BatchSize::SmallInput,
)
});
write_to_json(
&bench_id,
param,
param.name(),
display_name,
&OperatorType::Atomic,
);
}
bench_group.finish()
}
fn bench_server_key_binary_scalar_function_dirty_inputs<F>(
c: &mut Criterion,
bench_name: &str,
display_name: &str,
binary_op: F,
) where
F: Fn(&ServerKey, &mut RadixCiphertextBig, u64),
{
let mut bench_group = c.benchmark_group(bench_name);
bench_group
.sample_size(15)
.measurement_time(std::time::Duration::from_secs(60));
let mut rng = rand::thread_rng();
for (param, num_block, bit_size) in ParamsAndNumBlocksIter::default() {
let param_name = param.name();
let bench_id = format!("{bench_name}::{param_name}::{bit_size}_bits");
bench_group.bench_function(&bench_id, |b| {
let (cks, sks) = KEY_CACHE.get_from_params(param);
let encrypt_one_value = || {
let clearlow = rng.gen::<u128>();
let clearhigh = rng.gen::<u128>();
let clear_0 = tfhe::integer::U256::from((clearlow, clearhigh));
let mut ct_0 = cks.encrypt_radix(clear_0, num_block);
// Raise the degree, so as to ensure worst case path in operations
let mut carry_mod = param.carry_modulus.0;
while carry_mod > 0 {
// Raise the degree, so as to ensure worst case path in operations
let clearlow = rng.gen::<u128>();
let clearhigh = rng.gen::<u128>();
let clear_2 = tfhe::integer::U256::from((clearlow, clearhigh));
let ct_2 = cks.encrypt_radix(clear_2, num_block);
sks.unchecked_add_assign(&mut ct_0, &ct_2);
carry_mod -= 1;
}
let clear_1 = rng.gen::<u64>();
(ct_0, clear_1)
};
b.iter_batched(
encrypt_one_value,
|(mut ct_0, clear_1)| {
binary_op(&sks, &mut ct_0, clear_1);
},
criterion::BatchSize::SmallInput,
)
});
write_to_json(
&bench_id,
param,
param.name(),
display_name,
&OperatorType::Atomic,
);
}
bench_group.finish()
}
fn bench_server_key_binary_scalar_function_clean_inputs<F>(
c: &mut Criterion,
bench_name: &str,
display_name: &str,
binary_op: F,
) where
F: Fn(&ServerKey, &mut RadixCiphertextBig, u64),
{
let mut bench_group = c.benchmark_group(bench_name);
bench_group
.sample_size(15)
.measurement_time(std::time::Duration::from_secs(60));
let mut rng = rand::thread_rng();
for (param, num_block, bit_size) in ParamsAndNumBlocksIter::default() {
let param_name = param.name();
let bench_id = format!("{bench_name}::{param_name}::{bit_size}_bits");
bench_group.bench_function(&bench_id, |b| {
let (cks, sks) = KEY_CACHE.get_from_params(param);
let encrypt_one_value = || {
let clearlow = rng.gen::<u128>();
let clearhigh = rng.gen::<u128>();
let clear_0 = tfhe::integer::U256::from((clearlow, clearhigh));
let ct_0 = cks.encrypt_radix(clear_0, num_block);
let clear_1 = rng.gen::<u64>();
(ct_0, clear_1)
};
b.iter_batched(
encrypt_one_value,
|(mut ct_0, clear_1)| {
binary_op(&sks, &mut ct_0, clear_1);
},
criterion::BatchSize::SmallInput,
)
});
write_to_json(
&bench_id,
param,
param.name(),
display_name,
&OperatorType::Atomic,
);
}
bench_group.finish()
}
macro_rules! define_server_key_bench_unary_fn (
(method_name: $server_key_method:ident, display_name:$name:ident) => {
fn $server_key_method(c: &mut Criterion) {
bench_server_key_unary_function_dirty_inputs(
c,
concat!("ServerKey::", stringify!($server_key_method)),
stringify!($name),
|server_key, lhs| {
server_key.$server_key_method(lhs);
})
}
}
);
macro_rules! define_server_key_bench_unary_default_fn (
(method_name: $server_key_method:ident, display_name:$name:ident) => {
fn $server_key_method(c: &mut Criterion) {
bench_server_key_unary_function_clean_inputs(
c,
concat!("ServerKey::", stringify!($server_key_method)),
stringify!($name),
|server_key, lhs| {
server_key.$server_key_method(lhs);
})
}
}
);
macro_rules! define_server_key_bench_fn (
(method_name: $server_key_method:ident, display_name:$name:ident) => {
fn $server_key_method(c: &mut Criterion) {
bench_server_key_binary_function_dirty_inputs(
c,
concat!("ServerKey::", stringify!($server_key_method)),
stringify!($name),
|server_key, lhs, rhs| {
server_key.$server_key_method(lhs, rhs);
})
}
}
);
macro_rules! define_server_key_bench_default_fn (
(method_name: $server_key_method:ident, display_name:$name:ident) => {
fn $server_key_method(c: &mut Criterion) {
bench_server_key_binary_function_clean_inputs(
c,
concat!("ServerKey::", stringify!($server_key_method)),
stringify!($name),
|server_key, lhs, rhs| {
server_key.$server_key_method(lhs, rhs);
})
}
}
);
macro_rules! define_server_key_bench_scalar_fn (
(method_name: $server_key_method:ident, display_name:$name:ident) => {
fn $server_key_method(c: &mut Criterion) {
bench_server_key_binary_scalar_function_dirty_inputs(
c,
concat!("ServerKey::", stringify!($server_key_method)),
stringify!($name),
|server_key, lhs, rhs| {
server_key.$server_key_method(lhs, rhs);
})
}
}
);
macro_rules! define_server_key_bench_scalar_default_fn (
(method_name: $server_key_method:ident, display_name:$name:ident) => {
fn $server_key_method(c: &mut Criterion) {
bench_server_key_binary_scalar_function_clean_inputs(
c,
concat!("ServerKey::", stringify!($server_key_method)),
stringify!($name),
|server_key, lhs, rhs| {
server_key.$server_key_method(lhs, rhs);
})
}
}
);
define_server_key_bench_fn!(method_name: smart_add, display_name: add);
define_server_key_bench_fn!(method_name: smart_sub, display_name: sub);
define_server_key_bench_fn!(method_name: smart_mul, display_name: mul);
define_server_key_bench_fn!(method_name: smart_bitand, display_name: bitand);
define_server_key_bench_fn!(method_name: smart_bitor, display_name: bitor);
define_server_key_bench_fn!(method_name: smart_bitxor, display_name: bitxor);
define_server_key_bench_fn!(method_name: smart_add_parallelized, display_name: add);
define_server_key_bench_fn!(method_name: smart_sub_parallelized, display_name: sub);
define_server_key_bench_fn!(method_name: smart_mul_parallelized, display_name: mul);
define_server_key_bench_fn!(method_name: smart_bitand_parallelized, display_name: bitand);
define_server_key_bench_fn!(method_name: smart_bitxor_parallelized, display_name: bitxor);
define_server_key_bench_fn!(method_name: smart_bitor_parallelized, display_name: bitor);
define_server_key_bench_default_fn!(method_name: add_parallelized, display_name: add);
define_server_key_bench_default_fn!(method_name: sub_parallelized, display_name: sub);
define_server_key_bench_default_fn!(method_name: mul_parallelized, display_name: mul);
define_server_key_bench_default_fn!(method_name: bitand_parallelized, display_name: bitand);
define_server_key_bench_default_fn!(method_name: bitxor_parallelized, display_name: bitxor);
define_server_key_bench_default_fn!(method_name: bitor_parallelized, display_name: bitor);
define_server_key_bench_fn!(method_name: unchecked_add, display_name: add);
define_server_key_bench_fn!(method_name: unchecked_sub, display_name: sub);
define_server_key_bench_fn!(method_name: unchecked_mul, display_name: mul);
define_server_key_bench_fn!(method_name: unchecked_bitand, display_name: bitand);
define_server_key_bench_fn!(method_name: unchecked_bitor, display_name: bitor);
define_server_key_bench_fn!(method_name: unchecked_bitxor, display_name: bitxor);
define_server_key_bench_fn!(method_name: unchecked_mul_parallelized, display_name: mul);
define_server_key_bench_fn!(
method_name: unchecked_bitand_parallelized,
display_name: bitand
);
define_server_key_bench_fn!(
method_name: unchecked_bitor_parallelized,
display_name: bitor
);
define_server_key_bench_fn!(
method_name: unchecked_bitxor_parallelized,
display_name: bitxor
);
define_server_key_bench_scalar_fn!(method_name: smart_scalar_add, display_name: add);
define_server_key_bench_scalar_fn!(method_name: smart_scalar_sub, display_name: sub);
define_server_key_bench_scalar_fn!(method_name: smart_scalar_mul, display_name: mul);
define_server_key_bench_scalar_fn!(
method_name: smart_scalar_add_parallelized,
display_name: add
);
define_server_key_bench_scalar_fn!(
method_name: smart_scalar_sub_parallelized,
display_name: sub
);
define_server_key_bench_scalar_fn!(
method_name: smart_scalar_mul_parallelized,
display_name: mul
);
define_server_key_bench_scalar_default_fn!(method_name: scalar_add_parallelized, display_name: add);
define_server_key_bench_scalar_default_fn!(method_name: scalar_sub_parallelized, display_name: sub);
define_server_key_bench_scalar_default_fn!(method_name: scalar_mul_parallelized, display_name: mul);
define_server_key_bench_scalar_fn!(method_name: unchecked_scalar_add, display_name: add);
define_server_key_bench_scalar_fn!(method_name: unchecked_scalar_sub, display_name: sub);
define_server_key_bench_scalar_fn!(method_name: unchecked_small_scalar_mul, display_name: mul);
define_server_key_bench_unary_fn!(method_name: smart_neg, display_name: negation);
define_server_key_bench_unary_fn!(method_name: smart_neg_parallelized, display_name: negation);
define_server_key_bench_unary_default_fn!(method_name: neg_parallelized, display_name: negation);
define_server_key_bench_unary_fn!(method_name: full_propagate, display_name: carry_propagation);
define_server_key_bench_unary_fn!(
method_name: full_propagate_parallelized,
display_name: carry_propagation
);
define_server_key_bench_fn!(method_name: unchecked_max, display_name: max);
define_server_key_bench_fn!(method_name: unchecked_min, display_name: min);
define_server_key_bench_fn!(method_name: unchecked_eq, display_name: equal);
define_server_key_bench_fn!(method_name: unchecked_lt, display_name: less_than);
define_server_key_bench_fn!(method_name: unchecked_le, display_name: less_or_equal);
define_server_key_bench_fn!(method_name: unchecked_gt, display_name: greater_than);
define_server_key_bench_fn!(method_name: unchecked_ge, display_name: greater_or_equal);
define_server_key_bench_fn!(method_name: unchecked_max_parallelized, display_name: max);
define_server_key_bench_fn!(method_name: unchecked_min_parallelized, display_name: min);
define_server_key_bench_fn!(method_name: unchecked_eq_parallelized, display_name: equal);
define_server_key_bench_fn!(
method_name: unchecked_lt_parallelized,
display_name: less_than
);
define_server_key_bench_fn!(
method_name: unchecked_le_parallelized,
display_name: less_or_equal
);
define_server_key_bench_fn!(
method_name: unchecked_gt_parallelized,
display_name: greater_than
);
define_server_key_bench_fn!(
method_name: unchecked_ge_parallelized,
display_name: greater_or_equal
);
define_server_key_bench_fn!(method_name: smart_max, display_name: max);
define_server_key_bench_fn!(method_name: smart_min, display_name: min);
define_server_key_bench_fn!(method_name: smart_eq, display_name: equal);
define_server_key_bench_fn!(method_name: smart_lt, display_name: less_than);
define_server_key_bench_fn!(method_name: smart_le, display_name: less_or_equal);
define_server_key_bench_fn!(method_name: smart_gt, display_name: greater_than);
define_server_key_bench_fn!(method_name: smart_ge, display_name: greater_or_equal);
define_server_key_bench_fn!(method_name: smart_max_parallelized, display_name: max);
define_server_key_bench_fn!(method_name: smart_min_parallelized, display_name: min);
define_server_key_bench_fn!(method_name: smart_eq_parallelized, display_name: equal);
define_server_key_bench_fn!(method_name: smart_lt_parallelized, display_name: less_than);
define_server_key_bench_fn!(
method_name: smart_le_parallelized,
display_name: less_or_equal
);
define_server_key_bench_fn!(
method_name: smart_gt_parallelized,
display_name: greater_than
);
define_server_key_bench_fn!(
method_name: smart_ge_parallelized,
display_name: greater_or_equal
);
define_server_key_bench_default_fn!(method_name: max_parallelized, display_name: max);
define_server_key_bench_default_fn!(method_name: min_parallelized, display_name: min);
define_server_key_bench_default_fn!(method_name: eq_parallelized, display_name: equal);
define_server_key_bench_default_fn!(method_name: lt_parallelized, display_name: less_than);
define_server_key_bench_default_fn!(method_name: le_parallelized, display_name: less_or_equal);
define_server_key_bench_default_fn!(method_name: gt_parallelized, display_name: greater_than);
define_server_key_bench_default_fn!(method_name: ge_parallelized, display_name: greater_or_equal);
criterion_group!(
smart_arithmetic_operation,
smart_neg,
smart_add,
smart_mul,
smart_bitand,
smart_bitor,
smart_bitxor,
smart_max,
smart_min,
smart_eq,
smart_lt,
smart_le,
smart_gt,
smart_ge,
);
criterion_group!(
smart_arithmetic_parallelized_operation,
smart_add_parallelized,
smart_sub_parallelized,
smart_mul_parallelized,
smart_bitand_parallelized,
smart_bitor_parallelized,
smart_bitxor_parallelized,
smart_max_parallelized,
smart_min_parallelized,
smart_eq_parallelized,
smart_lt_parallelized,
smart_le_parallelized,
smart_gt_parallelized,
smart_ge_parallelized,
);
criterion_group!(
arithmetic_parallelized_operation,
add_parallelized,
sub_parallelized,
mul_parallelized,
bitand_parallelized,
bitor_parallelized,
bitxor_parallelized,
max_parallelized,
min_parallelized,
eq_parallelized,
lt_parallelized,
le_parallelized,
gt_parallelized,
ge_parallelized,
);
criterion_group!(
smart_scalar_arithmetic_operation,
smart_scalar_add,
smart_scalar_sub,
smart_scalar_mul,
);
criterion_group!(
smart_scalar_arithmetic_parallel_operation,
smart_scalar_add_parallelized,
smart_scalar_sub_parallelized,
smart_scalar_mul_parallelized,
);
criterion_group!(
scalar_arithmetic_parallel_operation,
scalar_add_parallelized,
scalar_sub_parallelized,
scalar_mul_parallelized,
);
criterion_group!(
unchecked_arithmetic_operation,
unchecked_add,
unchecked_sub,
unchecked_mul,
unchecked_bitand,
unchecked_bitor,
unchecked_bitxor,
unchecked_max,
unchecked_min,
unchecked_eq,
unchecked_lt,
unchecked_le,
unchecked_gt,
unchecked_ge,
);
criterion_group!(
unchecked_scalar_arithmetic_operation,
unchecked_scalar_add,
unchecked_scalar_sub,
unchecked_small_scalar_mul,
unchecked_max_parallelized,
unchecked_min_parallelized,
unchecked_eq_parallelized,
unchecked_lt_parallelized,
unchecked_le_parallelized,
unchecked_gt_parallelized,
unchecked_ge_parallelized,
unchecked_bitand_parallelized,
unchecked_bitor_parallelized,
unchecked_bitxor_parallelized,
);
criterion_group!(misc, full_propagate, full_propagate_parallelized);
// User-oriented benchmark group.
// This gather all the operations that a high-level user could use.
criterion_group!(
fast_integer_benchmarks,
bitand_parallelized,
bitor_parallelized,
bitxor_parallelized,
add_parallelized,
sub_parallelized,
mul_parallelized,
neg_parallelized,
min_parallelized,
max_parallelized,
eq_parallelized,
lt_parallelized,
le_parallelized,
gt_parallelized,
ge_parallelized,
scalar_add_parallelized,
scalar_sub_parallelized,
scalar_mul_parallelized,
);
criterion_main!(
fast_integer_benchmarks,
// smart_arithmetic_operation,
// smart_arithmetic_parallelized_operation,
// smart_scalar_arithmetic_operation,
// smart_scalar_arithmetic_parallel_operation,
// unchecked_arithmetic_operation,
// unchecked_scalar_arithmetic_operation,
// misc,
);

View File

@@ -0,0 +1,45 @@
use concrete_csprng::seeders::Seeder;
use criterion::*;
use tfhe::core_crypto::commons::generators::DeterministicSeeder;
use tfhe::core_crypto::prelude::{
allocate_and_generate_new_binary_glwe_secret_key,
par_allocate_and_generate_new_lwe_bootstrap_key, ActivatedRandomGenerator, CiphertextModulus,
EncryptionRandomGenerator, SecretRandomGenerator,
};
use tfhe::core_crypto::seeders::new_seeder;
use tfhe::shortint::prelude::*;
fn criterion_bench(c: &mut Criterion) {
let parameters = PARAM_MESSAGE_2_CARRY_2;
let mut seeder = new_seeder();
let mut deterministic_seeder =
DeterministicSeeder::<ActivatedRandomGenerator>::new(seeder.seed());
let mut secret_generator =
SecretRandomGenerator::<ActivatedRandomGenerator>::new(deterministic_seeder.seed());
let mut encryption_generator = EncryptionRandomGenerator::<ActivatedRandomGenerator>::new(
deterministic_seeder.seed(),
&mut deterministic_seeder,
);
let glwe_secret_key = allocate_and_generate_new_binary_glwe_secret_key::<u64, _>(
parameters.glwe_dimension,
parameters.polynomial_size,
&mut secret_generator,
);
let lwe_secret_key_after_ks = glwe_secret_key.clone().into_lwe_secret_key();
c.bench_function("keygen", |b| {
b.iter(|| {
let _ = par_allocate_and_generate_new_lwe_bootstrap_key(
&lwe_secret_key_after_ks,
&glwe_secret_key,
parameters.pbs_base_log,
parameters.pbs_level,
parameters.glwe_modular_std_dev,
CiphertextModulus::new_native(),
&mut encryption_generator,
);
});
});
}
criterion_group!(benches, criterion_bench);
criterion_main!(benches);

View File

@@ -1,6 +1,11 @@
#[path = "../utilities.rs"]
mod utilities;
use crate::utilities::{write_to_json, OperatorType};
use criterion::{criterion_group, criterion_main, Criterion};
use tfhe::shortint::keycache::NamedParam;
use tfhe::shortint::parameters::*;
use tfhe::shortint::{Ciphertext, Parameters, ServerKey};
use tfhe::shortint::{CiphertextBig, Parameters, ServerKey};
use rand::Rng;
use tfhe::shortint::keycache::KEY_CACHE;
@@ -8,32 +13,91 @@ use tfhe::shortint::keycache::KEY_CACHE;
use tfhe::shortint::keycache::KEY_CACHE_WOPBS;
use tfhe::shortint::parameters::parameters_wopbs::WOPBS_PARAM_MESSAGE_4_NORM2_6;
macro_rules! named_param {
($param:ident) => {
(stringify!($param), $param)
};
}
const SERVER_KEY_BENCH_PARAMS: [(&str, Parameters); 4] = [
named_param!(PARAM_MESSAGE_1_CARRY_1),
named_param!(PARAM_MESSAGE_2_CARRY_2),
named_param!(PARAM_MESSAGE_3_CARRY_3),
named_param!(PARAM_MESSAGE_4_CARRY_4),
const SERVER_KEY_BENCH_PARAMS: [Parameters; 4] = [
PARAM_MESSAGE_1_CARRY_1,
PARAM_MESSAGE_2_CARRY_2,
PARAM_MESSAGE_3_CARRY_3,
PARAM_MESSAGE_4_CARRY_4,
];
fn bench_server_key_binary_function<F>(c: &mut Criterion, bench_name: &str, binary_op: F)
where
F: Fn(&ServerKey, &mut Ciphertext, &mut Ciphertext),
const SERVER_KEY_BENCH_PARAMS_EXTENDED: [Parameters; 15] = [
PARAM_MESSAGE_1_CARRY_0,
PARAM_MESSAGE_1_CARRY_1,
PARAM_MESSAGE_2_CARRY_0,
PARAM_MESSAGE_2_CARRY_1,
PARAM_MESSAGE_2_CARRY_2,
PARAM_MESSAGE_3_CARRY_0,
PARAM_MESSAGE_3_CARRY_2,
PARAM_MESSAGE_3_CARRY_3,
PARAM_MESSAGE_4_CARRY_0,
PARAM_MESSAGE_4_CARRY_3,
PARAM_MESSAGE_4_CARRY_4,
PARAM_MESSAGE_5_CARRY_0,
PARAM_MESSAGE_6_CARRY_0,
PARAM_MESSAGE_7_CARRY_0,
PARAM_MESSAGE_8_CARRY_0,
];
fn bench_server_key_unary_function<F>(
c: &mut Criterion,
bench_name: &str,
display_name: &str,
unary_op: F,
params: &[Parameters],
) where
F: Fn(&ServerKey, &mut CiphertextBig),
{
let mut bench_group = c.benchmark_group(bench_name);
for (param_name, param) in SERVER_KEY_BENCH_PARAMS {
let keys = KEY_CACHE.get_from_param(param);
for param in params.iter() {
let keys = KEY_CACHE.get_from_param(*param);
let (cks, sks) = (keys.client_key(), keys.server_key());
let mut rng = rand::thread_rng();
let modulus = 1_u64 << cks.parameters.message_modulus.0;
let modulus = cks.parameters.message_modulus.0 as u64;
let clear_text = rng.gen::<u64>() % modulus;
let mut ct = cks.encrypt(clear_text);
let bench_id = format!("{bench_name}::{}", param.name());
bench_group.bench_function(&bench_id, |b| {
b.iter(|| {
unary_op(sks, &mut ct);
})
});
write_to_json(
&bench_id,
*param,
param.name(),
display_name,
&OperatorType::Atomic,
);
}
bench_group.finish()
}
fn bench_server_key_binary_function<F>(
c: &mut Criterion,
bench_name: &str,
display_name: &str,
binary_op: F,
params: &[Parameters],
) where
F: Fn(&ServerKey, &mut CiphertextBig, &mut CiphertextBig),
{
let mut bench_group = c.benchmark_group(bench_name);
for param in params.iter() {
let keys = KEY_CACHE.get_from_param(*param);
let (cks, sks) = (keys.client_key(), keys.server_key());
let mut rng = rand::thread_rng();
let modulus = cks.parameters.message_modulus.0 as u64;
let clear_0 = rng.gen::<u64>() % modulus;
let clear_1 = rng.gen::<u64>() % modulus;
@@ -41,42 +105,110 @@ where
let mut ct_0 = cks.encrypt(clear_0);
let mut ct_1 = cks.encrypt(clear_1);
let bench_id = format!("{}::{}", bench_name, param_name);
let bench_id = format!("{bench_name}::{}", param.name());
bench_group.bench_function(&bench_id, |b| {
b.iter(|| {
binary_op(sks, &mut ct_0, &mut ct_1);
})
});
write_to_json(
&bench_id,
*param,
param.name(),
display_name,
&OperatorType::Atomic,
);
}
bench_group.finish()
}
fn bench_server_key_binary_scalar_function<F>(c: &mut Criterion, bench_name: &str, binary_op: F)
where
F: Fn(&ServerKey, &mut Ciphertext, u8),
fn bench_server_key_binary_scalar_function<F>(
c: &mut Criterion,
bench_name: &str,
display_name: &str,
binary_op: F,
params: &[Parameters],
) where
F: Fn(&ServerKey, &mut CiphertextBig, u8),
{
let mut bench_group = c.benchmark_group(bench_name);
for (param_name, param) in SERVER_KEY_BENCH_PARAMS {
let keys = KEY_CACHE.get_from_param(param);
for param in params {
let keys = KEY_CACHE.get_from_param(*param);
let (cks, sks) = (keys.client_key(), keys.server_key());
let mut rng = rand::thread_rng();
let modulus = 1_u64 << cks.parameters.message_modulus.0;
let modulus = cks.parameters.message_modulus.0 as u64;
let clear_0 = rng.gen::<u64>() % modulus;
let clear_1 = rng.gen::<u64>() % modulus;
let mut ct_0 = cks.encrypt(clear_0);
let bench_id = format!("{}::{}", bench_name, param_name);
let bench_id = format!("{bench_name}::{}", param.name());
bench_group.bench_function(&bench_id, |b| {
b.iter(|| {
binary_op(sks, &mut ct_0, clear_1 as u8);
})
});
write_to_json(
&bench_id,
*param,
param.name(),
display_name,
&OperatorType::Atomic,
);
}
bench_group.finish()
}
fn bench_server_key_binary_scalar_division_function<F>(
c: &mut Criterion,
bench_name: &str,
display_name: &str,
binary_op: F,
params: &[Parameters],
) where
F: Fn(&ServerKey, &mut CiphertextBig, u8),
{
let mut bench_group = c.benchmark_group(bench_name);
for param in params {
let keys = KEY_CACHE.get_from_param(*param);
let (cks, sks) = (keys.client_key(), keys.server_key());
let mut rng = rand::thread_rng();
let modulus = cks.parameters.message_modulus.0 as u64;
assert_ne!(modulus, 1);
let clear_0 = rng.gen::<u64>() % modulus;
let mut clear_1 = rng.gen::<u64>() % modulus;
while clear_1 == 0 {
clear_1 = rng.gen::<u64>() % modulus;
}
let mut ct_0 = cks.encrypt(clear_0);
let bench_id = format!("{bench_name}::{}", param.name());
bench_group.bench_function(&bench_id, |b| {
b.iter(|| {
binary_op(sks, &mut ct_0, clear_1 as u8);
})
});
write_to_json(
&bench_id,
*param,
param.name(),
display_name,
&OperatorType::Atomic,
);
}
bench_group.finish()
@@ -85,24 +217,32 @@ where
fn carry_extract(c: &mut Criterion) {
let mut bench_group = c.benchmark_group("carry_extract");
for (param_name, param) in SERVER_KEY_BENCH_PARAMS {
for param in SERVER_KEY_BENCH_PARAMS {
let keys = KEY_CACHE.get_from_param(param);
let (cks, sks) = (keys.client_key(), keys.server_key());
let mut rng = rand::thread_rng();
let modulus = 1_u64 << cks.parameters.message_modulus.0;
let modulus = cks.parameters.message_modulus.0 as u64;
let clear_0 = rng.gen::<u64>() % modulus;
let ct_0 = cks.encrypt(clear_0);
let bench_id = format!("ServerKey::carry_extract::{}", param_name);
let bench_id = format!("ServerKey::carry_extract::{}", param.name());
bench_group.bench_function(&bench_id, |b| {
b.iter(|| {
sks.carry_extract(&ct_0);
let _ = sks.carry_extract(&ct_0);
})
});
write_to_json(
&bench_id,
param,
param.name(),
"carry_extract",
&OperatorType::Atomic,
);
}
bench_group.finish()
@@ -111,7 +251,7 @@ fn carry_extract(c: &mut Criterion) {
fn programmable_bootstrapping(c: &mut Criterion) {
let mut bench_group = c.benchmark_group("programmable_bootstrap");
for (param_name, param) in SERVER_KEY_BENCH_PARAMS {
for param in SERVER_KEY_BENCH_PARAMS {
let keys = KEY_CACHE.get_from_param(param);
let (cks, sks) = (keys.client_key(), keys.server_key());
@@ -125,19 +265,21 @@ fn programmable_bootstrapping(c: &mut Criterion) {
let ctxt = cks.encrypt(clear_0);
let id = format!("ServerKey::programmable_bootstrap::{}", param_name);
let bench_id = format!("ServerKey::programmable_bootstrap::{}", param.name());
bench_group.bench_function(&id, |b| {
bench_group.bench_function(&bench_id, |b| {
b.iter(|| {
sks.keyswitch_programmable_bootstrap(&ctxt, &acc);
let _ = sks.apply_lookup_table(&ctxt, &acc);
})
});
write_to_json(&bench_id, param, param.name(), "pbs", &OperatorType::Atomic);
}
bench_group.finish();
}
fn bench_wopbs_param_message_8_norm2_5(c: &mut Criterion) {
fn _bench_wopbs_param_message_8_norm2_5(c: &mut Criterion) {
let mut bench_group = c.benchmark_group("programmable_bootstrap");
let param = WOPBS_PARAM_MESSAGE_4_NORM2_6;
@@ -151,75 +293,346 @@ fn bench_wopbs_param_message_8_norm2_5(c: &mut Criterion) {
let mut ct = cks.encrypt_without_padding(clear as u64);
let vec_lut = wopbs_key.generate_lut_native_crt(&ct, |x| x);
let id = format!("Shortint WOPBS: {:?}", param);
let id = format!("Shortint WOPBS: {param:?}");
bench_group.bench_function(&id, |b| {
b.iter(|| {
wopbs_key.programmable_bootstrapping_native_crt(&mut ct, &vec_lut);
let _ = wopbs_key.programmable_bootstrapping_native_crt(&mut ct, &vec_lut);
})
});
bench_group.finish();
}
macro_rules! define_server_key_unary_bench_fn (
(method_name:$server_key_method:ident, display_name:$name:ident, $params:expr) => {
fn $server_key_method(c: &mut Criterion) {
bench_server_key_unary_function(
c,
concat!("ServerKey::", stringify!($server_key_method)),
stringify!($name),
|server_key, lhs| {
let _ = server_key.$server_key_method(lhs);},
$params)
}
}
);
macro_rules! define_server_key_bench_fn (
($server_key_method:ident) => {
(method_name:$server_key_method:ident, display_name:$name:ident, $params:expr) => {
fn $server_key_method(c: &mut Criterion) {
bench_server_key_binary_function(
c,
concat!("ServerKey::", stringify!($server_key_method)),
stringify!($name),
|server_key, lhs, rhs| {
server_key.$server_key_method(lhs, rhs);
})
let _ = server_key.$server_key_method(lhs, rhs);},
$params)
}
}
);
macro_rules! define_server_key_scalar_bench_fn (
($server_key_method:ident) => {
(method_name:$server_key_method:ident, display_name:$name:ident, $params:expr) => {
fn $server_key_method(c: &mut Criterion) {
bench_server_key_binary_scalar_function(
c,
concat!("ServerKey::", stringify!($server_key_method)),
stringify!($name),
|server_key, lhs, rhs| {
server_key.$server_key_method(lhs, rhs);
})
let _ = server_key.$server_key_method(lhs, rhs);},
$params)
}
}
);
define_server_key_bench_fn!(unchecked_add);
define_server_key_bench_fn!(unchecked_sub);
define_server_key_bench_fn!(unchecked_mul_lsb);
define_server_key_bench_fn!(unchecked_mul_msb);
define_server_key_bench_fn!(smart_bitand);
define_server_key_bench_fn!(smart_bitor);
define_server_key_bench_fn!(smart_bitxor);
define_server_key_bench_fn!(smart_add);
define_server_key_bench_fn!(smart_sub);
define_server_key_bench_fn!(smart_mul_lsb);
macro_rules! define_server_key_scalar_div_bench_fn (
(method_name:$server_key_method:ident, display_name:$name:ident, $params:expr) => {
fn $server_key_method(c: &mut Criterion) {
bench_server_key_binary_scalar_division_function(
c,
concat!("ServerKey::", stringify!($server_key_method)),
stringify!($name),
|server_key, lhs, rhs| {
let _ = server_key.$server_key_method(lhs, rhs);},
$params)
}
}
);
define_server_key_scalar_bench_fn!(unchecked_scalar_add);
define_server_key_scalar_bench_fn!(unchecked_scalar_mul);
define_server_key_unary_bench_fn!(
method_name: unchecked_neg,
display_name: negation,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: unchecked_add,
display_name: add,
&SERVER_KEY_BENCH_PARAMS_EXTENDED
);
define_server_key_bench_fn!(
method_name: unchecked_sub,
display_name: sub,
&SERVER_KEY_BENCH_PARAMS_EXTENDED
);
define_server_key_bench_fn!(
method_name: unchecked_mul_lsb,
display_name: mul,
&SERVER_KEY_BENCH_PARAMS_EXTENDED
);
define_server_key_bench_fn!(
method_name: unchecked_mul_msb,
display_name: mul,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: unchecked_div,
display_name: div,
&SERVER_KEY_BENCH_PARAMS_EXTENDED
);
define_server_key_bench_fn!(
method_name: smart_bitand,
display_name: bitand,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: smart_bitor,
display_name: bitor,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: smart_bitxor,
display_name: bitxor,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: smart_add,
display_name: add,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: smart_sub,
display_name: sub,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: smart_mul_lsb,
display_name: mul,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: bitand,
display_name: bitand,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: bitor,
display_name: bitor,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: bitxor,
display_name: bitxor,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: add,
display_name: add,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: sub,
display_name: sub,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: mul,
display_name: mul,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: div,
display_name: div,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: greater,
display_name: greater,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: greater_or_equal,
display_name: greater_or_equal,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: less,
display_name: less,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: less_or_equal,
display_name: less_or_equal,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: equal,
display_name: equal,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: not_equal,
display_name: not_equal,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_unary_bench_fn!(
method_name: neg,
display_name: negation,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: unchecked_greater,
display_name: greater_than,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: unchecked_less,
display_name: less_than,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_bench_fn!(
method_name: unchecked_equal,
display_name: equal,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_bench_fn!(
method_name: unchecked_scalar_add,
display_name: add,
&SERVER_KEY_BENCH_PARAMS_EXTENDED
);
define_server_key_scalar_bench_fn!(
method_name: unchecked_scalar_sub,
display_name: sub,
&SERVER_KEY_BENCH_PARAMS_EXTENDED
);
define_server_key_scalar_bench_fn!(
method_name: unchecked_scalar_mul,
display_name: mul,
&SERVER_KEY_BENCH_PARAMS_EXTENDED
);
define_server_key_scalar_bench_fn!(
method_name: unchecked_scalar_left_shift,
display_name: left_shift,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_bench_fn!(
method_name: unchecked_scalar_right_shift,
display_name: right_shift,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_div_bench_fn!(
method_name: unchecked_scalar_div,
display_name: div,
&SERVER_KEY_BENCH_PARAMS_EXTENDED
);
define_server_key_scalar_div_bench_fn!(
method_name: unchecked_scalar_mod,
display_name: modulo,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_bench_fn!(
method_name: scalar_add,
display_name: add,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_bench_fn!(
method_name: scalar_sub,
display_name: sub,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_bench_fn!(
method_name: scalar_mul,
display_name: mul,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_bench_fn!(
method_name: scalar_left_shift,
display_name: left_shift,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_bench_fn!(
method_name: scalar_right_shift,
display_name: right_shift,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_div_bench_fn!(
method_name: scalar_div,
display_name: div,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_div_bench_fn!(
method_name: scalar_mod,
display_name: modulo,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_bench_fn!(
method_name: scalar_greater,
display_name: greater,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_bench_fn!(
method_name: scalar_greater_or_equal,
display_name: greater_or_equal,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_bench_fn!(
method_name: scalar_less,
display_name: less,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_bench_fn!(
method_name: scalar_less_or_equal,
display_name: less_or_equal,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_div_bench_fn!(
method_name: scalar_equal,
display_name: equal,
&SERVER_KEY_BENCH_PARAMS
);
define_server_key_scalar_div_bench_fn!(
method_name: scalar_not_equal,
display_name: not_equal,
&SERVER_KEY_BENCH_PARAMS
);
criterion_group!(
arithmetic_operation,
unchecked_neg,
unchecked_add,
unchecked_sub,
unchecked_mul_lsb,
unchecked_mul_msb,
unchecked_div,
smart_bitand,
smart_bitor,
smart_bitxor,
smart_add,
smart_sub,
smart_mul_lsb,
unchecked_greater,
unchecked_less,
unchecked_equal,
carry_extract,
// programmable_bootstrapping,
// multivalue_programmable_bootstrapping
//bench_two_block_pbs
//wopbs_v0_norm2_2,
bench_wopbs_param_message_8_norm2_5,
//bench_wopbs_param_message_8_norm2_5,
programmable_bootstrapping
);
@@ -227,6 +640,51 @@ criterion_group!(
arithmetic_scalar_operation,
unchecked_scalar_add,
unchecked_scalar_mul,
unchecked_scalar_sub,
unchecked_scalar_div,
unchecked_scalar_mod,
unchecked_scalar_left_shift,
unchecked_scalar_right_shift,
);
criterion_main!(arithmetic_operation,); // arithmetic_scalar_operation,);
criterion_group!(
default_ops,
neg,
bitand,
bitor,
bitxor,
add,
sub,
div,
mul,
greater,
greater_or_equal,
less,
less_or_equal,
equal,
not_equal
);
criterion_group!(
default_scalar_ops,
scalar_add,
scalar_sub,
scalar_div,
scalar_mul,
scalar_mod,
scalar_left_shift,
scalar_right_shift,
scalar_greater,
scalar_greater_or_equal,
scalar_less,
scalar_less_or_equal,
scalar_equal,
scalar_not_equal
);
criterion_main!(
// arithmetic_operation,
// arithmetic_scalar_operation,
default_ops,
default_scalar_ops,
);

184
tfhe/benches/utilities.rs Normal file
View File

@@ -0,0 +1,184 @@
use serde::Serialize;
use std::fs;
use std::path::PathBuf;
#[cfg(feature = "boolean")]
use tfhe::boolean::parameters::BooleanParameters;
use tfhe::core_crypto::prelude::*;
#[cfg(feature = "shortint")]
use tfhe::shortint::Parameters;
#[derive(Clone, Copy, Default, Serialize)]
pub struct CryptoParametersRecord {
pub lwe_dimension: Option<LweDimension>,
pub glwe_dimension: Option<GlweDimension>,
pub polynomial_size: Option<PolynomialSize>,
pub lwe_modular_std_dev: Option<StandardDev>,
pub glwe_modular_std_dev: Option<StandardDev>,
pub pbs_base_log: Option<DecompositionBaseLog>,
pub pbs_level: Option<DecompositionLevelCount>,
pub ks_base_log: Option<DecompositionBaseLog>,
pub ks_level: Option<DecompositionLevelCount>,
pub pfks_level: Option<DecompositionLevelCount>,
pub pfks_base_log: Option<DecompositionBaseLog>,
pub pfks_modular_std_dev: Option<StandardDev>,
pub cbs_level: Option<DecompositionLevelCount>,
pub cbs_base_log: Option<DecompositionBaseLog>,
pub message_modulus: Option<usize>,
pub carry_modulus: Option<usize>,
}
#[cfg(feature = "boolean")]
impl From<BooleanParameters> for CryptoParametersRecord {
fn from(params: BooleanParameters) -> Self {
CryptoParametersRecord {
lwe_dimension: Some(params.lwe_dimension),
glwe_dimension: Some(params.glwe_dimension),
polynomial_size: Some(params.polynomial_size),
lwe_modular_std_dev: Some(params.lwe_modular_std_dev),
glwe_modular_std_dev: Some(params.glwe_modular_std_dev),
pbs_base_log: Some(params.pbs_base_log),
pbs_level: Some(params.pbs_level),
ks_base_log: Some(params.ks_base_log),
ks_level: Some(params.ks_level),
pfks_level: None,
pfks_base_log: None,
pfks_modular_std_dev: None,
cbs_level: None,
cbs_base_log: None,
message_modulus: None,
carry_modulus: None,
}
}
}
#[cfg(feature = "shortint")]
impl From<Parameters> for CryptoParametersRecord {
fn from(params: Parameters) -> Self {
CryptoParametersRecord {
lwe_dimension: Some(params.lwe_dimension),
glwe_dimension: Some(params.glwe_dimension),
polynomial_size: Some(params.polynomial_size),
lwe_modular_std_dev: Some(params.lwe_modular_std_dev),
glwe_modular_std_dev: Some(params.glwe_modular_std_dev),
pbs_base_log: Some(params.pbs_base_log),
pbs_level: Some(params.pbs_level),
ks_base_log: Some(params.ks_base_log),
ks_level: Some(params.ks_level),
pfks_level: Some(params.pfks_level),
pfks_base_log: Some(params.pfks_base_log),
pfks_modular_std_dev: Some(params.pfks_modular_std_dev),
cbs_level: Some(params.cbs_level),
cbs_base_log: Some(params.cbs_base_log),
message_modulus: Some(params.message_modulus.0),
carry_modulus: Some(params.carry_modulus.0),
}
}
}
#[derive(Serialize)]
enum PolynomialMultiplication {
Fft,
// Ntt,
}
#[derive(Serialize)]
enum IntegerRepresentation {
Radix,
// Crt,
// Hybrid,
}
#[derive(Serialize)]
enum ExecutionType {
Sequential,
Parallel,
}
#[derive(Serialize)]
enum KeySetType {
Single,
// Multi,
}
#[derive(Serialize)]
enum OperandType {
CipherText,
PlainText,
}
#[derive(Clone, Serialize)]
pub enum OperatorType {
Atomic,
// AtomicPattern,
}
#[derive(Serialize)]
struct BenchmarkParametersRecord {
display_name: String,
crypto_parameters_alias: String,
crypto_parameters: CryptoParametersRecord,
message_modulus: Option<usize>,
carry_modulus: Option<usize>,
ciphertext_modulus: usize,
polynomial_multiplication: PolynomialMultiplication,
precision: u32,
error_probability: f64,
integer_representation: IntegerRepresentation,
decomposition_basis: u32,
pbs_algorithm: Option<String>,
execution_type: ExecutionType,
key_set_type: KeySetType,
operand_type: OperandType,
operator_type: OperatorType,
}
/// Writes benchmarks parameters to disk in JSON format.
pub fn write_to_json<T: Into<CryptoParametersRecord>>(
bench_id: &str,
params: T,
params_alias: impl Into<String>,
display_name: impl Into<String>,
operator_type: &OperatorType,
) {
let params = params.into();
let execution_type = match bench_id.contains("parallelized") {
true => ExecutionType::Parallel,
false => ExecutionType::Sequential,
};
let operand_type = match bench_id.contains("scalar") {
true => OperandType::PlainText,
false => OperandType::CipherText,
};
let record = BenchmarkParametersRecord {
display_name: display_name.into(),
crypto_parameters_alias: params_alias.into(),
crypto_parameters: params.to_owned(),
message_modulus: params.message_modulus,
carry_modulus: params.carry_modulus,
ciphertext_modulus: 64,
polynomial_multiplication: PolynomialMultiplication::Fft,
precision: (params.message_modulus.unwrap_or(2) as u32).ilog2(),
error_probability: 2f64.powf(-41.0),
integer_representation: IntegerRepresentation::Radix,
decomposition_basis: (params.message_modulus.unwrap_or(2) as u32).ilog2(),
pbs_algorithm: None, // To be added in future version
execution_type,
key_set_type: KeySetType::Single,
operand_type,
operator_type: operator_type.to_owned(),
};
let mut params_directory = ["benchmarks_parameters", bench_id]
.iter()
.collect::<PathBuf>();
fs::create_dir_all(&params_directory).unwrap();
params_directory.push("parameters.json");
fs::write(params_directory, serde_json::to_string(&record).unwrap()).unwrap();
}
// Empty main to please clippy.
#[allow(dead_code)]
pub fn main() {}

View File

@@ -1,10 +1,12 @@
// tfhe/build.rs
#[cfg(feature = "__c_api")]
fn gen_c_api() {
use std::env;
use std::path::PathBuf;
if std::env::var("_CBINDGEN_IS_RUNNING").is_ok() {
return;
}
/// Find the location of the `target/` directory. Note that this may be
/// overridden by `cmake`, so we also need to check the `CARGO_TARGET_DIR`
/// variable.
@@ -24,7 +26,35 @@ fn gen_c_api() {
.display()
.to_string();
cbindgen::generate(crate_dir)
let parse_expand_features_vec = vec![
#[cfg(feature = "__c_api")]
"__c_api",
#[cfg(feature = "boolean-c-api")]
"boolean-c-api",
#[cfg(feature = "shortint-c-api")]
"shortint-c-api",
#[cfg(feature = "high-level-c-api")]
"high-level-c-api",
#[cfg(feature = "boolean")]
"boolean",
#[cfg(feature = "shortint")]
"shortint",
#[cfg(feature = "integer")]
"integer",
];
let parse_expand_vec = if parse_expand_features_vec.is_empty() {
vec![]
} else {
vec![package_name.as_str()]
};
cbindgen::Builder::new()
.with_crate(crate_dir.clone())
.with_config(cbindgen::Config::from_root_or_default(crate_dir))
.with_parse_expand(&parse_expand_vec)
.with_parse_expand_features(&parse_expand_features_vec)
.generate()
.unwrap()
.write_to_file(output_file);
}

View File

@@ -11,6 +11,9 @@ void test_default_keygen_w_serde(void) {
BooleanCiphertext *ct = NULL;
Buffer ct_ser_buffer = {.pointer = NULL, .length = 0};
BooleanCiphertext *deser_ct = NULL;
BooleanCompressedCiphertext *cct = NULL;
BooleanCompressedCiphertext *deser_cct = NULL;
BooleanCiphertext *decompressed_ct = NULL;
int gen_keys_ok = boolean_gen_keys_with_default_parameters(&cks, &sks);
assert(gen_keys_ok == 0);
@@ -37,10 +40,34 @@ void test_default_keygen_w_serde(void) {
assert(result == true);
int c_encrypt_ok = boolean_client_key_encrypt_compressed(cks, true, &cct);
assert(c_encrypt_ok == 0);
int c_ser_ok = boolean_serialize_compressed_ciphertext(cct, &ct_ser_buffer);
assert(c_ser_ok == 0);
deser_view.pointer = ct_ser_buffer.pointer;
deser_view.length = ct_ser_buffer.length;
int c_deser_ok = boolean_deserialize_compressed_ciphertext(deser_view, &deser_cct);
assert(c_deser_ok == 0);
int decomp_ok = boolean_decompress_ciphertext(cct, &decompressed_ct);
assert(decomp_ok == 0);
bool c_result = false;
int c_decrypt_ok = boolean_client_key_decrypt(cks, decompressed_ct, &c_result);
assert(c_decrypt_ok == 0);
assert(c_result == true);
destroy_boolean_client_key(cks);
destroy_boolean_server_key(sks);
destroy_boolean_ciphertext(ct);
destroy_boolean_ciphertext(deser_ct);
destroy_boolean_compressed_ciphertext(cct);
destroy_boolean_compressed_ciphertext(deser_cct);
destroy_boolean_ciphertext(decompressed_ct);
destroy_buffer(&ct_ser_buffer);
}
@@ -57,7 +84,7 @@ void test_predefined_keygen_w_serde(void) {
destroy_boolean_server_key(sks);
gen_keys_ok = boolean_gen_keys_with_predefined_parameters_set(
BOOLEAN_PARAMETERS_SET_THFE_LIB_PARAMETERS, &cks, &sks);
BOOLEAN_PARAMETERS_SET_TFHE_LIB_PARAMETERS, &cks, &sks);
assert(gen_keys_ok == 0);

View File

@@ -326,19 +326,41 @@ bool c_xnor(bool left, bool right) { return !c_xor(left, right); }
void test_server_key(void) {
BooleanClientKey *cks = NULL;
BooleanCompressedServerKey *csks = NULL;
BooleanServerKey *sks = NULL;
Buffer cks_ser_buffer = {.pointer = NULL, .length = 0};
BooleanClientKey *deser_cks = NULL;
Buffer csks_ser_buffer = {.pointer = NULL, .length = 0};
BooleanCompressedServerKey *deser_csks = NULL;
Buffer sks_ser_buffer = {.pointer = NULL, .length = 0};
BooleanServerKey *deser_sks = NULL;
BooleanParameters *params = NULL;
int gen_keys_ok = boolean_gen_keys_with_default_parameters(&cks, &sks);
assert(gen_keys_ok == 0);
int get_params_ok = boolean_get_parameters(BOOLEAN_PARAMETERS_SET_DEFAULT_PARAMETERS, &params);
assert(get_params_ok == 0);
int gen_cks_ok = boolean_gen_client_key(params, &cks);
assert(gen_cks_ok == 0);
int gen_csks_ok = boolean_gen_compressed_server_key(cks, &csks);
assert(gen_csks_ok == 0);
int ser_csks_ok = boolean_serialize_compressed_server_key(csks, &csks_ser_buffer);
assert(ser_csks_ok == 0);
BufferView deser_view = {.pointer = csks_ser_buffer.pointer, .length = csks_ser_buffer.length};
int deser_csks_ok = boolean_deserialize_compressed_server_key(deser_view, &deser_csks);
assert(deser_csks_ok == 0);
int decompress_csks_ok = boolean_decompress_server_key(deser_csks, &sks);
assert(decompress_csks_ok == 0);
int ser_cks_ok = boolean_serialize_client_key(cks, &cks_ser_buffer);
assert(ser_cks_ok == 0);
BufferView deser_view = {.pointer = cks_ser_buffer.pointer, .length = cks_ser_buffer.length};
deser_view.pointer = cks_ser_buffer.pointer;
deser_view.length = cks_ser_buffer.length;
int deser_cks_ok = boolean_deserialize_client_key(deser_view, &deser_cks);
assert(deser_cks_ok == 0);
@@ -390,10 +412,14 @@ void test_server_key(void) {
boolean_server_key_xnor_scalar_assign);
destroy_boolean_client_key(cks);
destroy_boolean_compressed_server_key(csks);
destroy_boolean_server_key(sks);
destroy_boolean_client_key(deser_cks);
destroy_boolean_compressed_server_key(deser_csks);
destroy_boolean_server_key(deser_sks);
destroy_boolean_parameters(params);
destroy_buffer(&cks_ser_buffer);
destroy_buffer(&csks_ser_buffer);
destroy_buffer(&sks_ser_buffer);
}

View File

@@ -0,0 +1,117 @@
#include <tfhe.h>
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
int uint128_client_key(const ClientKey *client_key) {
int ok;
FheUint128 *lhs = NULL;
FheUint128 *rhs = NULL;
FheUint128 *result = NULL;
ok = fhe_uint128_try_encrypt_with_client_key_u128(10, 20, client_key, &lhs);
assert(ok == 0);
ok = fhe_uint128_try_encrypt_with_client_key_u128(1, 2, client_key, &rhs);
assert(ok == 0);
ok = fhe_uint128_sub(lhs, rhs, &result);
assert(ok == 0);
uint64_t w0, w1;
ok = fhe_uint128_decrypt(result, client_key, &w0, &w1);
assert(ok == 0);
assert(w0 == 9);
assert(w1 == 18);
fhe_uint128_destroy(lhs);
fhe_uint128_destroy(rhs);
fhe_uint128_destroy(result);
return ok;
}
int uint128_encrypt_trivial(const ClientKey *client_key) {
int ok;
FheUint128 *lhs = NULL;
FheUint128 *rhs = NULL;
FheUint128 *result = NULL;
ok = fhe_uint128_try_encrypt_trivial_u128(10, 20, &lhs);
assert(ok == 0);
ok = fhe_uint128_try_encrypt_trivial_u128(1, 2, &rhs);
assert(ok == 0);
ok = fhe_uint128_sub(lhs, rhs, &result);
assert(ok == 0);
uint64_t w0, w1;
ok = fhe_uint128_decrypt(result, client_key, &w0, &w1);
assert(ok == 0);
assert(w0 == 9);
assert(w1 == 18);
fhe_uint128_destroy(lhs);
fhe_uint128_destroy(rhs);
fhe_uint128_destroy(result);
return ok;
}
int uint128_public_key(const ClientKey *client_key, const PublicKey *public_key) {
int ok;
FheUint128 *lhs = NULL;
FheUint128 *rhs = NULL;
FheUint128 *result = NULL;
ok = fhe_uint128_try_encrypt_with_public_key_u128(1, 2, public_key, &lhs);
assert(ok == 0);
ok = fhe_uint128_try_encrypt_with_public_key_u128(10, 20, public_key, &rhs);
assert(ok == 0);
ok = fhe_uint128_add(lhs, rhs, &result);
assert(ok == 0);
uint64_t w0, w1;
ok = fhe_uint128_decrypt(result, client_key, &w0, &w1);
assert(ok == 0);
assert(w0 == 11);
assert(w1 == 22);
fhe_uint128_destroy(lhs);
fhe_uint128_destroy(rhs);
fhe_uint128_destroy(result);
return ok;
}
int main(void) {
int ok = 0;
ConfigBuilder *builder;
Config *config;
config_builder_all_disabled(&builder);
config_builder_enable_default_uint128_small(&builder);
config_builder_build(builder, &config);
ClientKey *client_key = NULL;
ServerKey *server_key = NULL;
PublicKey *public_key = NULL;
generate_keys(config, &client_key, &server_key);
public_key_new(client_key, &public_key);
set_server_key(server_key);
uint128_client_key(client_key);
uint128_encrypt_trivial(client_key);
uint128_public_key(client_key, public_key);
client_key_destroy(client_key);
public_key_destroy(public_key);
server_key_destroy(server_key);
return ok;
}

View File

@@ -0,0 +1,165 @@
#include <tfhe.h>
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
int uint256_client_key(const ClientKey *client_key) {
int ok;
FheUint256 *lhs = NULL;
FheUint256 *rhs = NULL;
FheUint256 *result = NULL;
U256 *lhs_clear = NULL;
U256 *rhs_clear = NULL;
U256 *result_clear = NULL;
ok = u256_from_u64_words(1, 2, 3, 4, &lhs_clear);
assert(ok == 0);
ok = u256_from_u64_words(5, 6, 7, 8, &rhs_clear);
assert(ok == 0);
ok = fhe_uint256_try_encrypt_with_client_key_u256(lhs_clear, client_key, &lhs);
assert(ok == 0);
ok = fhe_uint256_try_encrypt_with_client_key_u256(rhs_clear, client_key, &rhs);
assert(ok == 0);
ok = fhe_uint256_add(lhs, rhs, &result);
assert(ok == 0);
ok = fhe_uint256_decrypt(result, client_key, &result_clear);
assert(ok == 0);
uint64_t w0, w1, w2, w3;
ok = u256_to_u64_words(result_clear, &w0, &w1, &w2, &w3);
assert(ok == 0);
assert(w0 == 6);
assert(w1 == 8);
assert(w2 == 10);
assert(w3 == 12);
u256_destroy(lhs_clear);
u256_destroy(rhs_clear);
u256_destroy(result_clear);
fhe_uint256_destroy(lhs);
fhe_uint256_destroy(rhs);
fhe_uint256_destroy(result);
return ok;
}
int uint256_encrypt_trivial(const ClientKey *client_key) {
int ok;
FheUint256 *lhs = NULL;
FheUint256 *rhs = NULL;
FheUint256 *result = NULL;
U256 *lhs_clear = NULL;
U256 *rhs_clear = NULL;
U256 *result_clear = NULL;
ok = u256_from_u64_words(1, 2, 3, 4, &lhs_clear);
assert(ok == 0);
ok = u256_from_u64_words(5, 6, 7, 8, &rhs_clear);
assert(ok == 0);
ok = fhe_uint256_try_encrypt_trivial_u256(lhs_clear, &lhs);
assert(ok == 0);
ok = fhe_uint256_try_encrypt_trivial_u256(rhs_clear, &rhs);
assert(ok == 0);
ok = fhe_uint256_add(lhs, rhs, &result);
assert(ok == 0);
ok = fhe_uint256_decrypt(result, client_key, &result_clear);
assert(ok == 0);
uint64_t w0, w1, w2, w3;
ok = u256_to_u64_words(result_clear, &w0, &w1, &w2, &w3);
assert(ok == 0);
assert(w0 == 6);
assert(w1 == 8);
assert(w2 == 10);
assert(w3 == 12);
u256_destroy(lhs_clear);
u256_destroy(rhs_clear);
u256_destroy(result_clear);
fhe_uint256_destroy(lhs);
fhe_uint256_destroy(rhs);
fhe_uint256_destroy(result);
return ok;
}
int uint256_public_key(const ClientKey *client_key, const PublicKey *public_key) {
int ok;
FheUint256 *lhs = NULL;
FheUint256 *rhs = NULL;
FheUint256 *result = NULL;
U256 *lhs_clear = NULL;
U256 *rhs_clear = NULL;
U256 *result_clear = NULL;
ok = u256_from_u64_words(5, 6, 7, 8, &lhs_clear);
assert(ok == 0);
ok = u256_from_u64_words(1, 2, 3, 4, &rhs_clear);
assert(ok == 0);
ok = fhe_uint256_try_encrypt_with_public_key_u256(lhs_clear, public_key, &lhs);
assert(ok == 0);
ok = fhe_uint256_try_encrypt_with_public_key_u256(rhs_clear, public_key, &rhs);
assert(ok == 0);
ok = fhe_uint256_sub(lhs, rhs, &result);
assert(ok == 0);
ok = fhe_uint256_decrypt(result, client_key, &result_clear);
assert(ok == 0);
uint64_t w0, w1, w2, w3;
ok = u256_to_u64_words(result_clear, &w0, &w1, &w2, &w3);
assert(ok == 0);
assert(w0 == 4);
assert(w1 == 4);
assert(w2 == 4);
assert(w3 == 4);
u256_destroy(lhs_clear);
u256_destroy(rhs_clear);
u256_destroy(result_clear);
fhe_uint256_destroy(lhs);
fhe_uint256_destroy(rhs);
fhe_uint256_destroy(result);
return ok;
}
int main(void) {
int ok = 0;
ConfigBuilder *builder;
Config *config;
config_builder_all_disabled(&builder);
config_builder_enable_default_uint256_small(&builder);
config_builder_build(builder, &config);
ClientKey *client_key = NULL;
ServerKey *server_key = NULL;
PublicKey *public_key = NULL;
generate_keys(config, &client_key, &server_key);
public_key_new(client_key, &public_key);
set_server_key(server_key);
uint256_client_key(client_key);
uint256_encrypt_trivial(client_key);
uint256_public_key(client_key, public_key);
client_key_destroy(client_key);
public_key_destroy(public_key);
server_key_destroy(server_key);
return ok;
}

View File

@@ -0,0 +1,129 @@
#include <tfhe.h>
#include <stdio.h>
#include <inttypes.h>
#include <assert.h>
int client_key_test(const ClientKey *client_key) {
int ok;
FheBool *lhs = NULL;
FheBool *rhs = NULL;
FheBool *result = NULL;
bool lhs_clear = 0;
bool rhs_clear = 1;
ok = fhe_bool_try_encrypt_with_client_key_bool(lhs_clear, client_key, &lhs);
assert(ok == 0);
ok = fhe_bool_try_encrypt_with_client_key_bool(rhs_clear, client_key, &rhs);
assert(ok == 0);
ok = fhe_bool_bitand(lhs, rhs, &result);
assert(ok == 0);
bool clear;
ok = fhe_bool_decrypt(result, client_key, &clear);
assert(ok == 0);
assert(clear == (lhs_clear & rhs_clear));
fhe_bool_destroy(lhs);
fhe_bool_destroy(rhs);
fhe_bool_destroy(result);
return ok;
}
int public_key_test(const ClientKey *client_key, const PublicKey *public_key) {
int ok;
FheBool *lhs = NULL;
FheBool *rhs = NULL;
FheBool *result = NULL;
bool lhs_clear = 0;
bool rhs_clear = 1;
ok = fhe_bool_try_encrypt_with_public_key_bool(lhs_clear, public_key, &lhs);
assert(ok == 0);
ok = fhe_bool_try_encrypt_with_public_key_bool(rhs_clear, public_key, &rhs);
assert(ok == 0);
ok = fhe_bool_bitand(lhs, rhs, &result);
assert(ok == 0);
bool clear;
ok = fhe_bool_decrypt(result, client_key, &clear);
assert(ok == 0);
assert(clear == (lhs_clear & rhs_clear));
fhe_bool_destroy(lhs);
fhe_bool_destroy(rhs);
fhe_bool_destroy(result);
return ok;
}
int trivial_encrypt_test(const ClientKey *client_key) {
int ok;
FheBool *lhs = NULL;
FheBool *rhs = NULL;
FheBool *result = NULL;
bool lhs_clear = 0;
bool rhs_clear = 1;
ok = fhe_bool_try_encrypt_trivial_bool(lhs_clear, &lhs);
assert(ok == 0);
ok = fhe_bool_try_encrypt_trivial_bool(rhs_clear, &rhs);
assert(ok == 0);
ok = fhe_bool_bitand(lhs, rhs, &result);
assert(ok == 0);
bool clear;
ok = fhe_bool_decrypt(result, client_key, &clear);
assert(ok == 0);
assert(clear == (lhs_clear & rhs_clear));
fhe_bool_destroy(lhs);
fhe_bool_destroy(rhs);
fhe_bool_destroy(result);
return ok;
}
int main(void)
{
ConfigBuilder *builder;
Config *config;
config_builder_all_disabled(&builder);
config_builder_enable_default_bool(&builder);
config_builder_build(builder, &config);
ClientKey *client_key = NULL;
ServerKey *server_key = NULL;
PublicKey *public_key = NULL;
generate_keys(config, &client_key, &server_key);
public_key_new(client_key, &public_key);
set_server_key(server_key);
client_key_test(client_key);
public_key_test(client_key, public_key);
trivial_encrypt_test(client_key);
client_key_destroy(client_key);
public_key_destroy(public_key);
server_key_destroy(server_key);
return EXIT_SUCCESS;
}

View File

@@ -0,0 +1,213 @@
#include <tfhe.h>
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
int uint8_client_key(const ClientKey *client_key) {
int ok;
FheUint8 *lhs = NULL;
FheUint8 *rhs = NULL;
FheUint8 *result = NULL;
uint8_t lhs_clear = 123;
uint8_t rhs_clear = 14;
ok = fhe_uint8_try_encrypt_with_client_key_u8(lhs_clear, client_key, &lhs);
assert(ok == 0);
ok = fhe_uint8_try_encrypt_with_client_key_u8(rhs_clear, client_key, &rhs);
assert(ok == 0);
ok = fhe_uint8_add(lhs, rhs, &result);
assert(ok == 0);
uint8_t clear;
ok = fhe_uint8_decrypt(result, client_key, &clear);
assert(ok == 0);
assert(clear == (lhs_clear + rhs_clear));
fhe_uint8_destroy(lhs);
fhe_uint8_destroy(rhs);
fhe_uint8_destroy(result);
return ok;
}
int uint8_public_key(const ClientKey *client_key, const PublicKey *public_key) {
int ok;
FheUint8 *lhs = NULL;
FheUint8 *rhs = NULL;
FheUint8 *result = NULL;
uint8_t lhs_clear = 123;
uint8_t rhs_clear = 14;
ok = fhe_uint8_try_encrypt_with_public_key_u8(lhs_clear, public_key, &lhs);
assert(ok == 0);
ok = fhe_uint8_try_encrypt_with_public_key_u8(rhs_clear, public_key, &rhs);
assert(ok == 0);
ok = fhe_uint8_sub(lhs, rhs, &result);
assert(ok == 0);
uint8_t clear;
ok = fhe_uint8_decrypt(result, client_key, &clear);
assert(ok == 0);
assert(clear == (lhs_clear - rhs_clear));
fhe_uint8_destroy(lhs);
fhe_uint8_destroy(rhs);
fhe_uint8_destroy(result);
return ok;
}
int uint8_serialization(const ClientKey *client_key) {
int ok;
FheUint8 *lhs = NULL;
FheUint8 *deserialized_lhs = NULL;
FheUint8 *result = NULL;
Buffer value_buffer = {.pointer = NULL, .length = 0};
Buffer cks_buffer = {.pointer = NULL, .length = 0};
BufferView deser_view = {.pointer = NULL, .length = 0};
ClientKey *deserialized_client_key = NULL;
uint8_t lhs_clear = 123;
ok = client_key_serialize(client_key, &cks_buffer);
assert(ok == 0);
deser_view.pointer = cks_buffer.pointer;
deser_view.length = cks_buffer.length;
ok = client_key_deserialize(deser_view, &deserialized_client_key);
assert(ok == 0);
ok = fhe_uint8_try_encrypt_with_client_key_u8(lhs_clear, deserialized_client_key, &lhs);
assert(ok == 0);
ok = fhe_uint8_serialize(lhs, &value_buffer);
assert(ok == 0);
deser_view.pointer = value_buffer.pointer;
deser_view.length = value_buffer.length;
ok = fhe_uint8_deserialize(deser_view, &deserialized_lhs);
assert(ok == 0);
uint8_t clear;
ok = fhe_uint8_decrypt(deserialized_lhs, deserialized_client_key, &clear);
assert(ok == 0);
assert(clear == lhs_clear);
if (value_buffer.pointer != NULL) {
destroy_buffer(&value_buffer);
}
fhe_uint8_destroy(lhs);
fhe_uint8_destroy(deserialized_lhs);
fhe_uint8_destroy(result);
return ok;
}
int uint8_compressed(const ClientKey *client_key) {
int ok;
FheUint8 *lhs = NULL;
FheUint8 *result = NULL;
CompressedFheUint8 *clhs = NULL;
uint8_t lhs_clear = 123;
ok = compressed_fhe_uint8_try_encrypt_with_client_key_u8(lhs_clear, client_key, &clhs);
assert(ok == 0);
ok = compressed_fhe_uint8_decompress(clhs, &lhs);
assert(ok == 0);
uint8_t clear;
ok = fhe_uint8_decrypt(lhs, client_key, &clear);
assert(ok == 0);
assert(clear == lhs_clear);
fhe_uint8_destroy(lhs);
compressed_fhe_uint8_destroy(clhs);
fhe_uint8_destroy(result);
return ok;
}
int main(void) {
int ok = 0;
{
ConfigBuilder *builder;
Config *config;
ok = config_builder_all_disabled(&builder);
assert(ok == 0);
ok = config_builder_enable_default_uint8(&builder);
assert(ok == 0);
ok = config_builder_build(builder, &config);
assert(ok == 0);
ClientKey *client_key = NULL;
ServerKey *server_key = NULL;
PublicKey *public_key = NULL;
ok = generate_keys(config, &client_key, &server_key);
assert(ok == 0);
ok = public_key_new(client_key, &public_key);
assert(ok == 0);
ok = uint8_serialization(client_key);
assert(ok == 0);
ok = uint8_compressed(client_key);
assert(ok == 0);
ok = set_server_key(server_key);
assert(ok == 0);
ok = uint8_client_key(client_key);
assert(ok == 0);
ok = uint8_public_key(client_key, public_key);
assert(ok == 0);
client_key_destroy(client_key);
public_key_destroy(public_key);
server_key_destroy(server_key);
}
{
ConfigBuilder *builder;
Config *config;
ok = config_builder_all_disabled(&builder);
assert(ok == 0);
ok = config_builder_enable_default_uint8_small(&builder);
assert(ok == 0);
ok = config_builder_build(builder, &config);
assert(ok == 0);
ClientKey *client_key = NULL;
ServerKey *server_key = NULL;
PublicKey *public_key = NULL;
ok = generate_keys(config, &client_key, &server_key);
assert(ok == 0);
ok = public_key_new(client_key, &public_key);
assert(ok == 0);
ok = set_server_key(server_key);
assert(ok == 0);
ok = uint8_client_key(client_key);
assert(ok == 0);
ok = uint8_public_key(client_key, public_key);
assert(ok == 0);
client_key_destroy(client_key);
public_key_destroy(public_key);
server_key_destroy(server_key);
}
return ok;
}

View File

@@ -14,7 +14,7 @@ void micro_bench_and() {
// assert(gen_keys_ok == 0);
int gen_keys_ok = boolean_gen_keys_with_predefined_parameters_set(
BOOLEAN_PARAMETERS_SET_THFE_LIB_PARAMETERS, &cks, &sks);
BOOLEAN_PARAMETERS_SET_TFHE_LIB_PARAMETERS, &cks, &sks);
assert(gen_keys_ok == 0);
int num_loops = 10000;

View File

@@ -12,6 +12,9 @@ void test_predefined_keygen_w_serde(void) {
ShortintCiphertext *ct = NULL;
Buffer ct_ser_buffer = {.pointer = NULL, .length = 0};
ShortintCiphertext *deser_ct = NULL;
ShortintCompressedCiphertext *cct = NULL;
ShortintCompressedCiphertext *deser_cct = NULL;
ShortintCiphertext *decompressed_ct = NULL;
int get_params_ok = shortint_get_parameters(2, 2, &params);
assert(get_params_ok == 0);
@@ -41,21 +44,72 @@ void test_predefined_keygen_w_serde(void) {
assert(result == 3);
int c_encrypt_ok = shortint_client_key_encrypt_compressed(cks, 3, &cct);
assert(c_encrypt_ok == 0);
int c_ser_ok = shortint_serialize_compressed_ciphertext(cct, &ct_ser_buffer);
assert(c_ser_ok == 0);
deser_view.pointer = ct_ser_buffer.pointer;
deser_view.length = ct_ser_buffer.length;
int c_deser_ok = shortint_deserialize_compressed_ciphertext(deser_view, &deser_cct);
assert(c_deser_ok == 0);
int decomp_ok = shortint_decompress_ciphertext(cct, &decompressed_ct);
assert(decomp_ok == 0);
uint64_t c_result = -1;
int c_decrypt_ok = shortint_client_key_decrypt(cks, decompressed_ct, &c_result);
assert(c_decrypt_ok == 0);
assert(c_result == 3);
destroy_shortint_client_key(cks);
destroy_shortint_server_key(sks);
destroy_shortint_parameters(params);
destroy_shortint_ciphertext(ct);
destroy_shortint_ciphertext(deser_ct);
destroy_shortint_compressed_ciphertext(cct);
destroy_shortint_compressed_ciphertext(deser_cct);
destroy_shortint_ciphertext(decompressed_ct);
destroy_buffer(&ct_ser_buffer);
}
void test_server_key_trivial_encrypt(void) {
ShortintClientKey *cks = NULL;
ShortintServerKey *sks = NULL;
ShortintParameters *params = NULL;
ShortintCiphertext *ct = NULL;
int get_params_ok = shortint_get_parameters(2, 2, &params);
assert(get_params_ok == 0);
int gen_keys_ok = shortint_gen_keys_with_parameters(params, &cks, &sks);
assert(gen_keys_ok == 0);
int encrypt_ok = shortint_server_key_create_trivial(sks, 3, ShortintCiphertextBig, &ct);
assert(encrypt_ok == 0);
uint64_t result = -1;
int decrypt_ok = shortint_client_key_decrypt(cks, ct, &result);
assert(decrypt_ok == 0);
assert(result == 3);
destroy_shortint_client_key(cks);
destroy_shortint_server_key(sks);
destroy_shortint_parameters(params);
destroy_shortint_ciphertext(ct);
}
void test_custom_keygen(void) {
ShortintClientKey *cks = NULL;
ShortintServerKey *sks = NULL;
ShortintParameters *params = NULL;
int params_ok = shortint_create_parameters(10, 1, 1024, 10e-100, 10e-100, 2, 3, 2, 3, 2, 3,
10e-100, 2, 3, 2, 2, &params);
10e-100, 2, 3, 2, 2, SHORTINT_NATIVE_MODULUS, &params);
assert(params_ok == 0);
int gen_keys_ok = shortint_gen_keys_with_parameters(params, &cks, &sks);
@@ -67,12 +121,13 @@ void test_custom_keygen(void) {
destroy_shortint_server_key(sks);
}
void test_public_keygen(void) {
void test_public_keygen(ShortintPublicKeyKind pk_kind) {
ShortintClientKey *cks = NULL;
ShortintServerKey *sks = NULL;
ShortintPublicKey *pks = NULL;
ShortintPublicKey *pks_deser = NULL;
ShortintParameters *params = NULL;
ShortintCiphertext *ct = NULL;
Buffer pks_ser_buff = {.pointer = NULL, .length = 0};
int get_params_ok = shortint_get_parameters(2, 2, &params);
assert(get_params_ok == 0);
@@ -80,15 +135,19 @@ void test_public_keygen(void) {
int gen_keys_ok = shortint_gen_client_key(params, &cks);
assert(gen_keys_ok == 0);
int gen_pks = shortint_gen_public_key(cks, &pks);
int gen_pks = shortint_gen_public_key(cks, pk_kind, &pks);
assert(gen_pks == 0);
int gen_sks = shortint_gen_server_key(cks, &sks);
assert(gen_sks == 0);
int pks_ser = shortint_serialize_public_key(pks, &pks_ser_buff);
assert(pks_ser == 0);
BufferView pks_ser_buff_view = {.pointer = pks_ser_buff.pointer, .length = pks_ser_buff.length};
int pks_deser_ok = shortint_deserialize_public_key(pks_ser_buff_view, &pks_deser);
assert(pks_deser_ok == 0);
uint64_t msg = 2;
int encrypt_ok = shortint_public_key_encrypt(pks, sks, msg, &ct);
int encrypt_ok = shortint_public_key_encrypt(pks_deser, msg, &ct);
assert(encrypt_ok == 0);
uint64_t result = -1;
@@ -99,7 +158,54 @@ void test_public_keygen(void) {
destroy_shortint_parameters(params);
destroy_shortint_client_key(cks);
destroy_shortint_server_key(sks);
destroy_shortint_public_key(pks);
destroy_shortint_public_key(pks_deser);
destroy_buffer(&pks_ser_buff);
destroy_shortint_ciphertext(ct);
}
void test_compressed_public_keygen(ShortintPublicKeyKind pk_kind) {
ShortintClientKey *cks = NULL;
ShortintCompressedPublicKey *cpks = NULL;
ShortintPublicKey *pks = NULL;
ShortintParameters *params = NULL;
ShortintCiphertext *ct = NULL;
int get_params_ok = shortint_get_parameters(2, 2, &params);
assert(get_params_ok == 0);
int gen_keys_ok = shortint_gen_client_key(params, &cks);
assert(gen_keys_ok == 0);
int gen_cpks = shortint_gen_compressed_public_key(cks, pk_kind, &cpks);
assert(gen_cpks == 0);
uint64_t msg = 2;
int encrypt_compressed_ok = shortint_compressed_public_key_encrypt(cpks, msg, &ct);
assert(encrypt_compressed_ok == 0);
uint64_t result_compressed = -1;
int decrypt_compressed_ok = shortint_client_key_decrypt(cks, ct, &result_compressed);
assert(decrypt_compressed_ok == 0);
assert(result_compressed == 2);
int decompress_ok = shortint_decompress_public_key(cpks, &pks);
assert(decompress_ok == 0);
int encrypt_ok = shortint_public_key_encrypt(pks, msg, &ct);
assert(encrypt_ok == 0);
uint64_t result = -1;
int decrypt_ok = shortint_client_key_decrypt(cks, ct, &result);
assert(decrypt_ok == 0);
assert(result == 2);
destroy_shortint_parameters(params);
destroy_shortint_client_key(cks);
destroy_shortint_compressed_public_key(cpks);
destroy_shortint_public_key(pks);
destroy_shortint_ciphertext(ct);
}
@@ -107,6 +213,10 @@ void test_public_keygen(void) {
int main(void) {
test_predefined_keygen_w_serde();
test_custom_keygen();
test_public_keygen();
test_public_keygen(ShortintPublicKeyBig);
test_public_keygen(ShortintPublicKeySmall);
test_compressed_public_keygen(ShortintPublicKeyBig);
test_compressed_public_keygen(ShortintPublicKeySmall);
test_server_key_trivial_encrypt();
return EXIT_SUCCESS;
}

View File

@@ -38,7 +38,7 @@ uint64_t get_max_value_of_bivariate_accumulator_generator(uint64_t (*accumulator
}
void test_shortint_pbs_2_bits_message(void) {
ShortintPBSAccumulator *accumulator = NULL;
ShortintPBSLookupTable *accumulator = NULL;
ShortintClientKey *cks = NULL;
ShortintServerKey *sks = NULL;
ShortintParameters *params = NULL;
@@ -115,7 +115,7 @@ void test_shortint_pbs_2_bits_message(void) {
}
void test_shortint_bivariate_pbs_2_bits_message(void) {
ShortintBivariatePBSAccumulator *accumulator = NULL;
ShortintBivariatePBSLookupTable *accumulator = NULL;
ShortintClientKey *cks = NULL;
ShortintServerKey *sks = NULL;
ShortintParameters *params = NULL;

File diff suppressed because it is too large Load Diff

View File

@@ -10,7 +10,7 @@ language = "C"
############## Options for Wrapping the Contents of the Header #################
header = "// Copyright © 2022 ZAMA.\n// All rights reserved."
header = "// Copyright © 2023 ZAMA.\n// All rights reserved."
# trailer = "/* Text to put at the end of the generated file */"
include_guard = "TFHE_RS_C_API_H"
# pragma_once = true
@@ -107,7 +107,6 @@ allow_static_const = true
allow_constexpr = false
sort_by = "Name"
[macro_expansion]
bitflags = false

View File

@@ -1,9 +1,6 @@
# Operations and Examples
# Operations
In thfe::boolean, the available operations are mainly related to their equivalent Boolean gates,
i.e., AND, OR,... In what follows, an example of a unary gate (NOT) and one about a binary gate
(XOR). The last one is about the ternary MUX gate are detailed, which gives the possibility to
homomorphically compute conditional statements of the form ``If..Then..Else``.
In tfhe::boolean, the available operations are mainly related to their equivalent Boolean gates (i.e., AND, OR... etc). What follows are examples of a unary gate (NOT) and a binary gate (XOR). The last one is about the ternary MUX gate, which allows homomorphic computation of conditional statements of the form `If..Then..Else`.
## The NOT unary gate
@@ -12,11 +9,11 @@ use tfhe::boolean::prelude::*;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let (mut client_key, mut server_key) = gen_keys();
let (client_key, server_key) = gen_keys();
// We use the client secret key to encrypt a message:
let ct_1 = client_key.encrypt(true);
// We use the server public key to execute the NOT gate:
let ct_not = server_key.not(&ct_1);
@@ -26,7 +23,6 @@ fn main() {
}
```
## Binary gates
```rust
@@ -34,12 +30,12 @@ use tfhe::boolean::prelude::*;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let (mut client_key, mut server_key) = gen_keys();
let (client_key, server_key) = gen_keys();
// We use the client secret key to encrypt a message:
let ct_1 = client_key.encrypt(true);
let ct_2 = client_key.encrypt(false);
// We use the server public key to execute the XOR gate:
let ct_xor = server_key.xor(&ct_1, &ct_2);
@@ -49,31 +45,31 @@ fn main() {
}
```
## The MUX ternary gate
Let ``ct_1, ct_2, ct_3`` be three Boolean
ciphertexts. Then, the MUX gate (abbreviation of MUtipleXer) is equivalent to the operation:
Let `ct_1, ct_2, ct_3` be three Boolean ciphertexts. Then, the MUX gate (abbreviation of MUltipleXer) is equivalent to the operation:
```r
if ct_1 {
if ct_1 {
return ct_2
} else {
return ct_3
}
```
This example show how to use the MUX ternary gate.
This example shows how to use the MUX ternary gate:
```rust
use tfhe::boolean::prelude::*;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let (mut client_key, mut server_key) = gen_keys();
let (client_key, server_key) = gen_keys();
let bool1 = true;
let bool2 = false;
let bool3 = true;
// We use the client secret key to encrypt a message:
let ct_1 = client_key.encrypt(true);
let ct_2 = client_key.encrypt(false);

View File

@@ -0,0 +1,44 @@
# Cryptographic Parameters
## Default parameters
The TFHE cryptographic scheme relies on a variant of [Regev cryptosystem](https://cims.nyu.edu/\~regev/papers/lwesurvey.pdf) and is based on a problem so difficult that it is even post-quantum resistant.
Some cryptographic parameters will require tuning to ensure both the correctness of the result and the security of the computation.
To make it simpler, **we've provided two sets of parameters**, which ensure correct computations for a certain probability with the standard security of 128 bits. There exists an error probability due to the probabilistic nature of the encryption, which requires adding randomness (noise) following a Gaussian distribution. If this noise is too large, the decryption will not give a correct result. There is a trade-off between efficiency and correctness: generally, using a less efficient parameter set (in terms of computation time) leads to a smaller risk of having an error during homomorphic evaluation.
In the two proposed sets of parameters, the only difference lies in this probability error. The default parameter set ensures a probability error of at most $$2^{-40}$$ when computing a programmable bootstrapping (i.e., any gates but the `not`). The other one is closer to the error probability claimed in the original [TFHE paper](https://eprint.iacr.org/2018/421), namely $$2^{-165}$$, but it is up-to-date regarding security requirements.
The following array summarizes this:
| Parameter set | Error probability |
| :-------------------: | :---------------: |
| DEFAULT\_PARAMETERS | $$2^{-40}$$ |
| TFHE\_LIB\_PARAMETERS | $$2^{-165}$$ |
## User-defined parameters
You can also create your own set of parameters. This is an `unsafe` operation as failing to properly fix the parameters will result in an incorrect and/or insecure computation:
```rust
use tfhe::boolean::prelude::*;
fn main() {
// WARNING: might be insecure and/or incorrect
// You can create your own set of parameters
let parameters = unsafe {
BooleanParameters::new(
LweDimension(586),
GlweDimension(2),
PolynomialSize(512),
StandardDev(0.00008976167396834998),
StandardDev(0.00000002989040792967434),
DecompositionBaseLog(8),
DecompositionLevelCount(2),
DecompositionBaseLog(2),
DecompositionLevelCount(5),
)
};
}
```

View File

@@ -1,7 +1,7 @@
# Save and Load Keys From Files
Since the `ServerKey` and `ClientKey` types both implement the `Serialize` and
`Deserialize` traits, you are free to use any serializer that suits you to save and load the
`Deserialize` traits, you are free to use any serializer that suits you to save and load the
keys to disk.
Here is an example using the `bincode` serialization library, which serializes to a
@@ -48,9 +48,9 @@ fn main() {
let loaded_client_key: ClientKey = bincode::deserialize(&encoded_client_key[..])
.expect("failed to deserialize");
let ct_1 = client_key.encrypt(false);
// We check for equality:
assert_eq!(false, loaded_client_key.decrypt(&ct_1));
}

View File

@@ -1,22 +1,20 @@
# Tutorial: a first boolean circuit
# Tutorial
This library is meant to be used both on the **server side** and on the **client side**.
The usual use case would follow those steps:
This library is meant to be used both on the **server side** and the **client side**. The typical use case should follow the subsequent steps:
1. On the **client side**, generate the `client` and `server keys`.
2. Send the `server key` to the **server**.
3. Then any number of times:
+ On the **client side**, *encryption* of the input data with the `client key`.
+ Transmit the encrypted input to the **server**.
+ On the **server side**, *homomorphic computation* with the `server key`.
+ Transmit the encrypted output to the **client**.
+ On the **client side**, *decryption* of the output data with `client key`.
* On the **client side**, _encrypt_ the input data with the `client key`.
* Transmit the encrypted input to the **server**.
* On the **server side**, perform _homomorphic computation_ with the `server key`.
* Transmit the encrypted output to the **client**.
* On the **client side**, _decrypt_ the output data with the `client key`.
## 1. Setup
## Setup
In the first step, the client creates two keys, the `client key` and the `server key`, with the `concrete_boolean::gen_keys` function:
In the first step, the client creates two keys: the `client key` and the `server key`,
with the
`concrete_boolean::gen_keys` function:
```rust
use tfhe::boolean::prelude::*;
@@ -28,17 +26,11 @@ fn main() {
}
```
In more details:
* The `client_key` is of type `ClientKey`. It is **secret** and must **never** be transmitted. This key will only be used to encrypt and decrypt data.
* The `server_key` is of type `ServerKey`. It is a **public key** and can be shared with any party. This key has to be sent to the server because it is required for homomorphic computation.
+ The `client_key` is of type `ClientKey`. It is **secret**, and must **never** be transmitted.
This key will only be used to encrypt and decrypt data.
+ The `server_key` is of type `ServerKey`. It is a **public key**, and can be shared with any
party.
This key has to be sent to the server because it is required for the homomorphic computation.
Note that both the `client_key` and `server_key` implement the `Serialize` and `Deserialize` traits. This way you can use any compatible serializer to store/send the data. To store the `server_key` in a binary file, you can use the `bincode` library:
Note that both the `client_key` and `server_key` implement the `Serialize` and `Deserialize` traits.
This way you can use any compatible serializer to store/send the data. For instance, to store
the `server_key` in a binary file, you can use the `bincode` library:
```rust
use std::fs::File;
use std::io::{Write, Read};
@@ -80,21 +72,16 @@ fn main() {
}
```
## 2. Encrypting Inputs
## Encrypting inputs
Once the server key is available on the **server side**, it is possible to perform some homomorphic computations. The client needs to encrypt some data and send it to the server. Again, the `Ciphertext` type implements the `Serialize` and the `Deserialize` traits, so that any serializer and communication tool suiting your use case can be employed:
Once the server key is available on the **server side**, it is possible to perform some
homomorphic computations.
The client simply needs to encrypt some data and send it to the server.
Again, the `Ciphertext` type implements the `Serialize` and
the `Deserialize` traits, so that any serializer and communication tool suiting your use case
can be
used:
```rust
use tfhe::boolean::prelude::*;
fn main() {
// Don't consider the following line; you should follow the procedure above.
let (mut client_key, _) = gen_keys();
let (client_key, _) = gen_keys();
//---------------------------- SERVER SIDE
@@ -112,15 +99,10 @@ fn main() {
}
```
## 2bis. Encrypting Inputs using public key
## Encrypting inputs using a public key
Once the server key is available on the **server side**, it is possible to perform some homomorphic computations. The client simply needs to encrypt some data and send it to the server. Again, the `Ciphertext` type implements the `Serialize` and the `Deserialize` traits, so that any serializer and communication tool suiting your use case can be utilized:
Once the server key is available on the **server side**, it is possible to perform some
homomorphic computations.
The client simply needs to encrypt some data and send it to the server.
Again, the `Ciphertext` type implements the `Serialize` and
the `Deserialize` traits, so that any serializer and communication tool suiting your use case
can be
used:
```rust
use tfhe::boolean::prelude::*;
@@ -145,11 +127,9 @@ fn main() {
}
```
## Executing a Boolean circuit
## Executing a Boolean Circuit
Once the encrypted inputs are on the **server side**, the `server_key` can be used to
homomorphically execute the desired boolean circuit:
Once the encrypted inputs are on the **server side**, the `server_key` can be used to homomorphically execute the desired Boolean circuit:
```rust
use std::fs::File;
@@ -158,7 +138,7 @@ use tfhe::boolean::prelude::*;
fn main() {
// Don't consider the following lines; you should follow the procedure above.
let (mut client_key, mut server_key) = gen_keys();
let (client_key, server_key) = gen_keys();
let ct_1 = client_key.encrypt(true);
let ct_2 = client_key.encrypt(false);
let encoded_1: Vec<u8> = bincode::serialize(&ct_1).unwrap();
@@ -191,8 +171,7 @@ fn main() {
## Decrypting the output
Once the encrypted output is on the client side, the `client_key` can be used to
decrypt it:
Once the encrypted output is on the client side, the `client_key` can be used to decrypt it:
```rust
use std::fs::File;
@@ -201,7 +180,7 @@ use tfhe::boolean::prelude::*;
fn main() {
// Don't consider the following lines; you should follow the procedure above.
let (mut client_key, mut server_key) = gen_keys();
let (client_key, server_key) = gen_keys();
let ct_6 = client_key.encrypt(true);
let encoded_output: Vec<u8> = bincode::serialize(&ct_6).unwrap();
@@ -218,29 +197,3 @@ fn main() {
assert_eq!(output, true);
}
```

View File

@@ -1,54 +0,0 @@
# Cryptographic parameters
## Default parameters
The TFHE cryptographic scheme relies on a variant of [Regev cryptosystem](https://cims.nyu.edu/~regev/papers/lwesurvey.pdf), and is based on a problem so hard to solve, that is even post-quantum resistant.
In practice, you need to tune some cryptographic parameters, in order to ensure the correctness of the result, and the security of the computation.
To make it simpler, **we provide two sets of parameters**, which ensure correct computations for a certain probability with the standard security of 128 bits. There exists an error probability due the probabilistic nature of the encryption, which requires adding randomness (called noise) following a Gaussian distribution. If this noise is too large, the decryption will not give a correct result. There is a trade-off between efficiency and correctness: generally, using a less efficient parameter set (in terms of computation time) leads to a smaller risk of having an error during homomorphic evaluation.
In the two proposed sets of parameters, the only difference lies into this probability error.
The default parameter set ensures a probability error of at most $$2^{-40}$$ when computing a
programmable bootstrapping (i.e., any gates but the `not`). The other one is closer to the error
probability claimed into the original [TFHE paper](https://eprint.iacr.org/2018/421),
namely $$2^{-165}$$, but up to date regarding security requirements.
The following array summarizes this:
| Parameter set | Error probability |
|:-------------------:|:-----------------:|
| DEFAULT_PARAMETERS | $$ 2^{-40} $$ |
| TFHE_LIB_PARAMETERS | $$ 2^{-165} $$ |
## User-defined parameters
Note that if you desire, you can also create your own set of parameters.
This is an `unsafe` operation as failing to properly fix the parameters will potentially result with an incorrect and/or insecure computation:
```rust
use tfhe::boolean::prelude::*;
fn main() {
// WARNING: might be insecure and/or incorrect
// You can create your own set of parameters
let parameters = unsafe {
BooleanParameters::new(
LweDimension(586),
GlweDimension(2),
PolynomialSize(512),
StandardDev(0.00008976167396834998),
StandardDev(0.00000002989040792967434),
DecompositionBaseLog(8),
DecompositionLevelCount(2),
DecompositionBaseLog(2),
DecompositionLevelCount(5),
)
};
}
```

View File

@@ -1,23 +1,22 @@
# What is TFHE-rs?
<mark style="background-color:yellow;">⭐️</mark> [<mark style="background-color:yellow;">Star the repo on Github</mark>](https://github.com/zama-ai/tfhe-rs) <mark style="background-color:yellow;">| 🗣</mark> [<mark style="background-color:yellow;">Community support forum</mark> ](https://community.zama.ai)<mark style="background-color:yellow;">| 📁</mark> [<mark style="background-color:yellow;">Contribute to the project</mark>](https://docs.zama.ai/tfhe-rs/developers/contributing)<mark style="background-color:yellow;"></mark>
📁 [Github](https://github.com/zama-ai/tfhe-rs) | 💛 [Community support](https://zama.ai/community) | 🟨 [Zama Bounty Program](https://github.com/zama-ai/bounty-program)
![](_static/docs\_home.jpg)
![](\_static/tfhe-rs-doc-home.png)
TFHE-rs is a pure Rust implementation of TFHE for boolean and small integer arithmetics over encrypted data. It includes a Rust and C API, as well as a client-side WASM API.
TFHE-rs is a pure Rust implementation of TFHE for Boolean and integer arithmetics over encrypted data. It includes a Rust and C API, as well as a client-side WASM API.
TFHE-rs is meant for developers and researchers who want full control over what they can do with TFHE, while not having to worry about the low level implementation.
TFHE-rs is meant for developers and researchers who want full control over what they can do with TFHE, while not worrying about the low level implementation.
The goal is to have a stable, simple, high-performance, and production-ready library for all the advanced features of TFHE.
### Key Cryptographic concepts
## Key cryptographic concepts
TFHE-rs library implements Zamas variant of Fully Homomorphic Encryption over the Torus (TFHE). TFHE is based on Learning With Errors (LWE), a well studied cryptographic primitive believed to be secure even against quantum computers.
The TFHE-rs library implements Zamas variant of Fully Homomorphic Encryption over the Torus (TFHE). TFHE is based on Learning With Errors (LWE), a well-studied cryptographic primitive believed to be secure even against quantum computers.
In cryptography, a raw value is called a message (also sometimes called a cleartext), an encoded message is called a plaintext and an encrypted plaintext is called a ciphertext.
In cryptography, a raw value is called a message (also sometimes called a cleartext), while an encoded message is called a plaintext and an encrypted plaintext is called a ciphertext.
The idea of homomorphic encryption is that you can compute on ciphertexts while not knowing messages encrypted in them. A scheme is said to be _fully homomorphic_, meaning any program can be evaluated with it, if at least two of the following operations are supported \($$x$$is a plaintext and $$E[x]$$ is the
corresponding ciphertext\):
The idea of homomorphic encryption is that you can compute on ciphertexts while not knowing messages encrypted within them. A scheme is said to be _fully homomorphic_, meaning any program can be evaluated with it, if at least two of the following operations are supported ($$x$$is a plaintext and $$E[x]$$ is the corresponding ciphertext):
* homomorphic univariate function evaluation: $$f(E[x]) = E[f(x)]$$
* homomorphic addition: $$E[x] + E[y] = E[x + y]$$
@@ -28,9 +27,8 @@ Zama's variant of TFHE is fully homomorphic and deals with fixed-precision numbe
Using FHE in a Rust program with TFHE-rs consists in:
* generating a client key and a server key using secure parameters:
* client key encrypts/decrypts data and must be kept secret
* server key is used to perform operations on encrypted data and could be
public (also called evaluation key)
* a client key encrypts/decrypts data and must be kept secret
* a server key is used to perform operations on encrypted data and could be public (also called an evaluation key)
* encrypting plaintexts using the client key to produce ciphertexts
* operating homomorphically on ciphertexts with the server key
* decrypting the resulting ciphertexts into plaintexts using the client key

View File

@@ -10,11 +10,16 @@
* [Benchmarks](getting\_started/benchmarks.md)
* [Security and Cryptography](getting\_started/security\_and\_cryptography.md)
## Booleans
* [Tutorial](Booleans/tutorial.md)
* [Operations](Booleans/operations.md)
* [Cryptographic Parameters](Booleans/parameters.md)
* [Serialization/Deserialization](Booleans/serialization.md)
## High Level API
* [Tutorial](high_level_api/tutorial.md)
* [Operations](high_level_api/operations.md)
* [Serialization/Deserialization](high_level_api/serialization.md)
## Boolean
* [Tutorial](Boolean/tutorial.md)
* [Operations](Boolean/operations.md)
* [Cryptographic Parameters](Boolean/parameters.md)
* [Serialization/Deserialization](Boolean/serialization.md)
## Shortint
* [Tutorial](shortint/tutorial.md)
@@ -22,8 +27,22 @@
* [Cryptographic Parameters](shortint/parameters.md)
* [Serialization/Deserialization](shortint/serialization.md)
## Integer
* [Tutorial](integer/tutorial.md)
* [Operations](integer/operations.md)
* [Cryptographic Parameters](integer/parameters.md)
* [Serialization/Deserialization](integer/serialization.md)
## C API
* [Tutorial](c_api/tutorial.md)
* [High-Level API](c_api/high-level-api.md)
* [Shortint API](c_api/shortint-api.md)
## JS on WASM API
* [Tutorial](js_on_wasm_api/tutorial.md)
## Low-Level Core Cryptography
* [Quick Start](core_crypto/presentation.md)
* [Tutorial](core_crypto/tutorial.md)
## Developers
* [Contributing](dev/contributing.md)

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

View File

@@ -1,16 +0,0 @@
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 424 173" width="424" height="173">
<!-- svg-source:excalidraw -->
<defs>
<style>
@font-face {
font-family: "Virgil";
src: url("https://excalidraw.com/Virgil.woff2");
}
@font-face {
font-family: "Cascadia";
src: url("https://excalidraw.com/Cascadia.woff2");
}
</style>
</defs>
<g stroke-linecap="round" transform="translate(26 44) rotate(0 194 38.60598503740641)"><path d="M-0.72 -1.78 C148.22 -1.79, 298.89 -0.4, 389.35 -0.66 M0.64 -0.29 C96.57 -1.4, 195.57 -0.99, 387.19 -1.07 M388.14 2.03 C392.43 23.61, 391.39 49, 385.98 75.21 M389.42 -0.67 C389.81 14.73, 390.33 33.43, 388.78 76.49 M387.8 79.39 C277.29 77.61, 166.8 75.17, -1.18 76.59 M387.01 76.05 C246.87 81.15, 103.96 81.92, 0.98 78.37 M-3.84 75.76 C-2.18 57.07, 4.75 34.74, -0.59 -2.81 M1 77.36 C-0.79 48.54, -1.41 22.74, 1.4 1.83" stroke="#364fc7" stroke-width="1" fill="none"></path></g><g stroke-linecap="round" transform="translate(43.27283572239912 63.29950568870447) rotate(0 35.31670822942641 19.35162094763092)"><path d="M0.11 -2.85 C28.93 -4.68, 48.62 2.97, 73.79 0.71 M0.92 1.49 C21.03 0.46, 41.01 -1.23, 70.4 0.64 M70.88 3.15 C68.43 11.93, 69.14 26.71, 68.06 39.17 M69.56 -1.68 C71.59 8.67, 68.48 17.57, 70.35 40.23 M68.74 39.32 C48.28 40.85, 30.28 35.73, -0.92 40.56 M69.59 37.89 C48.04 38.14, 23.44 38.86, -0.31 39.89 M2.24 36.95 C-1.92 26.09, -1.01 13.79, -3.25 -2.11 M0.55 39.03 C1.24 29.93, -1.56 22.42, 0.25 1.64" stroke="#0b7285" stroke-width="1" fill="none"></path></g><g stroke-linecap="round" transform="translate(244.47880299251847 58.546134663341206) rotate(0 77.40648379052368 25.15710723192018)"><path d="M0.5 3.27 C41.25 1.83, 85.12 4.03, 158.28 2.64 M1.74 -0.75 C60.33 -2.64, 122.13 -1.19, 153.85 -0.7 M155.49 -2.28 C158.86 11.5, 154.4 20.06, 153.49 51.17 M153.03 -0.55 C152.94 16.04, 156.21 35.59, 154.41 49.32 M157.56 51.63 C96.68 46.86, 29.51 52.23, -2.5 49.76 M155.17 52.19 C121.59 51.66, 87.99 54.57, -0.92 50.35 M-1.24 51.37 C-0.7 37.8, 0.93 29.69, -2.96 2.02 M-1.48 52.03 C0.44 36.29, -0.71 20.9, 1.27 0.34" stroke="#a61e4d" stroke-width="1" fill="none"></path></g><g transform="translate(249.47880299251847 71.70324189526139) rotate(0 72.40648379052368 12)"><text x="72.40648379052374" y="17" font-family="Virgil, Segoe UI Emoji" font-size="19.30839567747301px" fill="#a61e4d" text-anchor="middle" style="white-space: pre;" direction="ltr">noise</text></g><g stroke-linecap="round" transform="translate(35.610972568578745 52.67581047381532) rotate(0 89.501246882793 30.962593516209466)"><path d="M3.48 2.12 C42.75 -4.16, 86.77 -1.56, 177.5 3.84 M-1.92 1.02 C66.55 2.87, 130.16 1.88, 179.45 -1.63 M179.35 -3.41 C181.95 11.53, 178.24 25.72, 176.46 63.54 M180.52 0.51 C178.89 22.76, 177.57 49.34, 177.3 60.97 M175.68 59.6 C140.66 62.47, 97.79 56.72, 3.94 58.21 M177.14 61.73 C134.25 62.89, 91.18 61.47, 1.89 60.4 M-0.84 60.36 C-0.67 48.08, 3.19 30.78, -2.25 -3.82 M0.14 61.15 C-2.52 41.13, 0.16 19.4, -0.06 -0.75" stroke="#087f5b" stroke-width="1" fill="none"></path></g><g transform="translate(48.27283572239912 70.65112663633539) rotate(0 30.31670822942641 12)"><text x="30.316708229426418" y="17" font-family="Virgil, Segoe UI Emoji" font-size="19.248703637731044px" fill="#087f5b" text-anchor="middle" style="white-space: pre;" direction="ltr">carry</text></g><g stroke-linecap="round" transform="translate(123.17705735660911 63.319201995012975) rotate(0 43.5411471321695 21.286783042394035)"><path d="M3.78 -1.95 C21.85 2.27, 33.36 -1.31, 85.7 0.15 M0.95 -1.99 C30.47 0.73, 63.7 1.15, 87.61 0.81 M83.5 1.56 C89.47 15.22, 83.3 24.69, 84.55 46.54 M85.31 -0.87 C84.54 12.96, 85.46 26.61, 85.69 43.87 M85.54 45.92 C71.62 40.51, 50.01 40.74, -2.16 41.74 M85.45 44.45 C55.35 43.91, 24.36 42.43, 0.99 42.77 M-3.26 44.49 C1.26 31.11, -1.14 19.41, -1.89 2.33 M-1.27 43.89 C-1.22 30.47, 1.35 21.91, -0.8 -1.4" stroke="#0b7285" stroke-width="1" fill="none"></path></g><g transform="translate(128.1770573566091 72.60598503740698) rotate(0 38.5411471321695 12)"><text x="38.54114713216951" y="17" font-family="Virgil, Segoe UI Emoji" font-size="19.27057356608477px" fill="#087f5b" text-anchor="middle" style="white-space: pre;" direction="ltr">message</text></g><g transform="translate(371 138) rotate(0 20 12.5)"><text x="0" y="18" font-family="Virgil, Segoe UI Emoji" font-size="20px" fill="#364fc7" text-anchor="start" style="white-space: pre;" direction="ltr">LSB</text></g><g transform="translate(10 135) rotate(0 21.5 12.5)"><text x="0" y="18" font-family="Virgil, Segoe UI Emoji" font-size="20px" fill="#364fc7" text-anchor="start" style="white-space: pre;" direction="ltr">MSB</text></g><g transform="translate(162 10) rotate(0 51 12.5)"><text x="0" y="18" font-family="Virgil, Segoe UI Emoji" font-size="20px" fill="#364fc7" text-anchor="start" style="white-space: pre;" direction="ltr">Ciphertext</text></g></svg>

Before

Width:  |  Height:  |  Size: 4.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 73 KiB

BIN
tfhe/docs/_static/integer-ciphertext.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

BIN
tfhe/docs/_static/tfhe-rs-doc-home.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 156 KiB

View File

@@ -0,0 +1,143 @@
# High-Level API
\#Using the High-level C API
This library exposes a C binding to the high-level TFHE-rs primitives to implement _Fully Homomorphic Encryption_ (FHE) programs.
## First steps using TFHE-rs C API
### Setting-up TFHE-rs C API for use in a C program.
TFHE-rs C API can be built on a Unix x86\_64 machine using the following command:
```shell
RUSTFLAGS="-C target-cpu=native" cargo +nightly build --release --features=x86_64-unix,high-level-c-api -p tfhe
```
or on a Unix aarch64 machine using the following command:
```shell
RUSTFLAGS="-C target-cpu=native" cargo build +nightly --release --features=aarch64-unix,high-level-c-api -p tfhe
```
The `tfhe.h` header as well as the static (.a) and dynamic (.so) `libtfhe` binaries can then be found in "${REPO\_ROOT}/target/release/"
The build system needs to be set up so that the C or C++ program links against TFHE-rs C API binaries.
Here is a minimal CMakeLists.txt to do just that:
```cmake
project(my-project)
cmake_minimum_required(VERSION 3.16)
set(TFHE_C_API "/path/to/tfhe-rs/binaries/and/header")
include_directories(${TFHE_C_API})
add_library(tfhe STATIC IMPORTED)
set_target_properties(tfhe PROPERTIES IMPORTED_LOCATION ${TFHE_C_API}/libtfhe.a)
if(APPLE)
find_library(SECURITY_FRAMEWORK Security)
if (NOT SECURITY_FRAMEWORK)
message(FATAL_ERROR "Security framework not found")
endif()
endif()
set(EXECUTABLE_NAME my-executable)
add_executable(${EXECUTABLE_NAME} main.c)
target_include_directories(${EXECUTABLE_NAME} PRIVATE ${CMAKE_CURRENT_SOURCE_DIR})
target_link_libraries(${EXECUTABLE_NAME} LINK_PUBLIC tfhe m pthread dl)
if(APPLE)
target_link_libraries(${EXECUTABLE_NAME} LINK_PUBLIC ${SECURITY_FRAMEWORK})
endif()
target_compile_options(${EXECUTABLE_NAME} PRIVATE -Werror)
```
### Commented code of a uint128 subtraction using `TFHE-rs C API`.
{% hint style="warning" %}
WARNING: The following example does not have proper memory management in the error case to make it easier to fit the code on this page.
{% endhint %}
To run the example below, the above CMakeLists.txt and main.c files need to be in the same directory. The commands to run are:
```shell
# /!\ Be sure to update CMakeLists.txt to give the absolute path to the compiled tfhe library
$ ls
CMakeLists.txt main.c
$ mkdir build && cd build
$ cmake .. -DCMAKE_BUILD_TYPE=RELEASE
...
$ make
...
$ ./my-executable
Result: 2
$
```
```c
#include <tfhe.h>
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
int main(void)
{
int ok = 0;
// Prepare the config builder for the high level API and choose which types to enable
ConfigBuilder *builder;
Config *config;
// Put the builder in a default state without any types enabled
config_builder_all_disabled(&builder);
// Enable the uint128 type using the small LWE key for encryption
config_builder_enable_default_uint128_small(&builder);
// Populate the config
config_builder_build(builder, &config);
ClientKey *client_key = NULL;
ServerKey *server_key = NULL;
// Generate the keys using the config
generate_keys(config, &client_key, &server_key);
// Set the server key for the current thread
set_server_key(server_key);
FheUint128 *lhs = NULL;
FheUint128 *rhs = NULL;
FheUint128 *result = NULL;
// Encrypt a u128 using 64 bits words, we encrypt 20 << 64 | 10
ok = fhe_uint128_try_encrypt_with_client_key_u128(10, 20, client_key, &lhs);
assert(ok == 0);
// Encrypt a u128 using words, we encrypt 2 << 64 | 1
ok = fhe_uint128_try_encrypt_with_client_key_u128(1, 2, client_key, &rhs);
assert(ok == 0);
// Compute the subtraction
ok = fhe_uint128_sub(lhs, rhs, &result);
assert(ok == 0);
uint64_t w0, w1;
// Decrypt
ok = fhe_uint128_decrypt(result, client_key, &w0, &w1);
assert(ok == 0);
// Here the subtraction allows us to compare each word
assert(w0 == 9);
assert(w1 == 18);
// Destroy the ciphertexts
fhe_uint128_destroy(lhs);
fhe_uint128_destroy(rhs);
fhe_uint128_destroy(result);
// Destroy the keys
client_key_destroy(client_key);
server_key_destroy(server_key);
return EXIT_SUCCESS;
}
```

View File

@@ -1,27 +1,32 @@
# Tutorial: using the C API
# Shortint API
Welcome to this `TFHE-rs` C API tutorial!
## Using the shortint C API
This library exposes a C binding to the `TFHE-rs` primitives to implement _Fully Homomorphic Encryption_ (FHE) programs.
This library exposes a C binding to the TFHE-rs shortint API to implement _Fully Homomorphic Encryption_ (FHE) programs.
# First steps using `TFHE-rs` C API
## First steps using TFHE-rs C API
## Setting-up `TFHE-rs` C API for use in a C program.
### Setting up TFHE-rs C API for use in a C program.
`TFHE-rs` C API can be built on a Unix x86_64 machine using the following command:
TFHE-rs C API can be built on a Unix x86\_64 machine using the following command:
```shell
RUSTFLAGS="-C target-cpu=native" cargo build --release --features=x86_64-unix,boolean-c-api,shortint-c-api -p tfhe
RUSTFLAGS="-C target-cpu=native" cargo +nightly build --release --features=x86_64-unix,boolean-c-api,shortint-c-api -p tfhe
```
All features are opt-in, but for simplicity here, the C API is enabled for booleans and shortints.
or on a Unix aarch64 machine using the following command:
The `tfhe.h` header as well as the static (.a) and dynamic (.so) `libtfhe` binaries can then be found in "${REPO_ROOT}/target/release/"
```shell
RUSTFLAGS="-C target-cpu=native" cargo build +nightly --release --features=aarch64-unix,boolean-c-api,shortint-c-api -p tfhe
```
The build system needs to be set-up so that the C or C++ program links against `TFHE-rs` C API
binaries.
All features are opt-in, but for simplicity here, the C API is enabled for Boolean and shortint.
Here is a minimal CMakeLists.txt allowing to do just that:
The `tfhe.h` header as well as the static (.a) and dynamic (.so) `libtfhe` binaries can then be found in "${REPO\_ROOT}/target/release/"
The build system needs to be set up so that the C or C++ program links against TFHE-rs C API binaries.
Here is a minimal CMakeLists.txt to do just that:
```cmake
project(my-project)
@@ -51,17 +56,14 @@ endif()
target_compile_options(${EXECUTABLE_NAME} PRIVATE -Werror)
```
## Commented code of a PBS doubling a 2 bits encrypted message using `TFHE-rs C API`
### Commented code of a PBS doubling a 2-bits encrypted message using `TFHE-rs C API`.
The steps required to perform the mutiplication by 2 of a 2 bits ciphertext
using a PBS are detailed.
This is NOT the most efficient way of doing this operation,
but it allows to show the management required to run a PBS manually using the C API.
The steps required to perform the multiplication by 2 of a 2-bits ciphertext using a PBS are detailed. This is NOT the most efficient way of doing this operation, but it can help to show the management required to run a PBS manually using the C API.
WARNING: The following example does not have proper memory management in the error case to make it easier to fit the code on this page.
To run the example below, the above CMakeLists.txt and main.c files need to be in the same
directory. The commands to run are:
To run the example below, the above CMakeLists.txt and main.c files need to be in the same directory. The commands to run are:
```shell
# /!\ Be sure to update CMakeLists.txt to give the absolute path to the compiled tfhe library
$ ls
@@ -99,7 +101,7 @@ uint64_t get_max_value_of_accumulator_generator(uint64_t (*accumulator_func)(uin
int main(void)
{
ShortintPBSAccumulator *accumulator = NULL;
ShortintPBSLookupTable *accumulator = NULL;
ShortintClientKey *cks = NULL;
ShortintServerKey *sks = NULL;
ShortintParameters *params = NULL;
@@ -168,7 +170,3 @@ int main(void)
return EXIT_SUCCESS;
}
```
# Audience
Programmers wishing to use `TFHE-rs` but unable to use Rust (for various reasons) can use these bindings in their language of choice as long as it can interface with C code to bring `TFHE-rs` functionalities to said language.

View File

@@ -0,0 +1,62 @@
# Quick Start
The `core_crypto` module from TFHE-rs is dedicated to the implementation of the cryptographic tools related to TFHE. To construct an FHE application, the [shortint](../shortint/tutorial.md) and/or [Boolean](../Boolean/tutorial.md) modules (based on this one) are recommended.
The `core_crypto` module offers an API to low-level cryptographic primitives and objects, like `lwe_encryption` or `rlwe_ciphertext`. Its goal is to propose an easy-to-use API for cryptographers.
The overall code architecture is split in two parts: one for entity definitions and another focused on algorithms. The entities contain the definition of useful types, like LWE ciphertext or bootstrapping keys. The algorithms are then naturally defined to work using these entities.
The API is convenient to easily add or modify existing algorithms or to have direct access to the raw data. Even if the LWE ciphertext object is defined along with functions giving access to the body, this is also possible to bypass these to get directly the $$i^{th}$$ element of LWE mask.
For instance, the code to encrypt and then decrypt a message looks like:
```rust
use tfhe::core_crypto::prelude::*;
// DISCLAIMER: these toy example parameters are not guaranteed to be secure or yield correct
// computations
// Define parameters for LweCiphertext creation
let lwe_dimension = LweDimension(742);
let lwe_modular_std_dev = StandardDev(0.000007069849454709433);
let ciphertext_modulus = CiphertextModulus::new_native();
// Create the PRNG
let mut seeder = new_seeder();
let seeder = seeder.as_mut();
let mut encryption_generator =
EncryptionRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed(), seeder);
let mut secret_generator =
SecretRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed());
// Create the LweSecretKey
let lwe_secret_key =
allocate_and_generate_new_binary_lwe_secret_key(lwe_dimension, &mut secret_generator);
// Create the plaintext
let msg = 3u64;
let plaintext = Plaintext(msg << 60);
// Create a new LweCiphertext
let mut lwe = LweCiphertext::new(0u64, lwe_dimension.to_lwe_size(), ciphertext_modulus);
encrypt_lwe_ciphertext(
&lwe_secret_key,
&mut lwe,
plaintext,
lwe_modular_std_dev,
&mut encryption_generator,
);
let decrypted_plaintext = decrypt_lwe_ciphertext(&lwe_secret_key, &lwe);
// Round and remove encoding
// First create a decomposer working on the high 4 bits corresponding to our encoding.
let decomposer = SignedDecomposer::new(DecompositionBaseLog(4), DecompositionLevelCount(1));
let rounded = decomposer.closest_representable(decrypted_plaintext.0);
// Remove the encoding
let cleartext = rounded >> 60;
// Check we recovered the original message
assert_eq!(cleartext, msg);
```

View File

@@ -0,0 +1,255 @@
# Tutorial
## Using the `core_crypto` primitives
Welcome to this tutorial about TFHE-rs `core_crypto` module.
### Setting up TFHE-rs to use the `core_crypto` module
To use `TFHE-rs`, first it has to be added as a dependency in the `Cargo.toml`:
```toml
tfhe = { version = "0.2.4", features = [ "x86_64-unix" ] }
```
This enables the `x86_64-unix` feature to have efficient implementations of various algorithms for `x86_64` CPUs on a Unix-like system. The 'unix' suffix indicates that the `UnixSeeder`, which uses `/dev/random` to generate random numbers, is activated as a fallback if no hardware number generator is available, like `rdseed` on `x86_64` or if the [`Randomization Services`](https://developer.apple.com/documentation/security/1399291-secrandomcopybytes?language=objc) on Apple platforms are not available. To avoid having the `UnixSeeder` as a potential fallback or to run on non-Unix systems (e.g., Windows), the `x86_64` feature is sufficient.
For Apple Silicon, the `aarch64-unix` or `aarch64` feature should be enabled. `aarch64` is not supported on Windows as it's currently missing an entropy source required to seed the [CSPRNGs](https://en.wikipedia.org/wiki/Cryptographically\_secure\_pseudorandom\_number\_generator) used in TFHE-rs.
In short: For x86\_64-based machines running Unix-like OSes:
```toml
tfhe = { version = "0.2.4", features = ["x86_64-unix"] }
```
For Apple Silicon or aarch64-based machines running Unix-like OSes:
```toml
tfhe = { version = "0.2.4", features = ["aarch64-unix"] }
```
For x86\_64-based machines with the [`rdseed instruction`](https://en.wikipedia.org/wiki/RDRAND) running Windows:
```toml
tfhe = { version = "0.2.4", features = ["x86_64"] }
```
### Commented code to double a 2-bits message in a leveled fashion and using a PBS with the `core_crypto` module.
As a complete example showing the usage of some common primitives of the `core_crypto` APIs, the following Rust code homomorphically computes 2 \* 3 using two different methods. First using a cleartext multiplication and then using a PBS.
```rust
use tfhe::core_crypto::prelude::*;
pub fn main() {
// DISCLAIMER: these toy example parameters are not guaranteed to be secure or yield correct
// computations
// Define the parameters for a 4 bits message able to hold the doubled 2 bits message
let small_lwe_dimension = LweDimension(742);
let glwe_dimension = GlweDimension(1);
let polynomial_size = PolynomialSize(2048);
let lwe_modular_std_dev = StandardDev(0.000007069849454709433);
let glwe_modular_std_dev = StandardDev(0.00000000000000029403601535432533);
let pbs_base_log = DecompositionBaseLog(23);
let pbs_level = DecompositionLevelCount(1);
let ciphertext_modulus = CiphertextModulus::new_native();
// Request the best seeder possible, starting with hardware entropy sources and falling back to
// /dev/random on Unix systems if enabled via cargo features
let mut boxed_seeder = new_seeder();
// Get a mutable reference to the seeder as a trait object from the Box returned by new_seeder
let seeder = boxed_seeder.as_mut();
// Create a generator which uses a CSPRNG to generate secret keys
let mut secret_generator =
SecretRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed());
// Create a generator which uses two CSPRNGs to generate public masks and secret encryption
// noise
let mut encryption_generator =
EncryptionRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed(), seeder);
println!("Generating keys...");
// Generate an LweSecretKey with binary coefficients
let small_lwe_sk =
LweSecretKey::generate_new_binary(small_lwe_dimension, &mut secret_generator);
// Generate a GlweSecretKey with binary coefficients
let glwe_sk =
GlweSecretKey::generate_new_binary(glwe_dimension, polynomial_size, &mut secret_generator);
// Create a copy of the GlweSecretKey re-interpreted as an LweSecretKey
let big_lwe_sk = glwe_sk.clone().into_lwe_secret_key();
// Generate the bootstrapping key, we use the parallel variant for performance reason
let std_bootstrapping_key = par_allocate_and_generate_new_lwe_bootstrap_key(
&small_lwe_sk,
&glwe_sk,
pbs_base_log,
pbs_level,
glwe_modular_std_dev,
ciphertext_modulus,
&mut encryption_generator,
);
// Create the empty bootstrapping key in the Fourier domain
let mut fourier_bsk = FourierLweBootstrapKey::new(
std_bootstrapping_key.input_lwe_dimension(),
std_bootstrapping_key.glwe_size(),
std_bootstrapping_key.polynomial_size(),
std_bootstrapping_key.decomposition_base_log(),
std_bootstrapping_key.decomposition_level_count(),
);
// Use the conversion function (a memory optimized version also exists but is more complicated
// to use) to convert the standard bootstrapping key to the Fourier domain
convert_standard_lwe_bootstrap_key_to_fourier(&std_bootstrapping_key, &mut fourier_bsk);
// We don't need the standard bootstrapping key anymore
drop(std_bootstrapping_key);
// Our 4 bits message space
let message_modulus = 1u64 << 4;
// Our input message
let input_message = 3u64;
// Delta used to encode 4 bits of message + a bit of padding on u64
let delta = (1_u64 << 63) / message_modulus;
// Apply our encoding
let plaintext = Plaintext(input_message * delta);
// Allocate a new LweCiphertext and encrypt our plaintext
let lwe_ciphertext_in: LweCiphertextOwned<u64> = allocate_and_encrypt_new_lwe_ciphertext(
&small_lwe_sk,
plaintext,
lwe_modular_std_dev,
ciphertext_modulus,
&mut encryption_generator,
);
// Compute a cleartext multiplication by 2
let mut cleartext_multiplication_ct = lwe_ciphertext_in.clone();
println!("Performing cleartext multiplication...");
lwe_ciphertext_cleartext_mul(
&mut cleartext_multiplication_ct,
&lwe_ciphertext_in,
Cleartext(2),
);
// Decrypt the cleartext multiplication result
let cleartext_multiplication_plaintext: Plaintext<u64> =
decrypt_lwe_ciphertext(&small_lwe_sk, &cleartext_multiplication_ct);
// Create a SignedDecomposer to perform the rounding of the decrypted plaintext
// We pass a DecompositionBaseLog of 5 and a DecompositionLevelCount of 1 indicating we want to
// round the 5 MSB, 1 bit of padding plus our 4 bits of message
let signed_decomposer =
SignedDecomposer::new(DecompositionBaseLog(5), DecompositionLevelCount(1));
// Round and remove our encoding
let cleartext_multiplication_result: u64 =
signed_decomposer.closest_representable(cleartext_multiplication_plaintext.0) / delta;
println!("Checking result...");
assert_eq!(6, cleartext_multiplication_result);
println!(
"Cleartext multiplication result is correct! \
Expected 6, got {cleartext_multiplication_result}"
);
// Now we will use a PBS to compute the same multiplication, it is NOT the recommended way of
// doing this operation in terms of performance as it's much more costly than a multiplication
// with a cleartext, however it resets the noise in a ciphertext to a nominal level and allows
// to evaluate arbitrary functions so depending on your use case it can be a better fit.
// Here we will define a helper function to generate an accumulator for a PBS
fn generate_accumulator<F>(
polynomial_size: PolynomialSize,
glwe_size: GlweSize,
message_modulus: usize,
ciphertext_modulus: CiphertextModulus<u64>,
delta: u64,
f: F,
) -> GlweCiphertextOwned<u64>
where
F: Fn(u64) -> u64,
{
// N/(p/2) = size of each block, to correct noise from the input we introduce the notion of
// box, which manages redundancy to yield a denoised value for several noisy values around
// a true input value.
let box_size = polynomial_size.0 / message_modulus;
// Create the accumulator
let mut accumulator_u64 = vec![0_u64; polynomial_size.0];
// Fill each box with the encoded denoised value
for i in 0..message_modulus {
let index = i * box_size;
accumulator_u64[index..index + box_size]
.iter_mut()
.for_each(|a| *a = f(i as u64) * delta);
}
let half_box_size = box_size / 2;
// Negate the first half_box_size coefficients to manage negacyclicity and rotate
for a_i in accumulator_u64[0..half_box_size].iter_mut() {
*a_i = (*a_i).wrapping_neg();
}
// Rotate the accumulator
accumulator_u64.rotate_left(half_box_size);
let accumulator_plaintext = PlaintextList::from_container(accumulator_u64);
let accumulator =
allocate_and_trivially_encrypt_new_glwe_ciphertext(
glwe_size,
&accumulator_plaintext,
ciphertext_modulus,
);
accumulator
}
// Generate the accumulator for our multiplication by 2 using a simple closure
let accumulator: GlweCiphertextOwned<u64> = generate_accumulator(
polynomial_size,
glwe_dimension.to_glwe_size(),
message_modulus as usize,
ciphertext_modulus,
delta,
|x: u64| 2 * x,
);
// Allocate the LweCiphertext to store the result of the PBS
let mut pbs_multiplication_ct = LweCiphertext::new(
0u64,
big_lwe_sk.lwe_dimension().to_lwe_size(),
ciphertext_modulus,
);
println!("Computing PBS...");
programmable_bootstrap_lwe_ciphertext(
&lwe_ciphertext_in,
&mut pbs_multiplication_ct,
&accumulator,
&fourier_bsk,
);
// Decrypt the PBS multiplication result
let pbs_multipliation_plaintext: Plaintext<u64> =
decrypt_lwe_ciphertext(&big_lwe_sk, &pbs_multiplication_ct);
// Round and remove our encoding
let pbs_multiplication_result: u64 =
signed_decomposer.closest_representable(pbs_multipliation_plaintext.0) / delta;
println!("Checking result...");
assert_eq!(6, pbs_multiplication_result);
println!(
"Mulitplication via PBS result is correct! Expected 6, got {pbs_multiplication_result}"
);
}
```

View File

@@ -1,6 +1,6 @@
# Contribute
# Contributing
There are two ways to contribute to **TFHE-rs**:
There are two ways to contribute to **TFHE-rs**. You can:
* you can open issues to report bugs and typos and to suggest ideas
* you can ask to become an official contributor by emailing hello@zama.ai. Only approved contributors can end pull requests, so please make sure to get in touch before you do!
* open issues to report bugs and typos and to suggest ideas;
* ask to become an official contributor by emailing hello@zama.ai. Only approved contributors can send pull requests, so get in touch before you do.

View File

@@ -1,44 +1,68 @@
# Benchmarks
Due to their nature, homomorphic operations are obviously slower than their clear equivalent. In what follows, some timings are exposed for the basic operations. For completeness, some benchmarks of other libraries are also given.
Due to their nature, homomorphic operations are naturally slower than their clear equivalent. Some timings are exposed for basic operations. For completeness, benchmarks for other libraries are also given.
All the benchmarks had been launched on an AWS m6i.metal with the following specifications:
Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz and 512GB of RAM.
All benchmarks were launched on an AWS m6i.metal with the following specifications: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz and 512GB of RAM.
## Booleans
## Boolean
This measures the execution time of a single binary boolean gate.
This measures the execution time of a single binary Boolean gate.
### thfe.rs::booleans
### tfhe-rs::boolean.
| Parameter set | concrete-fft | concrete-fft + avx512 |
| --- | --- | --- |
| DEFAULT_PARAMETERS | 8.8ms | 6.8ms |
| TFHE_LIB_PARAMETERS | 13.6ms | 10.9ms |
| Parameter set | Concrete FFT | Concrete FFT + avx512 |
| --------------------- | ------------ | --------------------- |
| DEFAULT\_PARAMETERS | 8.8ms | 6.8ms |
| TFHE\_LIB\_PARAMETERS | 13.6ms | 10.9ms |
### tfhe-lib
### tfhe-lib.
| Parameter set | fftw | spqlios-fma|
| --- | --- | --- |
| default_128bit_gate_bootstrapping_parameters | 28.9ms | 15.7ms |
| Parameter set | fftw | spqlios-fma |
| ------------------------------------------------ | ------ | ----------- |
| default\_128bit\_gate\_bootstrapping\_parameters | 28.9ms | 15.7ms |
### OpenFHE
### OpenFHE.
| Parameter set | GINX | GINX (Intel HEXL) |
| --- | --- | --- |
| STD_128 | 172ms | 78ms |
| MEDIUM | 113ms | 50.2ms |
## Shortints
This measures the execution time for some operations and some parameter sets of shortints.
### thfe.rs::shortint
This uses the concrete-fft + avx512 configuration.
| Parameter set | GINX | GINX (Intel HEXL) |
| ------------- | ----- | ----------------- |
| STD\_128 | 172ms | 78ms |
| MEDIUM | 113ms | 50.2ms |
| Parameter set | unchecked_add | unchecked_mul_lsb | keyswitch_programmable_bootstrap |
| --- | --- | --- | --- |
| PARAM_MESSAGE_1_CARRY_1 | 337 ns | 10.1 ms | 9.91 ms |
| PARAM_MESSAGE_2_CARRY_2 | 407 ns | 21.7 ms | 21.4 ms |
| PARAM_MESSAGE_3_CARRY_3 | 3.06 µs | 161 ms | 159 ms |
| PARAM_MESSAGE_4_CARRY_4 | 11.7 µs | 1.03 s | 956 ms |
## Shortint
This measures the execution time for some operations and some parameter sets of tfhe-rs::shortint.
This uses the Concrete FFT + avx512 configuration.
| Parameter set | unchecked\_add | unchecked\_mul\_lsb | keyswitch\_programmable\_bootstrap |
| --------------------------- | -------------- | ------------------- | ---------------------------------- |
| PARAM\_MESSAGE\_1\_CARRY\_1 | 338 ns | 8.3 ms | 8.1 ms |
| PARAM\_MESSAGE\_2\_CARRY\_2 | 406 ns | 18.4 ms | 18.4 ms |
| PARAM\_MESSAGE\_3\_CARRY\_3 | 3.06 µs | 134 ms | 129.4 ms |
| PARAM\_MESSAGE\_4\_CARRY\_4 | 11.7 µs | 854 ms | 828.1 ms |
Next, the timings for the operation flavor `default` are given. This flavor ensures predictable timings of an operation all along the circuit by clearing the carry space after each operation.
| Parameter set | add | mul\_lsb | keyswitch\_programmable\_bootstrap |
| --------------------------- | -------------- | ------------------- | ---------------------------------- |
| PARAM\_MESSAGE\_1\_CARRY\_1 | 7.90 ms | 8.00 ms | 8.10 ms |
| PARAM\_MESSAGE\_2\_CARRY\_2 | 18.4 ms | 18.1 ms | 18.4 ms |
| PARAM\_MESSAGE\_3\_CARRY\_3 | 131.5 ms | 129.5 ms | 129.4 ms |
| PARAM\_MESSAGE\_4\_CARRY\_4 | 852.5 ms | 839.7 ms | 828.1 ms |
## Integer
This measures the execution time for some operation sets of tfhe-rs::integer.
All timings are related to parallelized Radix-based integer operations, where each block is encrypted using PARAM\_MESSAGE\_2\_CARRY\_2.
To ensure predictable timings, the operation flavor is the `default` one: a carry propagation is computed after each operation. Operation cost could be reduced by using `unchecked`, `checked`, or `smart`.
| Plaintext size | add | mul | greater\_than (gt) | min |
| -------------------| -------------- | ------------------- | --------- | ------- |
| 8 bits | 129.0 ms | 227.2 ms | 111.9 ms | 186.8 ms |
| 16 bits | 256.3 ms | 756.0 ms | 145.3 ms | 233.1 ms |
| 32 bits | 469.4 ms | 2.10 s | 192.0 ms | 282.9 ms |
| 40 bits | 608.0 ms | 3.37 s | 228.4 ms | 318.6 ms |
| 64 bits | 959.9 ms | 5.53 s | 249.0 ms | 336.5 ms |
| 128 bits | 1.88 s | 14.1 s | 294.7 ms | 398.6 ms |
| 256 bits | 3.66 s | 29.2 s | 361.8 ms | 509.1 ms |

View File

@@ -4,11 +4,14 @@
To use `TFHE-rs` in your project, you first need to add it as a dependency in your `Cargo.toml`:
```toml
tfhe = { version = "0.1.0", features = [ "boolean", "shortint", "x86_64-unix" ] }
tfhe = { version = "0.2.4", features = [ "boolean", "shortint", "integer", "x86_64-unix" ] }
```
{% hint style="info" %}
When running code that uses `tfhe-rs`, it is highly recommended to run in release mode with cargo's `--release` flag to have the best performances possible, eg: `cargo run --release`.
{% endhint %}
## Choosing your features
`TFHE-rs` exposes different `cargo features` to customize the types and features used.
@@ -17,38 +20,35 @@ tfhe = { version = "0.1.0", features = [ "boolean", "shortint", "x86_64-unix" ]
This crate exposes two kinds of data types. Each kind is enabled by activating its corresponding feature in the TOML line. Each kind may have multiple types:
| Kind | Features | Type(s) |
| --------- | ------------- |------------------------------------------|
| Booleans | `boolean` | Booleans |
| ShortInts | `shortint` | Short unsigned integers |
| Kind | Features | Type(s) |
| --------- | ---------- | --------------------------------- |
| Booleans | `boolean` | Booleans |
| ShortInts | `shortint` | Short unsigned integers |
| Integers | `integer` | Arbitrary-sized unsigned integers |
### Serialization.
The different data types and keys exposed by the crate can be serialized / deserialized.
More information can be found [here](../Booleans/serialization.md) for Booleans and [here](../shortint/serialization.md) for shortint.
More information can be found [here](../Boolean/serialization.md) for Boolean and [here](../shortint/serialization.md) for shortint.
## Supported platforms
TFHE-rs is supported on Linux (x86, aarch64), macOS (x86, aarch64) and Windows (x86 with `RDSEED`
instruction).
TFHE-rs is supported on Linux (x86, aarch64), macOS (x86, aarch64) and Windows (x86 with `RDSEED` instruction).
| OS | x86 | aarch64 |
| --------- | ------------- |------------------|
| Linux | `x86_64-unix` | `aarch64-unix`* |
| macOS | `x86_64-unix` | `aarch64-unix`* |
| Windows | `x86_64` | Unsupported |
| OS | x86 | aarch64 |
| ------- | ------------- | ---------------- |
| Linux | `x86_64-unix` | `aarch64-unix`\* |
| macOS | `x86_64-unix` | `aarch64-unix`\* |
| Windows | `x86_64` | Unsupported |
{% hint style="info" %}
Users who have ARM devices can use `TFHE-rs` by compiling using the
`nightly` toolchain.
Users who have ARM devices can use `TFHE-rs` by compiling using the `nightly` toolchain.
{% endhint %}
### Using TFHE-rs with nightly toolchain.
### Using TFHE-rs with nightly toolchain
First, install the needed Rust toolchain:
Install the needed Rust toolchain:
```shell
rustup toolchain install nightly
@@ -58,8 +58,6 @@ Then, you can either:
* Manually specify the toolchain to use in each of the cargo commands:
For example:
```shell
cargo +nightly build
cargo +nightly test

View File

@@ -2,52 +2,63 @@
## Boolean
The list of supported operations by the homomorphic booleans is:
The list of supported operations by the homomorphic Booleans is:
|Operation Name | type |
| ------ | ------ |
| `not` | Unary |
| `and` | Binary |
| `or` | Binary |
| `xor` | Binary |
| `nor` | Binary |
| `xnor` | Binary |
| `cmux` | Ternary |
| Operation Name | type |
| -------------- | ------- |
| `not` | Unary |
| `and` | Binary |
| `or` | Binary |
| `xor` | Binary |
| `nor` | Binary |
| `xnor` | Binary |
| `cmux` | Ternary |
A walk-through using homomorphic Booleans can be found [here](../Boolean/tutorial.md).
A walk-through using homomorphic Booleans can be found [here](../Booleans/tutorial.md).
## ShortInt
In TFHE-rs, the shortints represent short unsigned integers encoded over 8 bits maximum. A complete homomorphic arithmetic is provided, along with the possibility to compute univariate and bi-variate functions. Some operations are only available for integers up to 4 bits. More technical details can be found [here](../shortint/operations.md).
## Shortint
In TFHE-rs, shortint represents short unsigned integers encoded over a maximum of 8 bits. A complete homomorphic arithmetic is provided, along with the possibility to compute univariate and bi-variate functions. Some operations are only available for integers up to 4 bits. More technical details can be found [here](../shortint/operations.md).
The list of supported operations is:
| Operation name | Type |
|--------------- | ------ |
| Negation | Unary |
| Addition | Binary |
| Subtraction | Binary |
| Multiplication | Binary |
| Division* | Binary |
| Modular reduction | Binary |
| Comparisons | Binary |
| Left/Right Shift | Binary |
| And | Binary |
| Or | Binary |
| Xor | Binary |
| Exact Function Evaluation | Unary/Binary |
| Operation name | Type |
| ------------------------- | ------------ |
| Negation | Unary |
| Addition | Binary |
| Subtraction | Binary |
| Multiplication | Binary |
| Division\* | Binary |
| Modular reduction | Binary |
| Comparisons | Binary |
| Left/Right Shift | Binary |
| And | Binary |
| Or | Binary |
| Xor | Binary |
| Exact Function Evaluation | Unary/Binary |
{% hint style="info" %}
\* The division operation implements a subtlety: since data is encrypted, it might be possible to compute a division by 0. In this case, the division is tweaked so that dividing by 0 returns 0.
The division operation implements a subtlety: since data is encrypted, it might be possible to compute a division by 0. The division is tweaked so that dividing by 0 returns 0.
{% endhint %}
A walk-through example can be found [here](../shortint/tutorial.md) and more examples and
explanations can be found [here](../shortint/operations.md)
A walk-through example can be found [here](../shortint/tutorial.md), and more examples and explanations can be found [here](../shortint/operations.md).
## Integer
In TFHE-rs, integers represent unsigned integers up to 256 bits. They are encoded using Radix representations by default (more details [here](../integer/operations.md)).
The list of supported operations is:
| Operation name | Type |
| ------------------------------ | ------ |
| Negation | Unary |
| Addition | Binary |
| Subtraction | Binary |
| Multiplication | Binary |
| Bitwise OR, AND, XOR | Binary |
| Equality | Binary |
| Left/Right Shift | Binary |
| Comparisons `<`,`<=`,`>`, `>=` | Binary |
| Min, Max | Binary |
A walk-through example can be found [here](../integer/tutorial.md).

View File

@@ -1,62 +1,116 @@
# Quick start
# Quick Start
This library makes it possible to execute **homomorphic operations over encrypted data**, where the data are either Booleans or short integers (named shortints in the rest of this documentation).
It allows one to execute a circuit on an **untrusted server** because both circuit inputs and outputs are kept **private**.
Data are indeed encrypted on the client side, before being sent to the server. On the server side every computation is performed on ciphertexts.
This library makes it possible to execute **homomorphic operations over encrypted data**, where the data are either Booleans, short integers (named shortint in the rest of this documentation), or integers up to 256 bits. It allows you to execute a circuit on an **untrusted server** because both circuit inputs and outputs are kept **private**. Data are indeed encrypted on the client side, before being sent to the server. On the server side, every computation is performed on ciphertexts.
The server however has to know the circuit to be evaluated. At the end of the computation, the server returns the encryption of the result to the user. She can then decrypt it with her `secret key`.
The server, however, has to know the circuit to be evaluated. At the end of the computation, the server returns the encryption of the result to the user. Then the user can decrypt it with the `secret key`.
## General method to write an homomorphic circuit program
## General method to write homomorphic circuit program
The overall process to write an homomorphic program is the same for all types. The basic steps for using the TFHE-rs library are the following:
The overall process to write an homomorphic program is the same for both Boolean and short integers types.
In a nutshell, the basic steps for using the TFHE-rs library are the following:
- Choose a data type (Boolean or shortint)
- Import the library
- Create client and server keys
- Encrypt data with the client key
- Compute over encrypted data using the server key
- Decrypt data with the client key
1. Choose a data type (Boolean, shortint, integer)
2. Import the library
3. Create client and server keys
4. Encrypt data with the client key
5. Compute over encrypted data using the server key
6. Decrypt data with the client key
### API levels.
### Boolean example
This library has different modules, with different levels of abstraction.
Here is an example to illustrate how the library can be used to evaluate a Boolean circuit:
There is the **core\_crypto** module, which is the lowest level API with the primitive functions and types of the TFHE scheme.
Above the core\_crypto module, there are the B**oolean**, **shortint**, and **integer** modules, which simply allow evaluation of Boolean, short integer, and integer circuits.
Finally, there is the high-level module built on top of the Boolean, shortint, integer modules. This module is meant to abstract cryptographic complexities: no cryptographical knowledge is required to start developing an FHE application. Another benefit of the high-level module is the drastically simplified development process compared to lower level modules.
#### high-level API
TFHE-rs exposes a high-level API by default that includes datatypes that try to match Rust's native types by having overloaded operators (+, -, ...).
Here is an example of how the high-level API is used:
{% hint style="warning" %}
Use the `--release` flag to run this example (eg: `cargo run --release`)
{% endhint %}
```rust
use tfhe::{ConfigBuilder, generate_keys, set_server_key, FheUint8};
use tfhe::prelude::*;
fn main() {
let config = ConfigBuilder::all_disabled()
.enable_default_uint8()
.build();
let (client_key, server_key) = generate_keys(config);
set_server_key(server_key);
let clear_a = 27u8;
let clear_b = 128u8;
let a = FheUint8::encrypt(clear_a, &client_key);
let b = FheUint8::encrypt(clear_b, &client_key);
let result = a + b;
let decrypted_result: u8 = result.decrypt(&client_key);
let clear_result = clear_a + clear_b;
assert_eq!(decrypted_result, clear_result);
}
```
#### Boolean example
Here is an example of how the library can be used to evaluate a Boolean circuit:
{% hint style="warning" %}
Use the `--release` flag to run this example (eg: `cargo run --release`)
{% endhint %}
```rust
use tfhe::boolean::prelude::*;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let (mut client_key, mut server_key) = gen_keys();
// We generate a set of client/server keys, using the default parameters:
let (client_key, server_key) = gen_keys();
// We use the client secret key to encrypt two messages:
// We use the client secret key to encrypt two messages:
let ct_1 = client_key.encrypt(true);
let ct_2 = client_key.encrypt(false);
// We use the server public key to execute a boolean circuit:
// if ((NOT ct_2) NAND (ct_1 AND ct_2)) then (NOT ct_2) else (ct_1 AND ct_2)
// We use the server public key to execute a boolean circuit:
// if ((NOT ct_2) NAND (ct_1 AND ct_2)) then (NOT ct_2) else (ct_1 AND ct_2)
let ct_3 = server_key.not(&ct_2);
let ct_4 = server_key.and(&ct_1, &ct_2);
let ct_5 = server_key.nand(&ct_3, &ct_4);
let ct_6 = server_key.mux(&ct_5, &ct_3, &ct_4);
// We use the client key to decrypt the output of the circuit:
// We use the client key to decrypt the output of the circuit:
let output = client_key.decrypt(&ct_6);
assert_eq!(output, true);
}
```
### Shortint example
#### shortint example
and here is a full example using shortints:
Here is a full example using shortint:
{% hint style="warning" %}
Use the `--release` flag to run this example (eg: `cargo run --release`)
{% endhint %}
```rust
use tfhe::shortint::prelude::*;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let (client_key, server_key) = gen_keys(Parameters::default());
// We generate a set of client/server keys
// using parameters with 2 bits of message and 2 bits of carry
let (client_key, server_key) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
let msg1 = 1;
let msg2 = 0;
@@ -76,5 +130,32 @@ fn main() {
}
```
#### integer example
The library is pretty simple to use, and can evaluate **homomorphic circuits of arbitrary length**. The description of the algorithms can be found in the [TFHE](https://doi.org/10.1007/s00145-019-09319-x) paper (also available as [ePrint 2018/421](https://ia.cr/2018/421)).
{% hint style="warning" %}
Use the `--release` flag to run this example (eg: `cargo run --release`)
{% endhint %}
```rust
use tfhe::integer::gen_keys_radix;
use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
// We create keys for radix represention to create 16 bits integers
// using 8 blocks of 2 bits
let (cks, sks) = gen_keys_radix(&PARAM_MESSAGE_2_CARRY_2, 8);
let clear_a = 2382u16;
let clear_b = 29374u16;
let mut a = cks.encrypt(clear_a as u64);
let mut b = cks.encrypt(clear_b as u64);
let encrypted_max = sks.smart_max_parallelized(&mut a, &mut b);
let decrypted_max: u64 = cks.decrypt(&encrypted_max);
assert_eq!(decrypted_max as u16, clear_a.max(clear_b))
}
```
The library is simple to use and can evaluate **homomorphic circuits of arbitrary length**. The description of the algorithms can be found in the [TFHE](https://doi.org/10.1007/s00145-019-09319-x) paper (also available as [ePrint 2018/421](https://ia.cr/2018/421)).

View File

@@ -1,74 +1,49 @@
# Cryptography & Security
# Security and Cryptography
# TFHE
## TFHE
TFHE-rs is a cryptographic library dedicated to Fully Homomorphic Encryption. As its name
suggests, it is based on the TFHE scheme.
TFHE-rs is a cryptographic library dedicated to Fully Homomorphic Encryption. As its name suggests, it is based on the TFHE scheme.
It is interesting to understand some basics about TFHE,
in order to apprehend where the limitations are coming from both
in terms of precision (number of bits used to represent the plaintext values)
and execution time (why TFHE operations are slower than native operations).
It is necessary to understand some basics about TFHE to comprehend where the limitations are coming from, both in terms of precision (number of bits used to represent plaintext values) and execution time (why TFHE operations are slower than native operations).
# LWE Ciphertexts
## LWE ciphertexts
Although there are many kinds of ciphertexts in TFHE,
all the encrypted values in TFHE-rs are mainly stored as LWE ciphertexts.
Although there are many kinds of ciphertexts in TFHE, all the encrypted values in TFHE-rs are mainly stored as LWE ciphertexts.
The security of TFHE relies on the LWE problem which stands for Learning With Errors.
The problem is believed to be secure against quantum attacks.
The security of TFHE relies on the LWE problem, which stands for Learning With Errors. The problem is believed to be secure against quantum attacks.
An LWE Ciphertext is a collection of 32-bits or 64-bits unsigned integers.
Before encrypting a message in an LWE ciphertext, one needs to first encode it as a plaintext.
This is done by shifting the message to the most significant bits of the unsigned integer type used.
An LWE Ciphertext is a collection of 32-bit or 64-bit unsigned integers. Before encrypting a message in an LWE ciphertext, one must first encode it as a plaintext. This is done by shifting the message to the most significant bits of the unsigned integer type used.
Then, a little random value called noise is added to the least significant bits.
This noise (also called error for Learning With Errors) is crucial to the security of the ciphertext.
Then, a little random value called noise is added to the least significant bits. This noise (also called error for Learning With Errors) is crucial to the security of the ciphertext.
$$ plaintext = (\Delta * m) + e $$
$$plaintext = (\Delta * m) + e$$
![](../_static/lwe.png)
![](../\_static/lwe.png)
To go from a **plaintext** to a **ciphertext** one needs to encrypt the plaintext using a secret key.
To go from a **plaintext** to a **ciphertext,** one must encrypt the plaintext using a secret key.
An LWE secret key is a list of `n` random integers: $$S = (s_0, ..., s_n)$$.
$$n$$ is called the $$LweDimension$$
An LWE secret key is a list of `n` random integers: $$S = (s_0, ..., s_n)$$. $$n$$ is called the $$LweDimension$$
A LWE ciphertext, is composed of two parts:
- The mask $$(a_0, ..., a_{n-1})$$
- The body $$b$$
A LWE ciphertext is composed of two parts:
The mask of a _fresh_ ciphertext (one that is the result of an encryption
and not an operation such as ciphertext addition) is a list of `n` uniformly random values.
* The mask $$(a_0, ..., a_{n-1})$$
* The body $$b$$
The mask of a _fresh_ ciphertext (one that is the result of an encryption and not an operation, such as ciphertext addition) is a list of `n` uniformly random values.
The body is computed as follows:
$$ b = (\sum_{i = 0}^{n-1}{a_i * s_i}) + plaintext $$
$$b = (\sum_{i = 0}^{n-1}{a_i * s_i}) + plaintext$$
Now that the encryption scheme is defined, to illustrate why it is slower to compute over encrypted data,
let us show the example of the addition between ciphertexts.
Now that the encryption scheme is defined, let's review the example of the addition between ciphertexts to illustrate why it is slower to compute over encrypted data.
To add two ciphertexts, we must add their $mask$ and $body$ as done below.
To add two ciphertexts, we must add their $mask$ and $body$:
$$
ct_0 = (a_{0}, ..., a_{n}, b) \\
ct_1 = (a_{1}^{'}, ..., a_{n}^{'}, b^{'}) \\
ct_{2} = ct_0 + ct_1 \\
ct_{2} = (a_{0} + a_{0}^{'}, ..., a_{n} + a_{n}^{'}, b + b^{'})\\
b + b^{'} = (\sum_{i = 0}^{n-1}{a_i * s_i}) + plaintext + (\sum_{i = 0}^{n-1}{a_i^{'} * s_i}) + plaintext^{'}\\
b + b^{'} = (\sum_{i = 0}^{n-1}{(a_i + a_i^{'})* s_i}) + \Delta m + \Delta m^{'} + e + e^{'}\\
ct_0 = (a_{0}, ..., a_{n}, b) \\ ct_1 = (a_{1}^{'}, ..., a_{n}^{'}, b^{'}) \\ ct_{2} = ct_0 + ct_1 \\ ct_{2} = (a_{0} + a_{0}^{'}, ..., a_{n} + a_{n}^{'}, b + b^{'})\\ b + b^{'} = (\sum_{i = 0}^{n-1}{a_i * s_i}) + plaintext + (\sum_{i = 0}^{n-1}{a_i^{'} * s_i}) + plaintext^{'}\\ b + b^{'} = (\sum_{i = 0}^{n-1}{(a_i + a_i^{'})* s_i}) + \Delta m + \Delta m^{'} + e + e^{'}\\
$$
To add ciphertexts, it is sufficient to add their masks and bodies.
Instead of just adding 2 integers, one needs to add $$n + 1$$ elements.
The addition is an intuitive example to show the slowdown of FHE computation compared to plaintext
computation but other operations are far more expensive
(e.g., the computation of a lookup table using the Programmable Bootstrapping)
# Ciphertexts Operations
To add ciphertexts, it is sufficient to add their masks and bodies. Instead of just adding two integers, one needs to add $$n + 1$$ elements. The addition is an intuitive example to show the slowdown of FHE computation compared to plaintext computation, but other operations are far more expensive (e.g., the computation of a lookup table using Programmable Bootstrapping).
## Understanding noise and padding
@@ -77,45 +52,42 @@ In FHE, there are two types of operations that can be applied to ciphertexts:
* **leveled operations**, which increase the noise in the ciphertext
* **bootstrapped operations**, which reduce the noise in the ciphertext
In FHE, the noise must be tracked and managed in order to guarantee the correctness of the computation.
In FHE, noise must be tracked and managed to guarantee the correctness of the computation.
Bootstrapping operations are used across the computation to decrease the noise in the ciphertexts, preventing it from tampering the message. The rest of the operations are called leveled because they do not need bootstrapping operations and thus are most of the time really fast.
Bootstrapping operations are used across the computation to decrease noise within the ciphertexts, preventing it from tampering the message. The rest of the operations are called leveled because they do not need bootstrapping operations and are usually really fast as a result.
The following sections explain the concept of noise and padding in ciphertexts.
### Noise
### Noise.
For it to be secure, LWE requires random noise to be added to the message at encryption time.
In TFHE, this random noise is drawn from a Centered Normal Distribution parameterized by a standard deviation. This standard deviation is a security parameter.
With all other security parameters set, the larger the standard deviation is, the more secure the encryption is.
In TFHE, this random noise is drawn from a Centered Normal Distribution, parameterized by a standard deviation. This standard deviation is a security parameter. With all other security parameters set, the more secure the encryption, the larger the standard deviation.
In `TFHE-rs`, the noise is encoded in the least significant bits of the plaintexts. Each leveled computation will increase the noise, and thus if too many computations are done, the noise will eventually overflow onto the significant data bits of the message and lead to an incorrect result.
In `TFHE-rs`, noise is encoded in the least significant bits of the plaintexts. Each leveled computation increases the noise. If too many computations are performed, the noise will eventually overflow onto the significant data bits of the message and lead to an incorrect result.
The figure below illustrates this problem in case of an addition, where an extra bit of noise is incurred as a result.
![Noise overtaking on the plaintexts after homomorphic addition. Most Significant bits are on the left.](../_static/fig7.png)
![Noise overtaking the plaintexts after homomorphic addition. Most significant bits are on the left.](../\_static/fig7.png)
TFHE-rs offers the possibility to automatically manage the noise, by performing bootstrapping operations to reset the noise when needed.
TFHE-rs offers the ability to automatically manage noise by performing bootstrapping operations to reset the noise.
### Padding.
### Padding
Since encoded values have a fixed precision, operating on them can produce results that are outside the original interval. To avoid losing precision or wrapping around the interval, TFHE-rs uses additional bits by defining bits of **padding** on the most significant bits.
Since encoded values have a fixed precision, operating on them can sometime produce results that are outside the original interval. To avoid losing precision or wrapping around the interval, TFHE-rs uses additional bits by defining bits of **padding** on the most significant bits.
As an example, consider adding two ciphertexts. Adding two values could end up outside the range of either ciphertext, and thus necessitate a carry, which would then be carried onto the first padding bit. In the figure below, each plaintext over 32 bits has one bit of padding on its left (i.e., the most significant bit). After the addition, the padding bit is no longer available, as it has been used in order for the carry. This is referred to as **consuming** bits of padding. Since no padding is left, there is no guarantee that further additions would yield correct results.
As an example, consider adding two ciphertexts. Adding two values could en up outside the range of either ciphertexts, and thus necessitate a carry, which would then be carried onto the first padding bit. In the figure below, each plaintext over 32 bits has one bit of padding on its left \(i.e., the most significant bit\). After the addition, the padding bit is no longer available, as it has been used in order for the carry. This is referred to as **consuming** bits of padding. Since no padding is left, there is no guarantee that additional additions would yield correct results.
![](../_static/fig6.png)
![](../\_static/fig6.png)
If you would like to know more about TFHE, you can find more information in our [TFHE Deep Dive](https://www.zama.ai/post/tfhe-deep-dive-part-1).
## Security
### Security.
By default, the cryptographic parameters provided by `TFHE-rs` ensure at least 128 bits of security.
The security has been evaluated using the latest versions of the Lattice Estimator ([repository](https://github.com/malb/lattice-estimator)) with `red_cost_model = reduction.RC.BDGL16`.
By default, the cryptographic parameters provided by `TFHE-rs` ensure at least 128 bits of security. The security has been evaluated using the latest versions of the Lattice Estimator ([repository](https://github.com/malb/lattice-estimator)) with `red_cost_model = reduction.RC.BDGL16`.
For all sets of parameters, the error probability when computing a univariate function over one ciphertext is $$2^{-40}$$. Note that univariate functions might be performed when arithmetic functions are computed (for instance, the multiplication of two ciphertexts).
For all sets of parameters, the error probability when computing a univariate function over one ciphertext is $$2^{-40}$$. Note that univariate functions might be performed when arithmetic functions are computed (i.e., the multiplication of two ciphertexts).
## Public key encryption
### Public key encryption.
In public key encryption, the public key consists in providing a given number of message encrypting the value 0. By setting the number of encryptions of 0 in the public key at $$m = \lceil (n+1) \log(q) \rceil + \lambda$$, where $$n$$ is the LWE dimension, $$q$$ is the ciphertext modulus and $$\lambda$$ is the number of security bits. In a nutshell, this construction is secure due to the left-over-hash lemma, which is essentially related to the impossibility of breaking the underlying multiple subset sum problem. By using this formula, this guarantees both a high density subset sum and an exponentially large number of possible associated random vectors per LWE sample (a,b)
In public key encryption, the public key contains a given number of ciphertexts all encrypting the value 0. By setting the number of encryptions to 0 in the public key at $$m = \lceil (n+1) \log(q) \rceil + \lambda$$, where $$n$$ is the LWE dimension, $$q$$ is the ciphertext modulus, and $$\lambda$$ is the number of security bits. This construction is secure due to the leftover hash lemma, which relates to the impossibility of breaking the underlying multiple subset sum problem. This guarantees both a high-density subset sum and an exponentially large number of possible associated random vectors per LWE sample (a,b).

View File

@@ -0,0 +1,405 @@
# Operations
The structure and operations related to all types (ì.e., Booleans, shortint and integer) are described in this section.
## Booleans
Native homomorphic Booleans support common Boolean operations.
The list of supported operations is:
| name | symbol | type |
| ------------------------------------------------------------- | ------ | ------ |
| [BitAnd](https://doc.rust-lang.org/std/ops/trait.BitAnd.html) | `&` | Binary |
| [BitOr](https://doc.rust-lang.org/std/ops/trait.BitOr.html) | `\|` | Binary |
| [BitXor](https://doc.rust-lang.org/std/ops/trait.BitXor.html) | `^` | Binary |
| [Neg](https://doc.rust-lang.org/std/ops/trait.Neg.html) | `!` | Unary |
## ShortInt
Native small homomorphic integer types (e.g., FheUint3 or FheUint4) easily compute various operations. In general, computing over encrypted data is as easy as computing over clear data, since the same operation symbol is used. The addition between two ciphertexts is done using the symbol `+` between two FheUint. Many operations can be computed between a clear value (i.e. a scalar) and a ciphertext.
In Rust native types, any operation is modular. In Rust, `u8`, computations are done modulus 2^8. The similar idea is applied for FheUintX, where operations are done modulus 2^X. In the type FheUint3, operations are done modulo 8.
### Arithmetic operations.
Small homomorphic integer types support all common arithmetic operations, meaning `+`, `-`, `x`, `/`, `mod`.
The division operation implements a subtlety: since data is encrypted, it might be possible to compute a division by 0. In this case, the division is tweaked so that dividing by 0 returns 0.
The list of supported operations is:
| name | symbol | type |
| ------------------------------------------------------- | ------ | ------ |
| [Add](https://doc.rust-lang.org/std/ops/trait.Add.html) | `+` | Binary |
| [Sub](https://doc.rust-lang.org/std/ops/trait.Sub.html) | `-` | Binary |
| [Mul](https://doc.rust-lang.org/std/ops/trait.Mul.html) | `*` | Binary |
| [Div](https://doc.rust-lang.org/std/ops/trait.Div.html) | `/` | Binary |
| [Rem](https://doc.rust-lang.org/std/ops/trait.Rem.html) | `%` | Binary |
| [Neg](https://doc.rust-lang.org/std/ops/trait.Neg.html) | `!` | Unary |
A simple example on how to use these operations:
```rust
use tfhe::prelude::*;
use tfhe::{generate_keys, set_server_key, ConfigBuilder, FheUint3};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let config = ConfigBuilder::all_disabled().enable_default_uint3().build();
let (keys, server_keys) = generate_keys(config);
set_server_key(server_keys);
let clear_a = 7;
let clear_b = 3;
let clear_c = 2;
let mut a = FheUint3::try_encrypt(clear_a, &keys)?;
let mut b = FheUint3::try_encrypt(clear_b, &keys)?;
let mut c = FheUint3::try_encrypt(clear_c, &keys)?;
a = a * &b; // Clear equivalent computations: 7 * 3 mod 8 = 5
b = &b + &c; // Clear equivalent computations: 3 + 2 mod 8 = 5
b = b - 5; // Clear equivalent computations: 5 - 5 mod 8 = 0
let dec_a = a.decrypt(&keys);
let dec_b = b.decrypt(&keys);
// We homomorphically swapped values using bitwise operations
assert_eq!(dec_a, (clear_a * clear_b) % 8);
assert_eq!(dec_b, ((clear_b + clear_c) - 5) % 8);
Ok(())
}
```
### Bitwise operations.
Small homomorphic integer types support some bitwise operations.
The list of supported operations is:
| name | symbol | type |
| ------------------------------------------------------------- | ------ | ------ |
| [BitAnd](https://doc.rust-lang.org/std/ops/trait.BitAnd.html) | `&` | Binary |
| [BitOr](https://doc.rust-lang.org/std/ops/trait.BitOr.html) | `\|` | Binary |
| [BitXor](https://doc.rust-lang.org/std/ops/trait.BitXor.html) | `^` | Binary |
| [Shr](https://doc.rust-lang.org/std/ops/trait.Shr.html) | `>>` | Binary |
| [Shl](https://doc.rust-lang.org/std/ops/trait.Shl.html) | `<<` | Binary |
A simple example on how to use these operations:
```rust
use tfhe::prelude::*;
use tfhe::{generate_keys, set_server_key, ConfigBuilder, FheUint3};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let config = ConfigBuilder::all_disabled().enable_default_uint3().build();
let (keys, server_keys) = generate_keys(config);
set_server_key(server_keys);
let clear_a = 7;
let clear_b = 3;
let mut a = FheUint3::try_encrypt(clear_a, &keys)?;
let mut b = FheUint3::try_encrypt(clear_b, &keys)?;
a = a ^ &b;
b = b ^ &a;
a = a ^ &b;
let dec_a = a.decrypt(&keys);
let dec_b = b.decrypt(&keys);
// We homomorphically swapped values using bitwise operations
assert_eq!(dec_a, clear_b);
assert_eq!(dec_b, clear_a);
Ok(())
}
```
### Comparisons.
Small homomorphic integer types support comparison operations.
Due to some Rust limitations, it is not possible to overload the comparison symbols because of the inner definition of the operations. Rust expects to have a Boolean as an output, whereas a ciphertext encrypted result is returned when using homomorphic types.
You will need to use the different methods instead of using symbols for the comparisons. These methods follow the same naming conventions as the two standard Rust traits:
* [PartialOrd](https://doc.rust-lang.org/std/cmp/trait.PartialOrd.html)
* [PartialEq](https://doc.rust-lang.org/std/cmp/trait.PartialEq.html)
A simple example on how to use these operations:
```rust
use tfhe::prelude::*;
use tfhe::{generate_keys, set_server_key, ConfigBuilder, FheUint3};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let config = ConfigBuilder::all_disabled().enable_default_uint3().build();
let (keys, server_keys) = generate_keys(config);
set_server_key(server_keys);
let clear_a = 7;
let clear_b = 3;
let mut a = FheUint3::try_encrypt(clear_a, &keys)?;
let mut b = FheUint3::try_encrypt(clear_b, &keys)?;
assert_eq!(a.gt(&b).decrypt(&keys) != 0, true);
assert_eq!(b.le(&a).decrypt(&keys) != 0, true);
Ok(())
}
```
### Univariate function evaluations.
The shortint type also supports the computation of univariate functions, which deep down uses TFHE's _programmable bootstrapping_.
A simple example on how to use these operations:
```rust
use tfhe::prelude::*;
use tfhe::{generate_keys, set_server_key, ConfigBuilder, FheUint4};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let config = ConfigBuilder::all_disabled().enable_default_uint4().build();
let (keys, server_keys) = generate_keys(config);
set_server_key(server_keys);
let pow_5 = |value: u64| {
value.pow(5) % FheUint4::MODULUS as u64
};
let clear_a = 12;
let a = FheUint4::try_encrypt(12, &keys)?;
let c = a.map(pow_5);
let decrypted = c.decrypt(&keys);
assert_eq!(decrypted, pow_5(clear_a) as u8);
Ok(())
}
```
### Bivariate function evaluations.
Using the shortint type allows you to evaluate bivariate functions (i.e., functions that takes two ciphertexts as input).
A simple code example:
```rust
use tfhe::prelude::*;
use tfhe::{generate_keys, set_server_key, ConfigBuilder, FheUint2};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let config = ConfigBuilder::all_disabled().enable_default_uint2().build();
let (keys, server_keys) = generate_keys(config);
set_server_key(server_keys);
let clear_a = 1;
let clear_b = 3;
let a = FheUint2::try_encrypt(clear_a, &keys)?;
let b = FheUint2::try_encrypt(clear_b, &keys)?;
let c = a.bivariate_function(&b, std::cmp::max);
let decrypted = c.decrypt(&keys);
assert_eq!(decrypted, std::cmp::max(clear_a, clear_b) as u8);
Ok(())
}
```
## Integer
In TFHE-rs, integers are used to encrypt any messages larger than 4 bits. All supported operations are listed below.
### Arithmetic operations.
Homomorphic integer types support arithmetic operations.
The list of supported operations is:
| name | symbol | type |
| ------------------------------------------------------- | ------ | ------ |
| [Add](https://doc.rust-lang.org/std/ops/trait.Add.html) | `+` | Binary |
| [Sub](https://doc.rust-lang.org/std/ops/trait.Sub.html) | `-` | Binary |
| [Mul](https://doc.rust-lang.org/std/ops/trait.Mul.html) | `*` | Binary |
| [Neg](https://doc.rust-lang.org/std/ops/trait.Neg.html) | `!` | Unary |
A simple example on how to use these operations:
```rust
use tfhe::prelude::*;
use tfhe::{generate_keys, set_server_key, ConfigBuilder, FheUint8};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let config = ConfigBuilder::all_disabled().enable_default_uint8().build();
let (keys, server_keys) = generate_keys(config);
set_server_key(server_keys);
let clear_a = 15_u64;
let clear_b = 27_u64;
let clear_c = 43_u64;
let mut a = FheUint8::try_encrypt(clear_a, &keys)?;
let mut b = FheUint8::try_encrypt(clear_b, &keys)?;
let mut c = FheUint8::try_encrypt(clear_c, &keys)?;
a = a * &b; // Clear equivalent computations: 15 * 27 mod 256 = 149
b = &b + &c; // Clear equivalent computations: 27 + 43 mod 256 = 70
b = b - 76u8; // Clear equivalent computations: 70 - 76 mod 256 = 250
let dec_a: u8 = a.decrypt(&keys);
let dec_b: u8 = b.decrypt(&keys);
assert_eq!(dec_a, ((clear_a * clear_b) % 256_u64) as u8);
assert_eq!(dec_b, (((clear_b + clear_c).wrapping_sub(76_u64)) % 256_u64) as u8);
Ok(())
}
```
### Bitwise operations.
Homomorphic integer types support some bitwise operations.
The list of supported operations is:
| name | symbol | type |
| ------------------------------------------------------------- | ------ | ------ |
| [BitAnd](https://doc.rust-lang.org/std/ops/trait.BitAnd.html) | `&` | Binary |
| [BitOr](https://doc.rust-lang.org/std/ops/trait.BitOr.html) | `\|` | Binary |
| [BitXor](https://doc.rust-lang.org/std/ops/trait.BitXor.html) | `^` | Binary |
| [Shr](https://doc.rust-lang.org/std/ops/trait.Shr.html) | `>>` | Binary |
| [Shl](https://doc.rust-lang.org/std/ops/trait.Shl.html) | `<<` | Binary |
A simple example on how to use these operations:
```rust
use tfhe::prelude::*;
use tfhe::{generate_keys, set_server_key, ConfigBuilder, FheUint8};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let config = ConfigBuilder::all_disabled().enable_default_uint8().build();
let (keys, server_keys) = generate_keys(config);
set_server_key(server_keys);
let clear_a = 164;
let clear_b = 212;
let mut a = FheUint8::try_encrypt(clear_a, &keys)?;
let mut b = FheUint8::try_encrypt(clear_b, &keys)?;
a = a ^ &b;
b = b ^ &a;
a = a ^ &b;
let dec_a: u8 = a.decrypt(&keys);
let dec_b: u8 = b.decrypt(&keys);
// We homomorphically swapped values using bitwise operations
assert_eq!(dec_a, clear_b);
assert_eq!(dec_b, clear_a);
Ok(())
}
```
### Comparisons.
Homomorphic integers support comparison operations. Since Rust does not allow the overloading of these operations, a simple function has been associated to each one.
The list of supported operations is:
| name | symbol | type |
| --------------------- | ------ | ------ |
| Greater than | `gt` | Binary |
| Greater or equal than | `ge` | Binary |
| Lower than | `lt` | Binary |
| Lower or equal than | `le` | Binary |
| Equal | `eq` | Binary |
A simple example on how to use these operations:
```rust
use tfhe::prelude::*;
use tfhe::{generate_keys, set_server_key, ConfigBuilder, FheUint8};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let config = ConfigBuilder::all_disabled().enable_default_uint8().build();
let (keys, server_keys) = generate_keys(config);
set_server_key(server_keys);
let clear_a:u8 = 164;
let clear_b:u8 = 212;
let mut a = FheUint8::try_encrypt(clear_a, &keys)?;
let mut b = FheUint8::try_encrypt(clear_b, &keys)?;
let greater = a.gt(&b);
let greater_or_equal = a.ge(&b);
let lower = a.lt(&b);
let lower_or_equal = a.le(&b);
let equal = a.eq(&b);
let dec_gt : u8 = greater.decrypt(&keys);
let dec_ge : u8 = greater_or_equal.decrypt(&keys);
let dec_lt : u8 = lower.decrypt(&keys);
let dec_le : u8 = lower_or_equal.decrypt(&keys);
let dec_eq : u8 = equal.decrypt(&keys);
// We homomorphically swapped values using bitwise operations
assert_eq!(dec_gt, (clear_a > clear_b ) as u8);
assert_eq!(dec_ge, (clear_a >= clear_b) as u8);
assert_eq!(dec_lt, (clear_a < clear_b ) as u8);
assert_eq!(dec_le, (clear_a <= clear_b) as u8);
assert_eq!(dec_eq, (clear_a == clear_b) as u8);
Ok(())
}
```
### Min/Max.
Homomorphic integers support the min/max operations.
| name | symbol | type |
| ---- | ------ | ------ |
| Min | `min` | Binary |
| Max | `max` | Binary |
A simple example on how to use these operations:
```rust
use tfhe::prelude::*;
use tfhe::{generate_keys, set_server_key, ConfigBuilder, FheUint8};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let config = ConfigBuilder::all_disabled().enable_default_uint8().build();
let (keys, server_keys) = generate_keys(config);
set_server_key(server_keys);
let clear_a:u8 = 164;
let clear_b:u8 = 212;
let mut a = FheUint8::try_encrypt(clear_a, &keys)?;
let mut b = FheUint8::try_encrypt(clear_b, &keys)?;
let min = a.min(&b);
let max = a.max(&b);
let dec_min : u8 = min.decrypt(&keys);
let dec_max : u8 = max.decrypt(&keys);
// We homomorphically swapped values using bitwise operations
assert_eq!(dec_min, u8::min(clear_a, clear_b));
assert_eq!(dec_max, u8::max(clear_a, clear_b));
Ok(())
}
```

View File

@@ -0,0 +1,73 @@
# Serialization/Deserialization
As explained in the Introduction, most types are meant to be shared with the server that performs the computations.
The easiest way to send these data to a server is to use the `serialization` and `deserialization` features. `tfhe` uses the [serde](https://crates.io/crates/serde) framework. Serde's `Serialize` and `Deserialize` functions are implemented on TFHE's types.
To serialize our data, a [data format](https://serde.rs/#data-formats) should be picked. Here, [bincode](https://crates.io/crates/bincode) is a good choice, mainly because it is a binary format.
```toml
# Cargo.toml
[dependencies]
# ...
tfhe = { version = "0.2.4", features = ["integer","x86_64-unix"]}
bincode = "1.3.3"
```
```rust
// main.rs
use bincode;
use std::io::Cursor;
use tfhe::{ConfigBuilder, ServerKey, generate_keys, set_server_key, FheUint8};
use tfhe::prelude::*;
fn main() -> Result<(), Box<dyn std::error::Error>>{
let config = ConfigBuilder::all_disabled()
.enable_default_uint8()
.build();
let ( client_key, server_key) = generate_keys(config);
let msg1 = 1;
let msg2 = 0;
let value_1 = FheUint8::encrypt(msg1, &client_key);
let value_2 = FheUint8::encrypt(msg2, &client_key);
// Prepare to send data to the server
// The ClientKey is _not_ sent
let mut serialized_data = Vec::new();
bincode::serialize_into(&mut serialized_data, &server_key)?;
bincode::serialize_into(&mut serialized_data, &value_1)?;
bincode::serialize_into(&mut serialized_data, &value_2)?;
// Simulate sending serialized data to a server and getting
// back the serialized result
let serialized_result = server_function(&serialized_data)?;
let result: FheUint8 = bincode::deserialize(&serialized_result)?;
let output: u8 = result.decrypt(&client_key);
assert_eq!(output, msg1 + msg2);
Ok(())
}
fn server_function(serialized_data: &[u8]) -> Result<Vec<u8>, Box<dyn std::error::Error>> {
let mut serialized_data = Cursor::new(serialized_data);
let server_key: ServerKey = bincode::deserialize_from(&mut serialized_data)?;
let ct_1: FheUint8 = bincode::deserialize_from(&mut serialized_data)?;
let ct_2: FheUint8 = bincode::deserialize_from(&mut serialized_data)?;
set_server_key(server_key);
let result = ct_1 + ct_2;
let serialized_result = bincode::serialize(&result)?;
Ok(serialized_result)
}
```

View File

@@ -0,0 +1,679 @@
# Tutorial
## Quick Start
The basic steps for using the high-level API of TFHE-rs are:
1. Importing TFHE-rs prelude;
2. Client-side: Configuring and creating keys;
3. Client-side: Encrypting data;
4. Server-side: Setting the server key;
5. Server-side: Computing over encrypted data;
6. Client-side: Decrypting data.
Here is the full example (mixing client and server parts):
```rust
use tfhe::{ConfigBuilder, generate_keys, set_server_key, FheUint8};
use tfhe::prelude::*;
fn main() {
let config = ConfigBuilder::all_disabled()
.enable_default_uint8()
.build();
// Client-side
let (client_key, server_key) = generate_keys(config);
let clear_a = 27u8;
let clear_b = 128u8;
let a = FheUint8::encrypt(clear_a, &client_key);
let b = FheUint8::encrypt(clear_b, &client_key);
//Server-side
set_server_key(server_key);
let result = a + b;
//Client-side
let decrypted_result: u8 = result.decrypt(&client_key);
let clear_result = clear_a + clear_b;
assert_eq!(decrypted_result, clear_result);
}
```
Default configuration for x86 Unix machines:
```toml
tfhe = { version = "0.2.4", features = ["integer", "x86_64-unix"]}
```
Other configurations can be found [here](../getting_started/installation.md).
### Imports.
`tfhe` uses `traits` to have a consistent API for creating FHE types and enable users to write generic functions. To be able to use associated functions and methods of a trait, the trait has to be in scope.
To make it easier, the `prelude` 'pattern' is used. All `tfhe` important traits are in a `prelude` module that you **glob import**. With this, there is no need to remember or know the traits to import.
```rust
use tfhe::prelude::*;
```
### 1. Configuring and creating keys.
The first step is the creation of the configuration. The configuration is used to declare which type you will use or not use, as well as enabling you to use custom crypto-parameters for these types for more advanced usage / testing.
Creating a configuration is done using the ConfigBuilder type.
In this example, 8-bit unsigned integers with default parameters are used. The `integers`
feature must also be enabled, as per the table on the [Getting Started page](../getting_started/installation.md).
The config is done by first creating a builder with all types deactivated. Then, the `uint8` type with default parameters is activated.
```rust
use tfhe::{ConfigBuilder, generate_keys};
fn main() {
let config = ConfigBuilder::all_disabled()
.enable_default_uint8()
.build();
let (client_key, server_key) = generate_keys(config);
}
```
The `generate_keys` command returns a client key and a server key.
The `client_key` is meant to stay private and not leave the client whereas the `server_key` can be made public and sent to a server for it to enable FHE computations.
### 2. Setting the server key.
The next step is to call `set_server_key`
This function will **move** the server key to an internal state of the crate and manage the details to give a simpler interface.
```rust
use tfhe::{ConfigBuilder, generate_keys, set_server_key};
fn main() {
let config = ConfigBuilder::all_disabled()
.enable_default_uint8()
.build();
let (client_key, server_key) = generate_keys(config);
set_server_key(server_key);
}
```
### 3. Encrypting data.
Encrypting data is done via the `encrypt` associated function of the \[FheEncrypt] trait.
Types exposed by this crate implement at least one of \[FheEncrypt] or \[FheTryEncrypt] to allow enryption.
```Rust
let clear_a = 27u8;
let clear_b = 128u8;
let a = FheUint8::encrypt(clear_a, &client_key);
let b = FheUint8::encrypt(clear_b, &client_key);
```
### 4. Computation and decryption.
Computations should be as easy as normal Rust to write, thanks to operator overloading.
```Rust
let result = a + b;
```
The decryption is done by using the `decrypt` method, which comes from the \[FheDecrypt] trait.
```Rust
let decrypted_result: u8 = result.decrypt(&client_key);
let clear_result = clear_a + clear_b;
assert_eq!(decrypted_result, clear_result);
```
## A first complete example: FheLatinString (Integer)
The goal of this tutorial is to build a data type that represents a Latin string in FHE while implementing the `to_lower` and `to_upper` functions.
The allowed characters in a Latin string are:
* Uppercase letters: `A B C D E F G H I J K L M N O P Q R S T U V W X Y Z`
* Lowercase letters: `a b c d e f g h i j k l m n o p q r s t u v w x y z`
For the code point of the letters,`ascii` codes are used:
* The uppercase letters are in the range \[65, 90]
* The lowercase letters are in the range \[97, 122]
`lower_case` = `upper_case` + 32 <=> `upper_case` = `lower_case` - 32
For this type, the `FheUint8` type is used.
### Types and methods.
This type will hold the encrypted characters as a `Vec<FheUint8>`, as well as the encrypted constant `32` to implement the functions that change the case.
In the `FheLatinString::encrypt` function, some data validation is done:
* The input string can only contain ascii letters (no digit, no special characters).
* The input string cannot mix lower and upper case letters.
These two points are to work around a limitation of FHE. It is not possible to create branches, meaning the function cannot use conditional statements. Checking if the 'char' is an uppercase letter to modify it to a lowercase one cannot be done, like in the example below.
```rust
fn to_lower(string: &String) -> String {
let mut result = String::with_capacity(string.len());
for char in string.chars() {
if char.is_uppercase() {
result.extend(char.to_lowercase().to_string().chars())
}
}
result
}
```
With these preconditions checked, implementing `to_lower` and `to_upper` is rather simple.
To use the `FheUint8` type, the `integer` feature must be activated:
```toml
# Cargo.toml
[dependencies]
# Default configuration for x86 Unix machines:
tfhe = { version = "0.2.4", features = ["integer", "x86_64-unix"]}
```
Other configurations can be found [here](../getting_started/installation.md).
```rust
use tfhe::{FheUint8, ConfigBuilder, generate_keys, set_server_key, ClientKey};
use tfhe::prelude::*;
struct FheLatinString{
bytes: Vec<FheUint8>,
// Constant used to switch lower case <=> upper case
cst: FheUint8,
}
impl FheLatinString {
fn encrypt(string: &str, client_key: &ClientKey) -> Self {
assert!(
string.chars().all(|char| char.is_ascii_alphabetic()),
"The input string must only contain ascii letters"
);
let has_mixed_case = string.as_bytes().windows(2).any(|window| {
let first = char::from(*window.first().unwrap());
let second = char::from(*window.last().unwrap());
(first.is_ascii_lowercase() && second.is_ascii_uppercase())
|| (first.is_ascii_uppercase() && second.is_ascii_lowercase())
});
assert!(
!has_mixed_case,
"The input string cannot mix lower case and upper case letters"
);
let fhe_bytes = string
.bytes()
.map(|b| FheUint8::encrypt(b, client_key))
.collect::<Vec<FheUint8>>();
let cst = FheUint8::encrypt(32, client_key);
Self {
bytes: fhe_bytes,
cst,
}
}
fn decrypt(&self, client_key: &ClientKey) -> String {
let ascii_bytes = self
.bytes
.iter()
.map(|fhe_b| fhe_b.decrypt(client_key))
.collect::<Vec<u8>>();
String::from_utf8(ascii_bytes).unwrap()
}
fn to_upper(&self) -> Self {
Self {
bytes: self
.bytes
.iter()
.map(|b| b - &self.cst)
.collect::<Vec<FheUint8>>(),
cst: self.cst.clone(),
}
}
fn to_lower(&self) -> Self {
Self {
bytes: self
.bytes
.iter()
.map(|b| b + &self.cst)
.collect::<Vec<FheUint8>>(),
cst: self.cst.clone(),
}
}
}
fn main() {
let config = ConfigBuilder::all_disabled()
.enable_default_uint8()
.build();
let (client_key, server_key) = generate_keys(config);
set_server_key(server_key);
let my_string = FheLatinString::encrypt("zama", &client_key);
let verif_string = my_string.decrypt(&client_key);
println!("{}", verif_string);
let my_string_upper = my_string.to_upper();
let verif_string = my_string_upper.decrypt(&client_key);
println!("{}", verif_string);
assert_eq!(verif_string, "ZAMA");
let my_string_lower = my_string_upper.to_lower();
let verif_string = my_string_lower.decrypt(&client_key);
println!("{}", verif_string);
assert_eq!(verif_string, "zama");
}
```
## A more complex example: Parity Bit (Boolean)
This example is dedicated to the building of a small function that homomorphically computes a parity bit.
First, a non-generic function is written. Then, generics are used to handle the case where the function inputs are both `FheBool`s and clear `bool`s.
The parity bit function takes as input two parameters:
* A slice of Boolean
* A mode (`Odd` or `Even`)
This function returns a Boolean that will be either `true` or `false` so that the sum of Booleans (in the input and the returned one) is either an `Odd` or `Even` number, depending on the requested mode.
***
### Non-generic version.
To use Booleans, the `booleans` feature in our Cargo.toml must be enabled:
```toml
# Cargo.toml
# Default configuration for x86 Unix machines:
tfhe = { version = "0.2.4", features = ["boolean", "x86_64-unix"]}
```
Other configurations can be found [here](../getting_started/installation.md).
#### function definition
First, the verification function is defined.
The way to find the parity bit is to initialize it to `false, then` `XOR` it with all the bits, one after the other, adding negation depending on the requested mode.
A validation function is also defined to sum together the number of the bit set within the input with the computed parity bit and check that the sum is an even or odd number, depending on the mode.
```rust
use tfhe::FheBool;
use tfhe::prelude::*;
#[derive(Copy, Clone, Debug)]
enum ParityMode {
// The sum bits of message + parity bit must an odd number
Odd,
// The sum bits of message + parity bit must an even number
Even,
}
fn compute_parity_bit(fhe_bits: &[FheBool], mode: ParityMode) -> FheBool {
let mut parity_bit = fhe_bits[0].clone();
for fhe_bit in &fhe_bits[1..] {
parity_bit = fhe_bit ^ parity_bit
}
match mode {
ParityMode::Odd => !parity_bit,
ParityMode::Even => parity_bit,
}
}
fn is_even(n: u8) -> bool {
(n & 1) == 0
}
fn is_odd(n: u8) -> bool {
!is_even(n)
}
fn check_parity_bit_validity(bits: &[bool], mode: ParityMode, parity_bit: bool) -> bool {
let num_bit_set = bits
.iter()
.map(|bit| *bit as u8)
.fold(parity_bit as u8, |acc, bit| acc + bit);
match mode {
ParityMode::Even => is_even(num_bit_set),
ParityMode::Odd => is_odd(num_bit_set),
}
}
```
#### final code
After the mandatory configuration steps, the function is called:
```rust
use tfhe::{FheBool, ConfigBuilder, generate_keys, set_server_key};
use tfhe::prelude::*;
#[derive(Copy, Clone, Debug)]
enum ParityMode {
// The sum bits of message + parity bit must an odd number
Odd,
// The sum bits of message + parity bit must an even number
Even,
}
fn compute_parity_bit(fhe_bits: &[FheBool], mode: ParityMode) -> FheBool {
let mut parity_bit = fhe_bits[0].clone();
for fhe_bit in &fhe_bits[1..] {
parity_bit = fhe_bit ^ parity_bit
}
match mode {
ParityMode::Odd => !parity_bit,
ParityMode::Even => parity_bit,
}
}
fn is_even(n: u8) -> bool {
(n & 1) == 0
}
fn is_odd(n: u8) -> bool {
!is_even(n)
}
fn check_parity_bit_validity(bits: &[bool], mode: ParityMode, parity_bit: bool) -> bool {
let num_bit_set = bits
.iter()
.map(|bit| *bit as u8)
.fold(parity_bit as u8, |acc, bit| acc + bit);
match mode {
ParityMode::Even => is_even(num_bit_set),
ParityMode::Odd => is_odd(num_bit_set),
}
}
fn main() {
let config = ConfigBuilder::all_disabled().enable_default_bool().build();
let (client_key, server_key) = generate_keys(config);
set_server_key(server_key);
let clear_bits = [0, 1, 0, 0, 0, 1, 1].map(|b| (b != 0) as bool);
let fhe_bits = clear_bits
.iter()
.map(|bit| FheBool::encrypt(*bit, &client_key))
.collect::<Vec<FheBool>>();
let mode = ParityMode::Odd;
let fhe_parity_bit = compute_parity_bit(&fhe_bits, mode);
let decrypted_parity_bit = fhe_parity_bit.decrypt(&client_key);
let is_parity_bit_valid = check_parity_bit_validity(&clear_bits, mode, decrypted_parity_bit);
println!("Parity bit is set: {} for mode: {:?}", decrypted_parity_bit, mode);
assert!(is_parity_bit_valid);
let mode = ParityMode::Even;
let fhe_parity_bit = compute_parity_bit(&fhe_bits, mode);
let decrypted_parity_bit = fhe_parity_bit.decrypt(&client_key);
let is_parity_bit_valid = check_parity_bit_validity(&clear_bits, mode, decrypted_parity_bit);
println!("Parity bit is set: {} for mode: {:?}", decrypted_parity_bit, mode);
assert!(is_parity_bit_valid);
}
```
***
### Generic version.
To make the `compute_parity_bit` function compatible with both `FheBool` and `bool`, generics have to be used.
Writing a generic function that accepts `FHE` types as well as clear types can help test the function to see if it is correct. If the function is generic, it can run with clear data, allowing the use of print-debugging or a debugger to spot errors.
Writing generic functions that use operator overloading for our FHE types can be trickier than normal, since `FHE` types are not copy. So using the reference `&` is mandatory, even though this is not the case when using native types, which are all `Copy`.
This will make the generic bounds trickier at first.
#### writing the correct trait bounds
The function has the following signature:
```Rust
fn check_parity_bit_validity(
fhe_bits: &[FheBool],
mode: ParityMode,
) -> bool
```
To make it generic, the first step is:
```Rust
fn compute_parity_bit<BoolType>(
fhe_bits: &[BoolType],
mode: ParityMode,
) -> BoolType
```
Next, the generic bounds have to be defined with the `where` clause.
In the function, the following operators are used:
* `!` (trait: `Not`)
* `^` (trait: `BitXor`)
By adding them to `where`, this gives:
```Rust
where
BoolType: Clone + Not<Output = BoolType>,
BoolType: BitXor<BoolType, Output=BoolType>,
```
However, the compiler will complain:
```text
---- src/user_doc_tests.rs - user_doc_tests (line 199) stdout ----
error[E0369]: no implementation for `&BoolType ^ BoolType`
--> src/user_doc_tests.rs:218:30
|
21 | parity_bit = fhe_bit ^ parity_bit
| ------- ^ ---------- BoolType
| |
| &BoolType
|
help: consider extending the `where` bound, but there might be an alternative better way to express this requirement
|
17 | BoolType: BitXor<BoolType, Output=BoolType>, &BoolType: BitXor<BoolType>
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
error: aborting due to previous error
```
`fhe_bit` is a reference to a `BoolType` (`&BoolType`) since it is borrowed from the `fhe_bits` slice when iterating over its elements. The first try is to change the `BitXor` bounds to what the Compiler suggests by requiring `&BoolType` to implement `BitXor` and not `BoolType`.
```Rust
where
BoolType: Clone + Not<Output = BoolType>,
&BoolType: BitXor<BoolType, Output=BoolType>,
```
The Compiler is still not happy:
```text
---- src/user_doc_tests.rs - user_doc_tests (line 236) stdout ----
error[E0637]: `&` without an explicit lifetime name cannot be used here
--> src/user_doc_tests.rs:251:5
|
17 | &BoolType: BitXor<BoolType, Output=BoolType>,
| ^ explicit lifetime name needed here
error[E0310]: the parameter type `BoolType` may not live long enough
--> src/user_doc_tests.rs:251:16
|
17 | &BoolType: BitXor<BoolType, Output=BoolType>,
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ...so that the reference type `&'static BoolType` does not outlive the data it points at
|
help: consider adding an explicit lifetime bound...
|
15 | BoolType: Clone + Not<Output = BoolType> + 'static,
|
```
The way to fix this is to use `Higher-Rank Trait Bounds`:
```Rust
where
BoolType: Clone + Not<Output = BoolType>,
for<'a> &'a BoolType: BitXor<BoolType, Output = BoolType>,
```
The final code will look like this:
```rust
use std::ops::{Not, BitXor};
#[derive(Copy, Clone, Debug)]
enum ParityMode {
// The sum bits of message + parity bit must an odd number
Odd,
// The sum bits of message + parity bit must an even number
Even,
}
fn compute_parity_bit<BoolType>(fhe_bits: &[BoolType], mode: ParityMode) -> BoolType
where
BoolType: Clone + Not<Output = BoolType>,
for<'a> &'a BoolType: BitXor<BoolType, Output = BoolType>,
{
let mut parity_bit = fhe_bits[0].clone();
for fhe_bit in &fhe_bits[1..] {
parity_bit = fhe_bit ^ parity_bit
}
match mode {
ParityMode::Odd => !parity_bit,
ParityMode::Even => parity_bit,
}
}
```
#### final code
Here is a complete example that uses this function for both clear and FHE values:
```rust
use tfhe::{FheBool, ConfigBuilder, generate_keys, set_server_key};
use tfhe::prelude::*;
use std::ops::{Not, BitXor};
#[derive(Copy, Clone, Debug)]
enum ParityMode {
// The sum bits of message + parity bit must an odd number
Odd,
// The sum bits of message + parity bit must an even number
Even,
}
fn compute_parity_bit<BoolType>(fhe_bits: &[BoolType], mode: ParityMode) -> BoolType
where
BoolType: Clone + Not<Output=BoolType>,
for<'a> &'a BoolType: BitXor<BoolType, Output=BoolType>,
{
let mut parity_bit = fhe_bits[0].clone();
for fhe_bit in &fhe_bits[1..] {
parity_bit = fhe_bit ^ parity_bit
}
match mode {
ParityMode::Odd => !parity_bit,
ParityMode::Even => parity_bit,
}
}
fn is_even(n: u8) -> bool {
(n & 1) == 0
}
fn is_odd(n: u8) -> bool {
!is_even(n)
}
fn check_parity_bit_validity(bits: &[bool], mode: ParityMode, parity_bit: bool) -> bool {
let num_bit_set = bits
.iter()
.map(|bit| *bit as u8)
.fold(parity_bit as u8, |acc, bit| acc + bit);
match mode {
ParityMode::Even => is_even(num_bit_set),
ParityMode::Odd => is_odd(num_bit_set),
}
}
fn main() {
let config = ConfigBuilder::all_disabled().enable_default_bool().build();
let ( client_key, server_key) = generate_keys(config);
set_server_key(server_key);
let clear_bits = [0, 1, 0, 0, 0, 1, 1].map(|b| (b != 0) as bool);
let fhe_bits = clear_bits
.iter()
.map(|bit| FheBool::encrypt(*bit, &client_key))
.collect::<Vec<FheBool>>();
let mode = ParityMode::Odd;
let clear_parity_bit = compute_parity_bit(&clear_bits, mode);
let fhe_parity_bit = compute_parity_bit(&fhe_bits, mode);
let decrypted_parity_bit = fhe_parity_bit.decrypt(&client_key);
let is_parity_bit_valid = check_parity_bit_validity(&clear_bits, mode, decrypted_parity_bit);
println!("Parity bit is set: {} for mode: {:?}", decrypted_parity_bit, mode);
assert!(is_parity_bit_valid);
assert_eq!(decrypted_parity_bit, clear_parity_bit);
let mode = ParityMode::Even;
let clear_parity_bit = compute_parity_bit(&clear_bits, mode);
let fhe_parity_bit = compute_parity_bit(&fhe_bits, mode);
let decrypted_parity_bit = fhe_parity_bit.decrypt(&client_key);
let is_parity_bit_valid = check_parity_bit_validity(&clear_bits, mode, decrypted_parity_bit);
println!("Parity bit is set: {} for mode: {:?}", decrypted_parity_bit, mode);
assert!(is_parity_bit_valid);
assert_eq!(decrypted_parity_bit, clear_parity_bit);
}
```

View File

@@ -0,0 +1,248 @@
# Operations
The structure and operations related to the integers are described in this section.
## How an integer is represented
In `integer`, the encrypted data is split amongst many ciphertexts encrypted with the `shortint` library. Below is a scheme representing an integer composed by k shortint ciphertexts.
![](../\_static/integer-ciphertext.png)
This crate implements two ways to represent an integer:
* the Radix representation
* the CRT (Chinese Reminder Theorem) representation
### Radix-based integers.
The first possibility to represent a large integer is to use a Radix-based decomposition on the plaintexts. Let $$B \in \mathbb{N}$$ be a basis such that the size of $$B$$ is smaller than (or equal to) 4 bits. Then, an integer $$m \in \mathbb{N}$$ can be written as $$m = m_0 + m_1*B + m_2*B^2 + ...$$, where each $$m_i$$ is strictly smaller than $$B$$. Each $$m_i$$ is then independently encrypted. In the end, an Integer ciphertext is defined as a set of shortint ciphertexts.
The definition of an integer requires a basis and a number of blocks. This is done at key generation. Below, the keys are dedicated to unsigned integers encrypting messages over 8 bits, using a basis over 2 bits (i.e., $$B=2^2$$) and 4 blocks.
```rust
use tfhe::integer::gen_keys_radix;
use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let num_block = 4;
let (client_key, server_key) = gen_keys_radix(&PARAM_MESSAGE_2_CARRY_2, num_block);
}
```
In this representation, the correctness of operations requires to propagate the carries between the ciphertext. This operation is costly since it relies on the computation of many programmable bootstrapping operations over shortints.
### CRT-based integers.
The second approach to represent large integers is based on the Chinese Remainder Theorem. In this case, the basis $$B$$ is composed of several integers $$b_i$$, such that there are pairwise coprime, and each $$b\_i$$ has a size smaller than 4 bits. The CRT-based integer are defined modulus $$\prod b_i$$. For an integer $$m$$, its CRT decomposition is simply defined as $$m % b_0, m % b_1, ...$$. Each part is then encrypted as a shortint ciphertext. In the end, an Integer ciphertext is defined as a set of shortint ciphertexts.
In the following example, the chosen basis is $$B = [2, 3, 5]$$. The integer is defined modulus $$2*3*5 = 30$$. There is no need to pre-size the number of blocks since it is determined from the number of values composing the basis. Here, the integer is split over three blocks.
```rust
use tfhe::integer::CrtClientKey;
use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
let basis = vec![2, 3, 5];
let cks = CrtClientKey::new(PARAM_MESSAGE_2_CARRY_2, basis);
}
```
This representation has many advantages: no carry propagation is required, cleaning the carry buffer of each ciphertext block is enough. This implies that operations can easily be
parallelized. It also allows the efficient computation of PBS in the case where the function is CRT-compliant.
A variant of the CRT is proposed, where each block might be associated to a different key couple. In the end, a keychain to the computations is required, but performance might be improved.
## List of available operations
The list of operations available in `integer` depends on the type of representation:
| Operation name | Radix-based | CRT-based |
| ------------------------------ | -------------------- | -------------------------- |
| Negation | :heavy\_check\_mark: | :heavy\_check\_mark: |
| Addition | :heavy\_check\_mark: | :heavy\_check\_mark: |
| Scalar Addition | :heavy\_check\_mark: | :heavy\_check\_mark: |
| Subtraction | :heavy\_check\_mark: | :heavy\_check\_mark: |
| Scalar Subtraction | :heavy\_check\_mark: | :heavy\_check\_mark: |
| Multiplication | :heavy\_check\_mark: | :heavy\_check\_mark: |
| Scalar Multiplication | :heavy\_check\_mark: | :heavy\_check\_mark: |
| Bitwise OR, AND, XOR | :heavy\_check\_mark: | :heavy\_check\_mark: |
| Equality | :heavy\_check\_mark: | :heavy\_check\_mark: |
| Left/Right Shift | :heavy\_check\_mark: | :heavy\_multiplication\_x: |
| Comparisons `<`,`<=`,`>`, `>=` | :heavy\_check\_mark: | :heavy\_multiplication\_x: |
| Min, Max | :heavy\_check\_mark: | :heavy\_multiplication\_x: |
## Types of operations
Much like `shortint`, the operations available via a `ServerKey` may come in different variants:
* operations that take their inputs as encrypted values.
* scalar operations take at least one non-encrypted value as input.
For example, the addition has both variants:
* `ServerKey::unchecked_add`, which takes two encrypted values and adds them.
* `ServerKey::unchecked_scalar_add`, which takes an encrypted value and a clear value (the so-called scalar) and adds them.
Each operation may come in different 'flavors':
* `unchecked`: Always does the operation, without checking if the result may exceed the capacity of the plaintext space.
* `checked`: Checks are done before computing the operation, returning an error if operation cannot be done safely.
* `smart`: Always does the operation, if the operation cannot be computed safely, the smart operation will propagate the carry buffer to make the operation possible.
* `default`: Always compute the operation and always clear the carry. Could be **slower** than smart, but ensure that the timings are consistent from one call to another.
Not all operations have these 4 flavors, as some of them are implemented in a way that the operation is always possible without ever exceeding the plaintext space capacity.
## How to use each operation type
Let's try to do a circuit evaluation using the different flavors of already introduced operations. For a very small circuit, the `unchecked` flavor may be enough to do the computation correctly. Otherwise, `checked` and `smart` are the best options.
As an example, let's do a scalar multiplication, a subtraction, and an addition.
```rust
use tfhe::integer::gen_keys_radix;
use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
let num_block = 4;
let (client_key, server_key) = gen_keys_radix(&PARAM_MESSAGE_2_CARRY_2, num_block);
let msg1 = 12u64;
let msg2 = 11u64;
let msg3 = 9u64;
let scalar = 3u64;
// message_modulus^vec_length
let modulus = client_key.parameters().message_modulus.0.pow(num_block as u32) as u64;
// We use the client key to encrypt two messages:
let mut ct_1 = client_key.encrypt(msg1);
let ct_2 = client_key.encrypt(msg2);
let ct_3 = client_key.encrypt(msg2);
server_key.unchecked_small_scalar_mul_assign(&mut ct_1, scalar);
server_key.unchecked_sub_assign(&mut ct_1, &ct_2);
server_key.unchecked_add_assign(&mut ct_1, &ct_3);
// We use the client key to decrypt the output of the circuit:
let output: u64 = client_key.decrypt(&ct_1);
// The carry buffer has been overflowed, the result is not correct
assert_ne!(output, ((msg1 * scalar as u64 - msg2) + msg3) % modulus as u64);
}
```
During this computation the carry buffer has been overflowed, and the output may be incorrect as all the operations were `unchecked`.
If the same circuit is done but using the `checked` flavor, a panic will occur:
```rust
use tfhe::integer::gen_keys_radix;
use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
let num_block = 2;
let (client_key, server_key) = gen_keys_radix(&PARAM_MESSAGE_2_CARRY_2, num_block);
let msg1 = 12u64;
let msg2 = 11u64;
let msg3 = 9u64;
let scalar = 3u64;
// message_modulus^vec_length
let modulus = client_key.parameters().message_modulus.0.pow(num_block as u32) as u64;
// We use the client key to encrypt two messages:
let mut ct_1 = client_key.encrypt(msg1);
let ct_2 = client_key.encrypt(msg2);
let ct_3 = client_key.encrypt(msg3);
let result = server_key.checked_small_scalar_mul_assign(&mut ct_1, scalar);
assert!(result.is_ok());
let result = server_key.checked_sub_assign(&mut ct_1, &ct_2);
assert!(result.is_err());
// We use the client key to decrypt the output of the circuit:
// Only the scalar multiplication could be done
let output: u64 = client_key.decrypt(&ct_1);
assert_eq!(output, (msg1 * scalar) % modulus as u64);
}
```
The `checked` flavor permits the manual management of the overflow of the carry buffer by raising an error if correctness is not guaranteed.
Using the `smart` flavor will output the correct result all the time. However, the computation may be slower as the carry buffer may be propagated during the computations.
```rust
use tfhe::integer::gen_keys_radix;
use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
let num_block = 4;
let (client_key, server_key) = gen_keys_radix(&PARAM_MESSAGE_2_CARRY_2, num_block);
let msg1 = 12;
let msg2 = 11;
let msg3 = 9;
let scalar = 3;
// message_modulus^vec_length
let modulus = client_key.parameters().message_modulus.0.pow(num_block as u32) as u64;
// We use the client key to encrypt two messages:
let mut ct_1 = client_key.encrypt(msg1);
let mut ct_2 = client_key.encrypt(msg2);
let mut ct_3 = client_key.encrypt(msg3);
server_key.smart_scalar_mul_assign(&mut ct_1, scalar);
server_key.smart_sub_assign(&mut ct_1, &mut ct_2);
server_key.smart_add_assign(&mut ct_1, &mut ct_3);
// We use the client key to decrypt the output of the circuit:
let output: u64 = client_key.decrypt(&ct_1);
assert_eq!(output, ((msg1 * scalar as u64 - msg2) + msg3) % modulus as u64);
}
```
The main advantage of the default flavor is to ensure predictable timings, as long as only this kind of operation is used. Only the parallelized version of the operations is provided.
{% hint style="warning" %}
Using `default` could **slow down** computations.
{% endhint %}
```rust
use tfhe::integer::gen_keys_radix;
use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
let num_block = 4;
let (client_key, server_key) = gen_keys_radix(&PARAM_MESSAGE_2_CARRY_2, num_block);
let msg1 = 12;
let msg2 = 11;
let msg3 = 9;
let scalar = 3;
// message_modulus^vec_length
let modulus = client_key.parameters().message_modulus.0.pow(num_block as u32) as u64;
// We use the client key to encrypt two messages:
let mut ct_1 = client_key.encrypt(msg1);
let mut ct_2 = client_key.encrypt(msg2);
let mut ct_3 = client_key.encrypt(msg3);
server_key.scalar_mul_assign_parallelized(&mut ct_1, scalar);
server_key.sub_assign_parallelized(&mut ct_1, &mut ct_2);
server_key.add_assign_parallelized(&mut ct_1, &mut ct_3);
// We use the client key to decrypt the output of the circuit:
let output: u64 = client_key.decrypt(&ct_1);
assert_eq!(output, ((msg1 * scalar as u64 - msg2) + msg3) % modulus as u64);
}
```

View File

@@ -0,0 +1,3 @@
# Cryptographic Parameters
`integer` does not come with its own set of parameters. Instead, it relies on parameters from `shortint`. Currently, parameter sets having the same space dedicated to the message and the carry (i.e. `PARAM_MESSAGE_{X}_CARRY_{X}` with `X` in \[1,4]) are recommended. See [here](../shortint/parameters.md) for more details about cryptographic parameters, and [here](operations.md) to see how to properly instantiate integers depending on the chosen representation.

View File

@@ -0,0 +1,69 @@
# Serialization/Deserialization
As explained in the introduction, some types (`Serverkey`, `Ciphertext`) are meant to be shared with the server that does the computations.
The easiest way to send these data to a server is to use the serialization and deserialization features. TFHE-rs uses the serde framework, so serde's Serialize and Deserialize are implemented.
To be able to serialize our data, a [data format](https://serde.rs/#data-formats) needs to be picked. Here, [bincode](https://crates.io/crates/bincode) is a good choice, mainly because it is binary format.
```toml
# Cargo.toml
[dependencies]
# ...
bincode = "1.3.3"
```
```rust
// main.rs
use bincode;
use std::io::Cursor;
use tfhe::integer::{gen_keys_radix, ServerKey, RadixCiphertextBig};
use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// We generate a set of client/server keys, using the default parameters:
let num_block = 4;
let (client_key, server_key) = gen_keys_radix(&PARAM_MESSAGE_2_CARRY_2, num_block);
let msg1 = 201;
let msg2 = 12;
// message_modulus^vec_length
let modulus = client_key.parameters().message_modulus.0.pow(num_block as u32) as u64;
let ct_1 = client_key.encrypt(msg1);
let ct_2 = client_key.encrypt(msg2);
let mut serialized_data = Vec::new();
bincode::serialize_into(&mut serialized_data, &server_key)?;
bincode::serialize_into(&mut serialized_data, &ct_1)?;
bincode::serialize_into(&mut serialized_data, &ct_2)?;
// Simulate sending serialized data to a server and getting
// back the serialized result
let serialized_result = server_function(&serialized_data)?;
let result: RadixCiphertextBig = bincode::deserialize(&serialized_result)?;
let output: u64 = client_key.decrypt(&result);
assert_eq!(output, (msg1 + msg2) % modulus);
Ok(())
}
fn server_function(serialized_data: &[u8]) -> Result<Vec<u8>, Box<dyn std::error::Error>> {
let mut serialized_data = Cursor::new(serialized_data);
let server_key: ServerKey = bincode::deserialize_from(&mut serialized_data)?;
let ct_1: RadixCiphertextBig = bincode::deserialize_from(&mut serialized_data)?;
let ct_2: RadixCiphertextBig = bincode::deserialize_from(&mut serialized_data)?;
let result = server_key.unchecked_add(&ct_1, &ct_2);
let serialized_result = bincode::serialize(&result)?;
Ok(serialized_result)
}
```

View File

@@ -0,0 +1,121 @@
# Tutorial
The steps to homomorphically evaluate an integer circuit are described here.
## Key Types
`integer` provides 3 basic key types:
* `ClientKey`
* `ServerKey`
* `PublicKey`
The `ClientKey` is the key that encrypts and decrypts messages, thus this key is meant to be kept private and should never be shared. This key is created from parameter values that will dictate both the security and efficiency of computations. The parameters also set the maximum number of bits of message encrypted in a ciphertext.
The `ServerKey` is the key that is used to actually do the FHE computations. It contains a bootstrapping key and a keyswitching key. This key is created from a `ClientKey` that needs to be shared to the server, so it is not meant to be kept private. A user with a `ServerKey` can compute on the encrypted data sent by the owner of the associated `ClientKey`.
To reflect that, computation/operation methods are tied to the `ServerKey` type.
The `PublicKey` is a key used to encrypt messages. It can be publicly shared to allow users to encrypt data such that only the `ClientKey` holder will be able to decrypt. Encrypting with the `PublicKey` does not alter the homomorphic capabilities associated to the `ServerKey`.
## 1. Key Generation
To generate the keys, a user needs two parameters:
* A set of `shortint` cryptographic parameters.
* The number of ciphertexts used to encrypt an integer (we call them "shortint blocks").
We are now going to build a pair of keys that can encrypt an **8-bit** integer by using **4** shortint blocks that store **2** bits of message each.
```rust
use tfhe::integer::gen_keys_radix;
use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let num_block = 4;
let (client_key, server_key) = gen_keys_radix(&PARAM_MESSAGE_2_CARRY_2, num_block);
}
```
## 2. Encrypting values
Once we have our keys, we can encrypt values:
```rust
use tfhe::integer::gen_keys_radix;
use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let num_block = 4;
let (client_key, server_key) = gen_keys_radix(&PARAM_MESSAGE_2_CARRY_2, num_block);
let msg1 = 128u64;
let msg2 = 13u64;
// We use the client key to encrypt two messages:
let ct_1 = client_key.encrypt(msg1);
let ct_2 = client_key.encrypt(msg2);
}
```
## 3. Encrypting values with the public key
Once the client key is generated, the public key can be derived and used to encrypt data.
```rust
use tfhe::integer::gen_keys_radix;
use tfhe::integer::PublicKeyBig;
use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let num_block = 4;
let (client_key, _) = gen_keys_radix(&PARAM_MESSAGE_2_CARRY_2, num_block);
//We generate the public key from the secret client key:
let public_key = PublicKeyBig::new(&client_key);
//encryption
let msg1 = 128u64;
let msg2 = 13u64;
// We use the public key to encrypt two messages:
let ct_1 = public_key.encrypt_radix(msg1, num_block);
let ct_2 = public_key.encrypt_radix(msg2, num_block);
}
```
## 4. Computing and decrypting
With our `server_key`, and encrypted values, we can now do an addition and then decrypt the result.
```rust
use tfhe::integer::gen_keys_radix;
use tfhe::shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let num_block = 4;
let (client_key, server_key) = gen_keys_radix(&PARAM_MESSAGE_2_CARRY_2, num_block);
let msg1 = 128;
let msg2 = 13;
// message_modulus^vec_length
let modulus = client_key.parameters().message_modulus.0.pow(num_block as u32) as u64;
// We use the client key to encrypt two messages:
let ct_1 = client_key.encrypt(msg1);
let ct_2 = client_key.encrypt(msg2);
// We use the server public key to execute an integer circuit:
let ct_3 = server_key.unchecked_add(&ct_1, &ct_2);
// We use the client key to decrypt the output of the circuit:
let output: u64 = client_key.decrypt(&ct_3);
assert_eq!(output, (msg1 + msg2) % modulus);
}
```

View File

@@ -0,0 +1,110 @@
# Tutorial
## Using the JS on WASM API
Welcome to this TFHE-rs JS on WASM API tutorial.
TFHE-rs uses WASM to expose a JS binding to the client-side primitives, like key generation and encryption, of the Boolean and shortint modules.
There are several limitations at this time. Due to a lack of threading support in WASM, key generation can be too slow to be practical for bigger parameter sets.
Some parameter sets lead to FHE keys that are too big to fit in the 2GB memory space of WASM. This means that some parameter sets are virtually unusable.
## First steps using TFHE-rs JS on WASM API
### Setting-up TFHE-rs JS on WASM API for use in nodejs programs.
To build the JS on WASM bindings for TFHE-rs, you need to install [`wasm-pack`](https://rustwasm.github.io/wasm-pack/) in addition to a compatible (>= 1.65) [`rust toolchain`](https://rustup.rs/).
In a shell, then run the following to clone the TFHE-rs repo (one may want to checkout a specific tag, here the default branch is used for the build):
```shell
$ git clone https://github.com/zama-ai/tfhe-rs.git
Cloning into 'tfhe-rs'...
...
Resolving deltas: 100% (3866/3866), done.
$ cd tfhe-rs
$ cd tfhe
$ rustup run wasm-pack build --release --target=nodejs --features=boolean-client-js-wasm-api,shortint-client-js-wasm-api
[INFO]: Compiling to Wasm...
...
[INFO]: :-) Your wasm pkg is ready to publish at ...
```
The command above targets nodejs. A binding for a web browser can be generated as well using `--target=web`. This use case will not be discussed in this tutorial.
Both Boolean and shortint features are enabled here, but it's possible to use one without the other.
After the build, a new directory _**pkg**_ is present in the `tfhe` directory.
```shell
$ ls pkg
LICENSE index.html package.json tfhe.d.ts tfhe.js tfhe_bg.txt tfhe_bg.wasm tfhe_bg.wasm.d.ts
$
```
### Commented code to generate keys for shortint and encrypt a ciphertext
{% hint style="info" %}
Be sure to update the path of the required clause in the example below for the TFHE package that was just built.
{% endhint %}
```javascript
// Here import assert to check the decryption went well and panic otherwise
const assert = require('node:assert').strict;
// Import the Shortint module from the TFHE-rs package generated earlier
const { Shortint } = require("/path/to/built/tfhe/pkg");
function shortint_example() {
// Get pre-defined parameters from the shortint module to manage messages with 4 bits of useful
// information in total (2 bits of "message" and 2 bits of "carry")
let params = Shortint.get_parameters(2, 2);
// Create a new secret ClientKey, this must not be shared
console.log("Generating client keys...")
let cks = Shortint.new_client_key(params);
// Encrypt 3 in a ciphertext
console.log("Encrypting 3...")
let ct = Shortint.encrypt(cks, BigInt(3));
// Demonstrate ClientKey serialization (for example saving it on disk on the user device)
let serialized_cks = Shortint.serialize_client_key(cks);
// Deserialization
let deserialized_cks = Shortint.deserialize_client_key(serialized_cks);
// Demonstrate ciphertext serialization to send over the network
let serialized_ct = Shortint.serialize_ciphertext(ct);
// Deserialize a ciphertext received over the network for example
let deserialized_ct = Shortint.deserialize_ciphertext(serialized_ct);
// Decrypt with the deserialized objects
console.log("Decrypting ciphertext...")
let decrypted = Shortint.decrypt(deserialized_cks, deserialized_ct);
// Check decryption works as expected
assert.deepStrictEqual(decrypted, BigInt(3));
console.log("Decryption successful!")
// Generate public evaluation keys, also called ServerKey
console.log("Generating compressed ServerKey...")
let sks = Shortint.new_compressed_server_key(cks);
// Can be serialized to send over the network to the machine doing the evaluation
let serialized_sks = Shortint.serialize_compressed_server_key(sks);
let deserialized_sks = Shortint.deserialize_compressed_server_key(serialized_sks);
console.log("All done!")
}
shortint_example();
```
The `example.js` script can then be run using [`node`](https://nodejs.org/), like so:
```shell
$ node example.js
Generating client keys...
Encrypting 3...
Decrypting ciphertext...
Decryption successful!
Generating compressed ServerKey...
All done!
$
```

View File

@@ -1,54 +1,47 @@
# How Shortint are represented
# Operations
The structure and the operations related to the short integers are described in this section.
## How a shortint is represented
In `shortint`, the encrypted data is stored in an LWE ciphertext.
Conceptually, the message stored in an LWE ciphertext, is divided into
a **carry buffer** and a **message buffer**.
Conceptually, the message stored in an LWE ciphertext is divided into a **carry buffer** and a **message buffer**.
![](../\_static/ciphertext-representation.svg)
![](../\_static/ciphertext-representation.png)
The message buffer is the space where the actual message is stored. This represents the modulus of the input messages (denoted by `MessageModulus` in the code). When doing computations on a ciphertext, the encrypted message can overflow the message modulus: the exceeding information is stored in the carry buffer. The size of the carry buffer is defined by another modulus, called `CarryModulus`.
The message buffer is the space where the actual message is stored. This represents the modulus of the input messages (denoted by `MessageModulus` in the code). When doing computations on a ciphertext, the encrypted message can overflow the message modulus. The exceeding information is stored in the carry buffer. The size of the carry buffer is defined by another modulus, called `CarryModulus`.
Together, the message modulus and the carry modulus form the plaintext space that is available in a ciphertext. This space cannot be overflowed, otherwise the computation may result in incorrect outputs.
In order to ensure the computation correctness, we keep track of the maximum value encrypted in a
ciphertext via an associated attribute called the **degree**. When the degree reaches a defined threshold, the carry buffer may be emptied to resume safely the computations. Therefore, in `shortint` the carry modulus is mainly considered as a means to do more computations.
In order to ensure the correctness of the computation, we track the maximum value encrypted in a ciphertext via an associated attribute called the **degree**. When the degree reaches a defined threshold, the carry buffer may be emptied to safely resume the computations. In `shortint` the carry modulus is considered useful as a means to do more computations.
# Types of operations
## Types of operations
The operations available via a `ServerKey` may come in different variants:
- operations that take their inputs as encrypted values.
- scalar operations take at least one non-encrypted value as input.
* operations that take their inputs as encrypted values
* scalar operations that take at least one non-encrypted value as input
For example, the addition has both variants:
- `ServerKey::unchecked_add` which takes two encrypted values and adds them.
- `ServerKey::unchecked_scalar_add` which takes an encrypted value and a clear value (the
so-called scalar) and adds them.
* `ServerKey::unchecked_add`, which takes two encrypted values and adds them.
* `ServerKey::unchecked_scalar_add`, which takes an encrypted value and a clear value (the so-called scalar) and adds them.
Each operation may come in different 'flavors':
- `unchecked`: Always does the operation, without checking if the result may exceed the capacity of
the plaintext space. Using this operations might have an impact on the correctness of the
following operations;
- `checked`: Checks are done before computing the operation, returning an error if operation
cannot be done safely;
- `smart`: Always does the operation, if the operation cannot be computed safely, the smart operation
will clear the carry modulus to make the operation possible.
* `unchecked`: Always does the operation, without checking if the result may exceed the capacity of the plaintext space. Using this operation might have an impact on the correctness of the following operations;
* `checked`: Checks are done before computing the operation, returning an error if operation cannot be done safely;
* `smart`: Always does the operation. If the operation cannot be computed safely, the smart operation will clear the carry modulus to make the operation possible;
* `default`: Always does the operation and always clears the carry. Could be **slower** than smart, but it ensures that the timings are consistent from one call to another.
Not all operations have these 3 flavors, as some of them are implemented in a way
that the operation is always possible without ever exceeding the plaintext space capacity.
Not all operations have these 4 flavors, as some of them are implemented in a way that the operation is always possible without ever exceeding the plaintext space capacity.
## How to use operation types
# How to use operation types
Let's try to do a circuit evaluation using the different flavours of operations we already introduced.
For a very small circuit, the `unchecked` flavour may be enough to do the computation correctly.
Otherwise, the `checked` and `smart` are the best options.
As an example, let's do a scalar multiplication, a subtraction and a multiplication.
Let's try to do a circuit evaluation using the different flavors of operations we already introduced. For a very small circuit, the `unchecked` flavour may be enough to do the computation correctly. Otherwise,`checked` and `smart` are the best options.
Let's do a scalar multiplication, a subtraction, and a multiplication.
```rust
use tfhe::shortint::prelude::*;
@@ -78,10 +71,9 @@ fn main() {
}
```
During this computation the carry buffer has been overflowed and as all the operations were `unchecked` the output
may be incorrect.
During this computation, the carry buffer has been overflowed and, as all the operations were `unchecked`, the output may be incorrect.
If we redo this same circuit but using the `checked` flavour, a panic will occur.
If we redo this same circuit with the `checked` flavor, a panic will occur:
```rust
use tfhe::shortint::prelude::*;
@@ -123,12 +115,9 @@ fn main() {
}
```
Therefore, the `checked` flavour permits to manually manage the overflow of the carry buffer
by raising an error if the correctness is not guaranteed.
The `checked` flavor permits manual management of the overflow of the carry buffer by raising an error if correctness is not guaranteed.
Lastly, using the `smart` flavour will output the correct result all the time. However, the
computation may be slower
as the carry buffer may be cleaned during the computations.
Using the `smart` flavor will output the correct result all the time. However, the computation may be slower as the carry buffer may be cleaned during the computations.
```rust
use tfhe::shortint::prelude::*;
@@ -157,61 +146,90 @@ fn main() {
assert_eq!(output, ((msg1 * scalar as u64 - msg2) * msg2) % modulus as u64);
}
```
#List of available operations
The main advantage of the default flavor is to ensure predictable timings as long as only this kind of operation is used.
{% hint style="warning" %}
Currently, certain operations can only be used if the parameter set chosen is compatible with the
bivariate programmable bootstrapping, meaning the carry buffer is larger or equal than the
message buffer. These operations are marked with a star (*).
Using `default` could **slow-down** computations.
{% endhint %}
The list of implemented operations for shortints is:
- addition between two ciphertexts
- addition between a ciphertext and an unencrypted scalar
- comparisons `<`, `<=`, `>`, `>=`, `==` between a ciphertext and an unencrypted scalar
- division of a ciphertext by an unencrypted scalar
- LSB multiplication between two ciphertexts returning the result truncated to fit in the `message buffer`
- multiplication of a ciphertext by an unencrypted scalar
- bitwise shift `<<`, `>>`
- subtraction of a ciphertext by another ciphertext
- subtraction of a ciphertext by an unencrypted scalar
- negation of a ciphertext
- bitwise and, or and xor (*)
- comparisons `<`, `<=`, `>`, `>=`, `==` between two ciphertexts (*)
- division between two ciphertexts (*)
- MSB multiplication between two ciphertexts returning the part overflowing the `message buffer` (*)
In what follows, some simple code examples are given.
## Public key encryption
TFHE-rs supports both private and public key encryption methods. Note that the only difference
between both lies into the encryption step: in this case, the encryption method is called using
`public_key` instead of `client_key`.
Here a small example on how to use public encryption:
```rust
use tfhe::boolean::prelude::*;
use tfhe::shortint::prelude::*;
fn main() {
// Generate the client key and the server key:
let (cks, mut sks) = gen_keys();
let pks = PublicKey::new(&cks);
// Encryption of one message:
let ct = pks.encrypt(true);
// Decryption:
let dec = cks.decrypt(&ct);
assert_eq!(true, dec);
// We generate a set of client/server keys, using the default parameters:
let (client_key, server_key) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
let msg1 = 3;
let msg2 = 3;
let scalar = 4;
let modulus = client_key.parameters.message_modulus.0;
// We use the client key to encrypt two messages:
let mut ct_1 = client_key.encrypt(msg1);
let mut ct_2 = client_key.encrypt(msg2);
server_key.scalar_mul_assign(&mut ct_1, scalar);
server_key.sub_assign(&mut ct_1, &mut ct_2);
server_key.mul_lsb_assign(&mut ct_1, &mut ct_2);
// We use the client key to decrypt the output of the circuit:
let output = client_key.decrypt(&ct_1);
assert_eq!(output, ((msg1 * scalar as u64 - msg2) * msg2) % modulus as u64);
}
```
\#List of available operations
{% hint style="warning" %}
Certain operations can only be used if the parameter set chosen is compatible with the bivariate programmable bootstrapping, meaning the carry buffer is larger than or equal to the message buffer. These operations are marked with a star (\*).
{% endhint %}
In what follows, all examples are related to private key encryption.
The list of implemented operations for shortint is:
## Arithmetic operations
Classical arithmetic operations are supported by shortints:
* addition between two ciphertexts
* addition between a ciphertext and an unencrypted scalar
* comparisons `<`, `<=`, `>`, `>=`, `==`, `!=` between a ciphertext and an unencrypted scalar
* division of a ciphertext by an unencrypted scalar
* LSB multiplication between two ciphertexts returning the result truncated to fit in the `message buffer`
* multiplication of a ciphertext by an unencrypted scalar
* bitwise shift `<<`, `>>`
* subtraction of a ciphertext by another ciphertext
* subtraction of a ciphertext by an unencrypted scalar
* negation of a ciphertext
* bitwise and, or and xor (\*)
* comparisons `<`, `<=`, `>`, `>=`, `==`, `!=` between two ciphertexts (\*)
* division between two ciphertexts (\*)
* MSB multiplication between two ciphertexts returning the part overflowing the `message buffer` (\*)
### Public key encryption.
TFHE-rs supports both private and public key encryption methods. The only difference between both lies in the encryption step: in this case, the encryption method is called using `public_key` instead of `client_key`.
Here is a small example on how to use public encryption:
```rust
use tfhe::shortint::prelude::*;
fn main() {
// Generate the client key and the server key:
let (cks, _) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
let pks = PublicKeyBig::new(&cks);
let msg = 2;
// Encryption of one message:
let ct = pks.encrypt(msg);
// Decryption:
let dec = cks.decrypt(&ct);
assert_eq!(dec, msg);
}
```
### Arithmetic operations.
Classical arithmetic operations are supported by shortint:
```rust
use tfhe::shortint::prelude::*;
@@ -238,15 +256,13 @@ fn main() {
}
```
### Bitwise operations
#### bitwise operations
Short homomorphic integer types support some bitwise operations.
A simple example on how to use these operations:
```rust
```rust
use tfhe::shortint::prelude::*;
fn main() {
@@ -271,14 +287,13 @@ fn main() {
}
```
### Comparisons
#### comparisons
Short homomorphic integer types support comparison operations.
A simple example on how to use these operations:
```rust
use tfhe::shortint::prelude::*;
fn main() {
@@ -303,14 +318,11 @@ fn main() {
}
```
### Univariate function evaluations
#### univariate function evaluations
A simple example on how to use this operation to homomorphically compute
the hamming weight (i.e., the number of bit equals to one) of an encrypted
number.
A simple example on how to use this operation to homomorphically compute the hamming weight (i.e., the number of bits equal to one) of an encrypted number.
```rust
use tfhe::shortint::prelude::*;
fn main() {
@@ -328,7 +340,7 @@ fn main() {
let acc = server_key.generate_accumulator(|n| n.count_ones().into());
// add the two ciphertexts
let ct_res = server_key.keyswitch_programmable_bootstrap(&ct_1, &acc);
let ct_res = server_key.apply_lookup_table(&ct_1, &acc);
// We use the client key to decrypt the output of the circuit:
@@ -337,17 +349,13 @@ fn main() {
}
```
### Bi-variate function evaluations
#### bi-variate function evaluations
Using the shortint types offers the possibility to evaluate bi-variate functions, i.e.,
functions that takes two ciphertexts as input. This requires to choose a parameter set
such that the carry buffer size is at least as large as the message one i.e.,
PARAM_MESSAGE_X_CARRY_Y with X <= Y.
Using the shortint types offers the possibility to evaluate bi-variate functions, or functions that take two ciphertexts as input. This requires choosing a parameter set such that the carry buffer size is at least as large as the message (i.e., PARAM\_MESSAGE\_X\_CARRY\_Y with X <= Y).
In what follows, a simple code example:
Here is a simple code example:
```rust
use tfhe::shortint::prelude::*;
fn main() {
@@ -361,18 +369,16 @@ fn main() {
// We use the private client key to encrypt two messages:
let ct_1 = client_key.encrypt(msg1);
let ct_2 = client_key.encrypt(msg2);
let mut ct_2 = client_key.encrypt(msg2);
// Compute the accumulator for the bivariate functions
let acc = server_key.generate_accumulator_bivariate(|x,y| (x.count_ones()
+ y.count_ones()) as u64 % modulus );
let ct_res = server_key.keyswitch_programmable_bootstrap_bivariate(&ct_1, &ct_2, &acc);
let ct_res = server_key.smart_apply_lookup_table_bivariate(&ct_1, &mut ct_2, &acc);
// We use the client key to decrypt the output of the circuit:
let output = client_key.decrypt(&ct_res);
assert_eq!(output, (msg1.count_ones() as u64 + msg2.count_ones() as u64) % modulus);
}
```

View File

@@ -1,19 +1,18 @@
# Cryptographic parameters
All parameter sets provides at least 128-bits of security according to the [Lattice-Estimator](https://github.com/malb/lattice-estimator), with an error probability equals to $$2^{-40}$$ when computing a programmable bootstrapping. This error probability is due to the randomness added at each encryption (see [here](../getting_started/security_and_cryptography.md) for more details about the encryption process).
# Cryptographic Parameters
All parameter sets provide at least 128-bits of security according to the [Lattice-Estimator](https://github.com/malb/lattice-estimator), with an error probability equal to $$2^{-40}$$ when computing using programmable bootstrapping. This error probability is due to the randomness added at each encryption (see [here](../getting\_started/security\_and\_cryptography.md) for more details about the encryption process).
## Parameters and message precision
`shortint` comes with sets of parameters that permit to use the functionalities of the library securely and efficiently. Each parameter sets is associated to the message and carry precisions. Thus, each key pair is entangled to precision.
`shortint` comes with sets of parameters that permit the use of the library functionalities securely and efficiently. Each parameter set is associated to the message and carry precisions. Thus, each key pair is entangled to precision.
The user is allowed to choose which set of parameters to use when creating the pair of keys.
The difference between the parameter sets is the total amount of space dedicated to the plaintext and how it is split between the message buffer and the carry buffer. The syntax chosen for the name of a parameter is:
`PARAM_MESSAGE_{number of message bits}_CARRY_{number of carry bits}`. For example, the set of parameters for a message buffer of 5 bits and a carry buffer of 2 bits is `PARAM_MESSAGE_5_CARRY_2`.
The difference between the parameter sets is the total amount of space dedicated to the plaintext and how it is split between the message buffer and the carry buffer. The syntax chosen for the name of a parameter is: `PARAM_MESSAGE_{number of message bits}_CARRY_{number of carry bits}`. For example, the set of parameters for a message buffer of 5 bits and a carry buffer of 2 bits is `PARAM_MESSAGE_5_CARRY_2`.
In what follows, there is an example where keys are generated to have messages encoded over 3 bits i.e., computations are done modulus $$2^3 = 8$$), with 3 bits of carry.
This example contains keys that are generated to have messages encoded over 2 bits (i.e., computations are done modulus $$2^2 = 4$$) with 2 bits of carry.
The `PARAM_MESSAGE_2_CARRY_2` parameter set is the default `shortint` parameter set that you can also use through the `tfhe::shortint::prelude::DEFAULT_PARAMETERS` constant.
```rust
use tfhe::shortint::prelude::*;
@@ -23,7 +22,7 @@ fn main() {
let (client_key, server_key) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
let msg1 = 3;
let msg2 = 7;
let msg2 = 2;
// We use the client key to encrypt two messages:
let ct_1 = client_key.encrypt(msg1);
@@ -33,21 +32,19 @@ fn main() {
## Impact of parameters on the operations
As shown [here](../getting_started/benchmarks.md), the choice of the parameter set impacts the operations available and their efficiency.
As shown [here](../getting\_started/benchmarks.md), the choice of the parameter set impacts the operations available and their efficiency.
### Generic bi-variate functions
### Generic bi-variate functions.
The computations of bi-variate functions is based on a trick *concatenating* two ciphertexts into one. In the case where the carry buffer is not at least as large as the message one, this trick is not working anymore. Then, many bi-variate operations, such as comparisons cannot be correctly computed anymore. The only exception concerns the multiplication.
The computations of bi-variate functions is based on a trick: _concatenating_ two ciphertexts into one. Where the carry buffer is not at least as large as the message one, this trick no longer works. Many bi-variate operations, such as comparisons, then cannot be correctly computed. The only exception concerns multiplication.
### Multiplication
### Multiplication.
In the case of the multiplication, two algorithms are implemented: the first one relies on the bi-variate function trick, where the other one is based on the [quarter square method](https://en.wikipedia.org/wiki/Multiplication_algorithm#Quarter_square_multiplication). In order to correctly compute a multiplication, the only requirement is to have at least one bit of carry (i.e., using parameter sets PARAM_MESSAGE_X_CARRY_Y with Y>=1). This method is in general slower than using the other one. Note that using the `smart` version of the multiplication automatically chooses which algorithm is used depending on the chosen parameters.
In the case of multiplication, two algorithms are implemented: the first one relies on the bi-variate function trick, where the other one is based on the [quarter square method](https://en.wikipedia.org/wiki/Multiplication\_algorithm#Quarter\_square\_multiplication). To correctly compute a multiplication, the only requirement is to have at least one bit of carry (i.e., using parameter sets PARAM\_MESSAGE\_X\_CARRY\_Y with Y>=1). This method is slower than using the other one. Using the `smart` version of the multiplication automatically chooses which algorithm is used depending on the chosen parameters.
## User-defined parameter sets
Beyond the predefined parameter sets, this is possible to define new parameter sets.
To do so, it is sufficient to use the function `unsecure_parameters()` or to manually fulfill the
`Parameter` structure fields.
It is possible to define new parameter sets. To do so, it is sufficient to use the function `unsecure_parameters()` or to manually fill the `Parameter` structure fields.
For instance:
@@ -73,16 +70,8 @@ fn main() {
DecompositionBaseLog(0),
MessageModulus(4),
CarryModulus(1),
CiphertextModulus::new_native(),
)
};
}
```

View File

@@ -1,11 +1,10 @@
# Serialization / Deserialization
# Serialization/Deserialization
As explained in the introduction, some types (`Serverkey`, `Ciphertext`) are meant to be shared with the server that does the computations.
As explained in the introduction, some types (`Serverkey`, `Ciphertext`) are meant to be shared with the server that performs the computations.
The easiest way to send these data to a server is to use the serialization and deserialization features. tfhe::shortint uses the [serde](https://crates.io/crates/serde) framework, serde's Serialize and Deserialize are implemented on tfhe::shortint's types.
To be able to serialize our data, we need to pick a [data format](https://serde.rs/#data-formats), for our use case, [bincode](https://crates.io/crates/bincode) is a good choice, mainly because it is binary format.
The easiest way to send these data to a server is to use the serialization and deserialization features. tfhe::shortint uses the [serde](https://crates.io/crates/serde) framework. Serde's Serialize and Deserialize are then implemented on tfhe::shortint's types.
To serialize the data, we need to pick a [data format](https://serde.rs/#data-formats). For our use case, [bincode](https://crates.io/crates/bincode) is a good choice, mainly because it is binary format.
```toml
# Cargo.toml
@@ -15,7 +14,6 @@ To be able to serialize our data, we need to pick a [data format](https://serde.
bincode = "1.3.3"
```
```rust
// main.rs
@@ -25,7 +23,7 @@ use tfhe::shortint::prelude::*;
fn main() -> Result<(), Box<dyn std::error::Error>> {
let (client_key, server_key) = gen_keys(Parameters::default());
let (client_key, server_key) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
let msg1 = 1;
let msg2 = 0;
@@ -41,7 +39,7 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
// Simulate sending serialized data to a server and getting
// back the serialized result
let serialized_result = server_function(&serialized_data)?;
let result: Ciphertext = bincode::deserialize(&serialized_result)?;
let result: CiphertextBig = bincode::deserialize(&serialized_result)?;
let output = client_key.decrypt(&result);
assert_eq!(output, msg1 + msg2);
@@ -52,8 +50,8 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
fn server_function(serialized_data: &[u8]) -> Result<Vec<u8>, Box<dyn std::error::Error>> {
let mut serialized_data = Cursor::new(serialized_data);
let server_key: ServerKey = bincode::deserialize_from(&mut serialized_data)?;
let ct_1: Ciphertext = bincode::deserialize_from(&mut serialized_data)?;
let ct_2: Ciphertext = bincode::deserialize_from(&mut serialized_data)?;
let ct_1: CiphertextBig = bincode::deserialize_from(&mut serialized_data)?;
let ct_2: CiphertextBig = bincode::deserialize_from(&mut serialized_data)?;
let result = server_key.unchecked_add(&ct_1, &ct_2);

View File

@@ -1,29 +1,33 @@
# Tutorial: Writing an homomorphic circuit using shortints
# Tutorial
# 1. Key Generation
The steps to homomorphically evaluate a circuit are described below.
`tfhe::shortint` provides 2 key types:
- `ClientKey`
- `ServerKey`
## Key generation
The `ClientKey` is the key that encrypts and decrypts messages (integer values up to 8 bits here), thus this key is meant to be kept private and should never be shared. This key is created from parameter values that will dictate both the security and efficiency of computations. The parameters also set the maximum number of bits of message encrypted in a ciphertext.
`tfhe::shortint` provides 3 key types:
The `ServerKey` is the key that is used to actually do the FHE computations. It contains (among other things) a bootstrapping key and a keyswitching key. This key is created from a `ClientKey` that needs to be shared to the server, therefore it is not meant to be kept private. A user with a `ServerKey` can compute on the encrypted data sent by the owner of the associated `ClientKey`.
* `ClientKey`
* `ServerKey`
* `PublicKey`
To reflect that, computation/operation methods are tied to the `ServerKey` type.
The `ClientKey` is the key that encrypts and decrypts messages (integer values up to 8 bits here). It is meant to be kept private and should never be shared. This key is created from parameter values that will dictate both the security and efficiency of computations. The parameters also set the maximum number of bits of message encrypted in a ciphertext.
The `ServerKey` is the key that is used to actually do the FHE computations. Most importantly, it contains a bootstrapping key and a keyswitching key. This key is created from a `ClientKey` that needs to be shared to the server, therefore it is not meant to be kept private. A user with a `ServerKey` can compute on the encrypted data sent by the owner of the associated `ClientKey`.
Computation/operation methods are tied to the `ServerKey` type.
The `PublicKey` is the key used to encrypt messages. It can be publicly shared to allow users to encrypt data such that only the `ClientKey` holder will be able to decrypt. Encrypting with the `PublicKey` does not alter the homomorphic capabilities associated to the `ServerKey`.
```rust
use tfhe::shortint::prelude::*;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let (client_key, server_key) = gen_keys(Parameters::default());
// We generate a set of client/server keys
let (client_key, server_key) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
}
```
# 2. Encrypting values
## Encrypting values
Once the keys have been generated, the client key is used to encrypt data:
@@ -31,8 +35,8 @@ Once the keys have been generated, the client key is used to encrypt data:
use tfhe::shortint::prelude::*;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let (client_key, server_key) = gen_keys(Parameters::default());
// We generate a set of client/server keys
let (client_key, server_key) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
let msg1 = 1;
let msg2 = 0;
@@ -43,7 +47,7 @@ fn main() {
}
```
# 2 bis. Encrypting values using a public key
## Encrypting values using a public key
Once the keys have been generated, the client key is used to encrypt data:
@@ -51,31 +55,29 @@ Once the keys have been generated, the client key is used to encrypt data:
use tfhe::shortint::prelude::*;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let (client_key, server_key) = gen_keys(Parameters::default());
let public_key = PublicKey::new(&client_key);
// We generate a set of client/server keys
let (client_key, _) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
let public_key = PublicKeyBig::new(&client_key);
let msg1 = 1;
let msg2 = 0;
// We use the client key to encrypt two messages:
let ct_1 = public_key.encrypt(&server_key, msg1);
let ct_2 = public_key.encrypt(&server_key, msg2);
let ct_1 = public_key.encrypt(msg1);
let ct_2 = public_key.encrypt(msg2);
}
```
## Computing and decrypting
# 3. Computing and decrypting
With our `server_key`, and encrypted values, we can now do an addition
and then decrypt the result.
With the `server_key`, addition is now possible over encrypted values. The resulting plaintext is recovered after the decryption with the secret client key.
```rust
use tfhe::shortint::prelude::*;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let (client_key, server_key) = gen_keys(Parameters::default());
// We generate a set of client/server keys
let (client_key, server_key) = gen_keys(PARAM_MESSAGE_2_CARRY_2);
let msg1 = 1;
let msg2 = 0;

View File

@@ -0,0 +1,77 @@
#[path = "../benches/utilities.rs"]
mod utilities;
use crate::utilities::{write_to_json, OperatorType};
use std::fs::{File, OpenOptions};
use std::io::Write;
use std::path::Path;
use tfhe::boolean::parameters::{DEFAULT_PARAMETERS, TFHE_LIB_PARAMETERS};
use tfhe::boolean::{client_key, server_key};
fn write_result(file: &mut File, name: &str, value: usize) {
let line = format!("{name},{value}\n");
let error_message = format!("cannot write {name} result into file");
file.write_all(line.as_bytes()).expect(&error_message);
}
fn client_server_key_sizes(results_file: &Path) {
let boolean_params_vec = vec![
(DEFAULT_PARAMETERS, "DEFAULT_PARAMETERS"),
(TFHE_LIB_PARAMETERS, "TFHE_LIB_PARAMETERS"),
];
File::create(results_file).expect("create results file failed");
let mut file = OpenOptions::new()
.append(true)
.open(results_file)
.expect("cannot open results file");
let operator = OperatorType::Atomic;
println!("Generating boolean (ClientKey, ServerKey)");
for (i, (params, params_name)) in boolean_params_vec.iter().enumerate() {
println!(
"Generating [{} / {}] : {}",
i + 1,
boolean_params_vec.len(),
params_name.to_lowercase()
);
let cks = client_key::ClientKey::new(params);
let sks = server_key::ServerKey::new(&cks);
let ksk_size = sks.key_switching_key_size_bytes();
let test_name = format!("boolean_key_sizes_{params_name}_ksk");
write_result(&mut file, &test_name, ksk_size);
write_to_json(&test_name, *params, *params_name, "KSK", &operator);
println!(
"Element in KSK: {}, size in bytes: {}",
sks.key_switching_key_size_elements(),
ksk_size,
);
let bsk_size = sks.bootstrapping_key_size_bytes();
let test_name = format!("boolean_key_sizes_{params_name}_bsk");
write_result(&mut file, &test_name, bsk_size);
write_to_json(&test_name, *params, *params_name, "BSK", &operator);
println!(
"Element in BSK: {}, size in bytes: {}",
sks.bootstrapping_key_size_elements(),
bsk_size,
);
}
}
fn main() {
let work_dir = std::env::current_dir().unwrap();
println!("work_dir: {}", std::env::current_dir().unwrap().display());
// Change workdir so that the location of the keycache matches the one for tests
let mut new_work_dir = work_dir;
new_work_dir.push("tfhe");
std::env::set_current_dir(new_work_dir).unwrap();
let results_file = Path::new("boolean_key_sizes.csv");
client_server_key_sizes(results_file)
}

View File

@@ -1,12 +1,15 @@
use tfhe::shortint::keycache::{FileStorage, NamedParam, PersistentStorage};
use tfhe::shortint::parameters::ALL_PARAMETER_VEC;
use tfhe::shortint::{gen_keys, ClientKey, ServerKey};
use tfhe::shortint::keycache::{NamedParam, KEY_CACHE, KEY_CACHE_WOPBS};
use tfhe::shortint::parameters::parameters_wopbs_message_carry::{
WOPBS_PARAM_MESSAGE_1_CARRY_1, WOPBS_PARAM_MESSAGE_2_CARRY_2, WOPBS_PARAM_MESSAGE_3_CARRY_3,
WOPBS_PARAM_MESSAGE_4_CARRY_4,
};
use tfhe::shortint::parameters::{
Parameters, ALL_PARAMETER_VEC, PARAM_MESSAGE_1_CARRY_1, PARAM_MESSAGE_2_CARRY_2,
PARAM_MESSAGE_3_CARRY_3, PARAM_MESSAGE_4_CARRY_4,
};
fn client_server_keys() {
let file_storage = FileStorage::new("keys/shortint/client_server".to_string());
println!("Generating (ClientKey, ServerKey)");
println!("Generating shortint (ClientKey, ServerKey)");
for (i, params) in ALL_PARAMETER_VEC.iter().copied().enumerate() {
println!(
"Generating [{} / {}] : {}",
@@ -15,17 +18,55 @@ fn client_server_keys() {
params.name()
);
let keys: Option<(ClientKey, ServerKey)> = file_storage.load(params);
let start = std::time::Instant::now();
if keys.is_some() {
continue;
}
let _ = KEY_CACHE.get_from_param(params);
let client_server_keys = gen_keys(params);
file_storage.store(params, &client_server_keys);
let stop = start.elapsed().as_secs();
println!("Generation took {stop} seconds");
// Clear keys as we go to avoid filling the RAM
KEY_CACHE.clear_in_memory_cache()
}
const WOPBS_PARAMS: [(Parameters, Parameters); 4] = [
(PARAM_MESSAGE_1_CARRY_1, WOPBS_PARAM_MESSAGE_1_CARRY_1),
(PARAM_MESSAGE_2_CARRY_2, WOPBS_PARAM_MESSAGE_2_CARRY_2),
(PARAM_MESSAGE_3_CARRY_3, WOPBS_PARAM_MESSAGE_3_CARRY_3),
(PARAM_MESSAGE_4_CARRY_4, WOPBS_PARAM_MESSAGE_4_CARRY_4),
];
println!("Generating woPBS keys");
for (i, (params_shortint, params_wopbs)) in WOPBS_PARAMS.iter().copied().enumerate() {
println!(
"Generating [{} / {}] : {}, {}",
i + 1,
WOPBS_PARAMS.len(),
params_shortint.name(),
params_wopbs.name(),
);
let start = std::time::Instant::now();
let _ = KEY_CACHE_WOPBS.get_from_param((params_shortint, params_wopbs));
let stop = start.elapsed().as_secs();
println!("Generation took {stop} seconds");
// Clear keys as we go to avoid filling the RAM
KEY_CACHE_WOPBS.clear_in_memory_cache()
}
}
fn main() {
let work_dir = std::env::current_dir().unwrap();
println!("work_dir: {}", std::env::current_dir().unwrap().display());
// Change workdir so that the location of the keycache matches the one for tests
let mut new_work_dir = work_dir;
new_work_dir.push("tfhe");
std::env::set_current_dir(new_work_dir).unwrap();
client_server_keys()
}

View File

@@ -0,0 +1,88 @@
#[path = "../benches/utilities.rs"]
mod utilities;
use crate::utilities::{write_to_json, OperatorType};
use std::fs::{File, OpenOptions};
use std::io::Write;
use std::path::Path;
use tfhe::shortint::keycache::{NamedParam, KEY_CACHE};
use tfhe::shortint::parameters::{
PARAM_MESSAGE_1_CARRY_1, PARAM_MESSAGE_2_CARRY_2, PARAM_MESSAGE_3_CARRY_3,
PARAM_MESSAGE_4_CARRY_4,
};
fn write_result(file: &mut File, name: &str, value: usize) {
let line = format!("{name},{value}\n");
let error_message = format!("cannot write {name} result into file");
file.write_all(line.as_bytes()).expect(&error_message);
}
fn client_server_key_sizes(results_file: &Path) {
let shortint_params_vec = vec![
PARAM_MESSAGE_1_CARRY_1,
PARAM_MESSAGE_2_CARRY_2,
PARAM_MESSAGE_3_CARRY_3,
PARAM_MESSAGE_4_CARRY_4,
];
File::create(results_file).expect("create results file failed");
let mut file = OpenOptions::new()
.append(true)
.open(results_file)
.expect("cannot open results file");
let operator = OperatorType::Atomic;
println!("Generating shortint (ClientKey, ServerKey)");
for (i, params) in shortint_params_vec.iter().enumerate() {
println!(
"Generating [{} / {}] : {}",
i + 1,
shortint_params_vec.len(),
params.name().to_lowercase()
);
let keys = KEY_CACHE.get_from_param(*params);
// Client keys don't have public access to members, but the keys in there are small anyways
// let cks = keys.client_key();
let sks = keys.server_key();
let ksk_size = sks.key_switching_key_size_bytes();
let test_name = format!("shortint_key_sizes_{}_ksk", params.name());
write_result(&mut file, &test_name, ksk_size);
write_to_json(&test_name, *params, params.name(), "KSK", &operator);
println!(
"Element in KSK: {}, size in bytes: {}",
sks.key_switching_key_size_elements(),
ksk_size,
);
let bsk_size = sks.bootstrapping_key_size_bytes();
let test_name = format!("shortint_key_sizes_{}_bsk", params.name());
write_result(&mut file, &test_name, bsk_size);
write_to_json(&test_name, *params, params.name(), "BSK", &operator);
println!(
"Element in BSK: {}, size in bytes: {}",
sks.bootstrapping_key_size_elements(),
bsk_size,
);
// Clear keys as we go to avoid filling the RAM
KEY_CACHE.clear_in_memory_cache()
}
}
fn main() {
let work_dir = std::env::current_dir().unwrap();
println!("work_dir: {}", std::env::current_dir().unwrap().display());
// Change workdir so that the location of the keycache matches the one for tests
let mut new_work_dir = work_dir;
new_work_dir.push("tfhe");
std::env::set_current_dir(new_work_dir).unwrap();
let results_file = Path::new("shortint_key_sizes.csv");
client_server_key_sizes(results_file)
}

View File

@@ -0,0 +1,233 @@
const crypto = require('crypto');
const test = require('node:test');
const assert = require('node:assert').strict;
const { Boolean, Shortint, BooleanParameterSet } = require("../pkg");
function genRandomBigIntWithBytes(byteCount) {
return BigInt('0x' + crypto.randomBytes(byteCount).toString('hex'))
}
// Boolean tests
test('boolean_encrypt_decrypt', (t) => {
let params = Boolean.get_parameters(BooleanParameterSet.Default);
let cks = Boolean.new_client_key(params);
let ct = Boolean.encrypt(cks, true);
let serialized_cks = Boolean.serialize_client_key(cks);
let deserialized_cks = Boolean.deserialize_client_key(serialized_cks);
let serialized_ct = Boolean.serialize_ciphertext(ct);
let deserialized_ct = Boolean.deserialize_ciphertext(serialized_ct);
let decrypted = Boolean.decrypt(deserialized_cks, deserialized_ct);
assert.deepStrictEqual(decrypted, true);
let sks = Boolean.new_compressed_server_key(cks);
let serialized_sks = Boolean.serialize_compressed_server_key(sks);
let deserialized_sks = Boolean.deserialize_compressed_server_key(serialized_sks);
// No equality tests here, as wasm stores pointers which will always differ
});
test('boolean_compressed_encrypt_decrypt', (t) => {
let params = Boolean.get_parameters(BooleanParameterSet.Default);
let cks = Boolean.new_client_key(params);
let ct = Boolean.encrypt_compressed(cks, true);
let serialized_cks = Boolean.serialize_client_key(cks);
let deserialized_cks = Boolean.deserialize_client_key(serialized_cks);
let serialized_ct = Boolean.serialize_compressed_ciphertext(ct);
let deserialized_ct = Boolean.deserialize_compressed_ciphertext(serialized_ct);
let decompressed_ct = Boolean.decompress_ciphertext(deserialized_ct);
let decrypted = Boolean.decrypt(deserialized_cks, decompressed_ct);
assert.deepStrictEqual(decrypted, true);
});
test('boolean_public_encrypt_decrypt', (t) => {
let params = Boolean.get_parameters(BooleanParameterSet.Default);
let cks = Boolean.new_client_key(params);
let pk = Boolean.new_public_key(cks);
let serialized_pk = Boolean.serialize_public_key(pk);
let deserialized_pk = Boolean.deserialize_public_key(serialized_pk);
let ct = Boolean.encrypt_with_public_key(deserialized_pk, true);
let serialized_ct = Boolean.serialize_ciphertext(ct);
let deserialized_ct = Boolean.deserialize_ciphertext(serialized_ct);
let decrypted = Boolean.decrypt(cks, deserialized_ct);
assert.deepStrictEqual(decrypted, true);
});
test('boolean_deterministic_keygen', (t) => {
const TEST_LOOP_COUNT = 128;
let seed_high_bytes = genRandomBigIntWithBytes(8);
let seed_low_bytes = genRandomBigIntWithBytes(8);
let params = Boolean.get_parameters(BooleanParameterSet.Default);
let cks = Boolean.new_client_key_from_seed_and_parameters(seed_high_bytes, seed_low_bytes, params);
let other_cks = Boolean.new_client_key_from_seed_and_parameters(seed_high_bytes, seed_low_bytes, params);
for (let i = 0; i < TEST_LOOP_COUNT; i++) {
let ct_true = Boolean.encrypt(cks, true);
let decrypt_true_other = Boolean.decrypt(other_cks, ct_true);
assert.deepStrictEqual(decrypt_true_other, true);
let ct_false = Boolean.encrypt(cks, false);
let decrypt_false_other = Boolean.decrypt(other_cks, ct_false);
assert.deepStrictEqual(decrypt_false_other, false);
}
});
// Shortint tests
test('shortint_encrypt_decrypt', (t) => {
let params = Shortint.get_parameters(2, 2);
let cks = Shortint.new_client_key(params);
let ct = Shortint.encrypt(cks, BigInt(3));
let serialized_cks = Shortint.serialize_client_key(cks);
let deserialized_cks = Shortint.deserialize_client_key(serialized_cks);
let serialized_ct = Shortint.serialize_ciphertext(ct);
let deserialized_ct = Shortint.deserialize_ciphertext(serialized_ct);
let decrypted = Shortint.decrypt(deserialized_cks, deserialized_ct);
assert.deepStrictEqual(decrypted, BigInt(3));
let sks = Shortint.new_compressed_server_key(cks);
let serialized_sks = Shortint.serialize_compressed_server_key(sks);
let deserialized_sks = Shortint.deserialize_compressed_server_key(serialized_sks);
// No equality tests here, as wasm stores pointers which will always differ
// Encryption using small keys
let params_small = Shortint.get_parameters_small(2, 2);
let cks_small = Shortint.new_client_key(params_small);
let ct_small = Shortint.encrypt_small(cks_small, BigInt(3));
let serialized_ct_small = Shortint.serialize_ciphertext(ct_small);
let deserialized_ct_small = Shortint.deserialize_ciphertext(serialized_ct_small);
let decrypted_small = Shortint.decrypt(cks_small, deserialized_ct_small);
assert.deepStrictEqual(decrypted_small, BigInt(3));
});
test('shortint_compressed_encrypt_decrypt', (t) => {
let params = Shortint.get_parameters(2, 2);
let cks = Shortint.new_client_key(params);
let ct = Shortint.encrypt_compressed(cks, BigInt(3));
let serialized_cks = Shortint.serialize_client_key(cks);
let deserialized_cks = Shortint.deserialize_client_key(serialized_cks);
let serialized_ct = Shortint.serialize_compressed_ciphertext(ct);
let deserialized_ct = Shortint.deserialize_compressed_ciphertext(serialized_ct);
let decompressed_ct = Shortint.decompress_ciphertext(deserialized_ct);
let decrypted = Shortint.decrypt(deserialized_cks, decompressed_ct);
assert.deepStrictEqual(decrypted, BigInt(3));
// Encryption using small keys
let params_small = Shortint.get_parameters_small(2, 2);
let cks_small = Shortint.new_client_key(params_small);
let ct_small = Shortint.encrypt_compressed_small(cks_small, BigInt(3));
let serialized_ct_small = Shortint.serialize_compressed_ciphertext(ct_small);
let deserialized_ct_small = Shortint.deserialize_compressed_ciphertext(serialized_ct_small);
let decompressed_ct_small = Shortint.decompress_ciphertext(deserialized_ct_small);
let decrypted_small = Shortint.decrypt(cks_small, decompressed_ct_small);
assert.deepStrictEqual(decrypted_small, BigInt(3));
});
test('shortint_public_encrypt_decrypt', (t) => {
let params = Shortint.get_parameters(2, 0);
let cks = Shortint.new_client_key(params);
let pk = Shortint.new_public_key(cks);
let ct = Shortint.encrypt_with_public_key(pk, BigInt(3));
let serialized_ct = Shortint.serialize_ciphertext(ct);
let deserialized_ct = Shortint.deserialize_ciphertext(serialized_ct);
let decrypted = Shortint.decrypt(cks, deserialized_ct);
assert.deepStrictEqual(decrypted, BigInt(3));
// Small
let params_small = Shortint.get_parameters_small(2, 2);
let cks_small = Shortint.new_client_key(params_small);
let pk_small = Shortint.new_public_key_small(cks_small);
let ct_small = Shortint.encrypt_with_public_key(pk_small, BigInt(3));
let serialized_ct_small = Shortint.serialize_ciphertext(ct_small);
let deserialized_ct_small = Shortint.deserialize_ciphertext(serialized_ct_small);
let decrypted_small = Shortint.decrypt(cks_small, deserialized_ct_small);
assert.deepStrictEqual(decrypted_small, BigInt(3));
});
test('shortint_compressed_public_encrypt_decrypt', (t) => {
let params = Shortint.get_parameters(1, 1);
let cks = Shortint.new_client_key(params);
let pk = Shortint.new_compressed_public_key(cks);
let serialized_pk = Shortint.serialize_compressed_public_key(pk);
let deserialized_pk = Shortint.deserialize_compressed_public_key(serialized_pk);
let ct = Shortint.encrypt_with_compressed_public_key(deserialized_pk, BigInt(1));
let serialized_ct = Shortint.serialize_ciphertext(ct);
let deserialized_ct = Shortint.deserialize_ciphertext(serialized_ct);
let decrypted = Shortint.decrypt(cks, deserialized_ct);
assert.deepStrictEqual(decrypted, BigInt(1));
// Small
let params_small = Shortint.get_parameters_small(2, 2);
let cks_small = Shortint.new_client_key(params_small);
let pk_small = Shortint.new_compressed_public_key_small(cks_small);
let serialized_pk_small = Shortint.serialize_compressed_public_key(pk_small);
let deserialized_pk_small = Shortint.deserialize_compressed_public_key(serialized_pk_small);
let ct_small = Shortint.encrypt_with_compressed_public_key(deserialized_pk_small, BigInt(1));
let serialized_ct_small = Shortint.serialize_ciphertext(ct_small);
let deserialized_ct_small = Shortint.deserialize_ciphertext(serialized_ct_small);
let decrypted_small = Shortint.decrypt(cks_small, deserialized_ct_small);
assert.deepStrictEqual(decrypted_small, BigInt(1));
});
test('shortint_deterministic_keygen', (t) => {
const TEST_LOOP_COUNT = 128;
let seed_high_bytes = genRandomBigIntWithBytes(8);
let seed_low_bytes = genRandomBigIntWithBytes(8);
let params = Shortint.get_parameters(2, 2);
let cks = Shortint.new_client_key_from_seed_and_parameters(seed_high_bytes, seed_low_bytes, params);
let other_cks = Shortint.new_client_key_from_seed_and_parameters(seed_high_bytes, seed_low_bytes, params);
for (let i = 0; i < TEST_LOOP_COUNT; i++) {
let random_message = genRandomBigIntWithBytes(4) % BigInt(4);
let ct = Shortint.encrypt(cks, random_message);
let decrypt_other = Shortint.decrypt(other_cks, ct);
assert.deepStrictEqual(decrypt_other, random_message);
}
});

15
tfhe/katex-header.html Normal file
View File

@@ -0,0 +1,15 @@
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.15.3/dist/katex.min.css" integrity="sha384-KiWOvVjnN8qwAZbuQyWDIbfCLFhLXNETzBQjA/92pIowpC0d2O3nppDGQVgwd2nB" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/katex@0.15.3/dist/katex.min.js" integrity="sha384-0fdwu/T/EQMsQlrHCCHoH10pkPLlKA1jL5dFyUOvB3lfeT2540/2g6YgSi2BL14p" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/katex@0.15.3/dist/contrib/auto-render.min.js" integrity="sha384-+XBljXPPiv+OzfbB3cVmLHf4hdUFHlWNZN5spNQ7rmHTXpd7WvJum6fIACpNNfIR" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
renderMathInElement(document.body, {
delimiters: [
{left: "$$", right: "$$", display: true},
{left: "\\(", right: "\\)", display: false},
{left: "$", right: "$", display: false},
{left: "\\[", right: "\\]", display: true}
]
});
});
</script>

View File

@@ -2,59 +2,28 @@
//!
//! This module implements the ciphertext structure containing an encryption of a Boolean message.
use crate::core_crypto::prelude::*;
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use crate::core_crypto::entities::*;
use serde::{Deserialize, Serialize};
/// A structure containing a ciphertext, meant to encrypt a Boolean message.
///
/// It is used to evaluate a Boolean circuits homomorphically.
#[derive(Clone, Debug)]
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum Ciphertext {
Encrypted(LweCiphertext32),
Encrypted(LweCiphertextOwned<u32>),
Trivial(bool),
}
#[derive(Serialize, Deserialize)]
enum SerializableCiphertext {
Encrypted(Vec<u8>),
Trivial(bool),
/// A structure containing a compressed ciphertext, meant to encrypt a Boolean message.
///
/// It has to be decompressed before evaluating a Boolean circuit.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct CompressedCiphertext {
pub(crate) ciphertext: SeededLweCiphertext<u32>,
}
impl Serialize for Ciphertext {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut ser_eng = DefaultSerializationEngine::new(()).map_err(serde::ser::Error::custom)?;
match self {
Ciphertext::Encrypted(lwe) => {
let ciphertext = ser_eng.serialize(lwe).map_err(serde::ser::Error::custom)?;
SerializableCiphertext::Encrypted(ciphertext)
}
Ciphertext::Trivial(b) => SerializableCiphertext::Trivial(*b),
}
.serialize(serializer)
}
}
impl<'de> Deserialize<'de> for Ciphertext {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
let thing = SerializableCiphertext::deserialize(deserializer)?;
let mut de_eng = DefaultSerializationEngine::new(()).map_err(serde::de::Error::custom)?;
Ok(match thing {
SerializableCiphertext::Encrypted(data) => {
let lwe = de_eng
.deserialize(data.as_slice())
.map_err(serde::de::Error::custom)?;
Self::Encrypted(lwe)
}
SerializableCiphertext::Trivial(b) => Self::Trivial(b),
})
impl From<CompressedCiphertext> for Ciphertext {
fn from(value: CompressedCiphertext) -> Self {
Self::Encrypted(value.ciphertext.decompress_into_lwe_ciphertext())
}
}

View File

@@ -3,11 +3,11 @@
//! This module implements the generation of the client' secret keys, together with the
//! encryption and decryption methods.
use crate::boolean::ciphertext::Ciphertext;
use crate::boolean::engine::{CpuBooleanEngine, WithThreadLocalEngine};
use crate::boolean::ciphertext::{Ciphertext, CompressedCiphertext};
use crate::boolean::engine::{BooleanEngine, WithThreadLocalEngine};
use crate::boolean::parameters::BooleanParameters;
use crate::core_crypto::prelude::*;
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use crate::core_crypto::entities::*;
use serde::{Deserialize, Serialize};
use std::fmt::{Debug, Formatter};
/// A structure containing the client key, which must be kept secret.
@@ -18,10 +18,10 @@ use std::fmt::{Debug, Formatter};
/// * `glwe_secret_key` - a GLWE secret key, used to generate the bootstrapping keys and key
/// switching keys.
/// * `parameters` - the cryptographic parameter set.
#[derive(Clone)]
#[derive(Clone, Serialize, Deserialize)]
pub struct ClientKey {
pub(crate) lwe_secret_key: LweSecretKey32,
pub(crate) glwe_secret_key: GlweSecretKey32,
pub(crate) lwe_secret_key: LweSecretKeyOwned<u32>,
pub(crate) glwe_secret_key: GlweSecretKeyOwned<u32>,
pub(crate) parameters: BooleanParameters,
}
@@ -46,17 +46,16 @@ impl Debug for ClientKey {
}
impl ClientKey {
/// Encrypts a Boolean message using the client key.
/// Encrypt a Boolean message using the client key.
///
/// # Example
///
/// ```rust
/// # #[cfg(not(feature = "cuda"))]
/// # fn main() {
/// use tfhe::boolean::prelude::*;
///
/// // Generate the client key and the server key:
/// let (cks, mut sks) = gen_keys();
/// let (cks, sks) = gen_keys();
///
/// // Encryption of one message:
/// let ct = cks.encrypt(true);
@@ -65,24 +64,46 @@ impl ClientKey {
/// let dec = cks.decrypt(&ct);
/// assert_eq!(true, dec);
/// # }
/// # #[cfg(feature = "cuda")]
/// # fn main() {}
/// ```
pub fn encrypt(&self, message: bool) -> Ciphertext {
CpuBooleanEngine::with_thread_local_mut(|engine| engine.encrypt(message, self))
BooleanEngine::with_thread_local_mut(|engine| engine.encrypt(message, self))
}
/// Decrypts a ciphertext encrypting a Boolean message using the client key.
/// Encrypt a Boolean message using the client key returning a compressed ciphertext.
///
/// # Example
///
/// ```rust
/// # #[cfg(not(feature = "cuda"))]
/// # fn main() {
/// use tfhe::boolean::prelude::*;
///
/// // Generate the client key and the server key:
/// let (cks, mut sks) = gen_keys();
/// let (cks, sks) = gen_keys();
///
/// // Encryption of one message:
/// let ct = cks.encrypt_compressed(true);
///
/// let ct: Ciphertext = ct.into();
///
/// // Decryption:
/// let dec = cks.decrypt(&ct);
/// assert_eq!(true, dec);
/// # }
/// ```
pub fn encrypt_compressed(&self, message: bool) -> CompressedCiphertext {
BooleanEngine::with_thread_local_mut(|engine| engine.encrypt_compressed(message, self))
}
/// Decrypt a ciphertext encrypting a Boolean message using the client key.
///
/// # Example
///
/// ```rust
/// # fn main() {
/// use tfhe::boolean::prelude::*;
///
/// // Generate the client key and the server key:
/// let (cks, sks) = gen_keys();
///
/// // Encryption of one message:
/// let ct = cks.encrypt(true);
@@ -91,24 +112,16 @@ impl ClientKey {
/// let dec = cks.decrypt(&ct);
/// assert_eq!(true, dec);
/// # }
/// # #[cfg(feature = "cuda")]
/// # fn main() {}
/// ```
pub fn decrypt(&self, ct: &Ciphertext) -> bool {
CpuBooleanEngine::with_thread_local_mut(|engine| engine.decrypt(ct, self))
BooleanEngine::with_thread_local_mut(|engine| engine.decrypt(ct, self))
}
/// Allocates and generates a client key.
///
/// # Panic
///
/// This will panic when the "cuda" feature is enabled and the parameters
/// uses a GlweDimension > 1 (as it is not yet supported by the cuda backend).
/// Allocate and generate a client key.
///
/// # Example
///
/// ```rust
/// # #[cfg(not(feature = "cuda"))]
/// # fn main() {
/// use tfhe::boolean::client_key::ClientKey;
/// use tfhe::boolean::parameters::TFHE_LIB_PARAMETERS;
@@ -117,73 +130,8 @@ impl ClientKey {
/// // Generate the client key:
/// let cks = ClientKey::new(&TFHE_LIB_PARAMETERS);
/// # }
/// # #[cfg(feature = "cuda")]
/// # fn main() {
/// use tfhe::boolean::client_key::ClientKey;
/// use tfhe::boolean::parameters::GPU_DEFAULT_PARAMETERS;
/// use tfhe::boolean::prelude::*;
///
/// // Generate the client key:
/// let cks = ClientKey::new(&GPU_DEFAULT_PARAMETERS);}
/// ```
pub fn new(parameter_set: &BooleanParameters) -> ClientKey {
#[cfg(feature = "cuda")]
{
if parameter_set.glwe_dimension.0 > 1 {
panic!("the cuda backend does not support support GlweSize greater than one");
}
}
CpuBooleanEngine::with_thread_local_mut(|engine| engine.create_client_key(*parameter_set))
}
}
#[derive(Serialize, Deserialize)]
struct SerializableClientKey {
lwe_secret_key: Vec<u8>,
glwe_secret_key: Vec<u8>,
parameters: BooleanParameters,
}
impl Serialize for ClientKey {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut ser_eng = DefaultSerializationEngine::new(()).map_err(serde::ser::Error::custom)?;
let lwe_secret_key = ser_eng
.serialize(&self.lwe_secret_key)
.map_err(serde::ser::Error::custom)?;
let glwe_secret_key = ser_eng
.serialize(&self.glwe_secret_key)
.map_err(serde::ser::Error::custom)?;
SerializableClientKey {
lwe_secret_key,
glwe_secret_key,
parameters: self.parameters,
}
.serialize(serializer)
}
}
impl<'de> Deserialize<'de> for ClientKey {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
let thing =
SerializableClientKey::deserialize(deserializer).map_err(serde::de::Error::custom)?;
let mut de_eng = DefaultSerializationEngine::new(()).map_err(serde::de::Error::custom)?;
Ok(Self {
lwe_secret_key: de_eng
.deserialize(thing.lwe_secret_key.as_slice())
.map_err(serde::de::Error::custom)?,
glwe_secret_key: de_eng
.deserialize(thing.glwe_secret_key.as_slice())
.map_err(serde::de::Error::custom)?,
parameters: thing.parameters,
})
BooleanEngine::with_thread_local_mut(|engine| engine.create_client_key(*parameter_set))
}
}

View File

@@ -0,0 +1,385 @@
use crate::boolean::ciphertext::Ciphertext;
use crate::boolean::{ClientKey, PLAINTEXT_TRUE};
use crate::core_crypto::algorithms::*;
use crate::core_crypto::commons::computation_buffers::ComputationBuffers;
use crate::core_crypto::commons::generators::{DeterministicSeeder, EncryptionRandomGenerator};
use crate::core_crypto::commons::math::random::{ActivatedRandomGenerator, Seeder};
use crate::core_crypto::commons::parameters::CiphertextModulus;
use crate::core_crypto::entities::*;
use crate::core_crypto::fft_impl::fft64::math::fft::Fft;
use serde::{Deserialize, Serialize};
use std::error::Error;
/// Memory used as buffer for the bootstrap
///
/// It contains contiguous chunk which is then sliced and converted
/// into core's View types.
#[derive(Default)]
struct Memory {
buffer: Vec<u32>,
}
impl Memory {
/// Return a tuple with buffers that matches the server key.
///
/// - The first element is the accumulator for bootstrap step.
/// - The second element is a lwe buffer where the result of the of the bootstrap should be
/// written
fn as_buffers(
&mut self,
server_key: &ServerKey,
) -> (GlweCiphertextView<'_, u32>, LweCiphertextMutView<'_, u32>) {
let num_elem_in_accumulator = server_key.bootstrapping_key.glwe_size().0
* server_key.bootstrapping_key.polynomial_size().0;
let num_elem_in_lwe = server_key
.bootstrapping_key
.output_lwe_dimension()
.to_lwe_size()
.0;
let total_elem_needed = num_elem_in_accumulator + num_elem_in_lwe;
let all_elements = if self.buffer.len() < total_elem_needed {
self.buffer.resize(total_elem_needed, 0u32);
self.buffer.as_mut_slice()
} else {
&mut self.buffer[..total_elem_needed]
};
let (accumulator_elements, lwe_elements) =
all_elements.split_at_mut(num_elem_in_accumulator);
{
let mut accumulator = GlweCiphertextMutView::from_container(
accumulator_elements,
server_key.bootstrapping_key.polynomial_size(),
CiphertextModulus::new_native(),
);
accumulator.get_mut_mask().as_mut().fill(0u32);
accumulator.get_mut_body().as_mut().fill(PLAINTEXT_TRUE);
}
let accumulator = GlweCiphertextView::from_container(
accumulator_elements,
server_key.bootstrapping_key.polynomial_size(),
CiphertextModulus::new_native(),
);
let lwe =
LweCiphertextMutView::from_container(lwe_elements, CiphertextModulus::new_native());
(accumulator, lwe)
}
}
/// A structure containing the server public key.
///
/// This server key data lives on the CPU.
///
/// The server key is generated by the client and is meant to be published: the client
/// sends it to the server so it can compute homomorphic Boolean circuits.
///
/// In more details, it contains:
/// * `bootstrapping_key` - a public key, used to perform the bootstrapping operation.
/// * `key_switching_key` - a public key, used to perform the key-switching operation.
#[derive(Clone, Serialize, Deserialize)]
pub struct ServerKey {
pub(crate) bootstrapping_key: FourierLweBootstrapKeyOwned,
pub(crate) key_switching_key: LweKeyswitchKeyOwned<u32>,
}
impl ServerKey {
pub fn bootstrapping_key_size_elements(&self) -> usize {
self.bootstrapping_key.as_view().data().as_ref().len()
}
pub fn bootstrapping_key_size_bytes(&self) -> usize {
self.bootstrapping_key_size_elements() * std::mem::size_of::<concrete_fft::c64>()
}
pub fn key_switching_key_size_elements(&self) -> usize {
self.key_switching_key.as_ref().len()
}
pub fn key_switching_key_size_bytes(&self) -> usize {
self.key_switching_key_size_elements() * std::mem::size_of::<u64>()
}
}
/// A structure containing the compressed server public key.
///
/// This server key data lives on the CPU.
///
/// The server key is generated by the client and is meant to be published: the client
/// sends it to the server so it can compute homomorphic Boolean circuits.
///
/// In more details, it contains:
/// * `bootstrapping_key` - a public key, used to perform the bootstrapping operation.
/// * `key_switching_key` - a public key, used to perform the key-switching operation.
#[derive(Clone, Serialize, Deserialize)]
pub struct CompressedServerKey {
pub(crate) bootstrapping_key: SeededLweBootstrapKeyOwned<u32>,
pub(crate) key_switching_key: SeededLweKeyswitchKeyOwned<u32>,
}
/// Perform ciphertext bootstraps on the CPU
pub(crate) struct Bootstrapper {
memory: Memory,
/// A structure containing two CSPRNGs to generate material for encryption like public masks
/// and secret errors.
///
/// The [`EncryptionRandomGenerator`] contains two CSPRNGs, one publicly seeded used to
/// generate mask coefficients and one privately seeded used to generate errors during
/// encryption.
pub(crate) encryption_generator: EncryptionRandomGenerator<ActivatedRandomGenerator>,
pub(crate) computation_buffers: ComputationBuffers,
pub(crate) seeder: DeterministicSeeder<ActivatedRandomGenerator>,
}
impl Bootstrapper {
pub fn new(seeder: &mut dyn Seeder) -> Self {
Bootstrapper {
memory: Default::default(),
encryption_generator: EncryptionRandomGenerator::<_>::new(seeder.seed(), seeder),
computation_buffers: Default::default(),
seeder: DeterministicSeeder::<_>::new(seeder.seed()),
}
}
pub(crate) fn new_server_key(
&mut self,
cks: &ClientKey,
) -> Result<ServerKey, Box<dyn std::error::Error>> {
let standard_bootstraping_key: LweBootstrapKeyOwned<u32> =
par_allocate_and_generate_new_lwe_bootstrap_key(
&cks.lwe_secret_key,
&cks.glwe_secret_key,
cks.parameters.pbs_base_log,
cks.parameters.pbs_level,
cks.parameters.glwe_modular_std_dev,
CiphertextModulus::new_native(),
&mut self.encryption_generator,
);
// creation of the bootstrapping key in the Fourier domain
let mut fourier_bsk = FourierLweBootstrapKey::new(
standard_bootstraping_key.input_lwe_dimension(),
standard_bootstraping_key.glwe_size(),
standard_bootstraping_key.polynomial_size(),
standard_bootstraping_key.decomposition_base_log(),
standard_bootstraping_key.decomposition_level_count(),
);
let fft = Fft::new(standard_bootstraping_key.polynomial_size());
let fft = fft.as_view();
self.computation_buffers.resize(
convert_standard_lwe_bootstrap_key_to_fourier_mem_optimized_requirement(fft)
.unwrap()
.unaligned_bytes_required(),
);
let stack = self.computation_buffers.stack();
// Conversion to fourier domain
convert_standard_lwe_bootstrap_key_to_fourier_mem_optimized(
&standard_bootstraping_key,
&mut fourier_bsk,
fft,
stack,
);
// Convert the GLWE secret key into an LWE secret key:
let big_lwe_secret_key = cks.glwe_secret_key.clone().into_lwe_secret_key();
// creation of the key switching key
let ksk = allocate_and_generate_new_lwe_keyswitch_key(
&big_lwe_secret_key,
&cks.lwe_secret_key,
cks.parameters.ks_base_log,
cks.parameters.ks_level,
cks.parameters.lwe_modular_std_dev,
CiphertextModulus::new_native(),
&mut self.encryption_generator,
);
Ok(ServerKey {
bootstrapping_key: fourier_bsk,
key_switching_key: ksk,
})
}
pub(crate) fn new_compressed_server_key(
&mut self,
cks: &ClientKey,
) -> Result<CompressedServerKey, Box<dyn std::error::Error>> {
#[cfg(not(feature = "__wasm_api"))]
let bootstrapping_key = par_allocate_and_generate_new_seeded_lwe_bootstrap_key(
&cks.lwe_secret_key,
&cks.glwe_secret_key,
cks.parameters.pbs_base_log,
cks.parameters.pbs_level,
cks.parameters.glwe_modular_std_dev,
CiphertextModulus::new_native(),
&mut self.seeder,
);
#[cfg(feature = "__wasm_api")]
let bootstrapping_key = allocate_and_generate_new_seeded_lwe_bootstrap_key(
&cks.lwe_secret_key,
&cks.glwe_secret_key,
cks.parameters.pbs_base_log,
cks.parameters.pbs_level,
cks.parameters.glwe_modular_std_dev,
CiphertextModulus::new_native(),
&mut self.seeder,
);
let big_lwe_secret_key = cks.glwe_secret_key.clone().into_lwe_secret_key();
// creation of the key switching key
let key_switching_key = allocate_and_generate_new_seeded_lwe_keyswitch_key(
&big_lwe_secret_key,
&cks.lwe_secret_key,
cks.parameters.ks_base_log,
cks.parameters.ks_level,
cks.parameters.lwe_modular_std_dev,
CiphertextModulus::new_native(),
&mut self.seeder,
);
Ok(CompressedServerKey {
bootstrapping_key,
key_switching_key,
})
}
pub(crate) fn bootstrap(
&mut self,
input: &LweCiphertextOwned<u32>,
server_key: &ServerKey,
) -> Result<LweCiphertextOwned<u32>, Box<dyn Error>> {
let (accumulator, mut buffer_after_pbs) = self.memory.as_buffers(server_key);
let fourier_bsk = &server_key.bootstrapping_key;
let fft = Fft::new(fourier_bsk.polynomial_size());
let fft = fft.as_view();
self.computation_buffers.resize(
programmable_bootstrap_lwe_ciphertext_mem_optimized_requirement::<u64>(
fourier_bsk.glwe_size(),
fourier_bsk.polynomial_size(),
fft,
)
.unwrap()
.unaligned_bytes_required(),
);
let stack = self.computation_buffers.stack();
programmable_bootstrap_lwe_ciphertext_mem_optimized(
input,
&mut buffer_after_pbs,
&accumulator,
fourier_bsk,
fft,
stack,
);
Ok(LweCiphertext::from_container(
buffer_after_pbs.as_ref().to_owned(),
input.ciphertext_modulus(),
))
}
pub(crate) fn keyswitch(
&mut self,
input: &LweCiphertextOwned<u32>,
server_key: &ServerKey,
) -> Result<LweCiphertextOwned<u32>, Box<dyn Error>> {
// Allocate the output of the KS
let mut output = LweCiphertext::new(
0u32,
server_key
.bootstrapping_key
.input_lwe_dimension()
.to_lwe_size(),
input.ciphertext_modulus(),
);
keyswitch_lwe_ciphertext(&server_key.key_switching_key, input, &mut output);
Ok(output)
}
pub(crate) fn bootstrap_keyswitch(
&mut self,
mut ciphertext: LweCiphertextOwned<u32>,
server_key: &ServerKey,
) -> Result<Ciphertext, Box<dyn Error>> {
let (accumulator, mut buffer_lwe_after_pbs) = self.memory.as_buffers(server_key);
let fourier_bsk = &server_key.bootstrapping_key;
let fft = Fft::new(fourier_bsk.polynomial_size());
let fft = fft.as_view();
self.computation_buffers.resize(
programmable_bootstrap_lwe_ciphertext_mem_optimized_requirement::<u64>(
fourier_bsk.glwe_size(),
fourier_bsk.polynomial_size(),
fft,
)
.unwrap()
.unaligned_bytes_required(),
);
let stack = self.computation_buffers.stack();
// Compute a bootstrap
programmable_bootstrap_lwe_ciphertext_mem_optimized(
&ciphertext,
&mut buffer_lwe_after_pbs,
&accumulator,
fourier_bsk,
fft,
stack,
);
// Compute a key switch to get back to input key
keyswitch_lwe_ciphertext(
&server_key.key_switching_key,
&buffer_lwe_after_pbs,
&mut ciphertext,
);
Ok(Ciphertext::Encrypted(ciphertext))
}
}
impl From<CompressedServerKey> for ServerKey {
fn from(compressed_server_key: CompressedServerKey) -> Self {
let CompressedServerKey {
key_switching_key,
bootstrapping_key,
} = compressed_server_key;
let key_switching_key = key_switching_key.decompress_into_lwe_keyswitch_key();
let standard_bootstrapping_key = bootstrapping_key.decompress_into_lwe_bootstrap_key();
let mut bootstrapping_key = FourierLweBootstrapKeyOwned::new(
standard_bootstrapping_key.input_lwe_dimension(),
standard_bootstrapping_key.glwe_size(),
standard_bootstrapping_key.polynomial_size(),
standard_bootstrapping_key.decomposition_base_log(),
standard_bootstrapping_key.decomposition_level_count(),
);
convert_standard_lwe_bootstrap_key_to_fourier(
&standard_bootstrapping_key,
&mut bootstrapping_key,
);
Self {
key_switching_key,
bootstrapping_key,
}
}
}

Some files were not shown because too many files have changed in this diff Show More