mirror of
https://github.com/zama-ai/tfhe-rs.git
synced 2026-01-11 15:48:20 -05:00
Compare commits
173 Commits
al/fix_gpu
...
br/hlapi
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
51401dcf24 | ||
|
|
a271cedb05 | ||
|
|
9eb0e831f5 | ||
|
|
7e4abfa4ff | ||
|
|
ce7c15585e | ||
|
|
58f7457660 | ||
|
|
2d224e75a1 | ||
|
|
e5a9145cce | ||
|
|
f5f7213289 | ||
|
|
b917cf4530 | ||
|
|
1873b627d6 | ||
|
|
cb8d753ea6 | ||
|
|
88e8fa6da9 | ||
|
|
0ea7c29dbd | ||
|
|
d90bd8bf89 | ||
|
|
bf5e4474a2 | ||
|
|
7fd5321b78 | ||
|
|
c168dea284 | ||
|
|
1936ec6d84 | ||
|
|
9864dba009 | ||
|
|
8c1ece4fd9 | ||
|
|
343cad641c | ||
|
|
39d77299ed | ||
|
|
c841e3be6e | ||
|
|
aaeb46f074 | ||
|
|
8f7281c219 | ||
|
|
11e86e6162 | ||
|
|
41c92e06a8 | ||
|
|
f25f394763 | ||
|
|
3230c4bb97 | ||
|
|
159a85fc8c | ||
|
|
4cec6fb247 | ||
|
|
16c997d686 | ||
|
|
dcd1af72d4 | ||
|
|
9bf9107e9e | ||
|
|
7986e0bf1d | ||
|
|
55179c52a7 | ||
|
|
c103f0380c | ||
|
|
8024753be0 | ||
|
|
506fdfbdd1 | ||
|
|
a0e08b80e6 | ||
|
|
d06c3e3926 | ||
|
|
2bf9d25402 | ||
|
|
fe73f101cc | ||
|
|
d12de58284 | ||
|
|
d4ea8cd85f | ||
|
|
64f2befd6c | ||
|
|
ce372dcea9 | ||
|
|
46b4958c9c | ||
|
|
b25bcbc607 | ||
|
|
5dfacc7975 | ||
|
|
3d857f62cc | ||
|
|
54c314cd71 | ||
|
|
38a9853140 | ||
|
|
360097d70e | ||
|
|
c94a76a85a | ||
|
|
be1ade6dd2 | ||
|
|
53845b298a | ||
|
|
11c0340eca | ||
|
|
5e966a3d78 | ||
|
|
443e02215f | ||
|
|
3c632c06ba | ||
|
|
833b593845 | ||
|
|
a20c90b090 | ||
|
|
71e86f0522 | ||
|
|
cb45f7f429 | ||
|
|
05a51d47fa | ||
|
|
2eb1ccd128 | ||
|
|
b7a518b9ee | ||
|
|
39faca219f | ||
|
|
fe7a8915bc | ||
|
|
96c8c44c71 | ||
|
|
24d581afeb | ||
|
|
3c383ba18f | ||
|
|
7622122d90 | ||
|
|
949d3e2153 | ||
|
|
fb82c652e2 | ||
|
|
3af1937250 | ||
|
|
05f7869c88 | ||
|
|
ab0ec4a238 | ||
|
|
167329c52a | ||
|
|
8a280642a7 | ||
|
|
b29e82b96e | ||
|
|
9bda365691 | ||
|
|
b686d5cb6a | ||
|
|
2829c9cc92 | ||
|
|
0d81623a23 | ||
|
|
13d797fe9b | ||
|
|
0ba2e5c6fd | ||
|
|
ad3edf3cc3 | ||
|
|
16ff092ce4 | ||
|
|
f511bdc279 | ||
|
|
d3f36b1d86 | ||
|
|
fbb6b9ace3 | ||
|
|
d1d1579187 | ||
|
|
a268dced53 | ||
|
|
13b2372624 | ||
|
|
e2d622b186 | ||
|
|
f55007c6fb | ||
|
|
3ca85bf904 | ||
|
|
ec78318af3 | ||
|
|
8a312afbb7 | ||
|
|
b61f1d864c | ||
|
|
15983a0718 | ||
|
|
856fc1a709 | ||
|
|
fe0a195630 | ||
|
|
aca7e79585 | ||
|
|
c0e89a53ef | ||
|
|
312952007f | ||
|
|
ff51ed3f34 | ||
|
|
9737bdcb98 | ||
|
|
87a43a4900 | ||
|
|
345bdbf17f | ||
|
|
cc54ba2236 | ||
|
|
11df6c69ee | ||
|
|
b76f4dbfe0 | ||
|
|
be21c15c80 | ||
|
|
aa51b25313 | ||
|
|
300c95fe3d | ||
|
|
524adda8f6 | ||
|
|
dedcf205b4 | ||
|
|
2c8d4c0fb0 | ||
|
|
3370fb5b7e | ||
|
|
cd77eac42b | ||
|
|
40f20b4ecb | ||
|
|
59a78c76a9 | ||
|
|
1025246b17 | ||
|
|
338e9eaeef | ||
|
|
0bec4d2ba1 | ||
|
|
c5fab98900 | ||
|
|
14e1ee5bd3 | ||
|
|
52bc778629 | ||
|
|
10405c9836 | ||
|
|
5eaf6cec55 | ||
|
|
3bfacc1e9d | ||
|
|
a47a418d41 | ||
|
|
75b3141e19 | ||
|
|
d01328e0fe | ||
|
|
6e102b5fa1 | ||
|
|
8aa6fa514e | ||
|
|
21a19cd3c5 | ||
|
|
f51c70d536 | ||
|
|
66e3c02838 | ||
|
|
408e81c45a | ||
|
|
4152906c5d | ||
|
|
9fc8a0b5bc | ||
|
|
5dc3e59d13 | ||
|
|
b40996a7e5 | ||
|
|
b066ef19fa | ||
|
|
25d008bae8 | ||
|
|
2749c1088c | ||
|
|
c19cd9f021 | ||
|
|
45fdba04b1 | ||
|
|
69d46810b8 | ||
|
|
a16eeb983f | ||
|
|
8278a9373c | ||
|
|
e2a2768484 | ||
|
|
57cfc38b66 | ||
|
|
259d125434 | ||
|
|
2571196b41 | ||
|
|
9f3dc6167d | ||
|
|
59c17692a3 | ||
|
|
e29d615b9d | ||
|
|
8caff604ed | ||
|
|
16badf0c00 | ||
|
|
99a27c1cbe | ||
|
|
9131aaa383 | ||
|
|
a01949e630 | ||
|
|
30a58cdd1a | ||
|
|
03325bf94e | ||
|
|
786fe66495 | ||
|
|
9ee8259002 | ||
|
|
a7d8d2b1d4 |
1
.gitattributes
vendored
Normal file
1
.gitattributes
vendored
Normal file
@@ -0,0 +1 @@
|
||||
*.hpu filter=lfs diff=lfs merge=lfs -text
|
||||
1
.github/actionlint.yaml
vendored
1
.github/actionlint.yaml
vendored
@@ -6,6 +6,7 @@ self-hosted-runner:
|
||||
- large_windows_16_latest
|
||||
- large_ubuntu_16
|
||||
- large_ubuntu_16-22.04
|
||||
- v80-desktop
|
||||
# Configuration variables in array of strings defined in your repository or
|
||||
# organization. `null` means disabling configuration variables check.
|
||||
# Empty array means no configuration variable is allowed.
|
||||
|
||||
4
.github/actions/gpu_setup/action.yml
vendored
4
.github/actions/gpu_setup/action.yml
vendored
@@ -33,7 +33,9 @@ runs:
|
||||
if: inputs.github-instance == 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
TOOLKIT_VERSION="$(echo ${CUDA_VERSION} | sed 's/\(.*\)\.\(.*\)/\1-\2/')"
|
||||
# Use Sed to extract a value from a string, this cannot be done with the ${variable//search/replace} pattern.
|
||||
# shellcheck disable=SC2001
|
||||
TOOLKIT_VERSION="$(echo "${CUDA_VERSION}" | sed 's/\(.*\)\.\(.*\)/\1-\2/')"
|
||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/${env.CUDA_KEYRING_PACKAGE}
|
||||
echo "${CUDA_KEYRING_SHA} ${CUDA_KEYRING_PACKAGE}" > checksum
|
||||
sha256sum -c checksum
|
||||
|
||||
@@ -67,7 +67,7 @@ jobs:
|
||||
token: ${{ env.CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -126,9 +126,10 @@ jobs:
|
||||
- name: Set pull-request URL
|
||||
if: ${{ failure() && github.event_name == 'pull_request' }}
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
9
.github/workflows/aws_tfhe_fast_tests.yml
vendored
9
.github/workflows/aws_tfhe_fast_tests.yml
vendored
@@ -174,7 +174,7 @@ jobs:
|
||||
token: ${{ env.CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -182,9 +182,11 @@ jobs:
|
||||
if: needs.should-run.outputs.csprng_test == 'true'
|
||||
run: |
|
||||
make test_tfhe_csprng
|
||||
make test_tfhe_csprng_big_endian
|
||||
|
||||
- name: Run tfhe-zk-pok tests
|
||||
if: needs.should-run.outputs.zk_pok_test == 'true'
|
||||
# Always run it to catch non deterministic bugs earlier
|
||||
# if: needs.should-run.outputs.zk_pok_test == 'true'
|
||||
run: |
|
||||
make test_zk_pok
|
||||
|
||||
@@ -272,9 +274,10 @@ jobs:
|
||||
- name: Set pull-request URL
|
||||
if: ${{ failure() && github.event_name == 'pull_request' }}
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() && env.SECRETS_AVAILABLE == 'true' }}
|
||||
|
||||
5
.github/workflows/aws_tfhe_integer_tests.yml
vendored
5
.github/workflows/aws_tfhe_integer_tests.yml
vendored
@@ -114,7 +114,7 @@ jobs:
|
||||
token: ${{ env.CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -142,9 +142,10 @@ jobs:
|
||||
- name: Set pull-request URL
|
||||
if: ${{ failure() && github.event_name == 'pull_request' }}
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
@@ -115,7 +115,7 @@ jobs:
|
||||
token: ${{ env.CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -147,9 +147,10 @@ jobs:
|
||||
- name: Set pull-request URL
|
||||
if: ${{ failure() && github.event_name == 'pull_request' }}
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
5
.github/workflows/aws_tfhe_tests.yml
vendored
5
.github/workflows/aws_tfhe_tests.yml
vendored
@@ -185,7 +185,7 @@ jobs:
|
||||
token: ${{ env.CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -254,9 +254,10 @@ jobs:
|
||||
- name: Set pull-request URL
|
||||
if: ${{ failure() && github.event_name == 'pull_request' }}
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
5
.github/workflows/aws_tfhe_wasm_tests.yml
vendored
5
.github/workflows/aws_tfhe_wasm_tests.yml
vendored
@@ -68,7 +68,7 @@ jobs:
|
||||
token: ${{ env.CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -123,9 +123,10 @@ jobs:
|
||||
- name: Set pull-request URL
|
||||
if: ${{ failure() && github.event_name == 'pull_request' }}
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
14
.github/workflows/benchmark_boolean.yml
vendored
14
.github/workflows/benchmark_boolean.yml
vendored
@@ -58,14 +58,17 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
@@ -114,8 +117,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
14
.github/workflows/benchmark_core_crypto.yml
vendored
14
.github/workflows/benchmark_core_crypto.yml
vendored
@@ -58,14 +58,17 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
@@ -107,8 +110,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
34
.github/workflows/benchmark_dex.yml
vendored
34
.github/workflows/benchmark_dex.yml
vendored
@@ -58,14 +58,17 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
@@ -95,15 +98,27 @@ jobs:
|
||||
env:
|
||||
REF_NAME: ${{ github.ref_name }}
|
||||
|
||||
- name: Parse swap request PBS counts
|
||||
- name: Parse swap request update PBS counts
|
||||
run: |
|
||||
python3 ./ci/benchmark_parser.py tfhe-benchmark/dex_swap_request_pbs_count.csv "${RESULTS_FILENAME}" \
|
||||
python3 ./ci/benchmark_parser.py tfhe-benchmark/dex_swap_request_update_dex_balance_pbs_count.csv "${RESULTS_FILENAME}" \
|
||||
--object-sizes \
|
||||
--append-results
|
||||
|
||||
- name: Parse swap claim PBS counts
|
||||
- name: Parse swap request finalize PBS counts
|
||||
run: |
|
||||
python3 ./ci/benchmark_parser.py tfhe-benchmark/dex_swap_claim_pbs_count.csv "${RESULTS_FILENAME}" \
|
||||
python3 ./ci/benchmark_parser.py tfhe-benchmark/dex_swap_request_finalize_pbs_count.csv "${RESULTS_FILENAME}" \
|
||||
--object-sizes \
|
||||
--append-results
|
||||
|
||||
- name: Parse swap claim prepare PBS counts
|
||||
run: |
|
||||
python3 ./ci/benchmark_parser.py tfhe-benchmark/dex_swap_claim_prepare_pbs_count.csv "${RESULTS_FILENAME}" \
|
||||
--object-sizes \
|
||||
--append-results
|
||||
|
||||
- name: Parse swap claim update PBS counts
|
||||
run: |
|
||||
python3 ./ci/benchmark_parser.py tfhe-benchmark/dex_swap_claim_update_dex_balance_pbs_count.csv "${RESULTS_FILENAME}" \
|
||||
--object-sizes \
|
||||
--append-results
|
||||
|
||||
@@ -116,8 +131,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
14
.github/workflows/benchmark_erc20.yml
vendored
14
.github/workflows/benchmark_erc20.yml
vendored
@@ -59,14 +59,17 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
@@ -111,8 +114,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
33
.github/workflows/benchmark_gpu_4090.yml
vendored
33
.github/workflows/benchmark_gpu_4090.yml
vendored
@@ -46,15 +46,18 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
echo "FAST_BENCH=TRUE";
|
||||
} >> "${GITHUB_ENV}"
|
||||
echo "FAST_BENCH=TRUE" >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
@@ -93,8 +96,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
@@ -124,14 +130,17 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
@@ -159,7 +168,8 @@ jobs:
|
||||
--commit-date "${COMMIT_DATE}" \
|
||||
--bench-date "${BENCH_DATE}" \
|
||||
--walk-subdirs \
|
||||
|
||||
env:
|
||||
REF_NAME: ${{ github.ref_name }}
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02
|
||||
@@ -170,8 +180,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
36
.github/workflows/benchmark_gpu_common.yml
vendored
36
.github/workflows/benchmark_gpu_common.yml
vendored
@@ -84,7 +84,7 @@ jobs:
|
||||
run: |
|
||||
# Use Sed to extract a value from a string, this cannot be done with the ${variable//search/replace} pattern.
|
||||
# shellcheck disable=SC2001
|
||||
PARSED_COMMAND=$(echo "${INPUTS_COMMAND}" | sed 's/[[:space:]]*,[[:space:]]*/\\", \\"/g')
|
||||
PARSED_COMMAND=$(echo "${INPUTS_COMMAND}" | sed 's/[[:space:]]*,[[:space:]]*/\", \"/g')
|
||||
echo "COMMAND=[\"${PARSED_COMMAND}\"]" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Set single operations flavor
|
||||
@@ -120,25 +120,24 @@ jobs:
|
||||
env:
|
||||
INPUTS_PARAMS_TYPE: ${{ inputs.params_type }}
|
||||
|
||||
|
||||
- name: Set command output
|
||||
id: set_command
|
||||
run: |
|
||||
run: | # zizmor: ignore[template-injection] this env variable is safe
|
||||
echo "command=${{ toJSON(env.COMMAND) }}" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
- name: Set operation flavor output
|
||||
id: set_op_flavor
|
||||
run: |
|
||||
run: | # zizmor: ignore[template-injection] this env variable is safe
|
||||
echo "op_flavor=${{ toJSON(env.OP_FLAVOR) }}" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
- name: Set benchmark types output
|
||||
id: set_bench_type
|
||||
run: |
|
||||
run: | # zizmor: ignore[template-injection] this env variable is safe
|
||||
echo "bench_type=${{ toJSON(env.BENCH_TYPE) }}" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
- name: Set parameters types output
|
||||
id: set_params_type
|
||||
run: |
|
||||
run: | # zizmor: ignore[template-injection] this env variable is safe
|
||||
echo "params_type=${{ toJSON(env.PARAMS_TYPE) }}" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
setup-instance:
|
||||
@@ -227,6 +226,8 @@ jobs:
|
||||
include:
|
||||
- cuda: "12.2"
|
||||
gcc: 11
|
||||
env:
|
||||
CUDA_PATH: /usr/local/cuda-${{ matrix.cuda }}
|
||||
steps:
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683
|
||||
@@ -237,18 +238,20 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
# Re-export environment variables as dependencies setup perform this task in the previous job.
|
||||
# Local env variables are cleaned at the end of each job.
|
||||
- name: Export CUDA variables
|
||||
shell: bash
|
||||
run: |
|
||||
CUDA_PATH=/usr/local/cuda-${{ matrix.cuda }}
|
||||
echo "CUDA_PATH=$CUDA_PATH" >> "${GITHUB_ENV}"
|
||||
echo "PATH=$PATH:$CUDA_PATH/bin" >> "${GITHUB_PATH}"
|
||||
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib64:$LD_LIBRARY_PATH" >> "${GITHUB_ENV}"
|
||||
@@ -258,13 +261,15 @@ jobs:
|
||||
shell: bash
|
||||
run: |
|
||||
{
|
||||
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}";
|
||||
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "CC=/usr/bin/gcc-${GCC_VERSION}";
|
||||
echo "CXX=/usr/bin/g++-${GCC_VERSION}";
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${GCC_VERSION}";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
GCC_VERSION: ${{ matrix.gcc }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
@@ -317,8 +322,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
slack-notify:
|
||||
name: Slack Notification
|
||||
|
||||
14
.github/workflows/benchmark_gpu_dex_common.yml
vendored
14
.github/workflows/benchmark_gpu_dex_common.yml
vendored
@@ -119,14 +119,17 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
@@ -167,8 +170,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
slack-notify:
|
||||
name: Slack Notification
|
||||
|
||||
14
.github/workflows/benchmark_gpu_erc20_common.yml
vendored
14
.github/workflows/benchmark_gpu_erc20_common.yml
vendored
@@ -120,14 +120,17 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
@@ -168,8 +171,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
slack-notify:
|
||||
name: Slack Notification
|
||||
|
||||
94
.github/workflows/benchmark_hpu_integer.yml
vendored
Normal file
94
.github/workflows/benchmark_hpu_integer.yml
vendored
Normal file
@@ -0,0 +1,94 @@
|
||||
# Run all integer benchmarks on a permanent HPU instance and return parsed results to Slab CI bot.
|
||||
name: Hpu Integer Benchmarks
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RESULTS_FILENAME: parsed_benchmark_results_${{ github.sha }}.json
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
RUST_BACKTRACE: "full"
|
||||
RUST_MIN_STACK: "8388608"
|
||||
|
||||
permissions: {}
|
||||
|
||||
jobs:
|
||||
integer-benchmarks-hpu:
|
||||
name: Execute integer & erc20 benchmarks for HPU backend
|
||||
runs-on: v80-desktop
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}_${{ github.ref }}
|
||||
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
|
||||
timeout-minutes: 1440 # 24 hours
|
||||
steps:
|
||||
# Needed as long as hw_regmap repository is private
|
||||
- name: Configure SSH
|
||||
uses: webfactory/ssh-agent@a6f90b1f127823b31d4d4a8d96047790581349bd # v0.9.1
|
||||
with:
|
||||
ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }}
|
||||
|
||||
- name: Checkout tfhe-rs repo with tags
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: 'false'
|
||||
token: ${{ secrets.REPO_CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
- name: Checkout Slab repo
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683
|
||||
with:
|
||||
repository: zama-ai/slab
|
||||
path: slab
|
||||
persist-credentials: 'false'
|
||||
token: ${{ secrets.REPO_CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Run benchmarks
|
||||
run: |
|
||||
make bench_integer_hpu
|
||||
make bench_hlapi_erc20_hpu
|
||||
|
||||
- name: Parse results
|
||||
run: |
|
||||
python3 ./ci/benchmark_parser.py target/criterion "${RESULTS_FILENAME}" \
|
||||
--database tfhe_rs \
|
||||
--hardware "hpu_x1" \
|
||||
--backend hpu \
|
||||
--project-version "${COMMIT_HASH}" \
|
||||
--branch "${REF_NAME}" \
|
||||
--commit-date "${COMMIT_DATE}" \
|
||||
--bench-date "${BENCH_DATE}" \
|
||||
--walk-subdirs
|
||||
env:
|
||||
REF_NAME: ${{ github.ref_name }}
|
||||
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02
|
||||
with:
|
||||
name: ${{ github.sha }}_integer_benchmarks
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
18
.github/workflows/benchmark_integer.yml
vendored
18
.github/workflows/benchmark_integer.yml
vendored
@@ -78,12 +78,12 @@ jobs:
|
||||
|
||||
- name: Set operation flavor output
|
||||
id: set_op_flavor
|
||||
run: |
|
||||
run: | # zizmor: ignore[template-injection] this env variable is safe
|
||||
echo "op_flavor=${{ toJSON(env.OP_FLAVOR) }}" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
- name: Set benchmark types output
|
||||
id: set_bench_type
|
||||
run: |
|
||||
run: | # zizmor: ignore[template-injection] this env variable is safe
|
||||
echo "bench_type=${{ toJSON(env.BENCH_TYPE) }}" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
setup-instance:
|
||||
@@ -128,14 +128,17 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
@@ -193,8 +196,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
16
.github/workflows/benchmark_shortint.yml
vendored
16
.github/workflows/benchmark_shortint.yml
vendored
@@ -47,7 +47,7 @@ jobs:
|
||||
|
||||
- name: Set operation flavor output
|
||||
id: set_op_flavor
|
||||
run: |
|
||||
run: | # zizmor: ignore[template-injection] this env variable is safe
|
||||
echo "op_flavor=${{ toJSON(env.OP_FLAVOR) }}" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
setup-instance:
|
||||
@@ -89,14 +89,17 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
@@ -150,8 +153,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
18
.github/workflows/benchmark_signed_integer.yml
vendored
18
.github/workflows/benchmark_signed_integer.yml
vendored
@@ -78,12 +78,12 @@ jobs:
|
||||
|
||||
- name: Set operation flavor output
|
||||
id: set_op_flavor
|
||||
run: |
|
||||
run: | # zizmor: ignore[template-injection] this env variable is safe
|
||||
echo "op_flavor=${{ toJSON(env.OP_FLAVOR) }}" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
- name: Set benchmark types output
|
||||
id: set_bench_type
|
||||
run: |
|
||||
run: | # zizmor: ignore[template-injection] this env variable is safe
|
||||
echo "bench_type=${{ toJSON(env.BENCH_TYPE) }}" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
setup-instance:
|
||||
@@ -128,14 +128,17 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
@@ -185,8 +188,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
12
.github/workflows/benchmark_tfhe_fft.yml
vendored
12
.github/workflows/benchmark_tfhe_fft.yml
vendored
@@ -61,11 +61,14 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
@@ -107,8 +110,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
12
.github/workflows/benchmark_tfhe_ntt.yml
vendored
12
.github/workflows/benchmark_tfhe_ntt.yml
vendored
@@ -61,11 +61,14 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
@@ -107,8 +110,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
16
.github/workflows/benchmark_tfhe_zk_pok.yml
vendored
16
.github/workflows/benchmark_tfhe_zk_pok.yml
vendored
@@ -98,14 +98,17 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
@@ -141,7 +144,7 @@ jobs:
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02
|
||||
with:
|
||||
name: ${{ github.sha }}_tfhe_zk_pok
|
||||
name: ${{ github.sha }}_tfhe_zk_pok_${{ env.BENCH_TYPE }}
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Checkout Slab repo
|
||||
@@ -155,8 +158,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
24
.github/workflows/benchmark_wasm_client.yml
vendored
24
.github/workflows/benchmark_wasm_client.yml
vendored
@@ -96,14 +96,17 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
@@ -136,12 +139,16 @@ jobs:
|
||||
|
||||
- name: Install web resources
|
||||
run: |
|
||||
make install_${{ matrix.browser }}_browser
|
||||
make install_${{ matrix.browser }}_web_driver
|
||||
make install_"${BROWSER}"_browser
|
||||
make install_"${BROWSER}"_web_driver
|
||||
env:
|
||||
BROWSER: ${{ matrix.browser }}
|
||||
|
||||
- name: Run benchmarks
|
||||
run: |
|
||||
make bench_web_js_api_parallel_${{ matrix.browser }}_ci
|
||||
make bench_web_js_api_parallel_"${BROWSER}"_ci
|
||||
env:
|
||||
BROWSER: ${{ matrix.browser }}
|
||||
|
||||
- name: Parse results
|
||||
run: |
|
||||
@@ -188,8 +195,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
18
.github/workflows/benchmark_zk_pke.yml
vendored
18
.github/workflows/benchmark_zk_pke.yml
vendored
@@ -92,7 +92,7 @@ jobs:
|
||||
|
||||
- name: Set benchmark types output
|
||||
id: set_bench_type
|
||||
run: |
|
||||
run: | # zizmor: ignore[template-injection] this env variable is safe
|
||||
echo "bench_type=${{ toJSON(env.BENCH_TYPE) }}" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
setup-instance:
|
||||
@@ -140,14 +140,17 @@ jobs:
|
||||
|
||||
- name: Get benchmark details
|
||||
run: |
|
||||
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
|
||||
{
|
||||
echo "BENCH_DATE=$(date --iso-8601=seconds)";
|
||||
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
|
||||
echo "COMMIT_DATE=${COMMIT_DATE}";
|
||||
echo "COMMIT_HASH=$(git describe --tags --dirty)";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
SHA: ${{ github.sha }}
|
||||
|
||||
- name: Install rust
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: nightly
|
||||
|
||||
@@ -191,7 +194,7 @@ jobs:
|
||||
- name: Upload parsed results artifact
|
||||
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02
|
||||
with:
|
||||
name: ${{ github.sha }}_integer_zk
|
||||
name: ${{ github.sha }}_integer_zk_${{ matrix.bench_type }}
|
||||
path: ${{ env.RESULTS_FILENAME }}
|
||||
|
||||
- name: Checkout Slab repo
|
||||
@@ -205,8 +208,11 @@ jobs:
|
||||
- name: Send data to Slab
|
||||
shell: bash
|
||||
run: |
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
|
||||
--slab-url "${{ secrets.SLAB_URL }}"
|
||||
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
|
||||
--slab-url "${SLAB_URL}"
|
||||
env:
|
||||
JOB_SECRET: ${{ secrets.JOB_SECRET }}
|
||||
SLAB_URL: ${{ secrets.SLAB_URL }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
|
||||
7
.github/workflows/cargo_build.yml
vendored
7
.github/workflows/cargo_build.yml
vendored
@@ -35,7 +35,7 @@ jobs:
|
||||
token: ${{ env.CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -94,5 +94,10 @@ jobs:
|
||||
run: |
|
||||
make build_tfhe_coverage
|
||||
|
||||
- name: Run Hpu pcc checks
|
||||
if: ${{ contains(matrix.os, 'ubuntu') }}
|
||||
run: |
|
||||
make pcc_hpu
|
||||
|
||||
# The wasm build check is a bit annoying to set-up here and is done during the tests in
|
||||
# aws_tfhe_tests.yml
|
||||
|
||||
4
.github/workflows/cargo_test_fft.yml
vendored
4
.github/workflows/cargo_test_fft.yml
vendored
@@ -51,7 +51,7 @@ jobs:
|
||||
runs-on: ${{ matrix.runner_type }}
|
||||
strategy:
|
||||
matrix:
|
||||
runner_type: [ubuntu-latest, macos-latest, windows-latest]
|
||||
runner_type: [ ubuntu-latest, macos-latest, windows-latest ]
|
||||
fail-fast: false
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683
|
||||
@@ -82,7 +82,7 @@ jobs:
|
||||
runs-on: ${{ matrix.runner_type }}
|
||||
strategy:
|
||||
matrix:
|
||||
runner_type: [ubuntu-latest, macos-latest, windows-latest]
|
||||
runner_type: [ ubuntu-latest, macos-latest, windows-latest ]
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683
|
||||
with:
|
||||
|
||||
4
.github/workflows/cargo_test_ntt.yml
vendored
4
.github/workflows/cargo_test_ntt.yml
vendored
@@ -51,7 +51,7 @@ jobs:
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, macos-latest, windows-latest]
|
||||
os: [ ubuntu-latest, macos-latest, windows-latest ]
|
||||
fail-fast: false
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683
|
||||
@@ -77,7 +77,7 @@ jobs:
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest, macos-latest, windows-latest]
|
||||
os: [ ubuntu-latest, macos-latest, windows-latest ]
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683
|
||||
with:
|
||||
|
||||
7
.github/workflows/check_commit.yml
vendored
7
.github/workflows/check_commit.yml
vendored
@@ -3,14 +3,15 @@ name: Check commit and PR compliance
|
||||
on:
|
||||
pull_request:
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
pull-requests: read # Permission needed to scan commits in a pull-request
|
||||
permissions: {}
|
||||
|
||||
jobs:
|
||||
check-commit-pr:
|
||||
name: Check commit and PR
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: read
|
||||
pull-requests: write # Permission needed to scan commits in a pull-request and write issue comment
|
||||
steps:
|
||||
- name: Check first line
|
||||
uses: gsactions/commit-message-checker@16fa2d5de096ae0d35626443bcd24f1e756cafee
|
||||
|
||||
10
.github/workflows/ci_lint.yml
vendored
10
.github/workflows/ci_lint.yml
vendored
@@ -25,10 +25,10 @@ jobs:
|
||||
|
||||
- name: Get actionlint
|
||||
run: |
|
||||
wget "https://github.com/rhysd/actionlint/releases/download/v${{ env.ACTIONLINT_VERSION }}/actionlint_${{ env.ACTIONLINT_VERSION }}_linux_amd64.tar.gz"
|
||||
echo "${{ env.ACTIONLINT_CHECKSUM }} actionlint_${{ env.ACTIONLINT_VERSION }}_linux_amd64.tar.gz" > checksum
|
||||
wget "https://github.com/rhysd/actionlint/releases/download/v${ACTIONLINT_VERSION}/actionlint_${ACTIONLINT_VERSION}_linux_amd64.tar.gz"
|
||||
echo "${ACTIONLINT_CHECKSUM} actionlint_${ACTIONLINT_VERSION}_linux_amd64.tar.gz" > checksum
|
||||
sha256sum -c checksum
|
||||
tar -xf actionlint_${{ env.ACTIONLINT_VERSION }}_linux_amd64.tar.gz actionlint
|
||||
tar -xf actionlint_"${ACTIONLINT_VERSION}"_linux_amd64.tar.gz actionlint
|
||||
ln -s "$(pwd)/actionlint" /usr/local/bin/
|
||||
|
||||
- name: Lint workflows
|
||||
@@ -38,9 +38,11 @@ jobs:
|
||||
- name: Check workflows security
|
||||
run: |
|
||||
make check_workflow_security
|
||||
env:
|
||||
GH_TOKEN: ${{ env.CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Ensure SHA pinned actions
|
||||
uses: zgosalvez/github-actions-ensure-sha-pinned-actions@4830be28ce81da52ec70d65c552a7403821d98d4 # v3.0.23
|
||||
uses: zgosalvez/github-actions-ensure-sha-pinned-actions@fc87bb5b5a97953d987372e74478de634726b3e5 # v3.0.25
|
||||
with:
|
||||
allowlist: |
|
||||
slsa-framework/slsa-github-generator
|
||||
|
||||
6
.github/workflows/code_coverage.yml
vendored
6
.github/workflows/code_coverage.yml
vendored
@@ -54,7 +54,7 @@ jobs:
|
||||
token: ${{ env.CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -90,7 +90,7 @@ jobs:
|
||||
make test_shortint_cov
|
||||
|
||||
- name: Upload tfhe coverage to Codecov
|
||||
uses: codecov/codecov-action@ad3126e916f78f00edff4ed0317cf185271ccc2d
|
||||
uses: codecov/codecov-action@18283e04ce6e62d37312384ff67231eb8fd56d24
|
||||
if: steps.changed-files.outputs.tfhe_any_changed == 'true'
|
||||
with:
|
||||
token: ${{ secrets.CODECOV_TOKEN }}
|
||||
@@ -104,7 +104,7 @@ jobs:
|
||||
make test_integer_cov
|
||||
|
||||
- name: Upload tfhe coverage to Codecov
|
||||
uses: codecov/codecov-action@ad3126e916f78f00edff4ed0317cf185271ccc2d
|
||||
uses: codecov/codecov-action@18283e04ce6e62d37312384ff67231eb8fd56d24
|
||||
if: steps.changed-files.outputs.tfhe_any_changed == 'true'
|
||||
with:
|
||||
token: ${{ secrets.CODECOV_TOKEN }}
|
||||
|
||||
@@ -66,7 +66,7 @@ jobs:
|
||||
token: ${{ env.CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
|
||||
110
.github/workflows/data_pr_close.yml
vendored
110
.github/workflows/data_pr_close.yml
vendored
@@ -3,7 +3,7 @@ name: Close or Merge corresponding PR on the data repo
|
||||
# When a PR with the data_PR tag is closed or merged, this will close the corresponding PR in the data repo.
|
||||
|
||||
env:
|
||||
TARGET_REPO_API_URL: ${{ github.api_url }}/repos/zama-ai/tfhe-backward-compat-data
|
||||
DATA_REPO: zama-ai/tfhe-backward-compat-data
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
@@ -16,117 +16,43 @@ on:
|
||||
pull_request:
|
||||
types: [ closed ]
|
||||
|
||||
# The same pattern is used for jobs that use the github api:
|
||||
# - save the result of the API call in the env var "GH_API_RES". Since the var is multiline
|
||||
# we use this trick: https://docs.github.com/en/actions/using-workflows/workflow-commands-for-github-actions#example-of-a-multiline-string
|
||||
# - "set +e" will make sure we reach the last "echo EOF" even in case of error
|
||||
# - "set -o" pipefail makes one line piped command return the error of the first failure
|
||||
# - 'RES="$?"' and 'exit $RES' are used to return the error code if a command failed. Without it, with "set +e"
|
||||
# the script will always return 0 because of the "echo EOF".
|
||||
|
||||
|
||||
|
||||
permissions: {}
|
||||
|
||||
jobs:
|
||||
auto_close_job:
|
||||
if: ${{ contains(github.event.pull_request.labels.*.name, 'data_PR') }}
|
||||
if: ${{ contains(github.event.pull_request.labels.*.name, 'data_PR') && github.repository == 'zama-ai/tfhe-rs' }}
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.FHE_ACTIONS_TOKEN }} # Needed for gh CLI commands
|
||||
steps:
|
||||
- name: Find corresponding Pull Request in the data repo
|
||||
- name: Fetch PR number
|
||||
run: |
|
||||
{
|
||||
set +e
|
||||
set -o pipefail
|
||||
echo 'TARGET_REPO_PR<<EOF'
|
||||
curl --fail-with-body --no-progress-meter -L -X GET \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"${TARGET_REPO_API_URL}"/pulls\?head="${REPO_OWNER}":"${PR_BRANCH}" | jq -e '.[0]' | sed 's/null/{ "message": "corresponding PR not found" }/'
|
||||
RES="$?"
|
||||
echo EOF
|
||||
} >> "${GITHUB_ENV}"
|
||||
exit $RES
|
||||
env:
|
||||
REPO_OWNER: ${{ github.repository_owner }}
|
||||
PR_NUMBER=$(gh pr view "${PR_BRANCH}" --repo "${DATA_REPO}" --json number | jq '.number')
|
||||
echo "DATA_REPO_PR_NUMBER=${PR_NUMBER}" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Comment on the PR to indicate the reason of the close
|
||||
run: |
|
||||
BODY="'{ \"body\": \"PR ${CLOSE_TYPE}d because the corresponding PR in main repo was ${CLOSE_TYPE}d: ${REPO}#${EVENT_NUMBER}\" }'"
|
||||
{
|
||||
set +e
|
||||
set -o pipefail
|
||||
echo 'GH_API_RES<<EOF'
|
||||
curl --fail-with-body --no-progress-meter -L -X POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "Authorization: Bearer ${{ secrets.FHE_ACTIONS_TOKEN }}" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"${COMMENTS_URL}" \
|
||||
-d "${BODY}"
|
||||
RES="$?"
|
||||
echo EOF
|
||||
} >> "${GITHUB_ENV}"
|
||||
exit $RES
|
||||
gh pr comment "${PR_BRANCH}" \
|
||||
--repo "${DATA_REPO}" \
|
||||
--body "PR ${CLOSE_TYPE}d because the corresponding PR in main repo was ${CLOSE_TYPE}d: ${REPO}#${EVENT_NUMBER}"
|
||||
env:
|
||||
REPO: ${{ github.repository }}
|
||||
EVENT_NUMBER: ${{ github.event.number }}
|
||||
COMMENTS_URL: ${{ fromJson(env.TARGET_REPO_PR).comments_url }}
|
||||
|
||||
- name: Merge the Pull Request in the data repo
|
||||
if: ${{ github.event.pull_request.merged }}
|
||||
run: |
|
||||
{
|
||||
set +e
|
||||
set -o pipefail
|
||||
echo 'GH_API_RES<<EOF'
|
||||
curl --fail-with-body --no-progress-meter -L -X PUT \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "Authorization: Bearer ${{ secrets.FHE_ACTIONS_TOKEN }}" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"${TARGET_REPO_PR_URL}"/merge \
|
||||
-d '{ "merge_method": "rebase" }'
|
||||
RES="$?"
|
||||
echo EOF
|
||||
} >> "${GITHUB_ENV}"
|
||||
exit $RES
|
||||
env:
|
||||
TARGET_REPO_PR_URL: ${{ fromJson(env.TARGET_REPO_PR).url }}
|
||||
gh pr merge "${PR_BRANCH}" \
|
||||
--repo "${DATA_REPO}" \
|
||||
--rebase \
|
||||
--delete-branch
|
||||
|
||||
- name: Close the Pull Request in the data repo
|
||||
if: ${{ !github.event.pull_request.merged }}
|
||||
run: |
|
||||
{
|
||||
set +e
|
||||
set -o pipefail
|
||||
echo 'GH_API_RES<<EOF'
|
||||
curl --fail-with-body --no-progress-meter -L -X PATCH \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "Authorization: Bearer ${{ secrets.FHE_ACTIONS_TOKEN }}" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"${TARGET_REPO_PR_URL}" \
|
||||
-d '{ "state": "closed" }'
|
||||
RES="$?"
|
||||
echo EOF
|
||||
} >> "${GITHUB_ENV}"
|
||||
exit $RES
|
||||
env:
|
||||
TARGET_REPO_PR_URL: ${{ fromJson(env.TARGET_REPO_PR).url }}
|
||||
|
||||
- name: Delete the associated branch in the data repo
|
||||
run: |
|
||||
{
|
||||
set +e
|
||||
set -o pipefail
|
||||
echo 'GH_API_RES<<EOF'
|
||||
curl --fail-with-body --no-progress-meter -L -X DELETE \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "Authorization: Bearer ${{ secrets.FHE_ACTIONS_TOKEN }}" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"${TARGET_REPO_API_URL}"/git/refs/heads/"${PR_BRANCH}"
|
||||
RES="$?"
|
||||
echo EOF
|
||||
} >> "${GITHUB_ENV}"
|
||||
exit $RES
|
||||
gh pr close "${PR_BRANCH}" \
|
||||
--repo "${DATA_REPO}" \
|
||||
--delete-branch
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ always() && job.status == 'failure' }}
|
||||
@@ -134,4 +60,4 @@ jobs:
|
||||
uses: rtCamp/action-slack-notify@e31e87e03dd19038e411e38ae27cbad084a90661
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "Failed to auto-${{ env.CLOSE_TYPE }} PR on data repo: ${{ fromJson(env.GH_API_RES || env.TARGET_REPO_PR).message }}"
|
||||
SLACK_MESSAGE: "Failed to auto-${{ env.CLOSE_TYPE }} PR on data repo: https://github.com/${{ env.DATA_REPO }}/pull/${{ env.DATA_REPO_PR_NUMBER }}"
|
||||
|
||||
2
.github/workflows/gpu_4090_tests.yml
vendored
2
.github/workflows/gpu_4090_tests.yml
vendored
@@ -45,7 +45,7 @@ jobs:
|
||||
token: ${{ env.CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
|
||||
5
.github/workflows/gpu_fast_h100_tests.yml
vendored
5
.github/workflows/gpu_fast_h100_tests.yml
vendored
@@ -140,7 +140,7 @@ jobs:
|
||||
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -172,9 +172,10 @@ jobs:
|
||||
- name: Set pull-request URL
|
||||
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Send message
|
||||
if: env.SECRETS_AVAILABLE == 'true'
|
||||
|
||||
5
.github/workflows/gpu_fast_tests.yml
vendored
5
.github/workflows/gpu_fast_tests.yml
vendored
@@ -124,7 +124,7 @@ jobs:
|
||||
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -156,9 +156,10 @@ jobs:
|
||||
- name: Set pull-request URL
|
||||
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Send message
|
||||
if: env.SECRETS_AVAILABLE == 'true'
|
||||
|
||||
2
.github/workflows/gpu_full_h100_tests.yml
vendored
2
.github/workflows/gpu_full_h100_tests.yml
vendored
@@ -79,7 +79,7 @@ jobs:
|
||||
gcc-version: ${{ matrix.gcc }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
|
||||
@@ -126,7 +126,7 @@ jobs:
|
||||
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -149,7 +149,7 @@ jobs:
|
||||
|
||||
- name: Run High Level API Tests
|
||||
run: |
|
||||
BIG_TESTS_INSTANCE=FALSE make test_high_level_api_gpu
|
||||
make test_high_level_api_gpu
|
||||
|
||||
slack-notify:
|
||||
name: Slack Notification
|
||||
@@ -161,9 +161,10 @@ jobs:
|
||||
- name: Set pull-request URL
|
||||
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Send message
|
||||
if: env.SECRETS_AVAILABLE == 'true'
|
||||
|
||||
@@ -72,7 +72,7 @@ jobs:
|
||||
gcc-version: ${{ matrix.gcc }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
|
||||
29
.github/workflows/gpu_pcc.yml
vendored
29
.github/workflows/gpu_pcc.yml
vendored
@@ -1,4 +1,4 @@
|
||||
# Perfom tfhe-cuda-backend post-commit checks on an AWS instance
|
||||
# Perform tfhe-cuda-backend post-commit checks on an AWS instance
|
||||
name: Cuda - Post-commit Checks
|
||||
|
||||
env:
|
||||
@@ -81,16 +81,20 @@ jobs:
|
||||
if: env.SECRETS_AVAILABLE == 'false'
|
||||
shell: bash
|
||||
run: |
|
||||
TOOLKIT_VERSION="$(echo ${{ matrix.cuda }} | sed 's/\(.*\)\.\(.*\)/\1-\2/')"
|
||||
# Use Sed to extract a value from a string, this cannot be done with the ${variable//search/replace} pattern.
|
||||
# shellcheck disable=SC2001
|
||||
TOOLKIT_VERSION="$(echo "${CUDA_VERSION}" | sed 's/\(.*\)\.\(.*\)/\1-\2/')"
|
||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/"${CUDA_KEYRING_PACKAGE}"
|
||||
echo "${CUDA_KEYRING_SHA} ${CUDA_KEYRING_PACKAGE}" > checksum
|
||||
sha256sum -c checksum
|
||||
sudo dpkg -i "${CUDA_KEYRING_PACKAGE}"
|
||||
sudo apt update
|
||||
sudo apt -y install "cuda-toolkit-${TOOLKIT_VERSION}" cmake-format
|
||||
env:
|
||||
CUDA_VERSION: ${{ matrix.cuda }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -100,17 +104,21 @@ jobs:
|
||||
echo "CUDA_PATH=$CUDA_PATH" >> "${GITHUB_ENV}"
|
||||
echo "$CUDA_PATH/bin" >> "${GITHUB_PATH}"
|
||||
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib:$LD_LIBRARY_PATH" >> "${GITHUB_ENV}"
|
||||
echo "CUDACXX=/usr/local/cuda-${{ matrix.cuda }}/bin/nvcc" >> "${GITHUB_ENV}"
|
||||
echo "CUDACXX=/usr/local/cuda-${CUDA_VERSION}/bin/nvcc" >> "${GITHUB_ENV}"
|
||||
env:
|
||||
CUDA_VERSION: ${{ matrix.cuda }}
|
||||
|
||||
# Specify the correct host compilers
|
||||
- name: Export gcc and g++ variables
|
||||
if: ${{ !cancelled() }}
|
||||
run: |
|
||||
{
|
||||
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}";
|
||||
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "CC=/usr/bin/gcc-${GCC_VERSION}";
|
||||
echo "CXX=/usr/bin/g++-${GCC_VERSION}";
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${GCC_VERSION}";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
GCC_VERSION: ${{ matrix.gcc }}
|
||||
|
||||
- name: Run fmt checks
|
||||
run: |
|
||||
@@ -120,12 +128,17 @@ jobs:
|
||||
run: |
|
||||
make pcc_gpu
|
||||
|
||||
- name: Check build with hpu enabled
|
||||
run: |
|
||||
make clippy_gpu_hpu
|
||||
|
||||
- name: Set pull-request URL
|
||||
if: ${{ failure() && github.event_name == 'pull_request' }}
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() && env.SECRETS_AVAILABLE == 'true' }}
|
||||
|
||||
@@ -126,7 +126,7 @@ jobs:
|
||||
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -144,9 +144,10 @@ jobs:
|
||||
- name: Set pull-request URL
|
||||
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Send message
|
||||
if: env.SECRETS_AVAILABLE == 'true'
|
||||
|
||||
@@ -140,7 +140,7 @@ jobs:
|
||||
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -158,9 +158,10 @@ jobs:
|
||||
- name: Set pull-request URL
|
||||
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Send message
|
||||
if: env.SECRETS_AVAILABLE == 'true'
|
||||
|
||||
@@ -130,7 +130,7 @@ jobs:
|
||||
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -156,9 +156,10 @@ jobs:
|
||||
- name: Set pull-request URL
|
||||
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Send message
|
||||
if: env.SECRETS_AVAILABLE == 'true'
|
||||
|
||||
@@ -126,7 +126,7 @@ jobs:
|
||||
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -144,9 +144,10 @@ jobs:
|
||||
- name: Set pull-request URL
|
||||
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Send message
|
||||
if: env.SECRETS_AVAILABLE == 'true'
|
||||
|
||||
@@ -140,7 +140,7 @@ jobs:
|
||||
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -158,9 +158,10 @@ jobs:
|
||||
- name: Set pull-request URL
|
||||
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Send message
|
||||
if: env.SECRETS_AVAILABLE == 'true'
|
||||
|
||||
@@ -130,7 +130,7 @@ jobs:
|
||||
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -156,9 +156,10 @@ jobs:
|
||||
- name: Set pull-request URL
|
||||
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
|
||||
run: |
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
|
||||
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
|
||||
env:
|
||||
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
|
||||
- name: Send message
|
||||
if: env.SECRETS_AVAILABLE == 'true'
|
||||
|
||||
73
.github/workflows/hpu_hlapi_tests.yml
vendored
Normal file
73
.github/workflows/hpu_hlapi_tests.yml
vendored
Normal file
@@ -0,0 +1,73 @@
|
||||
# Test tfhe-fft
|
||||
name: Cargo Test HLAPI HPU
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
IS_PULL_REQUEST: ${{ github.event_name == 'pull_request' }}
|
||||
CHECKOUT_TOKEN: ${{ secrets.REPO_CHECKOUT_TOKEN || secrets.GITHUB_TOKEN }}
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
|
||||
permissions: { }
|
||||
|
||||
jobs:
|
||||
should-run:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
pull-requests: read
|
||||
outputs:
|
||||
hpu_test: ${{ env.IS_PULL_REQUEST == 'false' || steps.changed-files.outputs.hpu_any_changed }}
|
||||
steps:
|
||||
- name: Checkout tfhe-rs
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: 'false'
|
||||
token: ${{ env.CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Check for file changes
|
||||
id: changed-files
|
||||
uses: tj-actions/changed-files@ed68ef82c095e0d48ec87eccea555d944a631a4c # v46.0.5
|
||||
with:
|
||||
files_yaml: |
|
||||
hpu:
|
||||
- tfhe/Cargo.toml
|
||||
- Makefile
|
||||
- backends/tfhe-hpu-backend/**
|
||||
- mockups/tfhe-hpu-mockup/**
|
||||
|
||||
cargo-tests-hpu:
|
||||
needs: should-run
|
||||
if: needs.should-run.outputs.hpu_test == 'true'
|
||||
runs-on: large_ubuntu_16
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683
|
||||
with:
|
||||
persist-credentials: 'false'
|
||||
token: ${{ env.CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Install Rust
|
||||
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
|
||||
with:
|
||||
toolchain: stable
|
||||
override: true
|
||||
|
||||
- name: Install Just
|
||||
run: |
|
||||
cargo install just
|
||||
|
||||
- name: Test HLAPI HPU
|
||||
run: |
|
||||
source setup_hpu.sh
|
||||
just -f mockups/tfhe-hpu-mockup/Justfile BUILD_PROFILE=release mockup &
|
||||
make HPU_CONFIG=sim test_high_level_api_hpu
|
||||
make HPU_CONFIG=sim test_user_doc_hpu
|
||||
2
.github/workflows/integer_long_run_tests.yml
vendored
2
.github/workflows/integer_long_run_tests.yml
vendored
@@ -57,7 +57,7 @@ jobs:
|
||||
token: ${{ secrets.REPO_CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
|
||||
2
.github/workflows/m1_tests.yml
vendored
2
.github/workflows/m1_tests.yml
vendored
@@ -46,7 +46,7 @@ jobs:
|
||||
token: ${{ env.CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
|
||||
29
.github/workflows/make_release_cuda.yml
vendored
29
.github/workflows/make_release_cuda.yml
vendored
@@ -67,7 +67,7 @@ jobs:
|
||||
token: ${{ secrets.REPO_CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -78,19 +78,24 @@ jobs:
|
||||
{
|
||||
echo "CUDA_PATH=$CUDA_PATH";
|
||||
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib:$LD_LIBRARY_PATH";
|
||||
echo "CUDACXX=/usr/local/cuda-${{ matrix.cuda }}/bin/nvcc";
|
||||
echo "CUDACXX=/usr/local/cuda-${CUDA_VERSION}/bin/nvcc";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
CUDA_VERSION: ${{ matrix.cuda }}
|
||||
|
||||
# Specify the correct host compilers
|
||||
- name: Export gcc and g++ variables
|
||||
if: ${{ !cancelled() }}
|
||||
run: |
|
||||
{
|
||||
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}";
|
||||
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "CC=/usr/bin/gcc-${GCC_VERSION}";
|
||||
echo "CXX=/usr/bin/g++-${GCC_VERSION}";
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${GCC_VERSION}";
|
||||
echo "HOME=/home/ubuntu";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
GCC_VERSION: ${{ matrix.gcc }}
|
||||
|
||||
- name: Prepare package
|
||||
run: |
|
||||
cargo package -p tfhe-cuda-backend
|
||||
@@ -129,7 +134,7 @@ jobs:
|
||||
CUDA_PATH: /usr/local/cuda-${{ matrix.cuda }}
|
||||
steps:
|
||||
- name: Install latest stable
|
||||
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
|
||||
uses: dtolnay/rust-toolchain@b3b07ba8b418998c39fb20f53e8b695cdcc8de1b # zizmor: ignore[stale-action-refs] this action doesn't create releases
|
||||
with:
|
||||
toolchain: stable
|
||||
|
||||
@@ -140,19 +145,23 @@ jobs:
|
||||
{
|
||||
echo "CUDA_PATH=$CUDA_PATH";
|
||||
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib:$LD_LIBRARY_PATH";
|
||||
echo "CUDACXX=/usr/local/cuda-${{ matrix.cuda }}/bin/nvcc";
|
||||
echo "CUDACXX=/usr/local/cuda-${CUDA_VERSION}/bin/nvcc";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
CUDA_VERSION: ${{ matrix.cuda }}
|
||||
|
||||
# Specify the correct host compilers
|
||||
- name: Export gcc and g++ variables
|
||||
if: ${{ !cancelled() }}
|
||||
run: |
|
||||
{
|
||||
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}";
|
||||
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}";
|
||||
echo "CC=/usr/bin/gcc-${GCC_VERSION}";
|
||||
echo "CXX=/usr/bin/g++-${GCC_VERSION}";
|
||||
echo "CUDAHOSTCXX=/usr/bin/g++-${GCC_VERSION}";
|
||||
echo "HOME=/home/ubuntu";
|
||||
} >> "${GITHUB_ENV}"
|
||||
env:
|
||||
GCC_VERSION: ${{ matrix.gcc }}
|
||||
|
||||
- name: Publish crate.io package
|
||||
env:
|
||||
|
||||
105
.github/workflows/make_release_hpu.yml
vendored
Normal file
105
.github/workflows/make_release_hpu.yml
vendored
Normal file
@@ -0,0 +1,105 @@
|
||||
name: Publish HPU release
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
dry_run:
|
||||
description: "Dry-run"
|
||||
type: boolean
|
||||
default: true
|
||||
|
||||
env:
|
||||
ACTION_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
|
||||
SLACK_CHANNEL: ${{ secrets.SLACK_CHANNEL }}
|
||||
SLACK_ICON: https://pbs.twimg.com/profile_images/1274014582265298945/OjBKP9kn_400x400.png
|
||||
SLACK_USERNAME: ${{ secrets.BOT_USERNAME }}
|
||||
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
permissions: {}
|
||||
|
||||
jobs:
|
||||
verify_tag:
|
||||
uses: ./.github/workflows/verify_tagged_commit.yml
|
||||
secrets:
|
||||
RELEASE_TEAM: ${{ secrets.RELEASE_TEAM }}
|
||||
READ_ORG_TOKEN: ${{ secrets.READ_ORG_TOKEN }}
|
||||
|
||||
package:
|
||||
runs-on: ubuntu-latest
|
||||
needs: verify_tag
|
||||
outputs:
|
||||
hash: ${{ steps.hash.outputs.hash }}
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: 'false'
|
||||
token: ${{ secrets.REPO_CHECKOUT_TOKEN }}
|
||||
- name: Prepare package
|
||||
run: |
|
||||
cargo package -p tfhe-hpu-backend
|
||||
- uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02 # v4.6.2
|
||||
with:
|
||||
name: crate
|
||||
path: target/package/*.crate
|
||||
- name: generate hash
|
||||
id: hash
|
||||
run: cd target/package && echo "hash=$(sha256sum ./*.crate | base64 -w0)" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
provenance:
|
||||
if: ${{ !inputs.dry_run }}
|
||||
needs: [package]
|
||||
uses: slsa-framework/slsa-github-generator/.github/workflows/generator_generic_slsa3.yml@v2.1.0
|
||||
permissions:
|
||||
# Needed to detect the GitHub Actions environment
|
||||
actions: read
|
||||
# Needed to create the provenance via GitHub OIDC
|
||||
id-token: write
|
||||
# Needed to upload assets/artifacts
|
||||
contents: write
|
||||
with:
|
||||
# SHA-256 hashes of the Crate package.
|
||||
base64-subjects: ${{ needs.package.outputs.hash }}
|
||||
|
||||
publish_release:
|
||||
name: Publish tfhe-hpu-backend Release
|
||||
runs-on: ubuntu-latest
|
||||
needs: [verify_tag, package] # for comparing hashes
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: 'false'
|
||||
token: ${{ secrets.REPO_CHECKOUT_TOKEN }}
|
||||
|
||||
- name: Publish crate.io package
|
||||
env:
|
||||
CRATES_TOKEN: ${{ secrets.CARGO_REGISTRY_TOKEN }}
|
||||
DRY_RUN: ${{ inputs.dry_run && '--dry-run' || '' }}
|
||||
run: |
|
||||
# DRY_RUN expansion cannot be double quoted when variable contains empty string otherwise cargo publish
|
||||
# would fail. This is safe since DRY_RUN is handled in the env section above.
|
||||
# shellcheck disable=SC2086
|
||||
cargo publish -p tfhe-hpu-backend --token "${CRATES_TOKEN}" ${DRY_RUN}
|
||||
|
||||
- name: Generate hash
|
||||
id: published_hash
|
||||
run: cd target/package && echo "pub_hash=$(sha256sum ./*.crate | base64 -w0)" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
- name: Slack notification (hashes comparison)
|
||||
if: ${{ needs.package.outputs.hash != steps.published_hash.outputs.pub_hash }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@e31e87e03dd19038e411e38ae27cbad084a90661 # v2.3.3
|
||||
env:
|
||||
SLACK_COLOR: failure
|
||||
SLACK_MESSAGE: "SLSA tfhe-hpu-backend crate - hash comparison failure: (${{ env.ACTION_RUN_URL }})"
|
||||
|
||||
- name: Slack Notification
|
||||
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
|
||||
continue-on-error: true
|
||||
uses: rtCamp/action-slack-notify@e31e87e03dd19038e411e38ae27cbad084a90661 # v2.3.3
|
||||
env:
|
||||
SLACK_COLOR: ${{ job.status }}
|
||||
SLACK_MESSAGE: "tfhe-hpu-backend release failed: (${{ env.ACTION_RUN_URL }})"
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -40,3 +40,6 @@ __pycache__
|
||||
# First directive is to ignore symlinks
|
||||
tests/tfhe-backward-compat-data
|
||||
ci/
|
||||
|
||||
# In case someone clones the lattice-estimator locally to verify security
|
||||
/lattice-estimator
|
||||
|
||||
2
.lfsconfig
Normal file
2
.lfsconfig
Normal file
@@ -0,0 +1,2 @@
|
||||
[lfs]
|
||||
fetchexclude = *
|
||||
20
CODEOWNERS
20
CODEOWNERS
@@ -1,12 +1,28 @@
|
||||
# Specifying a path without code owners means that path won't have owners and is akin to a negation
|
||||
# i.e. the `core_crypto` dir is owned and needs owner approval/review, but not the `gpu` sub dir
|
||||
# See https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-code-owners#example-of-a-codeowners-file
|
||||
|
||||
/backends/tfhe-cuda-backend/ @agnesLeroy
|
||||
/backends/tfhe-hpu-backend/ @zama-ai/hardware
|
||||
|
||||
/tfhe/examples/hpu @zama-ai/hardware
|
||||
|
||||
/tfhe/src/core_crypto/ @IceTDrinker
|
||||
/tfhe/src/core_crypto/gpu
|
||||
/tfhe/src/core_crypto/gpu @agnesLeroy
|
||||
/tfhe/src/core_crypto/hpu @zama-ai/hardware
|
||||
|
||||
/tfhe/src/shortint/ @mayeul-zama
|
||||
|
||||
/tfhe/src/integer/ @tmontaigu
|
||||
/tfhe/src/integer/gpu
|
||||
/tfhe/src/integer/gpu @agnesLeroy
|
||||
/tfhe/src/integer/hpu @zama-ai/hardware
|
||||
|
||||
/tfhe/src/high_level_api/ @tmontaigu
|
||||
|
||||
/Makefile @IceTDrinker @soonum
|
||||
|
||||
/mockups/tfhe-hpu-mockup @zama-ai/hardware
|
||||
|
||||
/.github/ @soonum
|
||||
|
||||
/CODEOWNERS @IceTDrinker
|
||||
|
||||
@@ -9,10 +9,12 @@ members = [
|
||||
"tasks",
|
||||
"tfhe-csprng",
|
||||
"backends/tfhe-cuda-backend",
|
||||
"backends/tfhe-hpu-backend",
|
||||
"utils/tfhe-versionable",
|
||||
"utils/tfhe-versionable-derive",
|
||||
"utils/param_dedup",
|
||||
"tests",
|
||||
"mockups/tfhe-hpu-mockup",
|
||||
]
|
||||
|
||||
exclude = [
|
||||
|
||||
126
Makefile
126
Makefile
@@ -2,6 +2,7 @@ SHELL:=$(shell /usr/bin/env which bash)
|
||||
OS:=$(shell uname)
|
||||
RS_CHECK_TOOLCHAIN:=$(shell cat toolchain.txt | tr -d '\n')
|
||||
CARGO_RS_CHECK_TOOLCHAIN:=+$(RS_CHECK_TOOLCHAIN)
|
||||
CARGO_BUILD_JOBS=default
|
||||
CPU_COUNT=$(shell ./scripts/cpu_count.sh)
|
||||
RS_BUILD_TOOLCHAIN:=stable
|
||||
CARGO_RS_BUILD_TOOLCHAIN:=+$(RS_BUILD_TOOLCHAIN)
|
||||
@@ -55,6 +56,9 @@ REGEX_PATTERN?=''
|
||||
TFHECUDA_SRC=backends/tfhe-cuda-backend/cuda
|
||||
TFHECUDA_BUILD=$(TFHECUDA_SRC)/build
|
||||
|
||||
# tfhe-hpu-backend
|
||||
HPU_CONFIG=v80
|
||||
|
||||
# Exclude these files from coverage reports
|
||||
define COVERAGE_EXCLUDED_FILES
|
||||
--exclude-files apps/trivium/src/trivium/* \
|
||||
@@ -166,9 +170,13 @@ install_typos_checker: install_rs_build_toolchain
|
||||
.PHONY: install_zizmor # Install zizmor workflow security checker
|
||||
install_zizmor: install_rs_build_toolchain
|
||||
@zizmor --version > /dev/null 2>&1 || \
|
||||
cargo $(CARGO_RS_BUILD_TOOLCHAIN) install zizmor || \
|
||||
cargo $(CARGO_RS_BUILD_TOOLCHAIN) install zizmor --version ~1.9 || \
|
||||
( echo "Unable to install zizmor, unknown error." && exit 1 )
|
||||
|
||||
.PHONY: install_cargo_cross # Install custom tfhe-rs lints
|
||||
install_cargo_cross: install_rs_build_toolchain
|
||||
cargo $(CARGO_RS_BUILD_TOOLCHAIN) install cross
|
||||
|
||||
.PHONY: setup_venv # Setup Python virtualenv for wasm tests
|
||||
setup_venv:
|
||||
python3 -m venv venv
|
||||
@@ -290,7 +298,7 @@ check_typos: install_typos_checker
|
||||
.PHONY: clippy_gpu # Run clippy lints on tfhe with "gpu" enabled
|
||||
clippy_gpu: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
|
||||
--features=boolean,shortint,integer,internal-keycache,gpu,pbs-stats,extended-types \
|
||||
--features=boolean,shortint,integer,internal-keycache,gpu,pbs-stats,extended-types,zk-pok \
|
||||
--all-targets \
|
||||
-p $(TFHE_SPEC) -- --no-deps -D warnings
|
||||
|
||||
@@ -301,6 +309,20 @@ check_gpu: install_rs_check_toolchain
|
||||
--all-targets \
|
||||
-p $(TFHE_SPEC)
|
||||
|
||||
.PHONY: clippy_hpu # Run clippy lints on tfhe with "hpu" enabled
|
||||
clippy_hpu: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
|
||||
--features=boolean,shortint,integer,internal-keycache,hpu,pbs-stats,extended-types \
|
||||
--all-targets \
|
||||
-p $(TFHE_SPEC) -- --no-deps -D warnings
|
||||
|
||||
.PHONY: clippy_gpu_hpu # Run clippy lints on tfhe with "gpu" and "hpu" enabled
|
||||
clippy_gpu_hpu: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
|
||||
--features=boolean,shortint,integer,internal-keycache,gpu,hpu,pbs-stats,extended-types,zk-pok \
|
||||
--all-targets \
|
||||
-p $(TFHE_SPEC) -- --no-deps -D warnings
|
||||
|
||||
.PHONY: fix_newline # Fix newline at end of file issues to be UNIX compliant
|
||||
fix_newline: check_linelint_installed
|
||||
linelint -a .
|
||||
@@ -440,6 +462,8 @@ clippy_tfhe_csprng: install_rs_check_toolchain
|
||||
clippy_zk_pok: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy --all-targets \
|
||||
-p tfhe-zk-pok -- --no-deps -D warnings
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy --all-targets \
|
||||
-p tfhe-zk-pok --features=experimental -- --no-deps -D warnings
|
||||
|
||||
.PHONY: clippy_versionable # Run clippy lints on tfhe-versionable
|
||||
clippy_versionable: install_rs_check_toolchain
|
||||
@@ -473,6 +497,11 @@ clippy_cuda_backend: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy --all-targets \
|
||||
-p tfhe-cuda-backend -- --no-deps -D warnings
|
||||
|
||||
.PHONY: clippy_hpu_backend # Run clippy lints on the tfhe-hpu-backend
|
||||
clippy_hpu_backend: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy --all-targets \
|
||||
-p tfhe-hpu-backend -- --no-deps -D warnings
|
||||
|
||||
.PHONY: check_rust_bindings_did_not_change # Check rust bindings are up to date for tfhe-cuda-backend
|
||||
check_rust_bindings_did_not_change:
|
||||
cargo build -p tfhe-cuda-backend && "$(MAKE)" fmt_gpu && \
|
||||
@@ -702,6 +731,28 @@ test_signed_integer_multi_bit_gpu_ci: install_rs_check_toolchain install_cargo_n
|
||||
--cargo-profile "$(CARGO_PROFILE)" --multi-bit --backend "gpu" \
|
||||
--signed-only --tfhe-package "$(TFHE_SPEC)"
|
||||
|
||||
.PHONY: test_integer_hpu_ci # Run the tests for integer ci on hpu backend
|
||||
test_integer_hpu_ci: install_rs_check_toolchain install_cargo_nextest
|
||||
cargo test --release -p $(TFHE_SPEC) --features hpu-v80 --test hpu
|
||||
|
||||
.PHONY: test_integer_hpu_mockup_ci # Run the tests for integer ci on hpu backend and mockup
|
||||
test_integer_hpu_mockup_ci: install_rs_check_toolchain install_cargo_nextest
|
||||
source ./setup_hpu.sh --config sim ; \
|
||||
cargo build --release --bin hpu_mockup; \
|
||||
coproc target/release/hpu_mockup --params mockups/tfhe-hpu-mockup/params/tuniform_64b_pfail64_psi64.toml > mockup.log; \
|
||||
HPU_TEST_ITER=1 \
|
||||
cargo test --profile devo -p $(TFHE_SPEC) --features hpu --test hpu -- u32 && \
|
||||
kill %1
|
||||
|
||||
.PHONY: test_integer_hpu_mockup_ci_fast # Run the quick tests for integer ci on hpu backend and mockup.
|
||||
test_integer_hpu_mockup_ci_fast: install_rs_check_toolchain install_cargo_nextest
|
||||
source ./setup_hpu.sh --config sim ; \
|
||||
cargo build --profile devo --bin hpu_mockup; \
|
||||
coproc target/devo/hpu_mockup --params mockups/tfhe-hpu-mockup/params/tuniform_64b_fast.toml > mockup.log; \
|
||||
HPU_TEST_ITER=1 \
|
||||
cargo test --profile devo -p $(TFHE_SPEC) --features hpu --test hpu -- u32 && \
|
||||
kill %1
|
||||
|
||||
.PHONY: test_boolean # Run the tests of the boolean module
|
||||
test_boolean: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
|
||||
@@ -854,9 +905,25 @@ test_high_level_api: install_rs_build_toolchain
|
||||
|
||||
test_high_level_api_gpu: install_rs_build_toolchain install_cargo_nextest
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) nextest run --cargo-profile $(CARGO_PROFILE) \
|
||||
--features=integer,internal-keycache,gpu -p $(TFHE_SPEC) \
|
||||
--test-threads=4 --features=integer,internal-keycache,gpu,zk-pok -p $(TFHE_SPEC) \
|
||||
-E "test(/high_level_api::.*gpu.*/)"
|
||||
|
||||
test_high_level_api_hpu: install_rs_build_toolchain install_cargo_nextest
|
||||
ifeq ($(HPU_CONFIG), v80)
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) nextest run --cargo-profile $(CARGO_PROFILE) \
|
||||
--build-jobs=$(CARGO_BUILD_JOBS) \
|
||||
--test-threads=1 \
|
||||
--features=integer,internal-keycache,hpu,hpu-v80 -p $(TFHE_SPEC) \
|
||||
-E "test(/high_level_api::.*hpu.*/)"
|
||||
else
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) nextest run --cargo-profile $(CARGO_PROFILE) \
|
||||
--build-jobs=$(CARGO_BUILD_JOBS) \
|
||||
--test-threads=1 \
|
||||
--features=integer,internal-keycache,hpu -p $(TFHE_SPEC) \
|
||||
-E "test(/high_level_api::.*hpu.*/)"
|
||||
endif
|
||||
|
||||
|
||||
.PHONY: test_strings # Run the tests for strings ci
|
||||
test_strings: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
|
||||
@@ -874,9 +941,21 @@ test_user_doc: install_rs_build_toolchain
|
||||
.PHONY: test_user_doc_gpu # Run tests for GPU from the .md documentation
|
||||
test_user_doc_gpu: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) --doc \
|
||||
--features=boolean,shortint,integer,internal-keycache,gpu,zk-pok -p $(TFHE_SPEC) \
|
||||
--features=internal-keycache,integer,zk-pok,gpu -p $(TFHE_SPEC) \
|
||||
-- test_user_docs::
|
||||
|
||||
.PHONY: test_user_doc_hpu # Run tests for HPU from the .md documentation
|
||||
test_user_doc_hpu: install_rs_build_toolchain
|
||||
ifeq ($(HPU_CONFIG), v80)
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) --doc \
|
||||
--features=internal-keycache,integer,hpu,hpu-v80 -p $(TFHE_SPEC) \
|
||||
-- test_user_docs::
|
||||
else
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) --doc \
|
||||
--features=internal-keycache,integer,hpu -p $(TFHE_SPEC) \
|
||||
-- test_user_docs::
|
||||
endif
|
||||
|
||||
|
||||
|
||||
.PHONY: test_regex_engine # Run tests for regex_engine example
|
||||
@@ -907,10 +986,16 @@ test_tfhe_csprng: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
|
||||
-p tfhe-csprng
|
||||
|
||||
.PHONY: test_tfhe_csprng_big_endian # Run tfhe-csprng tests on an emulated big endian system
|
||||
test_tfhe_csprng_big_endian: install_rs_build_toolchain install_cargo_cross
|
||||
RUSTFLAGS="" cross $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
|
||||
-p tfhe-csprng --target=powerpc64-unknown-linux-gnu
|
||||
|
||||
|
||||
.PHONY: test_zk_pok # Run tfhe-zk-pok tests
|
||||
test_zk_pok: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
|
||||
-p tfhe-zk-pok
|
||||
-p tfhe-zk-pok --features experimental
|
||||
|
||||
.PHONY: test_zk_wasm_x86_compat_ci
|
||||
test_zk_wasm_x86_compat_ci: check_nvm_installed
|
||||
@@ -1012,7 +1097,7 @@ check_compile_tests: install_rs_build_toolchain
|
||||
.PHONY: check_compile_tests_benches_gpu # Build tests in debug without running them
|
||||
check_compile_tests_benches_gpu: install_rs_build_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --no-run \
|
||||
--features=experimental,boolean,shortint,integer,internal-keycache,gpu \
|
||||
--features=experimental,boolean,shortint,integer,internal-keycache,gpu,zk-pok \
|
||||
-p $(TFHE_SPEC)
|
||||
mkdir -p "$(TFHECUDA_BUILD)" && \
|
||||
cd "$(TFHECUDA_BUILD)" && \
|
||||
@@ -1100,6 +1185,12 @@ clippy_bench_gpu: install_rs_check_toolchain
|
||||
--features=gpu,shortint,integer,internal-keycache,nightly-avx512,pbs-stats,zk-pok \
|
||||
-p tfhe-benchmark -- --no-deps -D warnings
|
||||
|
||||
.PHONY: clippy_bench_hpu # Run clippy lints on tfhe-benchmark
|
||||
clippy_bench_hpu: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy --all-targets \
|
||||
--features=hpu,shortint,integer,internal-keycache,pbs-stats\
|
||||
-p tfhe-benchmark -- --no-deps -D warnings
|
||||
|
||||
.PHONY: print_doc_bench_parameters # Print parameters used in doc benchmarks
|
||||
print_doc_bench_parameters:
|
||||
RUSTFLAGS="" cargo run --example print_doc_bench_parameters \
|
||||
@@ -1133,6 +1224,14 @@ bench_signed_integer_gpu: install_rs_check_toolchain
|
||||
--bench integer-signed-bench \
|
||||
--features=integer,gpu,internal-keycache,nightly-avx512,pbs-stats -p tfhe-benchmark --
|
||||
|
||||
.PHONY: bench_integer_hpu # Run benchmarks for integer on HPU backend
|
||||
bench_integer_hpu: install_rs_check_toolchain
|
||||
source ./setup_hpu.sh --config $(HPU_CONFIG) ; \
|
||||
RUSTFLAGS="$(RUSTFLAGS)" __TFHE_RS_BENCH_OP_FLAVOR=$(BENCH_OP_FLAVOR) __TFHE_RS_FAST_BENCH=$(FAST_BENCH) __TFHE_RS_BENCH_TYPE=$(BENCH_TYPE) \
|
||||
cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench integer-bench \
|
||||
--features=integer,internal-keycache,pbs-stats,hpu,hpu-v80 -p tfhe-benchmark -- --quick
|
||||
|
||||
.PHONY: bench_integer_compression # Run benchmarks for unsigned integer compression
|
||||
bench_integer_compression: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" __TFHE_RS_BENCH_TYPE=$(BENCH_TYPE) \
|
||||
@@ -1146,7 +1245,7 @@ bench_integer_compression_gpu: install_rs_check_toolchain
|
||||
cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench glwe_packing_compression-integer-bench \
|
||||
--features=integer,internal-keycache,gpu,pbs-stats -p tfhe-benchmark --
|
||||
|
||||
|
||||
.PHONY: bench_integer_zk_gpu
|
||||
bench_integer_zk_gpu: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" __TFHE_RS_BENCH_TYPE=$(BENCH_TYPE) \
|
||||
@@ -1324,6 +1423,14 @@ bench_hlapi_dex_gpu: install_rs_check_toolchain
|
||||
--bench hlapi-dex \
|
||||
--features=integer,gpu,internal-keycache,pbs-stats,nightly-avx512 -p tfhe-benchmark --
|
||||
|
||||
.PHONY: bench_hlapi_erc20_hpu # Run benchmarks for ECR20 operations on HPU
|
||||
bench_hlapi_erc20_hpu: install_rs_check_toolchain
|
||||
source ./setup_hpu.sh --config $(HPU_CONFIG) ; \
|
||||
RUSTFLAGS="$(RUSTFLAGS)" \
|
||||
cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
|
||||
--bench hlapi-erc20 \
|
||||
--features=integer,internal-keycache,hpu,hpu-v80 -p tfhe-benchmark -- --quick
|
||||
|
||||
.PHONY: bench_tfhe_zk_pok # Run benchmarks for the tfhe_zk_pok crate
|
||||
bench_tfhe_zk_pok: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" \
|
||||
@@ -1384,7 +1491,7 @@ parse_wasm_benchmarks: install_rs_check_toolchain
|
||||
.PHONY: write_params_to_file # Gather all crypto parameters into a file with a Sage readable format.
|
||||
write_params_to_file: install_rs_check_toolchain
|
||||
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) run \
|
||||
--example write_params_to_file --features=boolean,shortint,internal-keycache
|
||||
--example write_params_to_file --features=boolean,shortint,hpu,internal-keycache
|
||||
|
||||
.PHONY: clone_backward_compat_data # Clone the data repo needed for backward compatibility tests
|
||||
clone_backward_compat_data:
|
||||
@@ -1423,6 +1530,9 @@ tfhe_lints
|
||||
pcc_gpu: check_rust_bindings_did_not_change clippy_rustdoc_gpu \
|
||||
clippy_gpu clippy_cuda_backend clippy_bench_gpu check_compile_tests_benches_gpu
|
||||
|
||||
.PHONY: pcc_hpu # pcc stands for pre commit checks for HPU compilation
|
||||
pcc_hpu: clippy_hpu clippy_hpu_backend test_integer_hpu_mockup_ci_fast
|
||||
|
||||
.PHONY: fpcc # pcc stands for pre commit checks, the f stands for fast
|
||||
fpcc: no_tfhe_typo no_dbg_log check_parameter_export_ok check_fmt check_typos lint_doc \
|
||||
check_md_docs_are_tested clippy_fast check_compile_tests
|
||||
|
||||
@@ -11,11 +11,13 @@ extend-ignore-identifiers-re = [
|
||||
# Example with string replacing "hello" with "herlo"
|
||||
"herlo",
|
||||
# Example in trivium
|
||||
"C9217BA0D762ACA1"
|
||||
"C9217BA0D762ACA1",
|
||||
"0x[0-9a-fA-F]+"
|
||||
]
|
||||
|
||||
[files]
|
||||
extend-exclude = [
|
||||
"backends/tfhe-cuda-backend/cuda/src/fft128/twiddles.cu",
|
||||
"backends/tfhe-cuda-backend/cuda/src/fft/twiddles.cu",
|
||||
"backends/tfhe-hpu-backend/config_store/**/*.link_summary",
|
||||
]
|
||||
|
||||
@@ -129,7 +129,7 @@ Other sizes than 64 bit are expected to be available in the future.
|
||||
|
||||
# FHE shortint Trivium implementation
|
||||
|
||||
The same implementation is also available for generic Ciphertexts representing bits (meant to be used with parameters `V1_2_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128`).
|
||||
The same implementation is also available for generic Ciphertexts representing bits (meant to be used with parameters `V1_3_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128`).
|
||||
It uses a lower level API of tfhe-rs, so the syntax is a little bit different. It also implements the `TransCiphering` trait. For optimization purposes, it does not internally run
|
||||
on the same cryptographic parameters as the high level API of tfhe-rs. As such, it requires the usage of a casting key, to switch from one parameter space to another, which makes
|
||||
its setup a little more intricate.
|
||||
@@ -137,10 +137,10 @@ its setup a little more intricate.
|
||||
Example code:
|
||||
```rust
|
||||
use tfhe::shortint::prelude::*;
|
||||
use tfhe::shortint::parameters::v1_2::{
|
||||
V1_2_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_2_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_2_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
use tfhe::shortint::parameters::current_params::{
|
||||
V1_3_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
};
|
||||
use tfhe::{ConfigBuilder, generate_keys, FheUint64};
|
||||
use tfhe::prelude::*;
|
||||
@@ -148,17 +148,17 @@ use tfhe_trivium::TriviumStreamShortint;
|
||||
|
||||
fn test_shortint() {
|
||||
let config = ConfigBuilder::default()
|
||||
.use_custom_parameters(V1_2_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.use_custom_parameters(V1_3_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.build();
|
||||
let (hl_client_key, hl_server_key) = generate_keys(config);
|
||||
let underlying_ck: tfhe::shortint::ClientKey = (*hl_client_key.as_ref()).clone().into();
|
||||
let underlying_sk: tfhe::shortint::ServerKey = (*hl_server_key.as_ref()).clone().into();
|
||||
|
||||
let (client_key, server_key): (ClientKey, ServerKey) = gen_keys(V1_2_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
let (client_key, server_key): (ClientKey, ServerKey) = gen_keys(V1_3_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
let ksk = KeySwitchingKey::new(
|
||||
(&client_key, Some(&server_key)),
|
||||
(&underlying_ck, &underlying_sk),
|
||||
V1_2_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128_2M128,
|
||||
V1_3_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128_2M128,
|
||||
);
|
||||
|
||||
let key_string = "0053A6F94C9FF24598EB".to_string();
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
use criterion::Criterion;
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::shortint::parameters::v1_2::{
|
||||
V1_2_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_2_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_2_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128,
|
||||
use tfhe::shortint::parameters::current_params::{
|
||||
V1_3_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128,
|
||||
};
|
||||
use tfhe::shortint::prelude::*;
|
||||
use tfhe::{generate_keys, ConfigBuilder, FheUint64};
|
||||
@@ -11,19 +11,19 @@ use tfhe_trivium::{KreyviumStreamShortint, TransCiphering};
|
||||
|
||||
pub fn kreyvium_shortint_warmup(c: &mut Criterion) {
|
||||
let config = ConfigBuilder::default()
|
||||
.use_custom_parameters(V1_2_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.use_custom_parameters(V1_3_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.build();
|
||||
let (hl_client_key, hl_server_key) = generate_keys(config);
|
||||
let underlying_ck: tfhe::shortint::ClientKey = (*hl_client_key.as_ref()).clone().into();
|
||||
let underlying_sk: tfhe::shortint::ServerKey = (*hl_server_key.as_ref()).clone().into();
|
||||
|
||||
let (client_key, server_key): (ClientKey, ServerKey) =
|
||||
gen_keys(V1_2_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
gen_keys(V1_3_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
|
||||
let ksk = KeySwitchingKey::new(
|
||||
(&client_key, Some(&server_key)),
|
||||
(&underlying_ck, &underlying_sk),
|
||||
V1_2_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
);
|
||||
|
||||
let key_string = "0053A6F94C9FF24598EB000000000000".to_string();
|
||||
@@ -64,19 +64,19 @@ pub fn kreyvium_shortint_warmup(c: &mut Criterion) {
|
||||
|
||||
pub fn kreyvium_shortint_gen(c: &mut Criterion) {
|
||||
let config = ConfigBuilder::default()
|
||||
.use_custom_parameters(V1_2_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.use_custom_parameters(V1_3_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.build();
|
||||
let (hl_client_key, hl_server_key) = generate_keys(config);
|
||||
let underlying_ck: tfhe::shortint::ClientKey = (*hl_client_key.as_ref()).clone().into();
|
||||
let underlying_sk: tfhe::shortint::ServerKey = (*hl_server_key.as_ref()).clone().into();
|
||||
|
||||
let (client_key, server_key): (ClientKey, ServerKey) =
|
||||
gen_keys(V1_2_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
gen_keys(V1_3_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
|
||||
let ksk = KeySwitchingKey::new(
|
||||
(&client_key, Some(&server_key)),
|
||||
(&underlying_ck, &underlying_sk),
|
||||
V1_2_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
);
|
||||
|
||||
let key_string = "0053A6F94C9FF24598EB000000000000".to_string();
|
||||
@@ -112,19 +112,19 @@ pub fn kreyvium_shortint_gen(c: &mut Criterion) {
|
||||
|
||||
pub fn kreyvium_shortint_trans(c: &mut Criterion) {
|
||||
let config = ConfigBuilder::default()
|
||||
.use_custom_parameters(V1_2_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.use_custom_parameters(V1_3_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.build();
|
||||
let (hl_client_key, hl_server_key) = generate_keys(config);
|
||||
let underlying_ck: tfhe::shortint::ClientKey = (*hl_client_key.as_ref()).clone().into();
|
||||
let underlying_sk: tfhe::shortint::ServerKey = (*hl_server_key.as_ref()).clone().into();
|
||||
|
||||
let (client_key, server_key): (ClientKey, ServerKey) =
|
||||
gen_keys(V1_2_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
gen_keys(V1_3_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
|
||||
let ksk = KeySwitchingKey::new(
|
||||
(&client_key, Some(&server_key)),
|
||||
(&underlying_ck, &underlying_sk),
|
||||
V1_2_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
);
|
||||
|
||||
let key_string = "0053A6F94C9FF24598EB000000000000".to_string();
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
use criterion::Criterion;
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::shortint::parameters::v1_2::{
|
||||
V1_2_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_2_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_2_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128,
|
||||
use tfhe::shortint::parameters::current_params::{
|
||||
V1_3_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128,
|
||||
};
|
||||
use tfhe::shortint::prelude::*;
|
||||
use tfhe::{generate_keys, ConfigBuilder, FheUint64};
|
||||
@@ -11,19 +11,19 @@ use tfhe_trivium::{TransCiphering, TriviumStreamShortint};
|
||||
|
||||
pub fn trivium_shortint_warmup(c: &mut Criterion) {
|
||||
let config = ConfigBuilder::default()
|
||||
.use_custom_parameters(V1_2_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.use_custom_parameters(V1_3_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.build();
|
||||
let (hl_client_key, hl_server_key) = generate_keys(config);
|
||||
let underlying_ck: tfhe::shortint::ClientKey = (*hl_client_key.as_ref()).clone().into();
|
||||
let underlying_sk: tfhe::shortint::ServerKey = (*hl_server_key.as_ref()).clone().into();
|
||||
|
||||
let (client_key, server_key): (ClientKey, ServerKey) =
|
||||
gen_keys(V1_2_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
gen_keys(V1_3_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
|
||||
let ksk = KeySwitchingKey::new(
|
||||
(&client_key, Some(&server_key)),
|
||||
(&underlying_ck, &underlying_sk),
|
||||
V1_2_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
);
|
||||
|
||||
let key_string = "0053A6F94C9FF24598EB".to_string();
|
||||
@@ -64,19 +64,19 @@ pub fn trivium_shortint_warmup(c: &mut Criterion) {
|
||||
|
||||
pub fn trivium_shortint_gen(c: &mut Criterion) {
|
||||
let config = ConfigBuilder::default()
|
||||
.use_custom_parameters(V1_2_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.use_custom_parameters(V1_3_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.build();
|
||||
let (hl_client_key, hl_server_key) = generate_keys(config);
|
||||
let underlying_ck: tfhe::shortint::ClientKey = (*hl_client_key.as_ref()).clone().into();
|
||||
let underlying_sk: tfhe::shortint::ServerKey = (*hl_server_key.as_ref()).clone().into();
|
||||
|
||||
let (client_key, server_key): (ClientKey, ServerKey) =
|
||||
gen_keys(V1_2_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
gen_keys(V1_3_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
|
||||
let ksk = KeySwitchingKey::new(
|
||||
(&client_key, Some(&server_key)),
|
||||
(&underlying_ck, &underlying_sk),
|
||||
V1_2_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
);
|
||||
|
||||
let key_string = "0053A6F94C9FF24598EB".to_string();
|
||||
@@ -112,19 +112,19 @@ pub fn trivium_shortint_gen(c: &mut Criterion) {
|
||||
|
||||
pub fn trivium_shortint_trans(c: &mut Criterion) {
|
||||
let config = ConfigBuilder::default()
|
||||
.use_custom_parameters(V1_2_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.use_custom_parameters(V1_3_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.build();
|
||||
let (hl_client_key, hl_server_key) = generate_keys(config);
|
||||
let underlying_ck: tfhe::shortint::ClientKey = (*hl_client_key.as_ref()).clone().into();
|
||||
let underlying_sk: tfhe::shortint::ServerKey = (*hl_server_key.as_ref()).clone().into();
|
||||
|
||||
let (client_key, server_key): (ClientKey, ServerKey) =
|
||||
gen_keys(V1_2_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
gen_keys(V1_3_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
|
||||
let ksk = KeySwitchingKey::new(
|
||||
(&client_key, Some(&server_key)),
|
||||
(&underlying_ck, &underlying_sk),
|
||||
V1_2_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
);
|
||||
|
||||
let key_string = "0053A6F94C9FF24598EB".to_string();
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
use crate::{KreyviumStream, KreyviumStreamByte, KreyviumStreamShortint, TransCiphering};
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::shortint::parameters::v1_2::{
|
||||
V1_2_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_2_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_2_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128,
|
||||
use tfhe::shortint::parameters::current_params::{
|
||||
V1_3_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128,
|
||||
};
|
||||
use tfhe::{generate_keys, ConfigBuilder, FheBool, FheUint64, FheUint8};
|
||||
// Values for these tests come from the github repo renaud1239/Kreyvium,
|
||||
@@ -221,19 +221,19 @@ use tfhe::shortint::prelude::*;
|
||||
#[test]
|
||||
fn kreyvium_test_shortint_long() {
|
||||
let config = ConfigBuilder::default()
|
||||
.use_custom_parameters(V1_2_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.use_custom_parameters(V1_3_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.build();
|
||||
let (hl_client_key, hl_server_key) = generate_keys(config);
|
||||
let underlying_ck: tfhe::shortint::ClientKey = (*hl_client_key.as_ref()).clone().into();
|
||||
let underlying_sk: tfhe::shortint::ServerKey = (*hl_server_key.as_ref()).clone().into();
|
||||
|
||||
let (client_key, server_key): (ClientKey, ServerKey) =
|
||||
gen_keys(V1_2_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
gen_keys(V1_3_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
|
||||
let ksk = KeySwitchingKey::new(
|
||||
(&client_key, Some(&server_key)),
|
||||
(&underlying_ck, &underlying_sk),
|
||||
V1_2_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
);
|
||||
|
||||
let key_string = "0053A6F94C9FF24598EB000000000000".to_string();
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
use crate::{TransCiphering, TriviumStream, TriviumStreamByte, TriviumStreamShortint};
|
||||
use tfhe::prelude::*;
|
||||
use tfhe::shortint::parameters::v1_2::{
|
||||
V1_2_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_2_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_2_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128,
|
||||
use tfhe::shortint::parameters::current_params::{
|
||||
V1_3_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128,
|
||||
};
|
||||
use tfhe::{generate_keys, ConfigBuilder, FheBool, FheUint64, FheUint8};
|
||||
// Values for these tests come from the github repo cantora/avr-crypto-lib, commit 2a5b018,
|
||||
@@ -357,19 +357,19 @@ use tfhe::shortint::prelude::*;
|
||||
#[test]
|
||||
fn trivium_test_shortint_long() {
|
||||
let config = ConfigBuilder::default()
|
||||
.use_custom_parameters(V1_2_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.use_custom_parameters(V1_3_PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M128)
|
||||
.build();
|
||||
let (hl_client_key, hl_server_key) = generate_keys(config);
|
||||
let underlying_ck: tfhe::shortint::ClientKey = (*hl_client_key.as_ref()).clone().into();
|
||||
let underlying_sk: tfhe::shortint::ServerKey = (*hl_server_key.as_ref()).clone().into();
|
||||
|
||||
let (client_key, server_key): (ClientKey, ServerKey) =
|
||||
gen_keys(V1_2_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
gen_keys(V1_3_PARAM_MESSAGE_1_CARRY_1_KS_PBS_GAUSSIAN_2M128);
|
||||
|
||||
let ksk = KeySwitchingKey::new(
|
||||
(&client_key, Some(&server_key)),
|
||||
(&underlying_ck, &underlying_sk),
|
||||
V1_2_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
V1_3_PARAM_KEYSWITCH_1_1_KS_PBS_TO_2_2_KS_PBS_GAUSSIAN_2M128,
|
||||
);
|
||||
|
||||
let key_string = "0053A6F94C9FF24598EB".to_string();
|
||||
|
||||
@@ -28,9 +28,10 @@ void cuda_modulus_switch_inplace_64(void *stream, uint32_t gpu_index,
|
||||
|
||||
void cuda_improve_noise_modulus_switch_64(
|
||||
void *stream, uint32_t gpu_index, void *lwe_array_out,
|
||||
void const *lwe_array_in, void const *encrypted_zeros, uint32_t lwe_size,
|
||||
uint32_t num_lwes, uint32_t num_zeros, double input_variance,
|
||||
double r_sigma, double bound, uint32_t log_modulus);
|
||||
void const *lwe_array_in, void const *lwe_array_indexes,
|
||||
void const *encrypted_zeros, uint32_t lwe_size, uint32_t num_lwes,
|
||||
uint32_t num_zeros, double input_variance, double r_sigma, double bound,
|
||||
uint32_t log_modulus);
|
||||
|
||||
void cuda_glwe_sample_extract_128(
|
||||
void *stream, uint32_t gpu_index, void *lwe_array_out,
|
||||
|
||||
@@ -24,7 +24,15 @@ using LweArrayVariant = std::variant<std::vector<Torus *>, Torus *>;
|
||||
return std::get<Torus *>(variant); \
|
||||
} \
|
||||
}()
|
||||
|
||||
// Macro to define the visitor logic using std::holds_alternative for vectors
|
||||
#define GET_VARIANT_ELEMENT_64BIT(variant, index) \
|
||||
[&] { \
|
||||
if (std::holds_alternative<std::vector<uint64_t *>>(variant)) { \
|
||||
return std::get<std::vector<uint64_t *>>(variant)[index]; \
|
||||
} else { \
|
||||
return std::get<uint64_t *>(variant); \
|
||||
} \
|
||||
}()
|
||||
int get_active_gpu_count(int num_inputs, int gpu_count);
|
||||
|
||||
int get_num_inputs_on_gpu(int total_num_inputs, int gpu_index, int gpu_count);
|
||||
|
||||
@@ -400,8 +400,9 @@ uint64_t scratch_cuda_integer_radix_partial_sum_ciphertexts_vec_kb_64(
|
||||
void cuda_integer_radix_partial_sum_ciphertexts_vec_kb_64(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
CudaRadixCiphertextFFI *radix_lwe_out,
|
||||
CudaRadixCiphertextFFI *radix_lwe_vec, int8_t *mem_ptr, void *const *bsks,
|
||||
void *const *ksks,
|
||||
CudaRadixCiphertextFFI *radix_lwe_vec,
|
||||
bool reduce_degrees_for_single_carry_propagation, int8_t *mem_ptr,
|
||||
void *const *bsks, void *const *ksks,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key);
|
||||
|
||||
void cleanup_cuda_integer_radix_partial_sum_ciphertexts_vec(
|
||||
@@ -414,7 +415,8 @@ uint64_t scratch_cuda_integer_scalar_mul_kb_64(
|
||||
uint32_t lwe_dimension, uint32_t ks_level, uint32_t ks_base_log,
|
||||
uint32_t pbs_level, uint32_t pbs_base_log, uint32_t grouping_factor,
|
||||
uint32_t num_blocks, uint32_t message_modulus, uint32_t carry_modulus,
|
||||
PBS_TYPE pbs_type, bool allocate_gpu_memory, bool allocate_ms_array);
|
||||
PBS_TYPE pbs_type, uint32_t num_scalar_bits, bool allocate_gpu_memory,
|
||||
bool allocate_ms_array);
|
||||
|
||||
void cuda_scalar_multiplication_integer_radix_ciphertext_64_inplace(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
@@ -538,5 +540,100 @@ void cleanup_cuda_integer_is_at_least_one_comparisons_block_true(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
int8_t **mem_ptr_void);
|
||||
|
||||
void extend_radix_with_trivial_zero_blocks_msb_64(
|
||||
CudaRadixCiphertextFFI *output, CudaRadixCiphertextFFI const *input,
|
||||
void *const *streams, uint32_t const *gpu_indexes);
|
||||
|
||||
void trim_radix_blocks_lsb_64(CudaRadixCiphertextFFI *output,
|
||||
CudaRadixCiphertextFFI const *input,
|
||||
void *const *streams,
|
||||
uint32_t const *gpu_indexes);
|
||||
|
||||
uint64_t scratch_cuda_integer_radix_scalar_mul_high_kb_64(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
int8_t **mem_ptr, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t lwe_dimension, uint32_t ks_level, uint32_t ks_base_log,
|
||||
uint32_t pbs_level, uint32_t pbs_base_log, uint32_t grouping_factor,
|
||||
uint32_t num_blocks, uint32_t message_modulus, uint32_t carry_modulus,
|
||||
PBS_TYPE pbs_type, uint32_t num_scalar_bits, bool anticipated_buffer_drop,
|
||||
bool allocate_gpu_memory, bool allocate_ms_array);
|
||||
|
||||
void cuda_integer_radix_scalar_mul_high_kb_64(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
CudaRadixCiphertextFFI *ct, int8_t *mem_ptr, void *const *ksks,
|
||||
uint64_t rhs, uint64_t const *decomposed_scalar,
|
||||
uint64_t const *has_at_least_one_set,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key,
|
||||
void *const *bsks, uint32_t num_scalars);
|
||||
|
||||
void cleanup_cuda_integer_radix_scalar_mul_high_kb_64(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
int8_t **mem_ptr_void);
|
||||
|
||||
uint64_t scratch_cuda_apply_noise_squashing_kb(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
int8_t **mem_ptr, uint32_t lwe_dimension, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t input_glwe_dimension,
|
||||
uint32_t input_polynomial_size, uint32_t ks_level, uint32_t ks_base_log,
|
||||
uint32_t pbs_level, uint32_t pbs_base_log, uint32_t grouping_factor,
|
||||
uint32_t num_radix_blocks, uint32_t num_original_blocks,
|
||||
uint32_t message_modulus, uint32_t carry_modulus, PBS_TYPE pbs_type,
|
||||
bool allocate_gpu_memory, bool allocate_ms_array);
|
||||
|
||||
void cuda_apply_noise_squashing_kb(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
CudaRadixCiphertextFFI *output_radix_lwe,
|
||||
CudaRadixCiphertextFFI const *input_radix_lwe, int8_t *mem_ptr,
|
||||
void *const *ksks,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key,
|
||||
void *const *bsks);
|
||||
|
||||
void cleanup_cuda_apply_noise_squashing_kb(void *const *streams,
|
||||
uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count,
|
||||
int8_t **mem_ptr_void);
|
||||
|
||||
uint64_t scratch_cuda_sub_and_propagate_single_carry_kb_64_inplace(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
int8_t **mem_ptr, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t big_lwe_dimension, uint32_t small_lwe_dimension, uint32_t ks_level,
|
||||
uint32_t ks_base_log, uint32_t pbs_level, uint32_t pbs_base_log,
|
||||
uint32_t grouping_factor, uint32_t num_blocks, uint32_t message_modulus,
|
||||
uint32_t carry_modulus, PBS_TYPE pbs_type, uint32_t requested_flag,
|
||||
bool allocate_gpu_memory, bool allocate_ms_array);
|
||||
|
||||
void cuda_sub_and_propagate_single_carry_kb_64_inplace(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
CudaRadixCiphertextFFI *lhs_array, const CudaRadixCiphertextFFI *rhs_array,
|
||||
CudaRadixCiphertextFFI *carry_out, const CudaRadixCiphertextFFI *carry_in,
|
||||
int8_t *mem_ptr, void *const *bsks, void *const *ksks,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key,
|
||||
uint32_t requested_flag, uint32_t uses_carry);
|
||||
|
||||
void cleanup_cuda_sub_and_propagate_single_carry(void *const *streams,
|
||||
uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count,
|
||||
int8_t **mem_ptr_void);
|
||||
|
||||
uint64_t scratch_cuda_extend_radix_with_sign_msb_64(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
int8_t **mem_ptr, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t lwe_dimension, uint32_t ks_level, uint32_t ks_base_log,
|
||||
uint32_t pbs_level, uint32_t pbs_base_log, uint32_t grouping_factor,
|
||||
uint32_t num_blocks, uint32_t num_additional_blocks,
|
||||
uint32_t message_modulus, uint32_t carry_modulus, PBS_TYPE pbs_type,
|
||||
bool allocate_gpu_memory, bool allocate_ms_array);
|
||||
|
||||
void cuda_extend_radix_with_sign_msb_64(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
CudaRadixCiphertextFFI *output, CudaRadixCiphertextFFI const *input,
|
||||
int8_t *mem_ptr, uint32_t num_additional_blocks, void *const *bsks,
|
||||
void *const *ksks,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key);
|
||||
|
||||
void cleanup_cuda_extend_radix_with_sign_msb_64(void *const *streams,
|
||||
uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count,
|
||||
int8_t **mem_ptr_void);
|
||||
} // extern C
|
||||
#endif // CUDA_INTEGER_H
|
||||
|
||||
@@ -6,6 +6,8 @@
|
||||
#include "integer/radix_ciphertext.h"
|
||||
#include "keyswitch/keyswitch.h"
|
||||
#include "pbs/programmable_bootstrap.cuh"
|
||||
#include "pbs/programmable_bootstrap_128.cuh"
|
||||
#include "utils/helper_multi_gpu.cuh"
|
||||
#include <cmath>
|
||||
#include <functional>
|
||||
|
||||
@@ -249,7 +251,6 @@ template <typename Torus> struct int_radix_lut {
|
||||
|
||||
h_lwe_indexes_in = (Torus *)malloc(num_radix_blocks * sizeof(Torus));
|
||||
h_lwe_indexes_out = (Torus *)malloc(num_radix_blocks * sizeof(Torus));
|
||||
|
||||
for (int i = 0; i < num_radix_blocks; i++)
|
||||
h_lwe_indexes_in[i] = i;
|
||||
|
||||
@@ -528,10 +529,10 @@ template <typename Torus> struct int_radix_lut {
|
||||
}
|
||||
|
||||
// Return a pointer to idx-ith degree
|
||||
Torus *get_degree(size_t idx) { return °rees[num_many_lut * idx]; }
|
||||
uint64_t *get_degree(size_t idx) { return °rees[num_many_lut * idx]; }
|
||||
|
||||
// Return a pointer to idx-ith max degree
|
||||
Torus *get_max_degree(size_t idx) { return &max_degrees[idx]; }
|
||||
uint64_t *get_max_degree(size_t idx) { return &max_degrees[idx]; }
|
||||
|
||||
// Return a pointer to idx-ith lut indexes at gpu_index's global memory
|
||||
Torus *get_lut_indexes(uint32_t gpu_index, size_t ind) {
|
||||
@@ -580,6 +581,7 @@ template <typename Torus> struct int_radix_lut {
|
||||
streams[i], gpu_indexes[i], gpu_memory_allocated);
|
||||
}
|
||||
}
|
||||
cuda_set_device(gpu_indexes[0]);
|
||||
}
|
||||
|
||||
void release(cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
@@ -646,6 +648,206 @@ template <typename Torus> struct int_radix_lut {
|
||||
free(max_degrees);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename InputTorus> struct int_noise_squashing_lut {
|
||||
|
||||
int_radix_params params;
|
||||
uint32_t input_glwe_dimension;
|
||||
uint32_t input_polynomial_size;
|
||||
uint32_t input_big_lwe_dimension;
|
||||
uint32_t num_blocks;
|
||||
// Tracks the degree of each LUT and the max degree on CPU
|
||||
// The max degree is (message_modulus * carry_modulus - 1) except for many lut
|
||||
// for which it's different
|
||||
uint64_t *degrees;
|
||||
uint64_t *max_degrees;
|
||||
|
||||
int active_gpu_count;
|
||||
|
||||
// There will be one buffer on each GPU in multi-GPU computations
|
||||
// (same for tmp lwe arrays)
|
||||
std::vector<int8_t *> pbs_buffer;
|
||||
|
||||
std::vector<__uint128_t *> lut_vec;
|
||||
|
||||
uint32_t *gpu_indexes;
|
||||
CudaRadixCiphertextFFI *tmp_lwe_before_ks;
|
||||
|
||||
// All tmp lwe arrays and index arrays for lwe contain the total
|
||||
// amount of blocks to be computed on, there is no split between GPUs
|
||||
// for the moment
|
||||
InputTorus *lwe_indexes_in;
|
||||
|
||||
InputTorus *h_lwe_indexes_in;
|
||||
InputTorus *h_lwe_indexes_out;
|
||||
InputTorus *lwe_trivial_indexes;
|
||||
|
||||
/// For multi GPU execution we create vectors of pointers for inputs and
|
||||
/// outputs
|
||||
std::vector<InputTorus *> lwe_array_in_vec;
|
||||
std::vector<InputTorus *> lwe_after_ks_vec;
|
||||
std::vector<__uint128_t *> lwe_after_pbs_vec;
|
||||
std::vector<InputTorus *> lwe_trivial_indexes_vec;
|
||||
|
||||
bool using_trivial_lwe_indexes = true;
|
||||
bool gpu_memory_allocated;
|
||||
// noise squashing constructor
|
||||
int_noise_squashing_lut(cudaStream_t const *streams,
|
||||
uint32_t const *input_gpu_indexes, uint32_t gpu_count,
|
||||
int_radix_params params,
|
||||
uint32_t input_glwe_dimension,
|
||||
uint32_t input_polynomial_size,
|
||||
uint32_t num_radix_blocks,
|
||||
uint32_t original_num_blocks,
|
||||
bool allocate_gpu_memory, uint64_t *size_tracker) {
|
||||
this->params = params;
|
||||
this->num_blocks = num_radix_blocks;
|
||||
gpu_memory_allocated = allocate_gpu_memory;
|
||||
// This are the glwe dimension and polynomial size before squashing
|
||||
this->input_glwe_dimension = input_glwe_dimension;
|
||||
this->input_polynomial_size = input_polynomial_size;
|
||||
uint32_t input_big_lwe_dimension =
|
||||
input_glwe_dimension * input_polynomial_size;
|
||||
this->input_big_lwe_dimension = input_big_lwe_dimension;
|
||||
|
||||
uint32_t lut_buffer_size = (params.glwe_dimension + 1) *
|
||||
params.polynomial_size * sizeof(__uint128_t);
|
||||
|
||||
gpu_indexes = (uint32_t *)malloc(gpu_count * sizeof(uint32_t));
|
||||
std::memcpy(gpu_indexes, input_gpu_indexes, gpu_count * sizeof(uint32_t));
|
||||
|
||||
///////////////
|
||||
active_gpu_count = get_active_gpu_count(num_radix_blocks, gpu_count);
|
||||
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
|
||||
for (uint i = 0; i < active_gpu_count; i++) {
|
||||
cuda_set_device(i);
|
||||
auto num_radix_blocks_on_gpu =
|
||||
get_num_inputs_on_gpu(num_radix_blocks, i, active_gpu_count);
|
||||
int8_t *gpu_pbs_buffer;
|
||||
uint64_t size = 0;
|
||||
execute_scratch_pbs_128(streams[i], gpu_indexes[i], &gpu_pbs_buffer,
|
||||
params.small_lwe_dimension, params.glwe_dimension,
|
||||
params.polynomial_size, params.pbs_level,
|
||||
num_radix_blocks_on_gpu, allocate_gpu_memory,
|
||||
params.allocate_ms_array, &size);
|
||||
cuda_synchronize_stream(streams[i], gpu_indexes[i]);
|
||||
if (i == 0 && size_tracker != nullptr) {
|
||||
*size_tracker += size;
|
||||
}
|
||||
pbs_buffer.push_back(gpu_pbs_buffer);
|
||||
}
|
||||
lwe_indexes_in = (InputTorus *)cuda_malloc_with_size_tracking_async(
|
||||
num_radix_blocks * sizeof(InputTorus), streams[0], gpu_indexes[0],
|
||||
size_tracker, allocate_gpu_memory);
|
||||
lwe_trivial_indexes = (InputTorus *)cuda_malloc_with_size_tracking_async(
|
||||
num_radix_blocks * sizeof(InputTorus), streams[0], gpu_indexes[0],
|
||||
size_tracker, allocate_gpu_memory);
|
||||
h_lwe_indexes_in =
|
||||
(InputTorus *)malloc(num_radix_blocks * sizeof(InputTorus));
|
||||
for (int i = 0; i < num_radix_blocks; i++)
|
||||
h_lwe_indexes_in[i] = i;
|
||||
|
||||
cuda_memcpy_with_size_tracking_async_to_gpu(
|
||||
lwe_indexes_in, h_lwe_indexes_in, num_radix_blocks * sizeof(InputTorus),
|
||||
streams[0], gpu_indexes[0], allocate_gpu_memory);
|
||||
cuda_memcpy_with_size_tracking_async_to_gpu(
|
||||
lwe_trivial_indexes, h_lwe_indexes_in,
|
||||
num_radix_blocks * sizeof(InputTorus), streams[0], gpu_indexes[0],
|
||||
allocate_gpu_memory);
|
||||
|
||||
multi_gpu_alloc_lwe_async(streams, gpu_indexes, active_gpu_count,
|
||||
lwe_array_in_vec, num_radix_blocks,
|
||||
params.big_lwe_dimension + 1, size_tracker,
|
||||
allocate_gpu_memory);
|
||||
|
||||
multi_gpu_alloc_lwe_async<InputTorus>(
|
||||
streams, gpu_indexes, active_gpu_count, lwe_after_ks_vec,
|
||||
num_radix_blocks, params.small_lwe_dimension + 1, size_tracker,
|
||||
allocate_gpu_memory);
|
||||
multi_gpu_alloc_lwe_async<__uint128_t>(
|
||||
streams, gpu_indexes, active_gpu_count, lwe_after_pbs_vec,
|
||||
num_radix_blocks, params.big_lwe_dimension + 1, size_tracker,
|
||||
allocate_gpu_memory);
|
||||
multi_gpu_alloc_array_async<InputTorus>(
|
||||
streams, gpu_indexes, active_gpu_count, lwe_trivial_indexes_vec,
|
||||
num_radix_blocks, size_tracker, allocate_gpu_memory);
|
||||
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
|
||||
|
||||
multi_gpu_copy_array_async(streams, gpu_indexes, active_gpu_count,
|
||||
lwe_trivial_indexes_vec, lwe_trivial_indexes,
|
||||
num_radix_blocks, allocate_gpu_memory);
|
||||
if (allocate_gpu_memory) {
|
||||
// Allocate LUT
|
||||
// LUT is used as a trivial encryption and must be initialized outside
|
||||
// this constructor
|
||||
for (uint i = 0; i < active_gpu_count; i++) {
|
||||
auto lut = (__uint128_t *)cuda_malloc_with_size_tracking_async(
|
||||
lut_buffer_size, streams[i], gpu_indexes[i], size_tracker,
|
||||
allocate_gpu_memory);
|
||||
lut_vec.push_back(lut);
|
||||
cuda_synchronize_stream(streams[i], gpu_indexes[i]);
|
||||
}
|
||||
}
|
||||
// Keyswitch
|
||||
tmp_lwe_before_ks = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<InputTorus>(
|
||||
streams[0], gpu_indexes[0], tmp_lwe_before_ks, original_num_blocks,
|
||||
input_big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
|
||||
degrees = (uint64_t *)malloc(sizeof(uint64_t));
|
||||
max_degrees = (uint64_t *)malloc(sizeof(uint64_t));
|
||||
|
||||
// lut for the squashing
|
||||
auto f_squash = [](__uint128_t block) -> __uint128_t { return block; };
|
||||
|
||||
// Generate the identity LUT, for now we only use one GPU
|
||||
for (uint i = 0; i < active_gpu_count; i++) {
|
||||
auto squash_lut = lut_vec[i];
|
||||
generate_device_accumulator<__uint128_t>(
|
||||
streams[i], gpu_indexes[i], squash_lut, degrees, max_degrees,
|
||||
params.glwe_dimension, params.polynomial_size, params.message_modulus,
|
||||
params.carry_modulus, f_squash, allocate_gpu_memory);
|
||||
}
|
||||
}
|
||||
void release(cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count) {
|
||||
free(this->gpu_indexes);
|
||||
for (uint i = 0; i < active_gpu_count; i++) {
|
||||
cuda_drop_with_size_tracking_async(lut_vec[i], streams[i], gpu_indexes[i],
|
||||
gpu_memory_allocated);
|
||||
}
|
||||
cuda_drop_with_size_tracking_async(lwe_indexes_in, streams[0],
|
||||
gpu_indexes[0], gpu_memory_allocated);
|
||||
cuda_drop_with_size_tracking_async(lwe_trivial_indexes, streams[0],
|
||||
gpu_indexes[0], gpu_memory_allocated);
|
||||
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
|
||||
lut_vec.clear();
|
||||
free(h_lwe_indexes_in);
|
||||
|
||||
release_radix_ciphertext_async(streams[0], gpu_indexes[0],
|
||||
tmp_lwe_before_ks, gpu_memory_allocated);
|
||||
for (int i = 0; i < pbs_buffer.size(); i++) {
|
||||
cleanup_cuda_programmable_bootstrap_128(streams[i], gpu_indexes[i],
|
||||
&pbs_buffer[i]);
|
||||
cuda_synchronize_stream(streams[i], gpu_indexes[i]);
|
||||
}
|
||||
|
||||
multi_gpu_release_async(streams, gpu_indexes, lwe_array_in_vec);
|
||||
multi_gpu_release_async(streams, gpu_indexes, lwe_after_ks_vec);
|
||||
multi_gpu_release_async(streams, gpu_indexes, lwe_after_pbs_vec);
|
||||
multi_gpu_release_async(streams, gpu_indexes, lwe_trivial_indexes_vec);
|
||||
for (uint i = 0; i < active_gpu_count; i++)
|
||||
cuda_synchronize_stream(streams[i], gpu_indexes[i]);
|
||||
lwe_array_in_vec.clear();
|
||||
lwe_after_ks_vec.clear();
|
||||
lwe_after_pbs_vec.clear();
|
||||
lwe_trivial_indexes_vec.clear();
|
||||
|
||||
delete tmp_lwe_before_ks;
|
||||
pbs_buffer.clear();
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Torus> struct int_bit_extract_luts_buffer {
|
||||
int_radix_params params;
|
||||
int_radix_lut<Torus> *lut;
|
||||
@@ -1076,9 +1278,10 @@ template <typename Torus> struct int_overflowing_sub_memory {
|
||||
luts_array->get_degree(1), luts_array->get_max_degree(1),
|
||||
glwe_dimension, polynomial_size, message_modulus, carry_modulus,
|
||||
f_lut_does_block_generate_or_propagate, gpu_memory_allocated);
|
||||
cuda_set_value_async<Torus>(streams[0], gpu_indexes[0],
|
||||
luts_array->get_lut_indexes(0, 1), 1,
|
||||
num_radix_blocks - 1);
|
||||
if (allocate_gpu_memory)
|
||||
cuda_set_value_async<Torus>(streams[0], gpu_indexes[0],
|
||||
luts_array->get_lut_indexes(0, 1), 1,
|
||||
num_radix_blocks - 1);
|
||||
|
||||
generate_device_accumulator_bivariate<Torus>(
|
||||
streams[0], gpu_indexes[0], luts_borrow_propagation_sum->get_lut(0, 0),
|
||||
@@ -1116,18 +1319,123 @@ template <typename Torus> struct int_overflowing_sub_memory {
|
||||
};
|
||||
|
||||
template <typename Torus> struct int_sum_ciphertexts_vec_memory {
|
||||
CudaRadixCiphertextFFI *new_blocks;
|
||||
CudaRadixCiphertextFFI *new_blocks_copy;
|
||||
CudaRadixCiphertextFFI *old_blocks;
|
||||
CudaRadixCiphertextFFI *small_lwe_vector;
|
||||
|
||||
int_radix_params params;
|
||||
|
||||
int32_t *d_smart_copy_in;
|
||||
int32_t *d_smart_copy_out;
|
||||
|
||||
bool mem_reuse = false;
|
||||
uint32_t max_total_blocks_in_vec;
|
||||
uint32_t num_blocks_in_radix;
|
||||
uint32_t max_num_radix_in_vec;
|
||||
uint32_t chunk_size;
|
||||
uint64_t *size_tracker;
|
||||
bool gpu_memory_allocated;
|
||||
|
||||
// temporary buffers
|
||||
CudaRadixCiphertextFFI *current_blocks;
|
||||
CudaRadixCiphertextFFI *small_lwe_vector;
|
||||
|
||||
uint32_t *d_columns_data;
|
||||
uint32_t *d_columns_counter;
|
||||
uint32_t **d_columns;
|
||||
|
||||
uint32_t *d_new_columns_data;
|
||||
uint32_t *d_new_columns_counter;
|
||||
uint32_t **d_new_columns;
|
||||
|
||||
uint64_t *d_degrees;
|
||||
|
||||
// lookup table for extracting message and carry
|
||||
int_radix_lut<Torus> *luts_message_carry;
|
||||
|
||||
bool mem_reuse = false;
|
||||
bool allocated_luts_message_carry;
|
||||
|
||||
void setup_index_buffers(cudaStream_t const *streams,
|
||||
uint32_t const *gpu_indexes) {
|
||||
|
||||
d_degrees = (uint64_t *)cuda_malloc_with_size_tracking_async(
|
||||
max_total_blocks_in_vec * sizeof(uint64_t), streams[0], gpu_indexes[0],
|
||||
size_tracker, gpu_memory_allocated);
|
||||
|
||||
auto num_blocks_in_radix = this->num_blocks_in_radix;
|
||||
auto max_num_radix_in_vec = this->max_num_radix_in_vec;
|
||||
auto setup_columns =
|
||||
[num_blocks_in_radix, max_num_radix_in_vec, streams,
|
||||
gpu_indexes](uint32_t **&columns, uint32_t *&columns_data,
|
||||
uint32_t *&columns_counter, uint64_t *size_tracker,
|
||||
bool gpu_memory_allocated) {
|
||||
columns_data = (uint32_t *)cuda_malloc_with_size_tracking_async(
|
||||
num_blocks_in_radix * max_num_radix_in_vec * sizeof(uint32_t),
|
||||
streams[0], gpu_indexes[0], size_tracker, gpu_memory_allocated);
|
||||
columns_counter = (uint32_t *)cuda_malloc_with_size_tracking_async(
|
||||
num_blocks_in_radix * sizeof(uint32_t), streams[0],
|
||||
gpu_indexes[0], size_tracker, gpu_memory_allocated);
|
||||
cuda_memset_with_size_tracking_async(
|
||||
columns_counter, 0, num_blocks_in_radix * sizeof(uint32_t),
|
||||
streams[0], gpu_indexes[0], gpu_memory_allocated);
|
||||
uint32_t **h_columns = new uint32_t *[num_blocks_in_radix];
|
||||
for (int i = 0; i < num_blocks_in_radix; ++i) {
|
||||
h_columns[i] = columns_data + i * max_num_radix_in_vec;
|
||||
}
|
||||
columns = (uint32_t **)cuda_malloc_with_size_tracking_async(
|
||||
num_blocks_in_radix * sizeof(uint32_t *), streams[0],
|
||||
gpu_indexes[0], size_tracker, gpu_memory_allocated);
|
||||
if (gpu_memory_allocated) {
|
||||
cuda_memcpy_async_to_gpu(columns, h_columns,
|
||||
num_blocks_in_radix * sizeof(uint32_t *),
|
||||
streams[0], gpu_indexes[0]);
|
||||
}
|
||||
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
|
||||
delete[] h_columns;
|
||||
};
|
||||
|
||||
setup_columns(d_columns, d_columns_data, d_columns_counter, size_tracker,
|
||||
gpu_memory_allocated);
|
||||
setup_columns(d_new_columns, d_new_columns_data, d_new_columns_counter,
|
||||
size_tracker, gpu_memory_allocated);
|
||||
}
|
||||
|
||||
void setup_lookup_tables(cudaStream_t const *streams,
|
||||
uint32_t const *gpu_indexes, uint32_t gpu_count) {
|
||||
uint32_t message_modulus = params.message_modulus;
|
||||
|
||||
if (!mem_reuse) {
|
||||
uint32_t pbs_count = std::max(2 * (max_total_blocks_in_vec / chunk_size),
|
||||
2 * num_blocks_in_radix);
|
||||
if (max_total_blocks_in_vec > 0) {
|
||||
luts_message_carry = new int_radix_lut<Torus>(
|
||||
streams, gpu_indexes, gpu_count, params, 2, pbs_count,
|
||||
gpu_memory_allocated, size_tracker);
|
||||
} else {
|
||||
allocated_luts_message_carry = false;
|
||||
}
|
||||
}
|
||||
if (allocated_luts_message_carry) {
|
||||
auto message_acc = luts_message_carry->get_lut(0, 0);
|
||||
auto carry_acc = luts_message_carry->get_lut(0, 1);
|
||||
|
||||
// define functions for each accumulator
|
||||
auto lut_f_message = [message_modulus](Torus x) -> Torus {
|
||||
return x % message_modulus;
|
||||
};
|
||||
auto lut_f_carry = [message_modulus](Torus x) -> Torus {
|
||||
return x / message_modulus;
|
||||
};
|
||||
|
||||
// generate accumulators
|
||||
generate_device_accumulator<Torus>(
|
||||
streams[0], gpu_indexes[0], message_acc,
|
||||
luts_message_carry->get_degree(0),
|
||||
luts_message_carry->get_max_degree(0), params.glwe_dimension,
|
||||
params.polynomial_size, message_modulus, params.carry_modulus,
|
||||
lut_f_message, gpu_memory_allocated);
|
||||
generate_device_accumulator<Torus>(
|
||||
streams[0], gpu_indexes[0], carry_acc,
|
||||
luts_message_carry->get_degree(1),
|
||||
luts_message_carry->get_max_degree(1), params.glwe_dimension,
|
||||
params.polynomial_size, message_modulus, params.carry_modulus,
|
||||
lut_f_carry, gpu_memory_allocated);
|
||||
luts_message_carry->broadcast_lut(streams, gpu_indexes, 0);
|
||||
}
|
||||
}
|
||||
int_sum_ciphertexts_vec_memory(cudaStream_t const *streams,
|
||||
uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count, int_radix_params params,
|
||||
@@ -1136,103 +1444,87 @@ template <typename Torus> struct int_sum_ciphertexts_vec_memory {
|
||||
bool allocate_gpu_memory,
|
||||
uint64_t *size_tracker) {
|
||||
this->params = params;
|
||||
gpu_memory_allocated = allocate_gpu_memory;
|
||||
this->mem_reuse = false;
|
||||
this->max_total_blocks_in_vec = num_blocks_in_radix * max_num_radix_in_vec;
|
||||
this->num_blocks_in_radix = num_blocks_in_radix;
|
||||
this->max_num_radix_in_vec = max_num_radix_in_vec;
|
||||
this->gpu_memory_allocated = allocate_gpu_memory;
|
||||
this->size_tracker = size_tracker;
|
||||
this->chunk_size = (params.message_modulus * params.carry_modulus - 1) /
|
||||
(params.message_modulus - 1);
|
||||
this->allocated_luts_message_carry = true;
|
||||
setup_index_buffers(streams, gpu_indexes);
|
||||
setup_lookup_tables(streams, gpu_indexes, gpu_count);
|
||||
|
||||
int max_pbs_count = num_blocks_in_radix * max_num_radix_in_vec;
|
||||
|
||||
// allocate gpu memory for intermediate buffers
|
||||
new_blocks = new CudaRadixCiphertextFFI;
|
||||
// create and allocate intermediate buffers
|
||||
current_blocks = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams[0], gpu_indexes[0], new_blocks, max_pbs_count,
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
new_blocks_copy = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams[0], gpu_indexes[0], new_blocks_copy, max_pbs_count,
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
old_blocks = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams[0], gpu_indexes[0], old_blocks, max_pbs_count,
|
||||
streams[0], gpu_indexes[0], current_blocks, max_total_blocks_in_vec,
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
small_lwe_vector = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams[0], gpu_indexes[0], small_lwe_vector, max_pbs_count,
|
||||
streams[0], gpu_indexes[0], small_lwe_vector, max_total_blocks_in_vec,
|
||||
params.small_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
|
||||
d_smart_copy_in = (int32_t *)cuda_malloc_with_size_tracking_async(
|
||||
max_pbs_count * sizeof(int32_t), streams[0], gpu_indexes[0],
|
||||
size_tracker, allocate_gpu_memory);
|
||||
d_smart_copy_out = (int32_t *)cuda_malloc_with_size_tracking_async(
|
||||
max_pbs_count * sizeof(int32_t), streams[0], gpu_indexes[0],
|
||||
size_tracker, allocate_gpu_memory);
|
||||
cuda_memset_with_size_tracking_async(
|
||||
d_smart_copy_in, 0, max_pbs_count * sizeof(int32_t), streams[0],
|
||||
gpu_indexes[0], allocate_gpu_memory);
|
||||
cuda_memset_with_size_tracking_async(
|
||||
d_smart_copy_out, 0, max_pbs_count * sizeof(int32_t), streams[0],
|
||||
gpu_indexes[0], allocate_gpu_memory);
|
||||
}
|
||||
|
||||
int_sum_ciphertexts_vec_memory(
|
||||
cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count, int_radix_params params, uint32_t num_blocks_in_radix,
|
||||
uint32_t max_num_radix_in_vec, CudaRadixCiphertextFFI *new_blocks,
|
||||
CudaRadixCiphertextFFI *old_blocks,
|
||||
CudaRadixCiphertextFFI *small_lwe_vector, bool allocate_gpu_memory,
|
||||
uint32_t max_num_radix_in_vec, CudaRadixCiphertextFFI *current_blocks,
|
||||
CudaRadixCiphertextFFI *small_lwe_vector,
|
||||
int_radix_lut<Torus> *reused_lut, bool allocate_gpu_memory,
|
||||
uint64_t *size_tracker) {
|
||||
mem_reuse = true;
|
||||
gpu_memory_allocated = allocate_gpu_memory;
|
||||
this->mem_reuse = true;
|
||||
this->params = params;
|
||||
this->max_total_blocks_in_vec = num_blocks_in_radix * max_num_radix_in_vec;
|
||||
this->num_blocks_in_radix = num_blocks_in_radix;
|
||||
this->max_num_radix_in_vec = max_num_radix_in_vec;
|
||||
this->gpu_memory_allocated = allocate_gpu_memory;
|
||||
this->size_tracker = size_tracker;
|
||||
this->chunk_size = (params.message_modulus * params.carry_modulus - 1) /
|
||||
(params.message_modulus - 1);
|
||||
this->allocated_luts_message_carry = true;
|
||||
|
||||
int max_pbs_count = num_blocks_in_radix * max_num_radix_in_vec;
|
||||
|
||||
// assign gpu memory for intermediate buffers
|
||||
this->new_blocks = new_blocks;
|
||||
this->old_blocks = old_blocks;
|
||||
this->current_blocks = current_blocks;
|
||||
this->small_lwe_vector = small_lwe_vector;
|
||||
new_blocks_copy = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams[0], gpu_indexes[0], new_blocks_copy, max_pbs_count,
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
|
||||
d_smart_copy_in = (int32_t *)cuda_malloc_with_size_tracking_async(
|
||||
max_pbs_count * sizeof(int32_t), streams[0], gpu_indexes[0],
|
||||
size_tracker, allocate_gpu_memory);
|
||||
d_smart_copy_out = (int32_t *)cuda_malloc_with_size_tracking_async(
|
||||
max_pbs_count * sizeof(int32_t), streams[0], gpu_indexes[0],
|
||||
size_tracker, allocate_gpu_memory);
|
||||
cuda_memset_with_size_tracking_async(
|
||||
d_smart_copy_in, 0, max_pbs_count * sizeof(int32_t), streams[0],
|
||||
gpu_indexes[0], allocate_gpu_memory);
|
||||
cuda_memset_with_size_tracking_async(
|
||||
d_smart_copy_out, 0, max_pbs_count * sizeof(int32_t), streams[0],
|
||||
gpu_indexes[0], allocate_gpu_memory);
|
||||
this->luts_message_carry = reused_lut;
|
||||
setup_index_buffers(streams, gpu_indexes);
|
||||
}
|
||||
|
||||
void release(cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count) {
|
||||
cuda_drop_with_size_tracking_async(d_smart_copy_in, streams[0],
|
||||
cuda_drop_with_size_tracking_async(d_degrees, streams[0], gpu_indexes[0],
|
||||
gpu_memory_allocated);
|
||||
cuda_drop_with_size_tracking_async(d_columns_data, streams[0],
|
||||
gpu_indexes[0], gpu_memory_allocated);
|
||||
cuda_drop_with_size_tracking_async(d_smart_copy_out, streams[0],
|
||||
cuda_drop_with_size_tracking_async(d_columns_counter, streams[0],
|
||||
gpu_indexes[0], gpu_memory_allocated);
|
||||
cuda_drop_with_size_tracking_async(d_columns, streams[0], gpu_indexes[0],
|
||||
gpu_memory_allocated);
|
||||
|
||||
cuda_drop_with_size_tracking_async(d_new_columns_data, streams[0],
|
||||
gpu_indexes[0], gpu_memory_allocated);
|
||||
cuda_drop_with_size_tracking_async(d_new_columns_counter, streams[0],
|
||||
gpu_indexes[0], gpu_memory_allocated);
|
||||
cuda_drop_with_size_tracking_async(d_new_columns, streams[0],
|
||||
gpu_indexes[0], gpu_memory_allocated);
|
||||
|
||||
if (!mem_reuse) {
|
||||
release_radix_ciphertext_async(streams[0], gpu_indexes[0], new_blocks,
|
||||
gpu_memory_allocated);
|
||||
release_radix_ciphertext_async(streams[0], gpu_indexes[0], old_blocks,
|
||||
release_radix_ciphertext_async(streams[0], gpu_indexes[0], current_blocks,
|
||||
gpu_memory_allocated);
|
||||
release_radix_ciphertext_async(streams[0], gpu_indexes[0],
|
||||
small_lwe_vector, gpu_memory_allocated);
|
||||
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
|
||||
delete new_blocks;
|
||||
delete old_blocks;
|
||||
if (allocated_luts_message_carry) {
|
||||
luts_message_carry->release(streams, gpu_indexes, gpu_count);
|
||||
delete luts_message_carry;
|
||||
}
|
||||
|
||||
delete current_blocks;
|
||||
delete small_lwe_vector;
|
||||
}
|
||||
release_radix_ciphertext_async(streams[0], gpu_indexes[0], new_blocks_copy,
|
||||
gpu_memory_allocated);
|
||||
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
|
||||
delete new_blocks_copy;
|
||||
}
|
||||
};
|
||||
|
||||
// For sequential algorithm in group propagation
|
||||
template <typename Torus> struct int_seq_group_prop_memory {
|
||||
|
||||
@@ -2549,7 +2841,7 @@ template <typename Torus> struct int_mul_memory {
|
||||
// radix_lwe_left except the last blocks of each shift
|
||||
int msb_vector_block_count = num_radix_blocks * (num_radix_blocks - 1) / 2;
|
||||
|
||||
int total_block_count = lsb_vector_block_count + msb_vector_block_count;
|
||||
int total_block_count = num_radix_blocks * num_radix_blocks;
|
||||
|
||||
// allocate memory for intermediate buffers
|
||||
vector_result_sb = new CudaRadixCiphertextFFI;
|
||||
@@ -2562,13 +2854,13 @@ template <typename Torus> struct int_mul_memory {
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
small_lwe_vector = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams[0], gpu_indexes[0], small_lwe_vector, total_block_count,
|
||||
streams[0], gpu_indexes[0], small_lwe_vector, 2 * total_block_count,
|
||||
params.small_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
|
||||
// create int_radix_lut objects for lsb, msb, message, carry
|
||||
// luts_array -> lut = {lsb_acc, msb_acc}
|
||||
luts_array = new int_radix_lut<Torus>(streams, gpu_indexes, gpu_count,
|
||||
params, 2, total_block_count,
|
||||
params, 2, 2 * total_block_count,
|
||||
allocate_gpu_memory, size_tracker);
|
||||
auto lsb_acc = luts_array->get_lut(0, 0);
|
||||
auto msb_acc = luts_array->get_lut(0, 1);
|
||||
@@ -2595,16 +2887,17 @@ template <typename Torus> struct int_mul_memory {
|
||||
// first lsb_vector_block_count value should reference to lsb_acc
|
||||
// last msb_vector_block_count values should reference to msb_acc
|
||||
// for message and carry default lut_indexes_vec is fine
|
||||
cuda_set_value_async<Torus>(
|
||||
streams[0], gpu_indexes[0],
|
||||
luts_array->get_lut_indexes(0, lsb_vector_block_count), 1,
|
||||
msb_vector_block_count);
|
||||
if (allocate_gpu_memory)
|
||||
cuda_set_value_async<Torus>(
|
||||
streams[0], gpu_indexes[0],
|
||||
luts_array->get_lut_indexes(0, lsb_vector_block_count), 1,
|
||||
msb_vector_block_count);
|
||||
|
||||
luts_array->broadcast_lut(streams, gpu_indexes, 0);
|
||||
// create memory object for sum ciphertexts
|
||||
sum_ciphertexts_mem = new int_sum_ciphertexts_vec_memory<Torus>(
|
||||
streams, gpu_indexes, gpu_count, params, num_radix_blocks,
|
||||
2 * num_radix_blocks, block_mul_res, vector_result_sb, small_lwe_vector,
|
||||
2 * num_radix_blocks, vector_result_sb, small_lwe_vector, luts_array,
|
||||
allocate_gpu_memory, size_tracker);
|
||||
uint32_t uses_carry = 0;
|
||||
uint32_t requested_flag = outputFlag::FLAG_NONE;
|
||||
@@ -2750,9 +3043,10 @@ template <typename Torus> struct int_logical_scalar_shift_buffer {
|
||||
tmp_rotated = pre_allocated_buffer;
|
||||
reuse_memory = true;
|
||||
|
||||
set_zero_radix_ciphertext_slice_async<Torus>(streams[0], gpu_indexes[0],
|
||||
tmp_rotated, 0,
|
||||
tmp_rotated->num_radix_blocks);
|
||||
if (allocate_gpu_memory)
|
||||
set_zero_radix_ciphertext_slice_async<Torus>(
|
||||
streams[0], gpu_indexes[0], tmp_rotated, 0,
|
||||
tmp_rotated->num_radix_blocks);
|
||||
|
||||
uint32_t num_bits_in_block = (uint32_t)std::log2(params.message_modulus);
|
||||
|
||||
@@ -3918,7 +4212,8 @@ template <typename Torus> struct unsigned_int_div_rem_memory {
|
||||
zero_out_if_overflow_did_not_happen[0]->get_degree(0),
|
||||
zero_out_if_overflow_did_not_happen[0]->get_max_degree(0),
|
||||
params.glwe_dimension, params.polynomial_size, params.message_modulus,
|
||||
params.carry_modulus, cur_lut_f, 2, gpu_memory_allocated);
|
||||
params.carry_modulus, cur_lut_f, params.message_modulus - 2,
|
||||
gpu_memory_allocated);
|
||||
zero_out_if_overflow_did_not_happen[0]->broadcast_lut(streams, gpu_indexes,
|
||||
0);
|
||||
generate_device_accumulator_bivariate_with_factor<Torus>(
|
||||
@@ -3927,7 +4222,8 @@ template <typename Torus> struct unsigned_int_div_rem_memory {
|
||||
zero_out_if_overflow_did_not_happen[1]->get_degree(0),
|
||||
zero_out_if_overflow_did_not_happen[1]->get_max_degree(0),
|
||||
params.glwe_dimension, params.polynomial_size, params.message_modulus,
|
||||
params.carry_modulus, cur_lut_f, 3, gpu_memory_allocated);
|
||||
params.carry_modulus, cur_lut_f, params.message_modulus - 1,
|
||||
gpu_memory_allocated);
|
||||
zero_out_if_overflow_did_not_happen[1]->broadcast_lut(streams, gpu_indexes,
|
||||
0);
|
||||
|
||||
@@ -3954,7 +4250,8 @@ template <typename Torus> struct unsigned_int_div_rem_memory {
|
||||
zero_out_if_overflow_happened[0]->get_degree(0),
|
||||
zero_out_if_overflow_happened[0]->get_max_degree(0),
|
||||
params.glwe_dimension, params.polynomial_size, params.message_modulus,
|
||||
params.carry_modulus, overflow_happened_f, 2, gpu_memory_allocated);
|
||||
params.carry_modulus, overflow_happened_f, params.message_modulus - 2,
|
||||
gpu_memory_allocated);
|
||||
zero_out_if_overflow_happened[0]->broadcast_lut(streams, gpu_indexes, 0);
|
||||
generate_device_accumulator_bivariate_with_factor<Torus>(
|
||||
streams[0], gpu_indexes[0],
|
||||
@@ -3962,7 +4259,8 @@ template <typename Torus> struct unsigned_int_div_rem_memory {
|
||||
zero_out_if_overflow_happened[1]->get_degree(0),
|
||||
zero_out_if_overflow_happened[1]->get_max_degree(0),
|
||||
params.glwe_dimension, params.polynomial_size, params.message_modulus,
|
||||
params.carry_modulus, overflow_happened_f, 3, gpu_memory_allocated);
|
||||
params.carry_modulus, overflow_happened_f, params.message_modulus - 1,
|
||||
gpu_memory_allocated);
|
||||
zero_out_if_overflow_happened[1]->broadcast_lut(streams, gpu_indexes, 0);
|
||||
|
||||
// merge_overflow_flags_luts
|
||||
@@ -4378,26 +4676,28 @@ template <typename Torus> struct int_scalar_mul_buffer {
|
||||
int_sc_prop_memory<Torus> *sc_prop_mem;
|
||||
bool anticipated_buffers_drop;
|
||||
bool gpu_memory_allocated;
|
||||
uint32_t num_ciphertext_bits;
|
||||
|
||||
int_scalar_mul_buffer(cudaStream_t const *streams,
|
||||
uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
int_radix_params params, uint32_t num_radix_blocks,
|
||||
bool allocate_gpu_memory, bool anticipated_buffer_drop,
|
||||
uint64_t *size_tracker) {
|
||||
uint32_t num_scalar_bits, bool allocate_gpu_memory,
|
||||
bool anticipated_buffer_drop, uint64_t *size_tracker) {
|
||||
gpu_memory_allocated = allocate_gpu_memory;
|
||||
this->params = params;
|
||||
this->anticipated_buffers_drop = anticipated_buffer_drop;
|
||||
|
||||
uint32_t msg_bits = (uint32_t)std::log2(params.message_modulus);
|
||||
size_t num_ciphertext_bits = msg_bits * num_radix_blocks;
|
||||
num_ciphertext_bits = msg_bits * num_scalar_bits;
|
||||
|
||||
//// Contains all shifted values of lhs for shift in range (0..msg_bits)
|
||||
//// The idea is that with these we can create all other shift that are
|
||||
/// in / range (0..total_bits) for free (block rotation)
|
||||
preshifted_buffer = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams[0], gpu_indexes[0], preshifted_buffer, num_ciphertext_bits,
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
streams[0], gpu_indexes[0], preshifted_buffer,
|
||||
msg_bits * num_radix_blocks, params.big_lwe_dimension, size_tracker,
|
||||
allocate_gpu_memory);
|
||||
|
||||
all_shifted_buffer = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
@@ -4414,9 +4714,11 @@ template <typename Torus> struct int_scalar_mul_buffer {
|
||||
streams, gpu_indexes, gpu_count, LEFT_SHIFT, params, num_radix_blocks,
|
||||
allocate_gpu_memory, size_tracker);
|
||||
|
||||
sum_ciphertexts_vec_mem = new int_sum_ciphertexts_vec_memory<Torus>(
|
||||
streams, gpu_indexes, gpu_count, params, num_radix_blocks,
|
||||
num_ciphertext_bits, allocate_gpu_memory, size_tracker);
|
||||
if (num_ciphertext_bits > 0) {
|
||||
sum_ciphertexts_vec_mem = new int_sum_ciphertexts_vec_memory<Torus>(
|
||||
streams, gpu_indexes, gpu_count, params, num_radix_blocks,
|
||||
num_ciphertext_bits, allocate_gpu_memory, size_tracker);
|
||||
}
|
||||
uint32_t uses_carry = 0;
|
||||
uint32_t requested_flag = outputFlag::FLAG_NONE;
|
||||
sc_prop_mem = new int_sc_prop_memory<Torus>(
|
||||
@@ -4428,9 +4730,11 @@ template <typename Torus> struct int_scalar_mul_buffer {
|
||||
uint32_t gpu_count) {
|
||||
release_radix_ciphertext_async(streams[0], gpu_indexes[0],
|
||||
all_shifted_buffer, gpu_memory_allocated);
|
||||
sum_ciphertexts_vec_mem->release(streams, gpu_indexes, gpu_count);
|
||||
if (num_ciphertext_bits > 0) {
|
||||
sum_ciphertexts_vec_mem->release(streams, gpu_indexes, gpu_count);
|
||||
delete sum_ciphertexts_vec_mem;
|
||||
}
|
||||
sc_prop_mem->release(streams, gpu_indexes, gpu_count);
|
||||
delete sum_ciphertexts_vec_mem;
|
||||
delete sc_prop_mem;
|
||||
delete all_shifted_buffer;
|
||||
if (!anticipated_buffers_drop) {
|
||||
@@ -4686,6 +4990,169 @@ template <typename Torus> struct int_div_rem_memory {
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Torus> struct int_scalar_mul_high {
|
||||
int_radix_params params;
|
||||
bool allocate_gpu_memory;
|
||||
|
||||
int_logical_scalar_shift_buffer<Torus> *logical_scalar_shift_mem;
|
||||
int_scalar_mul_buffer<Torus> *scalar_mul_mem;
|
||||
|
||||
CudaRadixCiphertextFFI *tmp;
|
||||
|
||||
int_scalar_mul_high(cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count, const int_radix_params params,
|
||||
uint32_t num_radix_blocks, const bool allocate_gpu_memory,
|
||||
SHIFT_OR_ROTATE_TYPE shift_type, uint32_t num_scalar_bits,
|
||||
bool anticipated_buffer_drop, uint64_t *size_tracker) {
|
||||
|
||||
this->params = params;
|
||||
this->allocate_gpu_memory = allocate_gpu_memory;
|
||||
|
||||
this->logical_scalar_shift_mem = new int_logical_scalar_shift_buffer<Torus>(
|
||||
streams, gpu_indexes, gpu_count, shift_type, params,
|
||||
2 * num_radix_blocks, allocate_gpu_memory, size_tracker);
|
||||
|
||||
this->scalar_mul_mem = new int_scalar_mul_buffer<Torus>(
|
||||
streams, gpu_indexes, gpu_count, params, 2 * num_radix_blocks,
|
||||
num_scalar_bits, allocate_gpu_memory, anticipated_buffer_drop,
|
||||
size_tracker);
|
||||
|
||||
this->tmp = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams[0], gpu_indexes[0], tmp, 2 * num_radix_blocks,
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
void release(cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count) {
|
||||
|
||||
logical_scalar_shift_mem->release(streams, gpu_indexes, gpu_count);
|
||||
delete logical_scalar_shift_mem;
|
||||
|
||||
scalar_mul_mem->release(streams, gpu_indexes, gpu_count);
|
||||
delete scalar_mul_mem;
|
||||
|
||||
release_radix_ciphertext_async(streams[0], gpu_indexes[0], tmp,
|
||||
allocate_gpu_memory);
|
||||
delete tmp;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Torus> struct int_sub_and_propagate {
|
||||
int_radix_params params;
|
||||
bool allocate_gpu_memory;
|
||||
|
||||
CudaRadixCiphertextFFI *neg_rhs_array;
|
||||
|
||||
int_sc_prop_memory<Torus> *sc_prop_mem;
|
||||
|
||||
int_sub_and_propagate(cudaStream_t const *streams,
|
||||
uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
const int_radix_params params,
|
||||
uint32_t num_radix_blocks, uint32_t requested_flag_in,
|
||||
bool allocate_gpu_memory, uint64_t *size_tracker) {
|
||||
|
||||
this->params = params;
|
||||
this->allocate_gpu_memory = allocate_gpu_memory;
|
||||
|
||||
this->sc_prop_mem = new int_sc_prop_memory<Torus>(
|
||||
streams, gpu_indexes, gpu_count, params, num_radix_blocks,
|
||||
requested_flag_in, (uint32_t)0, allocate_gpu_memory, size_tracker);
|
||||
|
||||
this->neg_rhs_array = new CudaRadixCiphertextFFI;
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams[0], gpu_indexes[0], neg_rhs_array, num_radix_blocks,
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
void release(cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count) {
|
||||
|
||||
sc_prop_mem->release(streams, gpu_indexes, gpu_count);
|
||||
delete sc_prop_mem;
|
||||
|
||||
release_radix_ciphertext_async(streams[0], gpu_indexes[0], neg_rhs_array,
|
||||
allocate_gpu_memory);
|
||||
delete neg_rhs_array;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Torus> struct int_extend_radix_with_sign_msb_buffer {
|
||||
|
||||
int_radix_params params;
|
||||
bool allocate_gpu_memory;
|
||||
|
||||
int_radix_lut<Torus> *lut;
|
||||
|
||||
CudaRadixCiphertextFFI *last_block;
|
||||
CudaRadixCiphertextFFI *padding_block;
|
||||
|
||||
int_extend_radix_with_sign_msb_buffer(
|
||||
cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count, const int_radix_params params,
|
||||
uint32_t num_radix_blocks, uint32_t num_additional_blocks,
|
||||
const bool allocate_gpu_memory, uint64_t *size_tracker) {
|
||||
|
||||
this->params = params;
|
||||
this->allocate_gpu_memory = allocate_gpu_memory;
|
||||
|
||||
this->lut = nullptr;
|
||||
this->last_block = nullptr;
|
||||
this->padding_block = nullptr;
|
||||
|
||||
if (num_additional_blocks != 0) {
|
||||
this->lut = new int_radix_lut<Torus>(streams, gpu_indexes, gpu_count,
|
||||
params, 1, num_radix_blocks,
|
||||
allocate_gpu_memory, size_tracker);
|
||||
|
||||
uint32_t bits_per_block = std::log2(params.message_modulus);
|
||||
uint32_t msg_modulus = params.message_modulus;
|
||||
|
||||
generate_device_accumulator<Torus>(
|
||||
streams[0], gpu_indexes[0], lut->get_lut(0, 0), lut->get_degree(0),
|
||||
lut->get_max_degree(0), params.glwe_dimension, params.polynomial_size,
|
||||
params.message_modulus, params.carry_modulus,
|
||||
[msg_modulus, bits_per_block](Torus x) {
|
||||
const auto xm = x % msg_modulus;
|
||||
const auto sign_bit = (xm >> (bits_per_block - 1)) & 1;
|
||||
return (Torus)((msg_modulus - 1) * sign_bit);
|
||||
},
|
||||
allocate_gpu_memory);
|
||||
|
||||
this->last_block = new CudaRadixCiphertextFFI;
|
||||
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams[0], gpu_indexes[0], last_block, 1, params.big_lwe_dimension,
|
||||
size_tracker, allocate_gpu_memory);
|
||||
|
||||
this->padding_block = new CudaRadixCiphertextFFI;
|
||||
|
||||
create_zero_radix_ciphertext_async<Torus>(
|
||||
streams[0], gpu_indexes[0], padding_block, 1,
|
||||
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
|
||||
}
|
||||
}
|
||||
|
||||
void release(cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count) {
|
||||
|
||||
if (lut != nullptr) {
|
||||
lut->release(streams, gpu_indexes, gpu_count);
|
||||
delete lut;
|
||||
}
|
||||
if (last_block != nullptr) {
|
||||
release_radix_ciphertext_async(streams[0], gpu_indexes[0], last_block,
|
||||
allocate_gpu_memory);
|
||||
delete last_block;
|
||||
}
|
||||
if (padding_block != nullptr) {
|
||||
release_radix_ciphertext_async(streams[0], gpu_indexes[0], padding_block,
|
||||
allocate_gpu_memory);
|
||||
delete padding_block;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void update_degrees_after_bitand(uint64_t *output_degrees,
|
||||
uint64_t *lwe_array_1_degrees,
|
||||
uint64_t *lwe_array_2_degrees,
|
||||
|
||||
@@ -0,0 +1,13 @@
|
||||
#ifndef CUDA_BOOTSTRAP_128_H
|
||||
#define CUDA_BOOTSTRAP_128_H
|
||||
|
||||
#include "pbs_enums.h"
|
||||
#include <stdint.h>
|
||||
|
||||
uint64_t scratch_cuda_programmable_bootstrap_128_vector_64(
|
||||
void *stream, uint32_t gpu_index, int8_t **pbs_buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t level_count, uint32_t input_lwe_ciphertext_count,
|
||||
bool allocate_gpu_memory, bool allocate_ms_array);
|
||||
|
||||
#endif // CUDA_BOOTSTRAP_128_H
|
||||
@@ -240,14 +240,13 @@ template <typename Torus> struct pbs_buffer<Torus, PBS_TYPE::CLASSICAL> {
|
||||
}
|
||||
};
|
||||
|
||||
template <PBS_TYPE pbs_type> struct pbs_buffer_128;
|
||||
|
||||
template <> struct pbs_buffer_128<PBS_TYPE::CLASSICAL> {
|
||||
template <typename InputTorus, PBS_TYPE pbs_type> struct pbs_buffer_128 {
|
||||
int8_t *d_mem;
|
||||
|
||||
__uint128_t *global_accumulator;
|
||||
double *global_join_buffer;
|
||||
__uint128_t *temp_lwe_array_in;
|
||||
InputTorus *temp_lwe_array_in;
|
||||
uint64_t *trivial_indexes;
|
||||
|
||||
PBS_VARIANT pbs_variant;
|
||||
bool uses_noise_reduction;
|
||||
@@ -263,11 +262,25 @@ template <> struct pbs_buffer_128<PBS_TYPE::CLASSICAL> {
|
||||
cuda_set_device(gpu_index);
|
||||
this->pbs_variant = pbs_variant;
|
||||
this->uses_noise_reduction = allocate_ms_array;
|
||||
this->temp_lwe_array_in =
|
||||
(__uint128_t *)cuda_malloc_with_size_tracking_async(
|
||||
(lwe_dimension + 1) * input_lwe_ciphertext_count *
|
||||
sizeof(__uint128_t),
|
||||
stream, gpu_index, size_tracker, allocate_ms_array);
|
||||
if (allocate_ms_array) {
|
||||
this->temp_lwe_array_in = (InputTorus *)cuda_malloc_async(
|
||||
(lwe_dimension + 1) * input_lwe_ciphertext_count * sizeof(InputTorus),
|
||||
stream, gpu_index);
|
||||
this->trivial_indexes = (uint64_t *)cuda_malloc_with_size_tracking_async(
|
||||
input_lwe_ciphertext_count * sizeof(uint64_t), stream, gpu_index,
|
||||
size_tracker, allocate_ms_array);
|
||||
uint64_t *h_trivial_indexes = new uint64_t[input_lwe_ciphertext_count];
|
||||
for (uint32_t i = 0; i < input_lwe_ciphertext_count; i++)
|
||||
h_trivial_indexes[i] = i;
|
||||
|
||||
cuda_memcpy_with_size_tracking_async_to_gpu(
|
||||
trivial_indexes, h_trivial_indexes,
|
||||
input_lwe_ciphertext_count * sizeof(uint64_t), stream, gpu_index,
|
||||
allocate_gpu_memory);
|
||||
|
||||
cuda_synchronize_stream(stream, gpu_index);
|
||||
delete[] h_trivial_indexes;
|
||||
}
|
||||
auto max_shared_memory = cuda_get_max_shared_memory(gpu_index);
|
||||
size_t global_join_buffer_size = (glwe_dimension + 1) * level_count *
|
||||
input_lwe_ciphertext_count *
|
||||
@@ -404,9 +417,12 @@ template <> struct pbs_buffer_128<PBS_TYPE::CLASSICAL> {
|
||||
cuda_drop_with_size_tracking_async(global_accumulator, stream, gpu_index,
|
||||
gpu_memory_allocated);
|
||||
|
||||
if (uses_noise_reduction)
|
||||
if (uses_noise_reduction) {
|
||||
cuda_drop_with_size_tracking_async(temp_lwe_array_in, stream, gpu_index,
|
||||
gpu_memory_allocated);
|
||||
cuda_drop_with_size_tracking_async(trivial_indexes, stream, gpu_index,
|
||||
gpu_memory_allocated);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@@ -502,7 +518,12 @@ template <typename Torus>
|
||||
bool has_support_to_cuda_programmable_bootstrap_tbc(uint32_t num_samples,
|
||||
uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size,
|
||||
uint32_t level_count);
|
||||
uint32_t level_count,
|
||||
uint32_t max_shared_memory);
|
||||
|
||||
bool has_support_to_cuda_programmable_bootstrap_128_cg(
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t num_samples, uint32_t max_shared_memory);
|
||||
|
||||
#ifdef __CUDACC__
|
||||
__device__ inline int get_start_ith_ggsw(int i, uint32_t polynomial_size,
|
||||
|
||||
@@ -100,7 +100,7 @@ void cuda_programmable_bootstrap_lwe_ciphertext_vector_128(
|
||||
void const *lut_vector, void const *lwe_array_in,
|
||||
void const *bootstrapping_key,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key,
|
||||
void *ms_noise_reduction_ptr, int8_t *buffer, uint32_t lwe_dimension,
|
||||
void const *ms_noise_reduction_ptr, int8_t *buffer, uint32_t lwe_dimension,
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t base_log,
|
||||
uint32_t level_count, uint32_t num_samples);
|
||||
|
||||
|
||||
@@ -112,15 +112,15 @@ template <typename Torus> struct zk_expand_mem {
|
||||
|
||||
// Hint for future readers: if message_modulus == 4 then
|
||||
// packed_messages_per_lwe becomes 2
|
||||
auto packed_messages_per_lwe = log2_int(params.message_modulus);
|
||||
auto num_packed_msgs = log2_int(params.message_modulus);
|
||||
|
||||
// Adjust indexes to permute the output and access the correct LUT
|
||||
auto h_indexes_in = static_cast<Torus *>(
|
||||
malloc(packed_messages_per_lwe * num_lwes * sizeof(Torus)));
|
||||
malloc(num_packed_msgs * num_lwes * sizeof(Torus)));
|
||||
auto h_indexes_out = static_cast<Torus *>(
|
||||
malloc(packed_messages_per_lwe * num_lwes * sizeof(Torus)));
|
||||
malloc(num_packed_msgs * num_lwes * sizeof(Torus)));
|
||||
auto h_lut_indexes = static_cast<Torus *>(
|
||||
malloc(packed_messages_per_lwe * num_lwes * sizeof(Torus)));
|
||||
malloc(num_packed_msgs * num_lwes * sizeof(Torus)));
|
||||
auto h_body_id_per_compact_list =
|
||||
static_cast<uint32_t *>(malloc(num_lwes * sizeof(uint32_t)));
|
||||
auto h_lwe_compact_input_indexes =
|
||||
@@ -138,6 +138,10 @@ template <typename Torus> struct zk_expand_mem {
|
||||
auto compact_list_id = 0;
|
||||
auto idx = 0;
|
||||
auto count = 0;
|
||||
// During flatenning, all num_lwes LWEs from all compact lists are stored
|
||||
// sequentially on a Torus array. h_lwe_compact_input_indexes stores the
|
||||
// index of the first LWE related to the compact list that contains the i-th
|
||||
// LWE
|
||||
for (int i = 0; i < num_lwes; i++) {
|
||||
h_lwe_compact_input_indexes[i] = idx;
|
||||
count++;
|
||||
@@ -148,6 +152,8 @@ template <typename Torus> struct zk_expand_mem {
|
||||
}
|
||||
}
|
||||
|
||||
// Stores the index of the i-th LWE (within each compact list) related to
|
||||
// the k-th compact list.
|
||||
auto offset = 0;
|
||||
for (int k = 0; k < num_compact_lists; k++) {
|
||||
auto num_lwes_in_kth_compact_list = num_lwes_per_compact_list[k];
|
||||
@@ -159,46 +165,75 @@ template <typename Torus> struct zk_expand_mem {
|
||||
offset += num_lwes_in_kth_compact_list;
|
||||
}
|
||||
|
||||
/*
|
||||
* Each LWE contains encrypted data in both carry and message spaces
|
||||
* that needs to be extracted.
|
||||
*
|
||||
* The loop processes each compact list (k) and for each LWE within that
|
||||
* list:
|
||||
* 1. Sets input indexes to read each LWE twice (for carry and message
|
||||
* extraction)
|
||||
* 2. Creates output indexes to properly reorder the results
|
||||
* 3. Selects appropriate LUT index based on whether boolean sanitization is
|
||||
* needed
|
||||
*
|
||||
* We want the output to have always first the content of the message part
|
||||
* and then the content of the carry part of each LWE.
|
||||
*
|
||||
* i.e. msg_extract(LWE_0), carry_extract(LWE_0), msg_extract(LWE_1),
|
||||
* carry_extract(LWE_1), ...
|
||||
*
|
||||
* Aiming that behavior, with 4 LWEs we would have:
|
||||
*
|
||||
* // Each LWE is processed twice
|
||||
* h_indexes_in = {0, 1, 2, 3, 0, 1, 2, 3}
|
||||
*
|
||||
* // First 4 use message LUT, last 4 use carry LUT
|
||||
* h_lut_indexes = {0, 0, 0, 0, 1, 1, 1, 1}
|
||||
*
|
||||
* // Reorders output so message and carry for each LWE appear together
|
||||
* h_indexes_out = {0, 2, 4, 6, 1, 3, 5, 7}
|
||||
*
|
||||
* If an LWE contains a boolean value, its LUT index is shifted by
|
||||
* num_packed_msgs to use the sanitization LUT (which ensures output is
|
||||
* exactly 0 or 1).
|
||||
*/
|
||||
offset = 0;
|
||||
for (int k = 0; k < num_compact_lists; k++) {
|
||||
auto num_lwes_in_kth_compact_list = num_lwes_per_compact_list[k];
|
||||
for (int i = 0;
|
||||
i < packed_messages_per_lwe * num_lwes_in_kth_compact_list; i++) {
|
||||
Torus j = i % num_lwes_in_kth_compact_list;
|
||||
h_indexes_in[i + packed_messages_per_lwe * offset] = j + offset;
|
||||
h_indexes_out[i + packed_messages_per_lwe * offset] =
|
||||
packed_messages_per_lwe * (j + offset) +
|
||||
(i / num_lwes_in_kth_compact_list);
|
||||
auto num_lwes_in_kth = num_lwes_per_compact_list[k];
|
||||
for (int i = 0; i < num_packed_msgs * num_lwes_in_kth; i++) {
|
||||
auto lwe_index = i + num_packed_msgs * offset;
|
||||
auto lwe_index_in_list = i % num_lwes_in_kth;
|
||||
h_indexes_in[lwe_index] = lwe_index_in_list + offset;
|
||||
h_indexes_out[lwe_index] =
|
||||
num_packed_msgs * h_indexes_in[lwe_index] + i / num_lwes_in_kth;
|
||||
// If the input relates to a boolean, shift the LUT so the correct one
|
||||
// with sanitization is used
|
||||
h_lut_indexes[i + packed_messages_per_lwe * offset] =
|
||||
(is_boolean_array[h_indexes_out[i +
|
||||
packed_messages_per_lwe * offset]]
|
||||
? packed_messages_per_lwe
|
||||
: 0) +
|
||||
i / num_lwes_in_kth_compact_list;
|
||||
auto boolean_offset =
|
||||
is_boolean_array[h_indexes_out[lwe_index]] ? num_packed_msgs : 0;
|
||||
h_lut_indexes[lwe_index] = i / num_lwes_in_kth + boolean_offset;
|
||||
}
|
||||
offset += num_lwes_in_kth_compact_list;
|
||||
offset += num_lwes_in_kth;
|
||||
}
|
||||
|
||||
message_and_carry_extract_luts->set_lwe_indexes(
|
||||
streams[0], gpu_indexes[0], h_indexes_in, h_indexes_out);
|
||||
auto lut_indexes = message_and_carry_extract_luts->get_lut_indexes(0, 0);
|
||||
message_and_carry_extract_luts->broadcast_lut(streams, gpu_indexes, 0);
|
||||
|
||||
cuda_memcpy_with_size_tracking_async_to_gpu(
|
||||
d_lwe_compact_input_indexes, h_lwe_compact_input_indexes,
|
||||
num_lwes * sizeof(uint32_t), streams[0], gpu_indexes[0],
|
||||
allocate_gpu_memory);
|
||||
cuda_memcpy_with_size_tracking_async_to_gpu(
|
||||
lut_indexes, h_lut_indexes,
|
||||
packed_messages_per_lwe * num_lwes * sizeof(Torus), streams[0],
|
||||
gpu_indexes[0], allocate_gpu_memory);
|
||||
lut_indexes, h_lut_indexes, num_packed_msgs * num_lwes * sizeof(Torus),
|
||||
streams[0], gpu_indexes[0], allocate_gpu_memory);
|
||||
cuda_memcpy_with_size_tracking_async_to_gpu(
|
||||
d_body_id_per_compact_list, h_body_id_per_compact_list,
|
||||
num_lwes * sizeof(uint32_t), streams[0], gpu_indexes[0],
|
||||
allocate_gpu_memory);
|
||||
|
||||
message_and_carry_extract_luts->broadcast_lut(streams, gpu_indexes, 0);
|
||||
|
||||
// The expanded LWEs will always be on the casting key format
|
||||
tmp_expanded_lwes = (Torus *)cuda_malloc_with_size_tracking_async(
|
||||
num_lwes * (casting_params.big_lwe_dimension + 1) * sizeof(Torus),
|
||||
|
||||
@@ -84,15 +84,19 @@ void cuda_modulus_switch_inplace_64(void *stream, uint32_t gpu_index,
|
||||
static_cast<uint64_t *>(lwe_array_out), size, log_modulus);
|
||||
}
|
||||
|
||||
// This end point is used only for testing purposes
|
||||
// its output always follows trivial ordering
|
||||
void cuda_improve_noise_modulus_switch_64(
|
||||
void *stream, uint32_t gpu_index, void *lwe_array_out,
|
||||
void const *lwe_array_in, void const *encrypted_zeros, uint32_t lwe_size,
|
||||
uint32_t num_lwes, uint32_t num_zeros, double input_variance,
|
||||
double r_sigma, double bound, uint32_t log_modulus) {
|
||||
void const *lwe_array_in, void const *lwe_array_indexes,
|
||||
void const *encrypted_zeros, uint32_t lwe_size, uint32_t num_lwes,
|
||||
uint32_t num_zeros, double input_variance, double r_sigma, double bound,
|
||||
uint32_t log_modulus) {
|
||||
host_improve_noise_modulus_switch<uint64_t>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index,
|
||||
static_cast<uint64_t *>(lwe_array_out),
|
||||
static_cast<uint64_t const *>(lwe_array_in),
|
||||
static_cast<uint64_t const *>(lwe_array_indexes),
|
||||
static_cast<const uint64_t *>(encrypted_zeros), lwe_size, num_lwes,
|
||||
num_zeros, input_variance, r_sigma, bound, log_modulus);
|
||||
}
|
||||
|
||||
@@ -172,14 +172,14 @@ __host__ uint64_t scratch_packing_keyswitch_lwe_list_to_glwe(
|
||||
|
||||
// allocate at least LWE-mask times two: to keep both decomposition state and
|
||||
// decomposed intermediate value
|
||||
int memory_unit = glwe_accumulator_size > lwe_dimension * 2
|
||||
? glwe_accumulator_size
|
||||
: lwe_dimension * 2;
|
||||
uint64_t memory_unit = glwe_accumulator_size > lwe_dimension * 2
|
||||
? glwe_accumulator_size
|
||||
: lwe_dimension * 2;
|
||||
|
||||
uint64_t size_tracker;
|
||||
uint64_t buffer_size = 2 * num_lwes * memory_unit * sizeof(Torus);
|
||||
*fp_ks_buffer = (int8_t *)cuda_malloc_with_size_tracking_async(
|
||||
2 * num_lwes * memory_unit * sizeof(Torus), stream, gpu_index,
|
||||
&size_tracker, allocate_gpu_memory);
|
||||
buffer_size, stream, gpu_index, &size_tracker, allocate_gpu_memory);
|
||||
return size_tracker;
|
||||
}
|
||||
|
||||
|
||||
@@ -178,11 +178,12 @@ __device__ __forceinline__ double measure_modulus_switch_noise(
|
||||
|
||||
// Each thread processes two elements of the lwe array
|
||||
template <typename Torus>
|
||||
__global__ void
|
||||
improve_noise_modulus_switch(Torus *array_out, const Torus *array_in,
|
||||
const Torus *zeros, int lwe_size, int num_zeros,
|
||||
double input_variance, double r_sigma,
|
||||
double bound, uint32_t log_modulus) {
|
||||
__global__ void __launch_bounds__(512)
|
||||
improve_noise_modulus_switch(Torus *array_out, const Torus *array_in,
|
||||
const uint64_t *indexes, const Torus *zeros,
|
||||
int lwe_size, int num_zeros,
|
||||
double input_variance, double r_sigma,
|
||||
double bound, uint32_t log_modulus) {
|
||||
|
||||
// First we will assume size is less than the number of threads per block
|
||||
// I should switch this to dynamic shared memory
|
||||
@@ -198,13 +199,14 @@ improve_noise_modulus_switch(Torus *array_out, const Torus *array_in,
|
||||
// This probably are not needed cause we are setting the values
|
||||
sum_mask_errors[threadIdx.x] = 0.f;
|
||||
sum_squared_mask_errors[threadIdx.x] = 0.f;
|
||||
auto this_block_lwe_in = array_in + indexes[blockIdx.x] * lwe_size;
|
||||
// We use modulus switch to gather the output in trivial order
|
||||
auto this_block_lwe_out = array_out + blockIdx.x * lwe_size;
|
||||
Torus input_element1 = this_block_lwe_in[threadIdx.x];
|
||||
|
||||
Torus input_element1 = array_in[threadIdx.x + blockIdx.x * lwe_size];
|
||||
|
||||
Torus input_element2 =
|
||||
threadIdx.x + blockDim.x < lwe_size
|
||||
? array_in[threadIdx.x + blockDim.x + blockIdx.x * lwe_size]
|
||||
: 0;
|
||||
Torus input_element2 = threadIdx.x + blockDim.x < lwe_size
|
||||
? this_block_lwe_in[threadIdx.x + blockDim.x]
|
||||
: 0;
|
||||
|
||||
// Base noise is only handled by thread 0
|
||||
double base_noise = measure_modulus_switch_noise<Torus>(
|
||||
@@ -218,11 +220,10 @@ improve_noise_modulus_switch(Torus *array_out, const Torus *array_in,
|
||||
__syncthreads();
|
||||
|
||||
if (found)
|
||||
array_out[threadIdx.x + blockIdx.x * lwe_size] = input_element1;
|
||||
this_block_lwe_out[threadIdx.x] = input_element1;
|
||||
|
||||
if (found && (threadIdx.x + blockDim.x) < lwe_size)
|
||||
array_out[threadIdx.x + blockDim.x + blockIdx.x * lwe_size] =
|
||||
input_element2;
|
||||
this_block_lwe_out[threadIdx.x + blockDim.x] = input_element2;
|
||||
|
||||
__syncthreads();
|
||||
// If we found a zero element we stop iterating (in avg 20 times are
|
||||
@@ -253,11 +254,10 @@ improve_noise_modulus_switch(Torus *array_out, const Torus *array_in,
|
||||
// Assumption we always have at least 512 elements
|
||||
// If we find a useful zero encryption we replace the lwe by lwe + zero
|
||||
if (found)
|
||||
array_out[threadIdx.x + blockIdx.x * lwe_size] = zero_element1;
|
||||
this_block_lwe_out[threadIdx.x] = zero_element1;
|
||||
|
||||
if (found && (threadIdx.x + blockDim.x) < lwe_size)
|
||||
array_out[threadIdx.x + blockDim.x + blockIdx.x * lwe_size] =
|
||||
zero_element2;
|
||||
this_block_lwe_out[threadIdx.x + blockDim.x] = zero_element2;
|
||||
|
||||
__syncthreads();
|
||||
// If we found a zero element we stop iterating (in avg 20 times are
|
||||
@@ -270,9 +270,10 @@ improve_noise_modulus_switch(Torus *array_out, const Torus *array_in,
|
||||
template <typename Torus>
|
||||
__host__ void host_improve_noise_modulus_switch(
|
||||
cudaStream_t stream, uint32_t gpu_index, Torus *array_out,
|
||||
Torus const *array_in, const Torus *zeros, uint32_t lwe_size,
|
||||
uint32_t num_lwes, const uint32_t num_zeros, const double input_variance,
|
||||
const double r_sigma, const double bound, uint32_t log_modulus) {
|
||||
Torus const *array_in, uint64_t const *indexes, const Torus *zeros,
|
||||
uint32_t lwe_size, uint32_t num_lwes, const uint32_t num_zeros,
|
||||
const double input_variance, const double r_sigma, const double bound,
|
||||
uint32_t log_modulus) {
|
||||
|
||||
if (lwe_size < 512) {
|
||||
PANIC("The lwe_size is less than 512, this is not supported\n");
|
||||
@@ -289,8 +290,8 @@ __host__ void host_improve_noise_modulus_switch(
|
||||
int num_threads = 512, num_blocks = num_lwes;
|
||||
|
||||
improve_noise_modulus_switch<Torus><<<num_blocks, num_threads, 0, stream>>>(
|
||||
array_out, array_in, zeros, lwe_size, num_zeros, input_variance, r_sigma,
|
||||
bound, log_modulus);
|
||||
array_out, array_in, indexes, zeros, lwe_size, num_zeros, input_variance,
|
||||
r_sigma, bound, log_modulus);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
}
|
||||
|
||||
|
||||
@@ -492,6 +492,7 @@ __host__ void host_fourier_transform_forward_as_integer_f128(
|
||||
batch_convert_u128_to_f128_as_integer<params>
|
||||
<<<grid_size, block_size, 0, stream>>>(d_re0, d_re1, d_im0, d_im1,
|
||||
d_standard);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
|
||||
// call negacyclic 128 bit forward fft.
|
||||
if (full_sm) {
|
||||
@@ -503,6 +504,7 @@ __host__ void host_fourier_transform_forward_as_integer_f128(
|
||||
<<<grid_size, block_size, shared_memory_size, stream>>>(
|
||||
d_re0, d_re1, d_im0, d_im1, d_re0, d_re1, d_im0, d_im1, buffer);
|
||||
}
|
||||
check_cuda_error(cudaGetLastError());
|
||||
|
||||
cuda_memcpy_async_to_cpu(re0, d_re0, N / 2 * sizeof(double), stream,
|
||||
gpu_index);
|
||||
|
||||
@@ -63,7 +63,7 @@ void update_degrees_after_bitor(uint64_t *output_degrees,
|
||||
auto result = max;
|
||||
|
||||
for (uint j = 0; j < min + 1; j++) {
|
||||
if (max | j > result) {
|
||||
if ((max | j) > result) {
|
||||
result = max | j;
|
||||
}
|
||||
}
|
||||
@@ -82,7 +82,7 @@ void update_degrees_after_bitxor(uint64_t *output_degrees,
|
||||
|
||||
// Try every possibility to find the worst case
|
||||
for (uint j = 0; j < min + 1; j++) {
|
||||
if (max ^ j > result) {
|
||||
if ((max ^ j) > result) {
|
||||
result = max ^ j;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -36,7 +36,7 @@ __host__ void host_integer_radix_bitop_kb(
|
||||
update_degrees_after_bitor(degrees, lwe_array_1->degrees,
|
||||
lwe_array_2->degrees,
|
||||
lwe_array_1->num_radix_blocks);
|
||||
} else if (mem_ptr->op == BITXOR) {
|
||||
} else if (mem_ptr->op == BITOP_TYPE::BITXOR) {
|
||||
update_degrees_after_bitxor(degrees, lwe_array_1->degrees,
|
||||
lwe_array_2->degrees,
|
||||
lwe_array_1->num_radix_blocks);
|
||||
|
||||
62
backends/tfhe-cuda-backend/cuda/src/integer/cast.cu
Normal file
62
backends/tfhe-cuda-backend/cuda/src/integer/cast.cu
Normal file
@@ -0,0 +1,62 @@
|
||||
#include "cast.cuh"
|
||||
|
||||
void extend_radix_with_trivial_zero_blocks_msb_64(
|
||||
CudaRadixCiphertextFFI *output, CudaRadixCiphertextFFI const *input,
|
||||
void *const *streams, uint32_t const *gpu_indexes) {
|
||||
host_extend_radix_with_trivial_zero_blocks_msb<uint64_t>(
|
||||
output, input, (cudaStream_t *)streams, gpu_indexes);
|
||||
}
|
||||
|
||||
void trim_radix_blocks_lsb_64(CudaRadixCiphertextFFI *output,
|
||||
CudaRadixCiphertextFFI const *input,
|
||||
void *const *streams,
|
||||
uint32_t const *gpu_indexes) {
|
||||
|
||||
host_trim_radix_blocks_lsb<uint64_t>(output, input, (cudaStream_t *)streams,
|
||||
gpu_indexes);
|
||||
}
|
||||
|
||||
uint64_t scratch_cuda_extend_radix_with_sign_msb_64(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
int8_t **mem_ptr, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t lwe_dimension, uint32_t ks_level, uint32_t ks_base_log,
|
||||
uint32_t pbs_level, uint32_t pbs_base_log, uint32_t grouping_factor,
|
||||
uint32_t num_blocks, uint32_t num_additional_blocks,
|
||||
uint32_t message_modulus, uint32_t carry_modulus, PBS_TYPE pbs_type,
|
||||
bool allocate_gpu_memory, bool allocate_ms_array) {
|
||||
|
||||
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
|
||||
glwe_dimension * polynomial_size, lwe_dimension,
|
||||
ks_level, ks_base_log, pbs_level, pbs_base_log,
|
||||
grouping_factor, message_modulus, carry_modulus,
|
||||
allocate_ms_array);
|
||||
|
||||
return scratch_extend_radix_with_sign_msb<uint64_t>(
|
||||
(cudaStream_t *)streams, gpu_indexes, gpu_count,
|
||||
(int_extend_radix_with_sign_msb_buffer<uint64_t> **)mem_ptr, params,
|
||||
num_blocks, num_additional_blocks, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
void cuda_extend_radix_with_sign_msb_64(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
CudaRadixCiphertextFFI *output, CudaRadixCiphertextFFI const *input,
|
||||
int8_t *mem_ptr, uint32_t num_additional_blocks, void *const *bsks,
|
||||
void *const *ksks,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key) {
|
||||
|
||||
host_extend_radix_with_sign_msb<uint64_t>(
|
||||
(cudaStream_t *)streams, gpu_indexes, gpu_count, output, input,
|
||||
(int_extend_radix_with_sign_msb_buffer<uint64_t> *)mem_ptr,
|
||||
num_additional_blocks, bsks, (uint64_t **)ksks, ms_noise_reduction_key);
|
||||
}
|
||||
|
||||
void cleanup_cuda_extend_radix_with_sign_msb_64(void *const *streams,
|
||||
uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count,
|
||||
int8_t **mem_ptr_void) {
|
||||
|
||||
int_extend_radix_with_sign_msb_buffer<uint64_t> *mem_ptr =
|
||||
(int_extend_radix_with_sign_msb_buffer<uint64_t> *)(*mem_ptr_void);
|
||||
|
||||
mem_ptr->release((cudaStream_t *)(streams), gpu_indexes, gpu_count);
|
||||
}
|
||||
94
backends/tfhe-cuda-backend/cuda/src/integer/cast.cuh
Normal file
94
backends/tfhe-cuda-backend/cuda/src/integer/cast.cuh
Normal file
@@ -0,0 +1,94 @@
|
||||
#ifndef CAST_CUH
|
||||
#define CAST_CUH
|
||||
|
||||
#include "device.h"
|
||||
#include "integer.cuh"
|
||||
#include "integer/integer_utilities.h"
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void host_extend_radix_with_trivial_zero_blocks_msb(
|
||||
CudaRadixCiphertextFFI *output, CudaRadixCiphertextFFI const *input,
|
||||
cudaStream_t const *streams, uint32_t const *gpu_indexes) {
|
||||
copy_radix_ciphertext_slice_async<Torus>(streams[0], gpu_indexes[0], output,
|
||||
0, input->num_radix_blocks, input, 0,
|
||||
input->num_radix_blocks);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void host_trim_radix_blocks_lsb(CudaRadixCiphertextFFI *output,
|
||||
CudaRadixCiphertextFFI const *input,
|
||||
cudaStream_t const *streams,
|
||||
uint32_t const *gpu_indexes) {
|
||||
|
||||
const uint32_t input_start_lwe_index =
|
||||
input->num_radix_blocks - output->num_radix_blocks;
|
||||
|
||||
if (input->num_radix_blocks <= output->num_radix_blocks) {
|
||||
PANIC("Cuda error: input num blocks should be greater than output num "
|
||||
"blocks");
|
||||
}
|
||||
|
||||
copy_radix_ciphertext_slice_async<Torus>(
|
||||
streams[0], gpu_indexes[0], output, 0, output->num_radix_blocks, input,
|
||||
input_start_lwe_index, input->num_radix_blocks);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ uint64_t scratch_extend_radix_with_sign_msb(
|
||||
cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count, int_extend_radix_with_sign_msb_buffer<Torus> **mem_ptr,
|
||||
const int_radix_params params, uint32_t num_radix_blocks,
|
||||
uint32_t num_additional_blocks, const bool allocate_gpu_memory) {
|
||||
|
||||
uint64_t size_tracker = 0;
|
||||
|
||||
*mem_ptr = new int_extend_radix_with_sign_msb_buffer<Torus>(
|
||||
streams, gpu_indexes, gpu_count, params, num_radix_blocks,
|
||||
num_additional_blocks, allocate_gpu_memory, &size_tracker);
|
||||
|
||||
return size_tracker;
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void host_extend_radix_with_sign_msb(
|
||||
cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count, CudaRadixCiphertextFFI *output,
|
||||
CudaRadixCiphertextFFI const *input,
|
||||
int_extend_radix_with_sign_msb_buffer<Torus> *mem_ptr,
|
||||
uint32_t num_additional_blocks, void *const *bsks, Torus *const *ksks,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key) {
|
||||
|
||||
if (num_additional_blocks == 0) {
|
||||
copy_radix_ciphertext_async<Torus>(streams[0], gpu_indexes[0], output,
|
||||
input);
|
||||
return;
|
||||
}
|
||||
|
||||
const uint32_t input_blocks = input->num_radix_blocks;
|
||||
|
||||
if (input_blocks == 0) {
|
||||
PANIC("Cuda error: input blocks cannot be zero");
|
||||
}
|
||||
|
||||
copy_radix_ciphertext_slice_async<Torus>(streams[0], gpu_indexes[0], output,
|
||||
0, input_blocks, input, 0,
|
||||
input_blocks);
|
||||
|
||||
copy_radix_ciphertext_slice_async<Torus>(streams[0], gpu_indexes[0],
|
||||
mem_ptr->last_block, 0, 1, input,
|
||||
input_blocks - 1, input_blocks);
|
||||
|
||||
host_apply_univariate_lut_kb(
|
||||
streams, gpu_indexes, gpu_count, mem_ptr->padding_block,
|
||||
mem_ptr->last_block, mem_ptr->lut, ksks, ms_noise_reduction_key, bsks);
|
||||
|
||||
for (uint32_t i = 0; i < num_additional_blocks; ++i) {
|
||||
uint32_t dst_block_idx = input_blocks + i;
|
||||
|
||||
copy_radix_ciphertext_slice_async<Torus>(streams[0], gpu_indexes[0], output,
|
||||
dst_block_idx, dst_block_idx + 1,
|
||||
mem_ptr->padding_block, 0, 1);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -456,7 +456,7 @@ __host__ void tree_sign_reduction(
|
||||
auto inner_tree_leaf = tree_buffer->tree_inner_leaf_lut;
|
||||
while (partial_block_count > 2) {
|
||||
pack_blocks<Torus>(streams[0], gpu_indexes[0], y, x, partial_block_count,
|
||||
4);
|
||||
message_modulus);
|
||||
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
streams, gpu_indexes, gpu_count, x, y, bsks, ksks,
|
||||
@@ -477,16 +477,17 @@ __host__ void tree_sign_reduction(
|
||||
auto last_lut = tree_buffer->tree_last_leaf_lut;
|
||||
auto block_selector_f = tree_buffer->block_selector_f;
|
||||
std::function<Torus(Torus)> f;
|
||||
|
||||
auto num_bits_in_message = log2_int(params.message_modulus);
|
||||
if (partial_block_count == 2) {
|
||||
pack_blocks<Torus>(streams[0], gpu_indexes[0], y, x, partial_block_count,
|
||||
4);
|
||||
message_modulus);
|
||||
|
||||
f = [block_selector_f, sign_handler_f](Torus x) -> Torus {
|
||||
int msb = (x >> 2) & 3;
|
||||
int lsb = x & 3;
|
||||
f = [block_selector_f, sign_handler_f, num_bits_in_message,
|
||||
message_modulus](Torus x) -> Torus {
|
||||
Torus msb = (x >> num_bits_in_message) & (message_modulus - 1);
|
||||
Torus lsb = x & (message_modulus - 1);
|
||||
|
||||
int final_sign = block_selector_f(msb, lsb);
|
||||
Torus final_sign = block_selector_f(msb, lsb);
|
||||
return sign_handler_f(final_sign);
|
||||
};
|
||||
} else {
|
||||
|
||||
@@ -386,8 +386,9 @@ __host__ void host_unsigned_integer_div_rem_kb(
|
||||
subtraction_overflowed,
|
||||
at_least_one_upper_block_is_non_zero, 1);
|
||||
|
||||
int factor = (i) ? 3 : 2;
|
||||
int factor_lut_id = factor - 2;
|
||||
auto message_modulus = radix_params.message_modulus;
|
||||
int factor = (i) ? message_modulus - 1 : message_modulus - 2;
|
||||
int factor_lut_id = (i) ? 1 : 0;
|
||||
for (size_t k = 0;
|
||||
k < cleaned_merged_interesting_remainder->num_radix_blocks; k++) {
|
||||
copy_radix_ciphertext_slice_async<Torus>(streams[0], gpu_indexes[0],
|
||||
|
||||
@@ -386,3 +386,69 @@ void reverseArray(uint64_t arr[], size_t n) {
|
||||
end--;
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t scratch_cuda_apply_noise_squashing_mem(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
int_radix_params params, int_noise_squashing_lut<uint64_t> **mem_ptr,
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t num_radix_blocks, uint32_t original_num_blocks,
|
||||
bool allocate_gpu_memory) {
|
||||
|
||||
uint64_t size_tracker = 0;
|
||||
*mem_ptr = new int_noise_squashing_lut<uint64_t>(
|
||||
(cudaStream_t *)streams, gpu_indexes, gpu_count, params, glwe_dimension,
|
||||
polynomial_size, num_radix_blocks, original_num_blocks,
|
||||
allocate_gpu_memory, &size_tracker);
|
||||
return size_tracker;
|
||||
}
|
||||
|
||||
uint64_t scratch_cuda_apply_noise_squashing_kb(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
int8_t **mem_ptr, uint32_t lwe_dimension, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t input_glwe_dimension,
|
||||
uint32_t input_polynomial_size, uint32_t ks_level, uint32_t ks_base_log,
|
||||
uint32_t pbs_level, uint32_t pbs_base_log, uint32_t grouping_factor,
|
||||
uint32_t num_radix_blocks, uint32_t original_num_blocks,
|
||||
uint32_t message_modulus, uint32_t carry_modulus, PBS_TYPE pbs_type,
|
||||
bool allocate_gpu_memory, bool allocate_ms_array) {
|
||||
PUSH_RANGE("scratch noise squashing")
|
||||
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
|
||||
glwe_dimension * polynomial_size, lwe_dimension,
|
||||
ks_level, ks_base_log, pbs_level, pbs_base_log,
|
||||
grouping_factor, message_modulus, carry_modulus,
|
||||
allocate_ms_array);
|
||||
|
||||
return scratch_cuda_apply_noise_squashing_mem(
|
||||
streams, gpu_indexes, gpu_count, params,
|
||||
(int_noise_squashing_lut<uint64_t> **)mem_ptr, input_glwe_dimension,
|
||||
input_polynomial_size, num_radix_blocks, original_num_blocks,
|
||||
allocate_gpu_memory);
|
||||
POP_RANGE()
|
||||
}
|
||||
|
||||
void cuda_apply_noise_squashing_kb(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
CudaRadixCiphertextFFI *output_radix_lwe,
|
||||
CudaRadixCiphertextFFI const *input_radix_lwe, int8_t *mem_ptr,
|
||||
void *const *ksks,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key,
|
||||
void *const *bsks) {
|
||||
|
||||
PUSH_RANGE("apply noise squashing")
|
||||
integer_radix_apply_noise_squashing_kb<uint64_t>(
|
||||
(cudaStream_t *)(streams), gpu_indexes, gpu_count, output_radix_lwe,
|
||||
input_radix_lwe, (int_noise_squashing_lut<uint64_t> *)mem_ptr, bsks,
|
||||
(uint64_t **)ksks, ms_noise_reduction_key);
|
||||
POP_RANGE()
|
||||
}
|
||||
|
||||
void cleanup_cuda_apply_noise_squashing_kb(void *const *streams,
|
||||
uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count,
|
||||
int8_t **mem_ptr_void) {
|
||||
PUSH_RANGE("cleanup noise squashing")
|
||||
int_noise_squashing_lut<uint64_t> *mem_ptr =
|
||||
(int_noise_squashing_lut<uint64_t> *)(*mem_ptr_void);
|
||||
mem_ptr->release((cudaStream_t *)(streams), gpu_indexes, gpu_count);
|
||||
POP_RANGE()
|
||||
}
|
||||
|
||||
@@ -9,6 +9,7 @@
|
||||
#include "linear_algebra.h"
|
||||
#include "linearalgebra/addition.cuh"
|
||||
#include "linearalgebra/negation.cuh"
|
||||
#include "pbs/pbs_128_utilities.h"
|
||||
#include "pbs/programmable_bootstrap.h"
|
||||
#include "polynomial/functions.cuh"
|
||||
#include "utils/helper.cuh"
|
||||
@@ -520,8 +521,7 @@ __host__ void integer_radix_apply_univariate_lookup_table_kb(
|
||||
if (num_radix_blocks > lut->num_blocks)
|
||||
PANIC("Cuda error: num radix blocks on which lut is applied should be "
|
||||
"smaller or equal to the number of lut radix blocks")
|
||||
if (num_radix_blocks > lwe_array_out->num_radix_blocks ||
|
||||
num_radix_blocks > lwe_array_in->num_radix_blocks)
|
||||
if (num_radix_blocks > lwe_array_out->num_radix_blocks)
|
||||
PANIC("Cuda error: num radix blocks on which lut is applied should be "
|
||||
"smaller or equal to the number of input & output radix blocks")
|
||||
|
||||
@@ -866,7 +866,7 @@ uint64_t generate_lookup_table_with_encoding(
|
||||
memset(acc, 0, glwe_dimension * polynomial_size * sizeof(Torus));
|
||||
|
||||
auto body = &acc[glwe_dimension * polynomial_size];
|
||||
uint64_t degree = 0;
|
||||
Torus degree = 0;
|
||||
|
||||
// This accumulator extracts the carry bits
|
||||
for (int i = 0; i < input_modulus_sup; i++) {
|
||||
@@ -886,7 +886,7 @@ uint64_t generate_lookup_table_with_encoding(
|
||||
}
|
||||
|
||||
rotate_left<Torus>(body, half_box_size, polynomial_size);
|
||||
return degree;
|
||||
return (uint64_t)degree;
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
@@ -1291,7 +1291,7 @@ void host_compute_prefix_sum_hillis_steele(
|
||||
}
|
||||
|
||||
// This function is used to perform step 2 of Thomas' new propagation algorithm
|
||||
// Consist three steps:
|
||||
// Consists of three steps:
|
||||
// - propagates the carry within each group with cheap LWE operations stored in
|
||||
// simulators
|
||||
// - calculates the propagation state of each group
|
||||
@@ -1616,10 +1616,12 @@ __host__ void reduce_signs(
|
||||
auto message_modulus = params.message_modulus;
|
||||
auto carry_modulus = params.carry_modulus;
|
||||
|
||||
auto num_bits_in_message = log2_int(message_modulus);
|
||||
std::function<Torus(Torus)> reduce_two_orderings_function =
|
||||
[diff_buffer, sign_handler_f](Torus x) -> Torus {
|
||||
int msb = (x >> 2) & 3;
|
||||
int lsb = x & 3;
|
||||
[diff_buffer, sign_handler_f, num_bits_in_message,
|
||||
message_modulus](Torus x) -> Torus {
|
||||
Torus msb = (x >> num_bits_in_message) & (message_modulus - 1);
|
||||
Torus lsb = x & (message_modulus - 1);
|
||||
|
||||
return diff_buffer->tree_buffer->block_selector_f(msb, lsb);
|
||||
};
|
||||
@@ -1640,7 +1642,7 @@ __host__ void reduce_signs(
|
||||
|
||||
while (num_sign_blocks > 2) {
|
||||
pack_blocks<Torus>(streams[0], gpu_indexes[0], signs_b, signs_a,
|
||||
num_sign_blocks, 4);
|
||||
num_sign_blocks, message_modulus);
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
streams, gpu_indexes, gpu_count, signs_a, signs_b, bsks, ksks,
|
||||
ms_noise_reduction_key, lut, num_sign_blocks / 2);
|
||||
@@ -1669,7 +1671,8 @@ __host__ void reduce_signs(
|
||||
message_modulus, carry_modulus, final_lut_f, true);
|
||||
lut->broadcast_lut(streams, gpu_indexes, 0);
|
||||
|
||||
pack_blocks<Torus>(streams[0], gpu_indexes[0], signs_b, signs_a, 2, 4);
|
||||
pack_blocks<Torus>(streams[0], gpu_indexes[0], signs_b, signs_a,
|
||||
num_sign_blocks, message_modulus);
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
streams, gpu_indexes, gpu_count, signs_array_out, signs_b, bsks, ksks,
|
||||
ms_noise_reduction_key, lut, 1);
|
||||
@@ -1677,8 +1680,8 @@ __host__ void reduce_signs(
|
||||
} else {
|
||||
|
||||
std::function<Torus(Torus)> final_lut_f =
|
||||
[mem_ptr, sign_handler_f](Torus x) -> Torus {
|
||||
return sign_handler_f(x & 3);
|
||||
[mem_ptr, sign_handler_f, message_modulus](Torus x) -> Torus {
|
||||
return sign_handler_f(x & (message_modulus - 1));
|
||||
};
|
||||
|
||||
auto lut = mem_ptr->diff_buffer->reduce_signs_lut;
|
||||
@@ -1831,9 +1834,6 @@ void host_propagate_single_carry(
|
||||
PUSH_RANGE("propagate sc")
|
||||
auto num_radix_blocks = lwe_array->num_radix_blocks;
|
||||
auto params = mem->params;
|
||||
auto glwe_dimension = params.glwe_dimension;
|
||||
auto polynomial_size = params.polynomial_size;
|
||||
uint32_t big_lwe_size = glwe_dimension * polynomial_size + 1;
|
||||
auto lut_stride = mem->lut_stride;
|
||||
auto num_many_lut = mem->num_many_lut;
|
||||
CudaRadixCiphertextFFI output_flag;
|
||||
@@ -1849,6 +1849,7 @@ void host_propagate_single_carry(
|
||||
host_addition<Torus>(streams[0], gpu_indexes[0], lwe_array, lwe_array,
|
||||
input_carries, 1);
|
||||
}
|
||||
|
||||
// Step 1
|
||||
host_compute_shifted_blocks_and_states<Torus>(
|
||||
streams, gpu_indexes, gpu_count, lwe_array, mem->shifted_blocks_state_mem,
|
||||
@@ -2197,4 +2198,110 @@ void host_single_borrow_propagate(
|
||||
}
|
||||
}
|
||||
|
||||
/// num_radix_blocks corresponds to the number of blocks on which to apply the
|
||||
/// LUT In scalar bitops we use a number of blocks that may be lower or equal to
|
||||
/// the input and output numbers of blocks
|
||||
template <typename InputTorus>
|
||||
__host__ void integer_radix_apply_noise_squashing_kb(
|
||||
cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count, CudaRadixCiphertextFFI *lwe_array_out,
|
||||
CudaRadixCiphertextFFI const *lwe_array_in,
|
||||
int_noise_squashing_lut<InputTorus> *lut, void *const *bsks,
|
||||
InputTorus *const *ksks,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key) {
|
||||
|
||||
PUSH_RANGE("apply noise squashing")
|
||||
auto params = lut->params;
|
||||
auto pbs_type = params.pbs_type;
|
||||
auto big_lwe_dimension = params.big_lwe_dimension;
|
||||
auto small_lwe_dimension = params.small_lwe_dimension;
|
||||
auto ks_level = params.ks_level;
|
||||
auto ks_base_log = params.ks_base_log;
|
||||
auto pbs_level = params.pbs_level;
|
||||
auto pbs_base_log = params.pbs_base_log;
|
||||
auto glwe_dimension = params.glwe_dimension;
|
||||
auto polynomial_size = params.polynomial_size;
|
||||
auto grouping_factor = params.grouping_factor;
|
||||
|
||||
if (lwe_array_out->num_radix_blocks !=
|
||||
(lwe_array_in->num_radix_blocks + 1) / 2)
|
||||
PANIC("Cuda error: num output radix blocks should be "
|
||||
"half ceil the number input radix blocks")
|
||||
|
||||
/// For multi GPU execution we create vectors of pointers for inputs and
|
||||
/// outputs
|
||||
auto lwe_array_pbs_in = lut->tmp_lwe_before_ks;
|
||||
std::vector<InputTorus *> lwe_array_in_vec = lut->lwe_array_in_vec;
|
||||
std::vector<InputTorus *> lwe_after_ks_vec = lut->lwe_after_ks_vec;
|
||||
std::vector<__uint128_t *> lwe_after_pbs_vec = lut->lwe_after_pbs_vec;
|
||||
std::vector<InputTorus *> lwe_trivial_indexes_vec =
|
||||
lut->lwe_trivial_indexes_vec;
|
||||
|
||||
// We know carry is empty so we can pack two blocks in one
|
||||
pack_blocks<InputTorus>(streams[0], gpu_indexes[0], lwe_array_pbs_in,
|
||||
lwe_array_in, lwe_array_in->num_radix_blocks,
|
||||
params.message_modulus);
|
||||
|
||||
// Since the radix ciphertexts are packed, we have to use the num_radix_blocks
|
||||
// from the output ct
|
||||
auto active_gpu_count =
|
||||
get_active_gpu_count(lwe_array_out->num_radix_blocks, gpu_count);
|
||||
if (active_gpu_count == 1) {
|
||||
execute_keyswitch_async<InputTorus>(
|
||||
streams, gpu_indexes, 1, lwe_after_ks_vec[0],
|
||||
lwe_trivial_indexes_vec[0], (InputTorus *)lwe_array_pbs_in->ptr,
|
||||
lut->lwe_indexes_in, ksks, lut->input_big_lwe_dimension,
|
||||
small_lwe_dimension, ks_base_log, ks_level,
|
||||
lwe_array_out->num_radix_blocks);
|
||||
|
||||
/// Apply PBS to apply a LUT, reduce the noise and go from a small LWE
|
||||
/// dimension to a big LWE dimension
|
||||
execute_pbs_128_async<__uint128_t>(
|
||||
streams, gpu_indexes, 1, (__uint128_t *)lwe_array_out->ptr,
|
||||
lut->lut_vec, lwe_after_ks_vec[0], bsks, ms_noise_reduction_key,
|
||||
lut->pbs_buffer, small_lwe_dimension, glwe_dimension, polynomial_size,
|
||||
pbs_base_log, pbs_level, lwe_array_out->num_radix_blocks);
|
||||
} else {
|
||||
/// Make sure all data that should be on GPU 0 is indeed there
|
||||
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
|
||||
|
||||
/// With multiple GPUs we push to the vectors on each GPU then when we
|
||||
/// gather data to GPU 0 we can copy back to the original indexing
|
||||
multi_gpu_scatter_lwe_async<InputTorus>(
|
||||
streams, gpu_indexes, active_gpu_count, lwe_array_in_vec,
|
||||
(InputTorus *)lwe_array_pbs_in->ptr, lut->h_lwe_indexes_in,
|
||||
lut->using_trivial_lwe_indexes, lwe_array_out->num_radix_blocks,
|
||||
lut->input_big_lwe_dimension + 1);
|
||||
|
||||
execute_keyswitch_async<InputTorus>(
|
||||
streams, gpu_indexes, active_gpu_count, lwe_after_ks_vec,
|
||||
lwe_trivial_indexes_vec, lwe_array_in_vec, lwe_trivial_indexes_vec,
|
||||
ksks, lut->input_big_lwe_dimension, small_lwe_dimension, ks_base_log,
|
||||
ks_level, lwe_array_out->num_radix_blocks);
|
||||
|
||||
execute_pbs_128_async<__uint128_t>(
|
||||
streams, gpu_indexes, active_gpu_count, lwe_after_pbs_vec, lut->lut_vec,
|
||||
lwe_after_ks_vec, bsks, ms_noise_reduction_key, lut->pbs_buffer,
|
||||
small_lwe_dimension, glwe_dimension, polynomial_size, pbs_base_log,
|
||||
pbs_level, lwe_array_out->num_radix_blocks);
|
||||
|
||||
/// Copy data back to GPU 0 and release vecs
|
||||
multi_gpu_gather_lwe_async<__uint128_t>(
|
||||
streams, gpu_indexes, active_gpu_count,
|
||||
(__uint128_t *)lwe_array_out->ptr, lwe_after_pbs_vec,
|
||||
(__uint128_t *)lut->h_lwe_indexes_out, lut->using_trivial_lwe_indexes,
|
||||
lwe_array_out->num_radix_blocks, big_lwe_dimension + 1);
|
||||
|
||||
/// Synchronize all GPUs
|
||||
for (uint i = 0; i < active_gpu_count; i++) {
|
||||
cuda_synchronize_stream(streams[i], gpu_indexes[i]);
|
||||
}
|
||||
}
|
||||
for (uint i = 0; i < lut->num_blocks; i++) {
|
||||
lwe_array_out->degrees[i] = lut->degrees[0];
|
||||
lwe_array_out->noise_levels[i] = NoiseLevel::NOMINAL;
|
||||
}
|
||||
POP_RANGE()
|
||||
}
|
||||
|
||||
#endif // TFHE_RS_INTERNAL_INTEGER_CUH
|
||||
|
||||
@@ -226,72 +226,68 @@ uint64_t scratch_cuda_integer_radix_partial_sum_ciphertexts_vec_kb_64(
|
||||
void cuda_integer_radix_partial_sum_ciphertexts_vec_kb_64(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
CudaRadixCiphertextFFI *radix_lwe_out,
|
||||
CudaRadixCiphertextFFI *radix_lwe_vec, int8_t *mem_ptr, void *const *bsks,
|
||||
void *const *ksks,
|
||||
CudaRadixCiphertextFFI *radix_lwe_vec,
|
||||
bool reduce_degrees_for_single_carry_propagation, int8_t *mem_ptr,
|
||||
void *const *bsks, void *const *ksks,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key) {
|
||||
|
||||
auto mem = (int_sum_ciphertexts_vec_memory<uint64_t> *)mem_ptr;
|
||||
if (radix_lwe_vec->num_radix_blocks % radix_lwe_out->num_radix_blocks != 0)
|
||||
PANIC("Cuda error: input vector length should be a multiple of the "
|
||||
"output's number of radix blocks")
|
||||
// FIXME: this should not be necessary, we should make sure sum_ctxt works in
|
||||
// the general case
|
||||
for (int i = 0; i < radix_lwe_vec->num_radix_blocks; i++) {
|
||||
radix_lwe_vec->degrees[i] = mem->params.message_modulus - 1;
|
||||
}
|
||||
switch (mem->params.polynomial_size) {
|
||||
case 512:
|
||||
host_integer_partial_sum_ciphertexts_vec_kb<uint64_t, AmortizedDegree<512>>(
|
||||
(cudaStream_t *)(streams), gpu_indexes, gpu_count, radix_lwe_out,
|
||||
radix_lwe_vec, bsks, (uint64_t **)(ksks), ms_noise_reduction_key, mem,
|
||||
radix_lwe_vec, reduce_degrees_for_single_carry_propagation, bsks,
|
||||
(uint64_t **)(ksks), ms_noise_reduction_key, mem,
|
||||
radix_lwe_out->num_radix_blocks,
|
||||
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks,
|
||||
nullptr);
|
||||
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks);
|
||||
break;
|
||||
case 1024:
|
||||
host_integer_partial_sum_ciphertexts_vec_kb<uint64_t,
|
||||
AmortizedDegree<1024>>(
|
||||
(cudaStream_t *)(streams), gpu_indexes, gpu_count, radix_lwe_out,
|
||||
radix_lwe_vec, bsks, (uint64_t **)(ksks), ms_noise_reduction_key, mem,
|
||||
radix_lwe_vec, reduce_degrees_for_single_carry_propagation, bsks,
|
||||
(uint64_t **)(ksks), ms_noise_reduction_key, mem,
|
||||
radix_lwe_out->num_radix_blocks,
|
||||
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks,
|
||||
nullptr);
|
||||
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks);
|
||||
break;
|
||||
case 2048:
|
||||
host_integer_partial_sum_ciphertexts_vec_kb<uint64_t,
|
||||
AmortizedDegree<2048>>(
|
||||
(cudaStream_t *)(streams), gpu_indexes, gpu_count, radix_lwe_out,
|
||||
radix_lwe_vec, bsks, (uint64_t **)(ksks), ms_noise_reduction_key, mem,
|
||||
radix_lwe_vec, reduce_degrees_for_single_carry_propagation, bsks,
|
||||
(uint64_t **)(ksks), ms_noise_reduction_key, mem,
|
||||
radix_lwe_out->num_radix_blocks,
|
||||
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks,
|
||||
nullptr);
|
||||
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks);
|
||||
break;
|
||||
case 4096:
|
||||
host_integer_partial_sum_ciphertexts_vec_kb<uint64_t,
|
||||
AmortizedDegree<4096>>(
|
||||
(cudaStream_t *)(streams), gpu_indexes, gpu_count, radix_lwe_out,
|
||||
radix_lwe_vec, bsks, (uint64_t **)(ksks), ms_noise_reduction_key, mem,
|
||||
radix_lwe_vec, reduce_degrees_for_single_carry_propagation, bsks,
|
||||
(uint64_t **)(ksks), ms_noise_reduction_key, mem,
|
||||
radix_lwe_out->num_radix_blocks,
|
||||
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks,
|
||||
nullptr);
|
||||
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks);
|
||||
break;
|
||||
case 8192:
|
||||
host_integer_partial_sum_ciphertexts_vec_kb<uint64_t,
|
||||
AmortizedDegree<8192>>(
|
||||
(cudaStream_t *)(streams), gpu_indexes, gpu_count, radix_lwe_out,
|
||||
radix_lwe_vec, bsks, (uint64_t **)(ksks), ms_noise_reduction_key, mem,
|
||||
radix_lwe_vec, reduce_degrees_for_single_carry_propagation, bsks,
|
||||
(uint64_t **)(ksks), ms_noise_reduction_key, mem,
|
||||
radix_lwe_out->num_radix_blocks,
|
||||
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks,
|
||||
nullptr);
|
||||
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks);
|
||||
break;
|
||||
case 16384:
|
||||
host_integer_partial_sum_ciphertexts_vec_kb<uint64_t,
|
||||
AmortizedDegree<16384>>(
|
||||
(cudaStream_t *)(streams), gpu_indexes, gpu_count, radix_lwe_out,
|
||||
radix_lwe_vec, bsks, (uint64_t **)(ksks), ms_noise_reduction_key, mem,
|
||||
radix_lwe_vec, reduce_degrees_for_single_carry_propagation, bsks,
|
||||
(uint64_t **)(ksks), ms_noise_reduction_key, mem,
|
||||
radix_lwe_out->num_radix_blocks,
|
||||
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks,
|
||||
nullptr);
|
||||
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks);
|
||||
break;
|
||||
default:
|
||||
PANIC("Cuda error (integer multiplication): unsupported polynomial size. "
|
||||
|
||||
@@ -20,28 +20,11 @@
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <omp.h>
|
||||
#include <queue>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
template <typename Torus>
|
||||
__global__ void smart_copy(Torus *dst, Torus *src, int32_t *id_out,
|
||||
int32_t *id_in, size_t lwe_size) {
|
||||
size_t tid = threadIdx.x;
|
||||
size_t b_id = blockIdx.x;
|
||||
size_t stride = blockDim.x;
|
||||
|
||||
auto input_id = id_in[b_id];
|
||||
auto output_id = id_out[b_id];
|
||||
|
||||
auto cur_src = (input_id >= 0) ? &src[input_id * lwe_size] : nullptr;
|
||||
auto cur_dst = &dst[output_id * lwe_size];
|
||||
|
||||
for (int i = tid; i < lwe_size; i += stride) {
|
||||
cur_dst[i] = (input_id >= 0) ? cur_src[i] : 0;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Torus, class params>
|
||||
__global__ void
|
||||
all_shifted_lhs_rhs(Torus const *radix_lwe_left, Torus *lsb_ciphertext,
|
||||
@@ -94,33 +77,155 @@ all_shifted_lhs_rhs(Torus const *radix_lwe_left, Torus *lsb_ciphertext,
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__global__ void tree_add_chunks(Torus *result_blocks, Torus *input_blocks,
|
||||
uint32_t chunk_size, uint32_t block_size,
|
||||
uint32_t num_blocks) {
|
||||
__global__ inline void radix_vec_to_columns(uint32_t *const *const columns,
|
||||
uint32_t *const columns_counter,
|
||||
const uint64_t *const degrees,
|
||||
const uint32_t num_radix_blocks,
|
||||
const uint32_t num_radix_in_vec) {
|
||||
|
||||
size_t stride = blockDim.x;
|
||||
size_t chunk_id = blockIdx.x;
|
||||
size_t chunk_elem_size = chunk_size * num_blocks * block_size;
|
||||
size_t radix_elem_size = num_blocks * block_size;
|
||||
auto src_chunk = &input_blocks[chunk_id * chunk_elem_size];
|
||||
auto dst_radix = &result_blocks[chunk_id * radix_elem_size];
|
||||
size_t block_stride = blockIdx.y * block_size;
|
||||
auto result = &dst_radix[block_stride];
|
||||
|
||||
// init shared mem with first radix of chunk
|
||||
size_t tid = threadIdx.x;
|
||||
for (int i = tid; i < block_size; i += stride) {
|
||||
result[i] = src_chunk[block_stride + i];
|
||||
}
|
||||
|
||||
// accumulate rest of the radixes
|
||||
for (int r_id = 1; r_id < chunk_size; r_id++) {
|
||||
auto cur_src_radix = &src_chunk[r_id * radix_elem_size];
|
||||
for (int i = tid; i < block_size; i += stride) {
|
||||
result[i] += cur_src_radix[block_stride + i];
|
||||
const uint32_t idx = threadIdx.x;
|
||||
size_t cnt = 0;
|
||||
for (int i = 0; i < num_radix_in_vec; i++) {
|
||||
size_t ct_id = i * num_radix_blocks + idx;
|
||||
if (degrees[ct_id] != 0) {
|
||||
columns[idx][cnt] = ct_id;
|
||||
++cnt;
|
||||
}
|
||||
}
|
||||
columns_counter[idx] = cnt;
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__global__ inline void prepare_new_columns_and_pbs_indexes(
|
||||
uint32_t *const *const new_columns, uint32_t *const new_columns_counter,
|
||||
Torus *const pbs_indexes_in, Torus *const pbs_indexes_out,
|
||||
Torus *const lut_indexes, const uint32_t *const *const columns,
|
||||
const uint32_t *const columns_counter, const uint32_t chunk_size) {
|
||||
__shared__ uint32_t counter;
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
counter = 0;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
const uint32_t base_id = threadIdx.x;
|
||||
const uint32_t column_len = columns_counter[base_id];
|
||||
|
||||
uint32_t ct_count = 0;
|
||||
for (uint32_t i = 0; i + chunk_size <= column_len; i += chunk_size) {
|
||||
// those indexes are for message ciphertexts
|
||||
// for message ciphertexts in and out index should be same
|
||||
const uint32_t in_index = columns[base_id][i];
|
||||
new_columns[base_id][ct_count] = in_index;
|
||||
const uint32_t pbs_index = atomicAdd(&counter, 1);
|
||||
pbs_indexes_in[pbs_index] = in_index;
|
||||
pbs_indexes_out[pbs_index] = in_index;
|
||||
lut_indexes[pbs_index] = 0;
|
||||
++ct_count;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
if (base_id > 0) {
|
||||
const uint32_t prev_base_id = base_id - 1;
|
||||
const uint32_t prev_column_len = columns_counter[prev_base_id];
|
||||
|
||||
for (uint32_t i = 0; i + chunk_size <= prev_column_len; i += chunk_size) {
|
||||
// those indexes are for carry ciphertexts
|
||||
// for carry ciphertexts input is same as for message
|
||||
// output will be placed to next block in the column
|
||||
const uint32_t in_index = columns[prev_base_id][i];
|
||||
const uint32_t out_index = columns[prev_base_id][i + 1];
|
||||
new_columns[base_id][ct_count] = out_index;
|
||||
const uint32_t pbs_index = atomicAdd(&counter, 1);
|
||||
pbs_indexes_in[pbs_index] = in_index;
|
||||
pbs_indexes_out[pbs_index] = out_index;
|
||||
lut_indexes[pbs_index] = 1;
|
||||
++ct_count;
|
||||
}
|
||||
}
|
||||
|
||||
const uint32_t start_index = column_len - column_len % chunk_size;
|
||||
for (uint32_t i = start_index; i < column_len; ++i) {
|
||||
new_columns[base_id][ct_count] = columns[base_id][i];
|
||||
++ct_count;
|
||||
}
|
||||
|
||||
new_columns_counter[base_id] = ct_count;
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__global__ inline void prepare_final_pbs_indexes(
|
||||
Torus *const pbs_indexes_in, Torus *const pbs_indexes_out,
|
||||
Torus *const lut_indexes, const uint32_t num_radix_blocks) {
|
||||
int idx = threadIdx.x;
|
||||
pbs_indexes_in[idx] = idx % num_radix_blocks;
|
||||
pbs_indexes_out[idx] = idx + idx / num_radix_blocks;
|
||||
lut_indexes[idx] = idx / num_radix_blocks;
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__global__ void calculate_chunks(Torus *const input_blocks,
|
||||
const uint32_t *const *const columns,
|
||||
const uint32_t *const columns_counter,
|
||||
const uint32_t chunk_size,
|
||||
const uint32_t block_size) {
|
||||
|
||||
const uint32_t part_size = blockDim.x;
|
||||
const uint32_t base_id = blockIdx.x;
|
||||
const uint32_t part_id = blockIdx.y;
|
||||
const uint32_t coef_id = part_id * part_size + threadIdx.x;
|
||||
|
||||
if (coef_id >= block_size)
|
||||
return;
|
||||
|
||||
const uint32_t column_len = columns_counter[base_id];
|
||||
|
||||
if (column_len >= chunk_size) {
|
||||
const uint32_t num_chunks = column_len / chunk_size;
|
||||
Torus result = 0;
|
||||
|
||||
for (uint32_t chunk_id = 0; chunk_id < num_chunks; ++chunk_id) {
|
||||
const uint32_t first_ct_id = columns[base_id][chunk_id * chunk_size];
|
||||
result = input_blocks[first_ct_id * block_size + coef_id];
|
||||
|
||||
for (uint32_t ct_id = 1; ct_id < chunk_size; ++ct_id) {
|
||||
const uint32_t cur_ct_id =
|
||||
columns[base_id][chunk_id * chunk_size + ct_id];
|
||||
result += input_blocks[cur_ct_id * block_size + coef_id];
|
||||
}
|
||||
|
||||
input_blocks[first_ct_id * block_size + coef_id] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__global__ void calculate_final_chunk_into_radix(
|
||||
Torus *const out_radix, const Torus *const input_blocks,
|
||||
const uint32_t *const *const columns, const uint32_t *const columns_counter,
|
||||
const uint32_t chunk_size, const uint32_t block_size) {
|
||||
|
||||
const uint32_t part_size = blockDim.x;
|
||||
const uint32_t base_id = blockIdx.x;
|
||||
const uint32_t part_id = blockIdx.y;
|
||||
const uint32_t coef_id = part_id * part_size + threadIdx.x;
|
||||
|
||||
if (coef_id >= block_size)
|
||||
return;
|
||||
|
||||
const uint32_t column_len = columns_counter[base_id];
|
||||
|
||||
Torus result = 0;
|
||||
if (column_len) {
|
||||
const uint32_t first_ct_id = columns[base_id][0];
|
||||
result = input_blocks[first_ct_id * block_size + coef_id];
|
||||
|
||||
for (uint32_t i = 1; i < column_len; ++i) {
|
||||
const uint32_t cur_ct_it = columns[base_id][i];
|
||||
result += input_blocks[cur_ct_it * block_size + coef_id];
|
||||
}
|
||||
}
|
||||
out_radix[base_id * block_size + coef_id] = result;
|
||||
}
|
||||
|
||||
template <typename Torus, class params>
|
||||
@@ -167,6 +272,113 @@ __global__ void fill_radix_from_lsb_msb(Torus *result_blocks, Torus *lsb_blocks,
|
||||
(process_msb) ? cur_msb_ct[params::degree] : 0;
|
||||
}
|
||||
}
|
||||
|
||||
struct radix_columns {
|
||||
std::vector<size_t> columns_counter;
|
||||
size_t num_blocks;
|
||||
size_t num_radix_in_vec;
|
||||
size_t chunk_size;
|
||||
radix_columns(const uint64_t *const input_degrees, size_t num_blocks,
|
||||
size_t num_radix_in_vec, size_t chunk_size,
|
||||
bool &needs_processing)
|
||||
: num_blocks(num_blocks), num_radix_in_vec(num_radix_in_vec),
|
||||
chunk_size(chunk_size) {
|
||||
needs_processing = false;
|
||||
columns_counter.resize(num_blocks, 0);
|
||||
for (size_t i = 0; i < num_radix_in_vec; ++i) {
|
||||
for (size_t j = 0; j < num_blocks; ++j) {
|
||||
if (input_degrees[i * num_blocks + j])
|
||||
columns_counter[j] += 1;
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < num_blocks; ++i) {
|
||||
if (columns_counter[i] > chunk_size) {
|
||||
needs_processing = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void next_accumulation(size_t &total_ciphertexts, size_t &message_ciphertexts,
|
||||
bool &needs_processing) {
|
||||
message_ciphertexts = 0;
|
||||
total_ciphertexts = 0;
|
||||
needs_processing = false;
|
||||
for (int i = num_blocks - 1; i > 0; --i) {
|
||||
size_t cur_count = columns_counter[i];
|
||||
size_t prev_count = columns_counter[i - 1];
|
||||
size_t new_count = 0;
|
||||
|
||||
// accumulated_blocks from current columns
|
||||
new_count += cur_count / chunk_size;
|
||||
// all accumulated message blocks needs pbs
|
||||
message_ciphertexts += new_count;
|
||||
// carry blocks from previous columns
|
||||
new_count += prev_count / chunk_size;
|
||||
// both carry and message blocks that needs pbs
|
||||
total_ciphertexts += new_count;
|
||||
// now add remaining non accumulated blocks that does not require pbs
|
||||
new_count += cur_count % chunk_size;
|
||||
|
||||
columns_counter[i] = new_count;
|
||||
|
||||
if (new_count > chunk_size)
|
||||
needs_processing = true;
|
||||
}
|
||||
|
||||
// now do it for 0th block
|
||||
size_t new_count = columns_counter[0] / chunk_size;
|
||||
message_ciphertexts += new_count;
|
||||
total_ciphertexts += new_count;
|
||||
new_count += columns_counter[0] % chunk_size;
|
||||
columns_counter[0] = new_count;
|
||||
|
||||
if (new_count > chunk_size) {
|
||||
needs_processing = true;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
inline void calculate_final_degrees(uint64_t *const out_degrees,
|
||||
const uint64_t *const input_degrees,
|
||||
size_t num_blocks, size_t num_radix_in_vec,
|
||||
size_t chunk_size,
|
||||
uint64_t message_modulus) {
|
||||
|
||||
auto get_degree = [message_modulus](uint64_t degree) -> uint64_t {
|
||||
return std::min(message_modulus - 1, degree);
|
||||
};
|
||||
std::vector<std::queue<uint64_t>> columns(num_blocks);
|
||||
for (size_t i = 0; i < num_radix_in_vec; ++i) {
|
||||
for (size_t j = 0; j < num_blocks; ++j) {
|
||||
if (input_degrees[i * num_blocks + j])
|
||||
columns[j].push(input_degrees[i * num_blocks + j]);
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < num_blocks; ++i) {
|
||||
auto &col = columns[i];
|
||||
while (col.size() > 1) {
|
||||
uint32_t cur_degree = 0;
|
||||
size_t mn = std::min(chunk_size, col.size());
|
||||
for (int j = 0; j < mn; ++j) {
|
||||
cur_degree += col.front();
|
||||
col.pop();
|
||||
}
|
||||
const uint64_t new_degree = get_degree(cur_degree);
|
||||
col.push(new_degree);
|
||||
if ((i + 1) < num_blocks) {
|
||||
columns[i + 1].push(new_degree);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < num_blocks; i++) {
|
||||
out_degrees[i] = (columns[i].empty()) ? 0 : columns[i].front();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ uint64_t scratch_cuda_integer_partial_sum_ciphertexts_vec_kb(
|
||||
cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
@@ -185,11 +397,14 @@ template <typename Torus, class params>
|
||||
__host__ void host_integer_partial_sum_ciphertexts_vec_kb(
|
||||
cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count, CudaRadixCiphertextFFI *radix_lwe_out,
|
||||
CudaRadixCiphertextFFI *terms, void *const *bsks, uint64_t *const *ksks,
|
||||
CudaRadixCiphertextFFI *terms,
|
||||
bool reduce_degrees_for_single_carry_propagation, void *const *bsks,
|
||||
uint64_t *const *ksks,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key,
|
||||
int_sum_ciphertexts_vec_memory<uint64_t> *mem_ptr,
|
||||
uint32_t num_radix_blocks, uint32_t num_radix_in_vec,
|
||||
int_radix_lut<Torus> *reused_lut) {
|
||||
uint32_t num_radix_blocks, uint32_t num_radix_in_vec) {
|
||||
auto big_lwe_dimension = mem_ptr->params.big_lwe_dimension;
|
||||
auto big_lwe_size = big_lwe_dimension + 1;
|
||||
|
||||
if (terms->lwe_dimension != radix_lwe_out->lwe_dimension)
|
||||
PANIC("Cuda error: output and input radix ciphertexts should have the same "
|
||||
@@ -199,22 +414,29 @@ __host__ void host_integer_partial_sum_ciphertexts_vec_kb(
|
||||
PANIC("Cuda error: input vector does not have enough blocks")
|
||||
if (num_radix_blocks > radix_lwe_out->num_radix_blocks)
|
||||
PANIC("Cuda error: output does not have enough blocks")
|
||||
auto new_blocks = mem_ptr->new_blocks;
|
||||
auto new_blocks_copy = mem_ptr->new_blocks_copy;
|
||||
auto old_blocks = mem_ptr->old_blocks;
|
||||
if (num_radix_in_vec == 0)
|
||||
return;
|
||||
|
||||
auto current_blocks = mem_ptr->current_blocks;
|
||||
auto small_lwe_vector = mem_ptr->small_lwe_vector;
|
||||
auto d_degrees = mem_ptr->d_degrees;
|
||||
auto d_columns = mem_ptr->d_columns;
|
||||
auto d_columns_counter = mem_ptr->d_columns_counter;
|
||||
auto d_new_columns = mem_ptr->d_new_columns;
|
||||
auto d_new_columns_counter = mem_ptr->d_new_columns_counter;
|
||||
auto d_pbs_indexes_in = mem_ptr->luts_message_carry->lwe_indexes_in;
|
||||
auto d_pbs_indexes_out = mem_ptr->luts_message_carry->lwe_indexes_out;
|
||||
|
||||
auto d_smart_copy_in = mem_ptr->d_smart_copy_in;
|
||||
auto d_smart_copy_out = mem_ptr->d_smart_copy_out;
|
||||
auto luts_message_carry = mem_ptr->luts_message_carry;
|
||||
|
||||
auto message_modulus = mem_ptr->params.message_modulus;
|
||||
auto carry_modulus = mem_ptr->params.carry_modulus;
|
||||
auto big_lwe_dimension = mem_ptr->params.big_lwe_dimension;
|
||||
auto big_lwe_size = big_lwe_dimension + 1;
|
||||
auto glwe_dimension = mem_ptr->params.glwe_dimension;
|
||||
auto polynomial_size = mem_ptr->params.polynomial_size;
|
||||
auto small_lwe_dimension = mem_ptr->params.small_lwe_dimension;
|
||||
auto small_lwe_size = small_lwe_dimension + 1;
|
||||
auto chunk_size =
|
||||
(mem_ptr->params.message_modulus * mem_ptr->params.carry_modulus - 1) /
|
||||
(mem_ptr->params.message_modulus - 1);
|
||||
|
||||
size_t total_blocks_in_vec = num_radix_blocks * num_radix_in_vec;
|
||||
|
||||
// In the case of extracting a single LWE this parameters are dummy
|
||||
uint32_t num_many_lut = 1;
|
||||
@@ -228,244 +450,195 @@ __host__ void host_integer_partial_sum_ciphertexts_vec_kb(
|
||||
terms, 0, num_radix_blocks);
|
||||
return;
|
||||
}
|
||||
if (old_blocks != terms) {
|
||||
copy_radix_ciphertext_async<Torus>(streams[0], gpu_indexes[0], old_blocks,
|
||||
terms);
|
||||
}
|
||||
|
||||
if (num_radix_in_vec == 2) {
|
||||
CudaRadixCiphertextFFI old_blocks_slice;
|
||||
as_radix_ciphertext_slice<Torus>(&old_blocks_slice, old_blocks,
|
||||
num_radix_blocks, 2 * num_radix_blocks);
|
||||
host_addition<Torus>(streams[0], gpu_indexes[0], radix_lwe_out, old_blocks,
|
||||
&old_blocks_slice, num_radix_blocks);
|
||||
CudaRadixCiphertextFFI terms_slice;
|
||||
as_radix_ciphertext_slice<Torus>(&terms_slice, terms, num_radix_blocks,
|
||||
2 * num_radix_blocks);
|
||||
host_addition<Torus>(streams[0], gpu_indexes[0], radix_lwe_out, terms,
|
||||
&terms_slice, num_radix_blocks);
|
||||
return;
|
||||
}
|
||||
|
||||
size_t r = num_radix_in_vec;
|
||||
size_t total_modulus = message_modulus * carry_modulus;
|
||||
size_t message_max = message_modulus - 1;
|
||||
size_t chunk_size = (total_modulus - 1) / message_max;
|
||||
|
||||
size_t h_lwe_idx_in[terms->num_radix_blocks];
|
||||
size_t h_lwe_idx_out[terms->num_radix_blocks];
|
||||
int32_t h_smart_copy_in[terms->num_radix_blocks];
|
||||
int32_t h_smart_copy_out[terms->num_radix_blocks];
|
||||
|
||||
/// Here it is important to query the default max shared memory on device 0
|
||||
/// instead of cuda_get_max_shared_memory,
|
||||
/// to avoid bugs with tree_add_chunks trying to use too much shared memory
|
||||
auto max_shared_memory = 0;
|
||||
check_cuda_error(cudaDeviceGetAttribute(
|
||||
&max_shared_memory, cudaDevAttrMaxSharedMemoryPerBlock, 0));
|
||||
|
||||
// create lut object for message and carry
|
||||
// we allocate luts_message_carry in the host function (instead of scratch)
|
||||
// to reduce average memory consumption
|
||||
int_radix_lut<Torus> *luts_message_carry;
|
||||
size_t ch_amount = r / chunk_size;
|
||||
if (!ch_amount)
|
||||
ch_amount++;
|
||||
if (reused_lut == nullptr) {
|
||||
luts_message_carry = new int_radix_lut<Torus>(
|
||||
streams, gpu_indexes, gpu_count, mem_ptr->params, 2,
|
||||
2 * ch_amount * num_radix_blocks, true, nullptr);
|
||||
} else {
|
||||
luts_message_carry = new int_radix_lut<Torus>(
|
||||
streams, gpu_indexes, gpu_count, mem_ptr->params, 2,
|
||||
2 * ch_amount * num_radix_blocks, reused_lut, true, nullptr);
|
||||
if (mem_ptr->mem_reuse) {
|
||||
mem_ptr->setup_lookup_tables(streams, gpu_indexes, gpu_count);
|
||||
}
|
||||
auto message_acc = luts_message_carry->get_lut(0, 0);
|
||||
auto carry_acc = luts_message_carry->get_lut(0, 1);
|
||||
|
||||
// define functions for each accumulator
|
||||
auto lut_f_message = [message_modulus](Torus x) -> Torus {
|
||||
return x % message_modulus;
|
||||
};
|
||||
auto lut_f_carry = [message_modulus](Torus x) -> Torus {
|
||||
return x / message_modulus;
|
||||
};
|
||||
if (current_blocks != terms) {
|
||||
copy_radix_ciphertext_async<Torus>(streams[0], gpu_indexes[0],
|
||||
current_blocks, terms);
|
||||
}
|
||||
|
||||
// generate accumulators
|
||||
generate_device_accumulator<Torus>(
|
||||
streams[0], gpu_indexes[0], message_acc,
|
||||
luts_message_carry->get_degree(0), luts_message_carry->get_max_degree(0),
|
||||
glwe_dimension, polynomial_size, message_modulus, carry_modulus,
|
||||
lut_f_message, true);
|
||||
generate_device_accumulator<Torus>(
|
||||
streams[0], gpu_indexes[0], carry_acc, luts_message_carry->get_degree(1),
|
||||
luts_message_carry->get_max_degree(1), glwe_dimension, polynomial_size,
|
||||
message_modulus, carry_modulus, lut_f_carry, true);
|
||||
luts_message_carry->broadcast_lut(streams, gpu_indexes, 0);
|
||||
cuda_memcpy_async_to_gpu(d_degrees, current_blocks->degrees,
|
||||
total_blocks_in_vec * sizeof(uint64_t), streams[0],
|
||||
gpu_indexes[0]);
|
||||
|
||||
while (r > 2) {
|
||||
size_t cur_total_blocks = r * num_radix_blocks;
|
||||
size_t ch_amount = r / chunk_size;
|
||||
if (!ch_amount)
|
||||
ch_amount++;
|
||||
dim3 add_grid(ch_amount, num_radix_blocks, 1);
|
||||
cuda_set_device(gpu_indexes[0]);
|
||||
radix_vec_to_columns<<<1, num_radix_blocks, 0, streams[0]>>>(
|
||||
d_columns, d_columns_counter, d_degrees, num_radix_blocks,
|
||||
num_radix_in_vec);
|
||||
|
||||
cuda_set_device(gpu_indexes[0]);
|
||||
tree_add_chunks<Torus><<<add_grid, 512, 0, streams[0]>>>(
|
||||
(Torus *)new_blocks->ptr, (Torus *)old_blocks->ptr,
|
||||
std::min(r, chunk_size), big_lwe_size, num_radix_blocks);
|
||||
bool needs_processing = false;
|
||||
radix_columns current_columns(current_blocks->degrees, num_radix_blocks,
|
||||
num_radix_in_vec, chunk_size, needs_processing);
|
||||
int number_of_threads = min(256, params::degree);
|
||||
int part_count = (big_lwe_size + number_of_threads - 1) / number_of_threads;
|
||||
const dim3 number_of_blocks_2d(num_radix_blocks, part_count, 1);
|
||||
|
||||
check_cuda_error(cudaGetLastError());
|
||||
while (needs_processing) {
|
||||
calculate_chunks<Torus>
|
||||
<<<number_of_blocks_2d, number_of_threads, 0, streams[0]>>>(
|
||||
(Torus *)(current_blocks->ptr), d_columns, d_columns_counter,
|
||||
chunk_size, big_lwe_size);
|
||||
|
||||
size_t total_count = 0;
|
||||
size_t message_count = 0;
|
||||
size_t carry_count = 0;
|
||||
size_t sm_copy_count = 0;
|
||||
prepare_new_columns_and_pbs_indexes<<<1, num_radix_blocks, 0, streams[0]>>>(
|
||||
d_new_columns, d_new_columns_counter, d_pbs_indexes_in,
|
||||
d_pbs_indexes_out, luts_message_carry->get_lut_indexes(0, 0), d_columns,
|
||||
d_columns_counter, chunk_size);
|
||||
|
||||
generate_ids_update_degrees(
|
||||
terms->degrees, h_lwe_idx_in, h_lwe_idx_out, h_smart_copy_in,
|
||||
h_smart_copy_out, ch_amount, r, num_radix_blocks, chunk_size,
|
||||
message_max, total_count, message_count, carry_count, sm_copy_count);
|
||||
auto lwe_indexes_in = luts_message_carry->lwe_indexes_in;
|
||||
auto lwe_indexes_out = luts_message_carry->lwe_indexes_out;
|
||||
luts_message_carry->set_lwe_indexes(streams[0], gpu_indexes[0],
|
||||
h_lwe_idx_in, h_lwe_idx_out);
|
||||
size_t total_ciphertexts;
|
||||
size_t total_messages;
|
||||
current_columns.next_accumulation(total_ciphertexts, total_messages,
|
||||
needs_processing);
|
||||
|
||||
size_t copy_size = sm_copy_count * sizeof(int32_t);
|
||||
cuda_memcpy_async_to_gpu(d_smart_copy_in, h_smart_copy_in, copy_size,
|
||||
streams[0], gpu_indexes[0]);
|
||||
cuda_memcpy_async_to_gpu(d_smart_copy_out, h_smart_copy_out, copy_size,
|
||||
streams[0], gpu_indexes[0]);
|
||||
|
||||
// inside d_smart_copy_in there are only -1 values
|
||||
// it's fine to call smart_copy with same pointer
|
||||
// as source and destination
|
||||
copy_radix_ciphertext_slice_async<Torus>(
|
||||
streams[0], gpu_indexes[0], new_blocks_copy, 0, r * num_radix_blocks,
|
||||
new_blocks, 0, r * num_radix_blocks);
|
||||
smart_copy<Torus><<<sm_copy_count, 1024, 0, streams[0]>>>(
|
||||
(Torus *)new_blocks->ptr, (Torus *)new_blocks_copy->ptr,
|
||||
d_smart_copy_out, d_smart_copy_in, big_lwe_size);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
|
||||
if (carry_count > 0)
|
||||
cuda_set_value_async<Torus>(
|
||||
streams[0], gpu_indexes[0],
|
||||
luts_message_carry->get_lut_indexes(0, message_count), 1,
|
||||
carry_count);
|
||||
|
||||
luts_message_carry->broadcast_lut(streams, gpu_indexes, 0);
|
||||
|
||||
/// For multi GPU execution we create vectors of pointers for inputs and
|
||||
/// outputs
|
||||
std::vector<Torus *> new_blocks_vec = luts_message_carry->lwe_array_in_vec;
|
||||
std::vector<Torus *> small_lwe_vector_vec =
|
||||
luts_message_carry->lwe_after_ks_vec;
|
||||
std::vector<Torus *> lwe_after_pbs_vec =
|
||||
luts_message_carry->lwe_after_pbs_vec;
|
||||
std::vector<Torus *> lwe_trivial_indexes_vec =
|
||||
luts_message_carry->lwe_trivial_indexes_vec;
|
||||
|
||||
auto active_gpu_count = get_active_gpu_count(total_count, gpu_count);
|
||||
auto active_gpu_count = get_active_gpu_count(total_ciphertexts, gpu_count);
|
||||
if (active_gpu_count == 1) {
|
||||
/// Apply KS to go from a big LWE dimension to a small LWE dimension
|
||||
/// After this keyswitch execution, we need to synchronize the streams
|
||||
/// because the keyswitch and PBS do not operate on the same number of
|
||||
/// inputs
|
||||
execute_keyswitch_async<Torus>(
|
||||
streams, gpu_indexes, 1, (Torus *)small_lwe_vector->ptr,
|
||||
lwe_indexes_in, (Torus *)new_blocks->ptr, lwe_indexes_in, ksks,
|
||||
polynomial_size * glwe_dimension, small_lwe_dimension,
|
||||
mem_ptr->params.ks_base_log, mem_ptr->params.ks_level, message_count);
|
||||
|
||||
/// Apply PBS to apply a LUT, reduce the noise and go from a small LWE
|
||||
/// dimension to a big LWE dimension
|
||||
execute_pbs_async<Torus>(
|
||||
streams, gpu_indexes, 1, (Torus *)new_blocks->ptr, lwe_indexes_out,
|
||||
luts_message_carry->lut_vec, luts_message_carry->lut_indexes_vec,
|
||||
(Torus *)small_lwe_vector->ptr, lwe_indexes_in, bsks,
|
||||
ms_noise_reduction_key, luts_message_carry->buffer, glwe_dimension,
|
||||
small_lwe_dimension, polynomial_size, mem_ptr->params.pbs_base_log,
|
||||
mem_ptr->params.pbs_level, mem_ptr->params.grouping_factor,
|
||||
total_count, mem_ptr->params.pbs_type, num_many_lut, lut_stride);
|
||||
} else {
|
||||
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
|
||||
|
||||
multi_gpu_scatter_lwe_async<Torus>(
|
||||
streams, gpu_indexes, active_gpu_count, new_blocks_vec,
|
||||
(Torus *)new_blocks->ptr, luts_message_carry->h_lwe_indexes_in,
|
||||
luts_message_carry->using_trivial_lwe_indexes, message_count,
|
||||
big_lwe_size);
|
||||
|
||||
/// Apply KS to go from a big LWE dimension to a small LWE dimension
|
||||
/// After this keyswitch execution, we need to synchronize the streams
|
||||
/// because the keyswitch and PBS do not operate on the same number of
|
||||
/// inputs
|
||||
execute_keyswitch_async<Torus>(
|
||||
streams, gpu_indexes, active_gpu_count, small_lwe_vector_vec,
|
||||
lwe_trivial_indexes_vec, new_blocks_vec, lwe_trivial_indexes_vec,
|
||||
d_pbs_indexes_in, (Torus *)current_blocks->ptr, d_pbs_indexes_in,
|
||||
ksks, big_lwe_dimension, small_lwe_dimension,
|
||||
mem_ptr->params.ks_base_log, mem_ptr->params.ks_level, total_count);
|
||||
mem_ptr->params.ks_base_log, mem_ptr->params.ks_level,
|
||||
total_messages);
|
||||
|
||||
/// Copy data back to GPU 0, rebuild the lwe array, and scatter again on a
|
||||
/// different configuration
|
||||
multi_gpu_gather_lwe_async<Torus>(
|
||||
streams, gpu_indexes, gpu_count, (Torus *)small_lwe_vector->ptr,
|
||||
small_lwe_vector_vec, luts_message_carry->h_lwe_indexes_in,
|
||||
luts_message_carry->using_trivial_lwe_indexes, message_count,
|
||||
small_lwe_size);
|
||||
/// Synchronize all GPUs
|
||||
for (uint i = 0; i < active_gpu_count; i++) {
|
||||
cuda_synchronize_stream(streams[i], gpu_indexes[i]);
|
||||
}
|
||||
|
||||
multi_gpu_scatter_lwe_async<Torus>(
|
||||
streams, gpu_indexes, gpu_count, small_lwe_vector_vec,
|
||||
(Torus *)small_lwe_vector->ptr, luts_message_carry->h_lwe_indexes_in,
|
||||
luts_message_carry->using_trivial_lwe_indexes, total_count,
|
||||
small_lwe_size);
|
||||
|
||||
/// Apply PBS to apply a LUT, reduce the noise and go from a small LWE
|
||||
/// dimension to a big LWE dimension
|
||||
execute_pbs_async<Torus>(
|
||||
streams, gpu_indexes, active_gpu_count, lwe_after_pbs_vec,
|
||||
lwe_trivial_indexes_vec, luts_message_carry->lut_vec,
|
||||
luts_message_carry->lut_indexes_vec, small_lwe_vector_vec,
|
||||
lwe_trivial_indexes_vec, bsks, ms_noise_reduction_key,
|
||||
streams, gpu_indexes, 1, (Torus *)current_blocks->ptr,
|
||||
d_pbs_indexes_out, luts_message_carry->lut_vec,
|
||||
luts_message_carry->lut_indexes_vec, (Torus *)small_lwe_vector->ptr,
|
||||
d_pbs_indexes_in, bsks, ms_noise_reduction_key,
|
||||
luts_message_carry->buffer, glwe_dimension, small_lwe_dimension,
|
||||
polynomial_size, mem_ptr->params.pbs_base_log,
|
||||
mem_ptr->params.pbs_level, mem_ptr->params.grouping_factor,
|
||||
total_count, mem_ptr->params.pbs_type, num_many_lut, lut_stride);
|
||||
|
||||
multi_gpu_gather_lwe_async<Torus>(
|
||||
streams, gpu_indexes, active_gpu_count, (Torus *)new_blocks->ptr,
|
||||
lwe_after_pbs_vec, luts_message_carry->h_lwe_indexes_out,
|
||||
luts_message_carry->using_trivial_lwe_indexes, total_count,
|
||||
big_lwe_size);
|
||||
/// Synchronize all GPUs
|
||||
for (uint i = 0; i < active_gpu_count; i++) {
|
||||
cuda_synchronize_stream(streams[i], gpu_indexes[i]);
|
||||
total_ciphertexts, mem_ptr->params.pbs_type, num_many_lut,
|
||||
lut_stride);
|
||||
} else {
|
||||
Torus *h_lwe_indexes_in_pinned;
|
||||
Torus *h_lwe_indexes_out_pinned;
|
||||
cudaMallocHost((void **)&h_lwe_indexes_in_pinned,
|
||||
total_ciphertexts * sizeof(Torus));
|
||||
cudaMallocHost((void **)&h_lwe_indexes_out_pinned,
|
||||
total_ciphertexts * sizeof(Torus));
|
||||
for (uint32_t i = 0; i < total_ciphertexts; i++) {
|
||||
h_lwe_indexes_in_pinned[i] = luts_message_carry->h_lwe_indexes_in[i];
|
||||
h_lwe_indexes_out_pinned[i] = luts_message_carry->h_lwe_indexes_out[i];
|
||||
}
|
||||
}
|
||||
for (uint i = 0; i < total_count; i++) {
|
||||
auto degrees_index = luts_message_carry->h_lut_indexes[i];
|
||||
new_blocks->degrees[i] = luts_message_carry->degrees[degrees_index];
|
||||
new_blocks->noise_levels[i] = NoiseLevel::NOMINAL;
|
||||
}
|
||||
cuda_memcpy_async_to_cpu(
|
||||
h_lwe_indexes_in_pinned, luts_message_carry->lwe_indexes_in,
|
||||
total_ciphertexts * sizeof(Torus), streams[0], gpu_indexes[0]);
|
||||
cuda_memcpy_async_to_cpu(
|
||||
h_lwe_indexes_out_pinned, luts_message_carry->lwe_indexes_out,
|
||||
total_ciphertexts * sizeof(Torus), streams[0], gpu_indexes[0]);
|
||||
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
|
||||
for (uint32_t i = 0; i < total_ciphertexts; i++) {
|
||||
luts_message_carry->h_lwe_indexes_in[i] = h_lwe_indexes_in_pinned[i];
|
||||
luts_message_carry->h_lwe_indexes_out[i] = h_lwe_indexes_out_pinned[i];
|
||||
}
|
||||
cudaFreeHost(h_lwe_indexes_in_pinned);
|
||||
cudaFreeHost(h_lwe_indexes_out_pinned);
|
||||
|
||||
int rem_blocks = (r > chunk_size) ? r % chunk_size * num_radix_blocks : 0;
|
||||
int new_blocks_created = 2 * ch_amount * num_radix_blocks;
|
||||
luts_message_carry->broadcast_lut(streams, gpu_indexes, 0);
|
||||
luts_message_carry->using_trivial_lwe_indexes = false;
|
||||
|
||||
if (rem_blocks > 0)
|
||||
copy_radix_ciphertext_slice_async<Torus>(
|
||||
streams[0], gpu_indexes[0], new_blocks, new_blocks_created,
|
||||
new_blocks_created + rem_blocks, old_blocks,
|
||||
cur_total_blocks - rem_blocks, cur_total_blocks);
|
||||
std::swap(new_blocks, old_blocks);
|
||||
r = (new_blocks_created + rem_blocks) / num_radix_blocks;
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
streams, gpu_indexes, active_gpu_count, current_blocks,
|
||||
current_blocks, bsks, ksks, ms_noise_reduction_key,
|
||||
luts_message_carry, total_ciphertexts);
|
||||
}
|
||||
cuda_set_device(gpu_indexes[0]);
|
||||
std::swap(d_columns, d_new_columns);
|
||||
std::swap(d_columns_counter, d_new_columns_counter);
|
||||
}
|
||||
luts_message_carry->release(streams, gpu_indexes, gpu_count);
|
||||
delete (luts_message_carry);
|
||||
|
||||
CudaRadixCiphertextFFI old_blocks_slice;
|
||||
as_radix_ciphertext_slice<Torus>(&old_blocks_slice, old_blocks,
|
||||
num_radix_blocks, 2 * num_radix_blocks);
|
||||
host_addition<Torus>(streams[0], gpu_indexes[0], radix_lwe_out, old_blocks,
|
||||
&old_blocks_slice, num_radix_blocks);
|
||||
calculate_final_chunk_into_radix<Torus>
|
||||
<<<number_of_blocks_2d, number_of_threads, 0, streams[0]>>>(
|
||||
(Torus *)(radix_lwe_out->ptr), (Torus *)(current_blocks->ptr),
|
||||
d_columns, d_columns_counter, chunk_size, big_lwe_size);
|
||||
|
||||
if (reduce_degrees_for_single_carry_propagation) {
|
||||
prepare_final_pbs_indexes<Torus>
|
||||
<<<1, 2 * num_radix_blocks, 0, streams[0]>>>(
|
||||
d_pbs_indexes_in, d_pbs_indexes_out,
|
||||
luts_message_carry->get_lut_indexes(0, 0), num_radix_blocks);
|
||||
|
||||
cuda_memset_async(
|
||||
(Torus *)(current_blocks->ptr) + big_lwe_size * num_radix_blocks, 0,
|
||||
big_lwe_size * sizeof(Torus), streams[0], gpu_indexes[0]);
|
||||
|
||||
auto active_gpu_count =
|
||||
get_active_gpu_count(2 * num_radix_blocks, gpu_count);
|
||||
|
||||
if (active_gpu_count == 1) {
|
||||
execute_keyswitch_async<Torus>(
|
||||
streams, gpu_indexes, 1, (Torus *)small_lwe_vector->ptr,
|
||||
d_pbs_indexes_in, (Torus *)radix_lwe_out->ptr, d_pbs_indexes_in, ksks,
|
||||
big_lwe_dimension, small_lwe_dimension, mem_ptr->params.ks_base_log,
|
||||
mem_ptr->params.ks_level, num_radix_blocks);
|
||||
|
||||
execute_pbs_async<Torus>(
|
||||
streams, gpu_indexes, 1, (Torus *)current_blocks->ptr,
|
||||
d_pbs_indexes_out, luts_message_carry->lut_vec,
|
||||
luts_message_carry->lut_indexes_vec, (Torus *)small_lwe_vector->ptr,
|
||||
d_pbs_indexes_in, bsks, ms_noise_reduction_key,
|
||||
luts_message_carry->buffer, glwe_dimension, small_lwe_dimension,
|
||||
polynomial_size, mem_ptr->params.pbs_base_log,
|
||||
mem_ptr->params.pbs_level, mem_ptr->params.grouping_factor,
|
||||
2 * num_radix_blocks, mem_ptr->params.pbs_type, num_many_lut,
|
||||
lut_stride);
|
||||
} else {
|
||||
uint32_t num_blocks_in_apply_lut = 2 * num_radix_blocks;
|
||||
Torus *h_lwe_indexes_in_pinned;
|
||||
Torus *h_lwe_indexes_out_pinned;
|
||||
cudaMallocHost((void **)&h_lwe_indexes_in_pinned,
|
||||
num_blocks_in_apply_lut * sizeof(Torus));
|
||||
cudaMallocHost((void **)&h_lwe_indexes_out_pinned,
|
||||
num_blocks_in_apply_lut * sizeof(Torus));
|
||||
for (uint32_t i = 0; i < num_blocks_in_apply_lut; i++) {
|
||||
h_lwe_indexes_in_pinned[i] = luts_message_carry->h_lwe_indexes_in[i];
|
||||
h_lwe_indexes_out_pinned[i] = luts_message_carry->h_lwe_indexes_out[i];
|
||||
}
|
||||
cuda_memcpy_async_to_cpu(
|
||||
h_lwe_indexes_in_pinned, luts_message_carry->lwe_indexes_in,
|
||||
num_blocks_in_apply_lut * sizeof(Torus), streams[0], gpu_indexes[0]);
|
||||
cuda_memcpy_async_to_cpu(
|
||||
h_lwe_indexes_out_pinned, luts_message_carry->lwe_indexes_out,
|
||||
num_blocks_in_apply_lut * sizeof(Torus), streams[0], gpu_indexes[0]);
|
||||
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
|
||||
for (uint32_t i = 0; i < num_blocks_in_apply_lut; i++) {
|
||||
luts_message_carry->h_lwe_indexes_in[i] = h_lwe_indexes_in_pinned[i];
|
||||
luts_message_carry->h_lwe_indexes_out[i] = h_lwe_indexes_out_pinned[i];
|
||||
}
|
||||
cudaFreeHost(h_lwe_indexes_in_pinned);
|
||||
cudaFreeHost(h_lwe_indexes_out_pinned);
|
||||
|
||||
luts_message_carry->broadcast_lut(streams, gpu_indexes, 0);
|
||||
luts_message_carry->using_trivial_lwe_indexes = false;
|
||||
|
||||
integer_radix_apply_univariate_lookup_table_kb<Torus>(
|
||||
streams, gpu_indexes, active_gpu_count, current_blocks, radix_lwe_out,
|
||||
bsks, ksks, ms_noise_reduction_key, luts_message_carry,
|
||||
num_blocks_in_apply_lut);
|
||||
}
|
||||
calculate_final_degrees(radix_lwe_out->degrees, terms->degrees,
|
||||
num_radix_blocks, num_radix_in_vec, chunk_size,
|
||||
mem_ptr->params.message_modulus);
|
||||
cuda_set_device(gpu_indexes[0]);
|
||||
CudaRadixCiphertextFFI current_blocks_slice;
|
||||
as_radix_ciphertext_slice<Torus>(¤t_blocks_slice, current_blocks,
|
||||
num_radix_blocks, 2 * num_radix_blocks);
|
||||
|
||||
host_addition<Torus>(streams[0], gpu_indexes[0], radix_lwe_out,
|
||||
current_blocks, ¤t_blocks_slice,
|
||||
num_radix_blocks);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Torus, class params>
|
||||
@@ -600,9 +773,9 @@ __host__ void host_integer_mult_radix_kb(
|
||||
terms_degree_msb[i] = (b_id > r_id) ? message_modulus - 2 : 0;
|
||||
}
|
||||
host_integer_partial_sum_ciphertexts_vec_kb<Torus, params>(
|
||||
streams, gpu_indexes, gpu_count, radix_lwe_out, vector_result_sb, bsks,
|
||||
ksks, ms_noise_reduction_key, mem_ptr->sum_ciphertexts_mem, num_blocks,
|
||||
2 * num_blocks, mem_ptr->luts_array);
|
||||
streams, gpu_indexes, gpu_count, radix_lwe_out, vector_result_sb, true,
|
||||
bsks, ksks, ms_noise_reduction_key, mem_ptr->sum_ciphertexts_mem,
|
||||
num_blocks, 2 * num_blocks);
|
||||
|
||||
auto scp_mem_ptr = mem_ptr->sc_prop_mem;
|
||||
uint32_t requested_flag = outputFlag::FLAG_NONE;
|
||||
|
||||
@@ -34,7 +34,7 @@ void update_degrees_after_scalar_bitor(uint64_t *output_degrees,
|
||||
auto result = max;
|
||||
|
||||
for (uint j = 0; j < min + 1; j++) {
|
||||
if (max | j > result) {
|
||||
if ((max | j) > result) {
|
||||
result = max | j;
|
||||
}
|
||||
}
|
||||
@@ -52,7 +52,7 @@ void update_degrees_after_scalar_bitxor(uint64_t *output_degrees,
|
||||
|
||||
// Try every possibility to find the worst case
|
||||
for (uint j = 0; j < min + 1; j++) {
|
||||
if (max ^ j > result) {
|
||||
if ((max ^ j) > result) {
|
||||
result = max ^ j;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -6,7 +6,8 @@ uint64_t scratch_cuda_integer_scalar_mul_kb_64(
|
||||
uint32_t lwe_dimension, uint32_t ks_level, uint32_t ks_base_log,
|
||||
uint32_t pbs_level, uint32_t pbs_base_log, uint32_t grouping_factor,
|
||||
uint32_t num_blocks, uint32_t message_modulus, uint32_t carry_modulus,
|
||||
PBS_TYPE pbs_type, bool allocate_gpu_memory, bool allocate_ms_array) {
|
||||
PBS_TYPE pbs_type, uint32_t num_scalar_bits, bool allocate_gpu_memory,
|
||||
bool allocate_ms_array) {
|
||||
|
||||
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
|
||||
glwe_dimension * polynomial_size, lwe_dimension,
|
||||
@@ -17,7 +18,28 @@ uint64_t scratch_cuda_integer_scalar_mul_kb_64(
|
||||
return scratch_cuda_integer_radix_scalar_mul_kb<uint64_t>(
|
||||
(cudaStream_t *)(streams), gpu_indexes, gpu_count,
|
||||
(int_scalar_mul_buffer<uint64_t> **)mem_ptr, num_blocks, params,
|
||||
allocate_gpu_memory);
|
||||
num_scalar_bits, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
uint64_t scratch_cuda_integer_radix_scalar_mul_high_kb_64(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
int8_t **mem_ptr, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t lwe_dimension, uint32_t ks_level, uint32_t ks_base_log,
|
||||
uint32_t pbs_level, uint32_t pbs_base_log, uint32_t grouping_factor,
|
||||
uint32_t num_blocks, uint32_t message_modulus, uint32_t carry_modulus,
|
||||
PBS_TYPE pbs_type, uint32_t num_scalar_bits, bool anticipated_buffer_drop,
|
||||
bool allocate_gpu_memory, bool allocate_ms_array) {
|
||||
|
||||
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
|
||||
glwe_dimension * polynomial_size, lwe_dimension,
|
||||
ks_level, ks_base_log, pbs_level, pbs_base_log,
|
||||
grouping_factor, message_modulus, carry_modulus,
|
||||
allocate_ms_array);
|
||||
|
||||
return scratch_cuda_integer_radix_scalar_mul_high_kb<uint64_t>(
|
||||
(cudaStream_t *)(streams), gpu_indexes, gpu_count,
|
||||
(int_scalar_mul_high<uint64_t> **)mem_ptr, num_blocks, params,
|
||||
num_scalar_bits, anticipated_buffer_drop, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
void cuda_scalar_multiplication_integer_radix_ciphertext_64_inplace(
|
||||
@@ -83,6 +105,21 @@ void cuda_scalar_multiplication_integer_radix_ciphertext_64_inplace(
|
||||
}
|
||||
}
|
||||
|
||||
void cuda_integer_radix_scalar_mul_high_kb_64(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
CudaRadixCiphertextFFI *ct, int8_t *mem_ptr, void *const *ksks,
|
||||
uint64_t rhs, uint64_t const *decomposed_scalar,
|
||||
uint64_t const *has_at_least_one_set,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key,
|
||||
void *const *bsks, uint32_t num_scalars) {
|
||||
|
||||
host_integer_radix_scalar_mul_high_kb<uint64_t>(
|
||||
(cudaStream_t *)(streams), gpu_indexes, gpu_count, ct,
|
||||
(int_scalar_mul_high<uint64_t> *)mem_ptr, (uint64_t **)ksks, rhs,
|
||||
decomposed_scalar, has_at_least_one_set, ms_noise_reduction_key, bsks,
|
||||
num_scalars);
|
||||
}
|
||||
|
||||
void cleanup_cuda_integer_radix_scalar_mul(void *const *streams,
|
||||
uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count,
|
||||
@@ -93,3 +130,13 @@ void cleanup_cuda_integer_radix_scalar_mul(void *const *streams,
|
||||
|
||||
mem_ptr->release((cudaStream_t *)(streams), gpu_indexes, gpu_count);
|
||||
}
|
||||
|
||||
void cleanup_cuda_integer_radix_scalar_mul_high_kb_64(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
int8_t **mem_ptr_void) {
|
||||
|
||||
int_scalar_mul_high<uint64_t> *mem_ptr =
|
||||
(int_scalar_mul_high<uint64_t> *)(*mem_ptr_void);
|
||||
|
||||
mem_ptr->release((cudaStream_t *)streams, gpu_indexes, gpu_count);
|
||||
}
|
||||
|
||||
@@ -6,6 +6,7 @@
|
||||
#include <cuda_runtime.h>
|
||||
#endif
|
||||
|
||||
#include "cast.cuh"
|
||||
#include "device.h"
|
||||
#include "integer/integer_utilities.h"
|
||||
#include "multiplication.cuh"
|
||||
@@ -32,12 +33,12 @@ __host__ uint64_t scratch_cuda_integer_radix_scalar_mul_kb(
|
||||
cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count, int_scalar_mul_buffer<T> **mem_ptr,
|
||||
uint32_t num_radix_blocks, int_radix_params params,
|
||||
bool allocate_gpu_memory) {
|
||||
uint32_t num_scalar_bits, bool allocate_gpu_memory) {
|
||||
|
||||
uint64_t size_tracker = 0;
|
||||
*mem_ptr = new int_scalar_mul_buffer<T>(
|
||||
streams, gpu_indexes, gpu_count, params, num_radix_blocks,
|
||||
allocate_gpu_memory, true, &size_tracker);
|
||||
num_scalar_bits, allocate_gpu_memory, true, &size_tracker);
|
||||
return size_tracker;
|
||||
}
|
||||
|
||||
@@ -115,13 +116,10 @@ __host__ void host_integer_scalar_mul_radix(
|
||||
set_zero_radix_ciphertext_slice_async<T>(streams[0], gpu_indexes[0],
|
||||
lwe_array, 0, num_radix_blocks);
|
||||
} else {
|
||||
for (int i = 0; i < j * num_radix_blocks; i++) {
|
||||
all_shifted_buffer->degrees[i] = message_modulus - 1;
|
||||
}
|
||||
host_integer_partial_sum_ciphertexts_vec_kb<T, params>(
|
||||
streams, gpu_indexes, gpu_count, lwe_array, all_shifted_buffer, bsks,
|
||||
ksks, ms_noise_reduction_key, mem->sum_ciphertexts_vec_mem,
|
||||
num_radix_blocks, j, nullptr);
|
||||
streams, gpu_indexes, gpu_count, lwe_array, all_shifted_buffer, true,
|
||||
bsks, ksks, ms_noise_reduction_key, mem->sum_ciphertexts_vec_mem,
|
||||
num_radix_blocks, j);
|
||||
|
||||
auto scp_mem_ptr = mem->sc_prop_mem;
|
||||
uint32_t requested_flag = outputFlag::FLAG_NONE;
|
||||
@@ -170,4 +168,109 @@ __host__ void host_integer_small_scalar_mul_radix(
|
||||
output_lwe_array->degrees[i] = input_lwe_array->degrees[i] * scalar;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ uint64_t scratch_cuda_integer_radix_scalar_mul_high_kb(
|
||||
cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count, int_scalar_mul_high<Torus> **mem_ptr,
|
||||
uint32_t num_radix_blocks, int_radix_params params,
|
||||
uint32_t num_scalar_bits, bool anticipated_buffer_drop,
|
||||
bool allocate_gpu_memory) {
|
||||
|
||||
uint64_t size_tracker = 0;
|
||||
|
||||
*mem_ptr = new int_scalar_mul_high<Torus>(
|
||||
streams, gpu_indexes, gpu_count, params, num_radix_blocks,
|
||||
allocate_gpu_memory, LEFT_SHIFT, num_scalar_bits, anticipated_buffer_drop,
|
||||
&size_tracker);
|
||||
|
||||
return size_tracker;
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void host_integer_radix_scalar_mul_high_kb(
|
||||
cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count, CudaRadixCiphertextFFI *ct,
|
||||
int_scalar_mul_high<Torus> *mem_ptr, Torus *const *ksks, uint64_t rhs,
|
||||
uint64_t const *decomposed_scalar, uint64_t const *has_at_least_one_set,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key,
|
||||
void *const *bsks, uint32_t num_scalars) {
|
||||
|
||||
if (rhs == (uint64_t)0) {
|
||||
set_zero_radix_ciphertext_slice_async<Torus>(streams[0], gpu_indexes[0], ct,
|
||||
0, ct->num_radix_blocks);
|
||||
return;
|
||||
}
|
||||
|
||||
CudaRadixCiphertextFFI *tmp_ffi = mem_ptr->tmp;
|
||||
|
||||
host_extend_radix_with_trivial_zero_blocks_msb<Torus>(tmp_ffi, ct, streams,
|
||||
gpu_indexes);
|
||||
|
||||
if (rhs != (uint64_t)1 || tmp_ffi->num_radix_blocks != 0) {
|
||||
if ((rhs & (rhs - 1)) == 0) {
|
||||
|
||||
uint32_t shift = std::log2(rhs);
|
||||
|
||||
host_integer_radix_logical_scalar_shift_kb_inplace<Torus>(
|
||||
streams, gpu_indexes, gpu_count, tmp_ffi, shift,
|
||||
mem_ptr->logical_scalar_shift_mem, bsks, (uint64_t **)ksks,
|
||||
ms_noise_reduction_key, tmp_ffi->num_radix_blocks);
|
||||
|
||||
} else {
|
||||
|
||||
switch (mem_ptr->params.polynomial_size) {
|
||||
case 512:
|
||||
host_integer_scalar_mul_radix<uint64_t, AmortizedDegree<512>>(
|
||||
streams, gpu_indexes, gpu_count, tmp_ffi, decomposed_scalar,
|
||||
has_at_least_one_set, mem_ptr->scalar_mul_mem, bsks,
|
||||
(uint64_t **)ksks, ms_noise_reduction_key,
|
||||
mem_ptr->params.message_modulus, num_scalars);
|
||||
break;
|
||||
case 1024:
|
||||
host_integer_scalar_mul_radix<uint64_t, AmortizedDegree<1024>>(
|
||||
streams, gpu_indexes, gpu_count, tmp_ffi, decomposed_scalar,
|
||||
has_at_least_one_set, mem_ptr->scalar_mul_mem, bsks,
|
||||
(uint64_t **)ksks, ms_noise_reduction_key,
|
||||
mem_ptr->params.message_modulus, num_scalars);
|
||||
break;
|
||||
case 2048:
|
||||
host_integer_scalar_mul_radix<uint64_t, AmortizedDegree<2048>>(
|
||||
streams, gpu_indexes, gpu_count, tmp_ffi, decomposed_scalar,
|
||||
has_at_least_one_set, mem_ptr->scalar_mul_mem, bsks,
|
||||
(uint64_t **)ksks, ms_noise_reduction_key,
|
||||
mem_ptr->params.message_modulus, num_scalars);
|
||||
break;
|
||||
case 4096:
|
||||
host_integer_scalar_mul_radix<uint64_t, AmortizedDegree<4096>>(
|
||||
streams, gpu_indexes, gpu_count, tmp_ffi, decomposed_scalar,
|
||||
has_at_least_one_set, mem_ptr->scalar_mul_mem, bsks,
|
||||
(uint64_t **)ksks, ms_noise_reduction_key,
|
||||
mem_ptr->params.message_modulus, num_scalars);
|
||||
break;
|
||||
case 8192:
|
||||
host_integer_scalar_mul_radix<uint64_t, AmortizedDegree<8192>>(
|
||||
streams, gpu_indexes, gpu_count, tmp_ffi, decomposed_scalar,
|
||||
has_at_least_one_set, mem_ptr->scalar_mul_mem, bsks,
|
||||
(uint64_t **)ksks, ms_noise_reduction_key,
|
||||
mem_ptr->params.message_modulus, num_scalars);
|
||||
break;
|
||||
case 16384:
|
||||
host_integer_scalar_mul_radix<uint64_t, AmortizedDegree<16384>>(
|
||||
streams, gpu_indexes, gpu_count, tmp_ffi, decomposed_scalar,
|
||||
has_at_least_one_set, mem_ptr->scalar_mul_mem, bsks,
|
||||
(uint64_t **)ksks, ms_noise_reduction_key,
|
||||
mem_ptr->params.message_modulus, num_scalars);
|
||||
break;
|
||||
default:
|
||||
PANIC(
|
||||
"Cuda error (scalar multiplication): unsupported polynomial size. "
|
||||
"Only N = 512, 1024, 2048, 4096, 8192, 16384 are supported.")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
host_trim_radix_blocks_lsb<Torus>(ct, tmp_ffi, streams, gpu_indexes);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
46
backends/tfhe-cuda-backend/cuda/src/integer/subtraction.cu
Normal file
46
backends/tfhe-cuda-backend/cuda/src/integer/subtraction.cu
Normal file
@@ -0,0 +1,46 @@
|
||||
#include "subtraction.cuh"
|
||||
|
||||
uint64_t scratch_cuda_sub_and_propagate_single_carry_kb_64_inplace(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
int8_t **mem_ptr, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t big_lwe_dimension, uint32_t small_lwe_dimension, uint32_t ks_level,
|
||||
uint32_t ks_base_log, uint32_t pbs_level, uint32_t pbs_base_log,
|
||||
uint32_t grouping_factor, uint32_t num_blocks, uint32_t message_modulus,
|
||||
uint32_t carry_modulus, PBS_TYPE pbs_type, uint32_t requested_flag,
|
||||
bool allocate_gpu_memory, bool allocate_ms_array) {
|
||||
|
||||
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
|
||||
big_lwe_dimension, small_lwe_dimension, ks_level,
|
||||
ks_base_log, pbs_level, pbs_base_log, grouping_factor,
|
||||
message_modulus, carry_modulus, allocate_ms_array);
|
||||
|
||||
return scratch_cuda_sub_and_propagate_single_carry<uint64_t>(
|
||||
(cudaStream_t *)(streams), gpu_indexes, gpu_count,
|
||||
(int_sub_and_propagate<uint64_t> **)mem_ptr, num_blocks, params,
|
||||
requested_flag, allocate_gpu_memory);
|
||||
}
|
||||
|
||||
void cuda_sub_and_propagate_single_carry_kb_64_inplace(
|
||||
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
|
||||
CudaRadixCiphertextFFI *lhs_array, const CudaRadixCiphertextFFI *rhs_array,
|
||||
CudaRadixCiphertextFFI *carry_out, const CudaRadixCiphertextFFI *carry_in,
|
||||
int8_t *mem_ptr, void *const *bsks, void *const *ksks,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key,
|
||||
uint32_t requested_flag, uint32_t uses_carry) {
|
||||
|
||||
host_sub_and_propagate_single_carry<uint64_t>(
|
||||
(cudaStream_t *)(streams), gpu_indexes, gpu_count, lhs_array, rhs_array,
|
||||
carry_out, carry_in, (int_sub_and_propagate<uint64_t> *)mem_ptr, bsks,
|
||||
(uint64_t **)(ksks), ms_noise_reduction_key, requested_flag, uses_carry);
|
||||
}
|
||||
|
||||
void cleanup_cuda_sub_and_propagate_single_carry(void *const *streams,
|
||||
uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count,
|
||||
int8_t **mem_ptr_void) {
|
||||
|
||||
int_sub_and_propagate<uint64_t> *mem_ptr =
|
||||
(int_sub_and_propagate<uint64_t> *)(*mem_ptr_void);
|
||||
|
||||
mem_ptr->release((cudaStream_t *)streams, gpu_indexes, gpu_count);
|
||||
}
|
||||
@@ -8,7 +8,46 @@
|
||||
|
||||
#include "device.h"
|
||||
#include "integer/integer.h"
|
||||
#include "linear_algebra.h"
|
||||
#include "integer/integer_utilities.h"
|
||||
#include "negation.cuh"
|
||||
#include "pbs/pbs_enums.h"
|
||||
|
||||
template <typename Torus>
|
||||
uint64_t scratch_cuda_sub_and_propagate_single_carry(
|
||||
cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count, int_sub_and_propagate<Torus> **mem_ptr,
|
||||
uint32_t num_radix_blocks, int_radix_params params, uint32_t requested_flag,
|
||||
bool allocate_gpu_memory) {
|
||||
|
||||
uint64_t size_tracker = 0;
|
||||
|
||||
*mem_ptr = new int_sub_and_propagate<Torus>(
|
||||
streams, gpu_indexes, gpu_count, params, num_radix_blocks, requested_flag,
|
||||
allocate_gpu_memory, &size_tracker);
|
||||
|
||||
return size_tracker;
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
void host_sub_and_propagate_single_carry(
|
||||
cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count, CudaRadixCiphertextFFI *lhs_array,
|
||||
const CudaRadixCiphertextFFI *rhs_array, CudaRadixCiphertextFFI *carry_out,
|
||||
const CudaRadixCiphertextFFI *input_carries,
|
||||
int_sub_and_propagate<Torus> *mem, void *const *bsks, Torus *const *ksks,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key,
|
||||
uint32_t requested_flag, uint32_t uses_carry) {
|
||||
|
||||
host_integer_radix_negation<Torus>(
|
||||
streams, gpu_indexes, gpu_count, mem->neg_rhs_array, rhs_array,
|
||||
mem->params.message_modulus, mem->params.carry_modulus,
|
||||
mem->neg_rhs_array->num_radix_blocks);
|
||||
|
||||
host_add_and_propagate_single_carry<Torus>(
|
||||
streams, gpu_indexes, gpu_count, lhs_array, mem->neg_rhs_array, carry_out,
|
||||
input_carries, mem->sc_prop_mem, bsks, ksks, ms_noise_reduction_key,
|
||||
requested_flag, uses_carry);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
__host__ void host_integer_radix_subtraction(
|
||||
|
||||
@@ -261,6 +261,8 @@ void cuda_fourier_polynomial_mul(void *stream_v, uint32_t gpu_index,
|
||||
default:
|
||||
break;
|
||||
}
|
||||
check_cuda_error(cudaGetLastError());
|
||||
|
||||
cuda_drop_async(buffer, stream, gpu_index);
|
||||
}
|
||||
|
||||
|
||||
@@ -279,6 +279,7 @@ void cuda_convert_lwe_programmable_bootstrap_key(cudaStream_t stream,
|
||||
PANIC("Cuda error (convert KSK): unsupported polynomial size. Supported "
|
||||
"N's are powers of two in the interval [256..16384].")
|
||||
}
|
||||
check_cuda_error(cudaGetLastError());
|
||||
|
||||
cuda_drop_async(d_bsk, stream, gpu_index);
|
||||
cuda_drop_async(buffer, stream, gpu_index);
|
||||
@@ -315,6 +316,7 @@ void convert_u128_to_f128_and_forward_fft_128(cudaStream_t stream,
|
||||
// convert u128 into 4 x double
|
||||
batch_convert_u128_to_f128_strided_as_torus<params>
|
||||
<<<grid_size, block_size, 0, stream>>>(d_bsk, d_standard);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
|
||||
// call negacyclic 128 bit forward fft.
|
||||
if (full_sm) {
|
||||
@@ -326,6 +328,7 @@ void convert_u128_to_f128_and_forward_fft_128(cudaStream_t stream,
|
||||
<<<grid_size, block_size, shared_memory_size, stream>>>(d_bsk, d_bsk,
|
||||
buffer);
|
||||
}
|
||||
check_cuda_error(cudaGetLastError());
|
||||
cuda_drop_async(buffer, stream, gpu_index);
|
||||
}
|
||||
|
||||
|
||||
@@ -194,7 +194,8 @@ void execute_pbs_async(
|
||||
lut_indexes_vec[i] + (ptrdiff_t)(gpu_offset);
|
||||
|
||||
void *zeros = nullptr;
|
||||
if (ms_noise_reduction_key != nullptr)
|
||||
if (ms_noise_reduction_key != nullptr &&
|
||||
ms_noise_reduction_key->ptr != nullptr)
|
||||
zeros = ms_noise_reduction_key->ptr[i];
|
||||
cuda_programmable_bootstrap_lwe_ciphertext_vector_64(
|
||||
streams[i], gpu_indexes[i], current_lwe_array_out,
|
||||
|
||||
@@ -0,0 +1,46 @@
|
||||
#ifndef CUDA_PROGRAMMABLE_BOOTSTRAP_128_CUH
|
||||
#define CUDA_PROGRAMMABLE_BOOTSTRAP_128_CUH
|
||||
#include "pbs/pbs_128_utilities.h"
|
||||
|
||||
static void
|
||||
execute_scratch_pbs_128(void *stream, uint32_t gpu_index, int8_t **pbs_buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count,
|
||||
bool allocate_gpu_memory, bool allocate_ms_array,
|
||||
uint64_t *size_tracker_on_gpu) {
|
||||
// The squash noise function receives as input 64-bit integers
|
||||
*size_tracker_on_gpu = scratch_cuda_programmable_bootstrap_128_vector_64(
|
||||
stream, gpu_index, pbs_buffer, lwe_dimension, glwe_dimension,
|
||||
polynomial_size, level_count, input_lwe_ciphertext_count,
|
||||
allocate_gpu_memory, allocate_ms_array);
|
||||
}
|
||||
template <typename Torus>
|
||||
static void execute_pbs_128_async(
|
||||
cudaStream_t const *streams, uint32_t const *gpu_indexes,
|
||||
uint32_t gpu_count, const LweArrayVariant<__uint128_t> &lwe_array_out,
|
||||
const std::vector<Torus *> lut_vector,
|
||||
const LweArrayVariant<uint64_t> &lwe_array_in,
|
||||
void *const *bootstrapping_keys,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key,
|
||||
std::vector<int8_t *> pbs_buffer, uint32_t lwe_dimension,
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t base_log,
|
||||
uint32_t level_count, uint32_t num_samples) {
|
||||
|
||||
for (uint32_t i = 0; i < gpu_count; i++) {
|
||||
int num_inputs_on_gpu = get_num_inputs_on_gpu(num_samples, i, gpu_count);
|
||||
|
||||
Torus *current_lwe_array_out = GET_VARIANT_ELEMENT(lwe_array_out, i);
|
||||
uint64_t *current_lwe_array_in = GET_VARIANT_ELEMENT_64BIT(lwe_array_in, i);
|
||||
void *zeros = nullptr;
|
||||
if (ms_noise_reduction_key != nullptr)
|
||||
zeros = ms_noise_reduction_key->ptr[i];
|
||||
|
||||
cuda_programmable_bootstrap_lwe_ciphertext_vector_128(
|
||||
streams[i], gpu_indexes[i], current_lwe_array_out, lut_vector[i],
|
||||
current_lwe_array_in, bootstrapping_keys[i], ms_noise_reduction_key,
|
||||
zeros, pbs_buffer[i], lwe_dimension, glwe_dimension, polynomial_size,
|
||||
base_log, level_count, num_inputs_on_gpu);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
@@ -46,7 +46,7 @@ __global__ void device_programmable_bootstrap_cg(
|
||||
uint32_t lwe_dimension, uint32_t polynomial_size, uint32_t base_log,
|
||||
uint32_t level_count, int8_t *device_mem,
|
||||
uint64_t device_memory_size_per_block, uint32_t num_many_lut,
|
||||
uint32_t lut_stride) {
|
||||
uint32_t lut_stride, bool uses_noise_reduction) {
|
||||
|
||||
grid_group grid = this_grid();
|
||||
|
||||
@@ -80,7 +80,9 @@ __global__ void device_programmable_bootstrap_cg(
|
||||
// The third dimension of the block is used to determine on which ciphertext
|
||||
// this block is operating, in the case of batch bootstraps
|
||||
const Torus *block_lwe_array_in =
|
||||
&lwe_array_in[lwe_input_indexes[blockIdx.x] * (lwe_dimension + 1)];
|
||||
uses_noise_reduction
|
||||
? &lwe_array_in[blockIdx.x * (lwe_dimension + 1)]
|
||||
: &lwe_array_in[lwe_input_indexes[blockIdx.x] * (lwe_dimension + 1)];
|
||||
|
||||
const Torus *block_lut_vector =
|
||||
&lut_vector[lut_vector_indexes[blockIdx.x] * params::degree *
|
||||
@@ -263,7 +265,9 @@ __host__ void host_programmable_bootstrap_cg(
|
||||
int thds = polynomial_size / params::opt;
|
||||
dim3 grid(input_lwe_ciphertext_count, glwe_dimension + 1, level_count);
|
||||
|
||||
void *kernel_args[16];
|
||||
bool uses_noise_reduction = buffer->uses_noise_reduction;
|
||||
|
||||
void *kernel_args[17];
|
||||
kernel_args[0] = &lwe_array_out;
|
||||
kernel_args[1] = &lwe_output_indexes;
|
||||
kernel_args[2] = &lut_vector;
|
||||
@@ -279,6 +283,7 @@ __host__ void host_programmable_bootstrap_cg(
|
||||
kernel_args[12] = &d_mem;
|
||||
kernel_args[14] = &num_many_lut;
|
||||
kernel_args[15] = &lut_stride;
|
||||
kernel_args[16] = &uses_noise_reduction;
|
||||
|
||||
if (max_shared_memory < partial_sm) {
|
||||
kernel_args[13] = &full_dm;
|
||||
|
||||
@@ -660,22 +660,17 @@ void cuda_programmable_bootstrap_lwe_ciphertext_vector_64(
|
||||
(pbs_buffer<uint64_t, CLASSICAL> *)mem_ptr;
|
||||
|
||||
// If the parameters contain noise reduction key, then apply it
|
||||
if (ms_noise_reduction_key != nullptr) {
|
||||
if (ms_noise_reduction_key->num_zeros != 0) {
|
||||
uint32_t log_modulus = log2(polynomial_size) + 1;
|
||||
host_improve_noise_modulus_switch<uint64_t>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index,
|
||||
buffer->temp_lwe_array_in,
|
||||
static_cast<uint64_t const *>(lwe_array_in),
|
||||
static_cast<uint64_t *>(ms_noise_reduction_ptr), lwe_dimension + 1,
|
||||
num_samples, ms_noise_reduction_key->num_zeros,
|
||||
ms_noise_reduction_key->ms_input_variance,
|
||||
ms_noise_reduction_key->ms_r_sigma, ms_noise_reduction_key->ms_bound,
|
||||
log_modulus);
|
||||
} else {
|
||||
buffer->temp_lwe_array_in =
|
||||
const_cast<uint64_t *>(static_cast<const uint64_t *>(lwe_array_in));
|
||||
}
|
||||
if (buffer->uses_noise_reduction) {
|
||||
uint32_t log_modulus = log2(polynomial_size) + 1;
|
||||
host_improve_noise_modulus_switch<uint64_t>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer->temp_lwe_array_in,
|
||||
static_cast<uint64_t const *>(lwe_array_in),
|
||||
static_cast<uint64_t const *>(lwe_input_indexes),
|
||||
static_cast<uint64_t *>(ms_noise_reduction_ptr), lwe_dimension + 1,
|
||||
num_samples, ms_noise_reduction_key->num_zeros,
|
||||
ms_noise_reduction_key->ms_input_variance,
|
||||
ms_noise_reduction_key->ms_r_sigma, ms_noise_reduction_key->ms_bound,
|
||||
log_modulus);
|
||||
} else {
|
||||
buffer->temp_lwe_array_in =
|
||||
const_cast<uint64_t *>(static_cast<const uint64_t *>(lwe_array_in));
|
||||
@@ -846,4 +841,7 @@ template uint64_t scratch_cuda_programmable_bootstrap_tbc<uint64_t>(
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count, bool allocate_gpu_memory,
|
||||
bool allocate_ms_array);
|
||||
template bool
|
||||
supports_distributed_shared_memory_on_classic_programmable_bootstrap<
|
||||
__uint128_t>(uint32_t polynomial_size, uint32_t max_shared_memory);
|
||||
#endif
|
||||
|
||||
@@ -27,7 +27,7 @@ __global__ void __launch_bounds__(params::degree / params::opt)
|
||||
double2 *global_join_buffer, uint32_t lwe_iteration,
|
||||
uint32_t lwe_dimension, uint32_t polynomial_size, uint32_t base_log,
|
||||
uint32_t level_count, int8_t *device_mem,
|
||||
uint64_t device_memory_size_per_block) {
|
||||
uint64_t device_memory_size_per_block, bool uses_noise_reduction) {
|
||||
|
||||
// We use shared memory for the polynomials that are used often during the
|
||||
// bootstrap, since shared memory is kept in L1 cache and accessing it is
|
||||
@@ -55,7 +55,9 @@ __global__ void __launch_bounds__(params::degree / params::opt)
|
||||
// The third dimension of the block is used to determine on which ciphertext
|
||||
// this block is operating, in the case of batch bootstraps
|
||||
const Torus *block_lwe_array_in =
|
||||
&lwe_array_in[lwe_input_indexes[blockIdx.x] * (lwe_dimension + 1)];
|
||||
uses_noise_reduction
|
||||
? &lwe_array_in[blockIdx.x * (lwe_dimension + 1)]
|
||||
: &lwe_array_in[lwe_input_indexes[blockIdx.x] * (lwe_dimension + 1)];
|
||||
|
||||
const Torus *block_lut_vector =
|
||||
&lut_vector[lut_vector_indexes[blockIdx.x] * params::degree *
|
||||
@@ -397,7 +399,8 @@ __host__ void execute_step_one(
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t lwe_dimension,
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t base_log,
|
||||
uint32_t level_count, int8_t *d_mem, int lwe_iteration, uint64_t partial_sm,
|
||||
uint64_t partial_dm, uint64_t full_sm, uint64_t full_dm) {
|
||||
uint64_t partial_dm, uint64_t full_sm, uint64_t full_dm,
|
||||
bool uses_noise_reduction) {
|
||||
|
||||
auto max_shared_memory = cuda_get_max_shared_memory(gpu_index);
|
||||
cuda_set_device(gpu_index);
|
||||
@@ -410,20 +413,21 @@ __host__ void execute_step_one(
|
||||
lut_vector, lut_vector_indexes, lwe_array_in, lwe_input_indexes,
|
||||
global_accumulator, global_join_buffer, lwe_iteration,
|
||||
lwe_dimension, polynomial_size, base_log, level_count, d_mem,
|
||||
full_dm);
|
||||
full_dm, uses_noise_reduction);
|
||||
} else if (max_shared_memory < full_sm) {
|
||||
device_programmable_bootstrap_step_one<Torus, params, PARTIALSM, first_iter>
|
||||
<<<grid, thds, partial_sm, stream>>>(
|
||||
lut_vector, lut_vector_indexes, lwe_array_in, lwe_input_indexes,
|
||||
global_accumulator, global_join_buffer, lwe_iteration,
|
||||
lwe_dimension, polynomial_size, base_log, level_count, d_mem,
|
||||
partial_dm);
|
||||
partial_dm, uses_noise_reduction);
|
||||
} else {
|
||||
device_programmable_bootstrap_step_one<Torus, params, FULLSM, first_iter>
|
||||
<<<grid, thds, full_sm, stream>>>(
|
||||
lut_vector, lut_vector_indexes, lwe_array_in, lwe_input_indexes,
|
||||
global_accumulator, global_join_buffer, lwe_iteration,
|
||||
lwe_dimension, polynomial_size, base_log, level_count, d_mem, 0);
|
||||
lwe_dimension, polynomial_size, base_log, level_count, d_mem, 0,
|
||||
uses_noise_reduction);
|
||||
}
|
||||
check_cuda_error(cudaGetLastError());
|
||||
}
|
||||
@@ -504,6 +508,7 @@ __host__ void host_programmable_bootstrap(
|
||||
Torus *global_accumulator = pbs_buffer->global_accumulator;
|
||||
double2 *global_join_buffer = pbs_buffer->global_join_buffer;
|
||||
int8_t *d_mem = pbs_buffer->d_mem;
|
||||
bool uses_noise_reduction = pbs_buffer->uses_noise_reduction;
|
||||
|
||||
for (int i = 0; i < lwe_dimension; i++) {
|
||||
if (i == 0) {
|
||||
@@ -512,14 +517,16 @@ __host__ void host_programmable_bootstrap(
|
||||
lwe_input_indexes, bootstrapping_key, global_accumulator,
|
||||
global_join_buffer, input_lwe_ciphertext_count, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, base_log, level_count, d_mem, i,
|
||||
partial_sm, partial_dm_step_one, full_sm_step_one, full_dm_step_one);
|
||||
partial_sm, partial_dm_step_one, full_sm_step_one, full_dm_step_one,
|
||||
uses_noise_reduction);
|
||||
} else {
|
||||
execute_step_one<Torus, params, false>(
|
||||
stream, gpu_index, lut_vector, lut_vector_indexes, lwe_array_in,
|
||||
lwe_input_indexes, bootstrapping_key, global_accumulator,
|
||||
global_join_buffer, input_lwe_ciphertext_count, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, base_log, level_count, d_mem, i,
|
||||
partial_sm, partial_dm_step_one, full_sm_step_one, full_dm_step_one);
|
||||
partial_sm, partial_dm_step_one, full_sm_step_one, full_dm_step_one,
|
||||
uses_noise_reduction);
|
||||
}
|
||||
if (i == lwe_dimension - 1) {
|
||||
execute_step_two<Torus, params, true>(
|
||||
|
||||
@@ -8,124 +8,67 @@ bool has_support_to_cuda_programmable_bootstrap_128_cg(
|
||||
max_shared_memory);
|
||||
}
|
||||
|
||||
/*
|
||||
* This scratch function allocates the necessary amount of data on the GPU for
|
||||
* the PBS on 128 bits inputs, into `buffer`. It also configures SM options on
|
||||
* the GPU in case FULLSM or PARTIALSM mode is going to be used.
|
||||
*/
|
||||
uint64_t scratch_cuda_programmable_bootstrap_128_vector_64(
|
||||
void *stream, uint32_t gpu_index, int8_t **pbs_buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t level_count, uint32_t input_lwe_ciphertext_count,
|
||||
bool allocate_gpu_memory, bool allocate_ms_array) {
|
||||
|
||||
return scratch_cuda_programmable_bootstrap_128_vector<uint64_t>(
|
||||
stream, gpu_index,
|
||||
(pbs_buffer_128<uint64_t, PBS_TYPE::CLASSICAL> **)pbs_buffer,
|
||||
lwe_dimension, glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
}
|
||||
|
||||
uint64_t scratch_cuda_programmable_bootstrap_128(
|
||||
void *stream, uint32_t gpu_index, int8_t **pbs_buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t level_count, uint32_t input_lwe_ciphertext_count,
|
||||
bool allocate_gpu_memory, bool allocate_ms_array) {
|
||||
|
||||
auto max_shared_memory = cuda_get_max_shared_memory(gpu_index);
|
||||
auto buffer = (pbs_buffer_128<CLASSICAL> **)pbs_buffer;
|
||||
|
||||
if (has_support_to_cuda_programmable_bootstrap_128_cg(
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, max_shared_memory)) {
|
||||
switch (polynomial_size) {
|
||||
case 256:
|
||||
return scratch_programmable_bootstrap_cg_128<AmortizedDegree<256>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
case 512:
|
||||
return scratch_programmable_bootstrap_cg_128<AmortizedDegree<512>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
case 1024:
|
||||
return scratch_programmable_bootstrap_cg_128<AmortizedDegree<1024>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
case 2048:
|
||||
return scratch_programmable_bootstrap_cg_128<AmortizedDegree<2048>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
case 4096:
|
||||
return scratch_programmable_bootstrap_cg_128<AmortizedDegree<4096>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
default:
|
||||
PANIC("Cuda error (classical PBS128): unsupported polynomial size. "
|
||||
"Supported N's are powers of two"
|
||||
" in the interval [256..4096].")
|
||||
}
|
||||
} else {
|
||||
switch (polynomial_size) {
|
||||
case 256:
|
||||
return scratch_programmable_bootstrap_128<AmortizedDegree<256>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
case 512:
|
||||
return scratch_programmable_bootstrap_128<AmortizedDegree<512>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
case 1024:
|
||||
return scratch_programmable_bootstrap_128<AmortizedDegree<1024>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
case 2048:
|
||||
return scratch_programmable_bootstrap_128<AmortizedDegree<2048>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
case 4096:
|
||||
return scratch_programmable_bootstrap_128<AmortizedDegree<4096>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
default:
|
||||
PANIC("Cuda error (classical PBS): unsupported polynomial size. "
|
||||
"Supported N's are powers of two"
|
||||
" in the interval [256..4096].")
|
||||
}
|
||||
}
|
||||
return scratch_cuda_programmable_bootstrap_128_vector_64(
|
||||
stream, gpu_index, pbs_buffer, lwe_dimension, glwe_dimension,
|
||||
polynomial_size, level_count, input_lwe_ciphertext_count,
|
||||
allocate_gpu_memory, allocate_ms_array);
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
template <typename InputTorus>
|
||||
void executor_cuda_programmable_bootstrap_lwe_ciphertext_vector_128(
|
||||
void *stream, uint32_t gpu_index, Torus *lwe_array_out,
|
||||
Torus const *lut_vector, Torus *lwe_array_in,
|
||||
double const *bootstrapping_key, pbs_buffer_128<CLASSICAL> *buffer,
|
||||
void *stream, uint32_t gpu_index, __uint128_t *lwe_array_out,
|
||||
__uint128_t const *lut_vector, InputTorus *lwe_array_in,
|
||||
double const *bootstrapping_key,
|
||||
pbs_buffer_128<InputTorus, PBS_TYPE::CLASSICAL> *buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t base_log, uint32_t level_count, uint32_t num_samples) {
|
||||
|
||||
switch (polynomial_size) {
|
||||
case 256:
|
||||
host_programmable_bootstrap_128<AmortizedDegree<256>>(
|
||||
host_programmable_bootstrap_128<InputTorus, AmortizedDegree<256>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, lwe_array_out, lut_vector,
|
||||
lwe_array_in, bootstrapping_key, buffer, glwe_dimension, lwe_dimension,
|
||||
polynomial_size, base_log, level_count, num_samples);
|
||||
break;
|
||||
case 512:
|
||||
host_programmable_bootstrap_128<AmortizedDegree<512>>(
|
||||
host_programmable_bootstrap_128<InputTorus, AmortizedDegree<512>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, lwe_array_out, lut_vector,
|
||||
lwe_array_in, bootstrapping_key, buffer, glwe_dimension, lwe_dimension,
|
||||
polynomial_size, base_log, level_count, num_samples);
|
||||
break;
|
||||
case 1024:
|
||||
host_programmable_bootstrap_128<AmortizedDegree<1024>>(
|
||||
host_programmable_bootstrap_128<InputTorus, AmortizedDegree<1024>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, lwe_array_out, lut_vector,
|
||||
lwe_array_in, bootstrapping_key, buffer, glwe_dimension, lwe_dimension,
|
||||
polynomial_size, base_log, level_count, num_samples);
|
||||
break;
|
||||
case 2048:
|
||||
host_programmable_bootstrap_128<AmortizedDegree<2048>>(
|
||||
host_programmable_bootstrap_128<InputTorus, AmortizedDegree<2048>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, lwe_array_out, lut_vector,
|
||||
lwe_array_in, bootstrapping_key, buffer, glwe_dimension, lwe_dimension,
|
||||
polynomial_size, base_log, level_count, num_samples);
|
||||
break;
|
||||
case 4096:
|
||||
host_programmable_bootstrap_128<AmortizedDegree<4096>>(
|
||||
host_programmable_bootstrap_128<InputTorus, AmortizedDegree<4096>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, lwe_array_out, lut_vector,
|
||||
lwe_array_in, bootstrapping_key, buffer, glwe_dimension, lwe_dimension,
|
||||
polynomial_size, base_log, level_count, num_samples);
|
||||
@@ -137,41 +80,42 @@ void executor_cuda_programmable_bootstrap_lwe_ciphertext_vector_128(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Torus>
|
||||
template <typename InputTorus>
|
||||
void executor_cuda_programmable_bootstrap_cg_lwe_ciphertext_vector_128(
|
||||
void *stream, uint32_t gpu_index, Torus *lwe_array_out,
|
||||
Torus const *lut_vector, Torus *lwe_array_in,
|
||||
double const *bootstrapping_key, pbs_buffer_128<CLASSICAL> *buffer,
|
||||
void *stream, uint32_t gpu_index, __uint128_t *lwe_array_out,
|
||||
__uint128_t const *lut_vector, InputTorus *lwe_array_in,
|
||||
double const *bootstrapping_key,
|
||||
pbs_buffer_128<InputTorus, PBS_TYPE::CLASSICAL> *buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t base_log, uint32_t level_count, uint32_t num_samples) {
|
||||
|
||||
switch (polynomial_size) {
|
||||
case 256:
|
||||
host_programmable_bootstrap_cg_128<AmortizedDegree<256>>(
|
||||
host_programmable_bootstrap_cg_128<InputTorus, AmortizedDegree<256>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, lwe_array_out, lut_vector,
|
||||
lwe_array_in, bootstrapping_key, buffer, glwe_dimension, lwe_dimension,
|
||||
polynomial_size, base_log, level_count, num_samples);
|
||||
break;
|
||||
case 512:
|
||||
host_programmable_bootstrap_cg_128<AmortizedDegree<512>>(
|
||||
host_programmable_bootstrap_cg_128<InputTorus, AmortizedDegree<512>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, lwe_array_out, lut_vector,
|
||||
lwe_array_in, bootstrapping_key, buffer, glwe_dimension, lwe_dimension,
|
||||
polynomial_size, base_log, level_count, num_samples);
|
||||
break;
|
||||
case 1024:
|
||||
host_programmable_bootstrap_cg_128<AmortizedDegree<1024>>(
|
||||
host_programmable_bootstrap_cg_128<InputTorus, AmortizedDegree<1024>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, lwe_array_out, lut_vector,
|
||||
lwe_array_in, bootstrapping_key, buffer, glwe_dimension, lwe_dimension,
|
||||
polynomial_size, base_log, level_count, num_samples);
|
||||
break;
|
||||
case 2048:
|
||||
host_programmable_bootstrap_cg_128<AmortizedDegree<2048>>(
|
||||
host_programmable_bootstrap_cg_128<InputTorus, AmortizedDegree<2048>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, lwe_array_out, lut_vector,
|
||||
lwe_array_in, bootstrapping_key, buffer, glwe_dimension, lwe_dimension,
|
||||
polynomial_size, base_log, level_count, num_samples);
|
||||
break;
|
||||
case 4096:
|
||||
host_programmable_bootstrap_cg_128<AmortizedDegree<4096>>(
|
||||
host_programmable_bootstrap_cg_128<InputTorus, AmortizedDegree<4096>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, lwe_array_out, lut_vector,
|
||||
lwe_array_in, bootstrapping_key, buffer, glwe_dimension, lwe_dimension,
|
||||
polynomial_size, base_log, level_count, num_samples);
|
||||
@@ -183,6 +127,57 @@ void executor_cuda_programmable_bootstrap_cg_lwe_ciphertext_vector_128(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename InputTorus>
|
||||
void host_programmable_bootstrap_lwe_ciphertext_vector_128(
|
||||
void *stream, uint32_t gpu_index, void *lwe_array_out,
|
||||
__uint128_t const *lut_vector, void const *lwe_array_in,
|
||||
void const *bootstrapping_key,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key,
|
||||
void const *ms_noise_reduction_ptr,
|
||||
pbs_buffer_128<InputTorus, PBS_TYPE::CLASSICAL> *buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t base_log, uint32_t level_count, uint32_t num_samples) {
|
||||
if (base_log > 64)
|
||||
PANIC("Cuda error (classical PBS): base log should be <= 64")
|
||||
|
||||
// If the parameters contain noise reduction key, then apply it
|
||||
if (ms_noise_reduction_key->num_zeros != 0) {
|
||||
uint32_t log_modulus = log2(polynomial_size) + 1;
|
||||
host_improve_noise_modulus_switch<InputTorus>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index,
|
||||
static_cast<InputTorus *>(buffer->temp_lwe_array_in),
|
||||
static_cast<InputTorus const *>(lwe_array_in),
|
||||
static_cast<uint64_t const *>(buffer->trivial_indexes),
|
||||
static_cast<const InputTorus *>(ms_noise_reduction_ptr),
|
||||
lwe_dimension + 1, num_samples, ms_noise_reduction_key->num_zeros,
|
||||
ms_noise_reduction_key->ms_input_variance,
|
||||
ms_noise_reduction_key->ms_r_sigma, ms_noise_reduction_key->ms_bound,
|
||||
log_modulus);
|
||||
} else {
|
||||
buffer->temp_lwe_array_in =
|
||||
const_cast<InputTorus *>(static_cast<const InputTorus *>(lwe_array_in));
|
||||
}
|
||||
switch (buffer->pbs_variant) {
|
||||
case DEFAULT:
|
||||
executor_cuda_programmable_bootstrap_lwe_ciphertext_vector_128<InputTorus>(
|
||||
stream, gpu_index, static_cast<__uint128_t *>(lwe_array_out),
|
||||
lut_vector, static_cast<InputTorus *>(buffer->temp_lwe_array_in),
|
||||
static_cast<const double *>(bootstrapping_key), buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, base_log, level_count, num_samples);
|
||||
break;
|
||||
case CG:
|
||||
executor_cuda_programmable_bootstrap_cg_lwe_ciphertext_vector_128<
|
||||
InputTorus>(
|
||||
stream, gpu_index, static_cast<__uint128_t *>(lwe_array_out),
|
||||
lut_vector, static_cast<InputTorus *>(buffer->temp_lwe_array_in),
|
||||
static_cast<const double *>(bootstrapping_key), buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, base_log, level_count, num_samples);
|
||||
break;
|
||||
default:
|
||||
PANIC("Cuda error (PBS): unknown pbs variant.")
|
||||
}
|
||||
}
|
||||
|
||||
/* Perform bootstrapping on a batch of input u128 LWE ciphertexts, storing the
|
||||
* result in the same index for each ciphertext.
|
||||
*
|
||||
@@ -237,56 +232,22 @@ void executor_cuda_programmable_bootstrap_cg_lwe_ciphertext_vector_128(
|
||||
*/
|
||||
|
||||
void cuda_programmable_bootstrap_lwe_ciphertext_vector_128(
|
||||
void *stream, uint32_t gpu_index, void *lwe_array_out,
|
||||
void *streams, uint32_t gpu_index, void *lwe_array_out,
|
||||
void const *lut_vector, void const *lwe_array_in,
|
||||
void const *bootstrapping_key,
|
||||
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key,
|
||||
void *ms_noise_reduction_ptr, int8_t *mem_ptr, uint32_t lwe_dimension,
|
||||
void const *ms_noise_reduction_ptr, int8_t *mem_ptr, uint32_t lwe_dimension,
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t base_log,
|
||||
uint32_t level_count, uint32_t num_samples) {
|
||||
if (base_log > 64)
|
||||
PANIC("Cuda error (classical PBS): base log should be <= 64")
|
||||
pbs_buffer_128<uint64_t, PBS_TYPE::CLASSICAL> *buffer =
|
||||
(pbs_buffer_128<uint64_t, PBS_TYPE::CLASSICAL> *)mem_ptr;
|
||||
|
||||
pbs_buffer_128<CLASSICAL> *buffer = (pbs_buffer_128<CLASSICAL> *)mem_ptr;
|
||||
|
||||
// If the parameters contain noise reduction key, then apply it
|
||||
if (ms_noise_reduction_key->num_zeros != 0) {
|
||||
uint32_t log_modulus = log2(polynomial_size) + 1;
|
||||
host_improve_noise_modulus_switch<__uint128_t>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index,
|
||||
static_cast<__uint128_t *>(buffer->temp_lwe_array_in),
|
||||
static_cast<__uint128_t const *>(lwe_array_in),
|
||||
static_cast<const __uint128_t *>(ms_noise_reduction_ptr),
|
||||
lwe_dimension + 1, num_samples, ms_noise_reduction_key->num_zeros,
|
||||
ms_noise_reduction_key->ms_input_variance,
|
||||
ms_noise_reduction_key->ms_r_sigma, ms_noise_reduction_key->ms_bound,
|
||||
log_modulus);
|
||||
} else {
|
||||
buffer->temp_lwe_array_in = const_cast<__uint128_t *>(
|
||||
static_cast<const __uint128_t *>(lwe_array_in));
|
||||
}
|
||||
|
||||
switch (buffer->pbs_variant) {
|
||||
case DEFAULT:
|
||||
executor_cuda_programmable_bootstrap_lwe_ciphertext_vector_128<__uint128_t>(
|
||||
stream, gpu_index, static_cast<__uint128_t *>(lwe_array_out),
|
||||
static_cast<const __uint128_t *>(lut_vector),
|
||||
static_cast<__uint128_t *>(buffer->temp_lwe_array_in),
|
||||
static_cast<const double *>(bootstrapping_key), buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, base_log, level_count, num_samples);
|
||||
break;
|
||||
case CG:
|
||||
executor_cuda_programmable_bootstrap_cg_lwe_ciphertext_vector_128<
|
||||
__uint128_t>(
|
||||
stream, gpu_index, static_cast<__uint128_t *>(lwe_array_out),
|
||||
static_cast<const __uint128_t *>(lut_vector),
|
||||
static_cast<__uint128_t *>(buffer->temp_lwe_array_in),
|
||||
static_cast<const double *>(bootstrapping_key), buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, base_log, level_count, num_samples);
|
||||
break;
|
||||
default:
|
||||
PANIC("Cuda error (PBS): unknown pbs variant.")
|
||||
}
|
||||
host_programmable_bootstrap_lwe_ciphertext_vector_128<uint64_t>(
|
||||
streams, gpu_index, lwe_array_out,
|
||||
static_cast<const __uint128_t *>(lut_vector), lwe_array_in,
|
||||
bootstrapping_key, ms_noise_reduction_key, ms_noise_reduction_ptr, buffer,
|
||||
lwe_dimension, glwe_dimension, polynomial_size, base_log, level_count,
|
||||
num_samples);
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -295,6 +256,6 @@ void cuda_programmable_bootstrap_lwe_ciphertext_vector_128(
|
||||
*/
|
||||
void cleanup_cuda_programmable_bootstrap_128(void *stream, uint32_t gpu_index,
|
||||
int8_t **buffer) {
|
||||
auto x = (pbs_buffer_128<CLASSICAL> *)(*buffer);
|
||||
auto x = (pbs_buffer_128<__uint128_t, PBS_TYPE::CLASSICAL> *)(*buffer);
|
||||
x->release(static_cast<cudaStream_t>(stream), gpu_index);
|
||||
}
|
||||
|
||||
@@ -74,16 +74,17 @@ __device__ void mul_ggsw_glwe_in_fourier_domain_128(
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
template <typename Torus, class params, sharedMemDegree SMD, bool first_iter>
|
||||
template <typename InputTorus, class params, sharedMemDegree SMD,
|
||||
bool first_iter>
|
||||
__global__ void __launch_bounds__(params::degree / params::opt)
|
||||
device_programmable_bootstrap_step_one_128(
|
||||
const Torus *__restrict__ lut_vector,
|
||||
const Torus *__restrict__ lwe_array_in,
|
||||
const double *__restrict__ bootstrapping_key, Torus *global_accumulator,
|
||||
double *global_join_buffer, uint32_t lwe_iteration,
|
||||
uint32_t lwe_dimension, uint32_t polynomial_size, uint32_t base_log,
|
||||
uint32_t level_count, int8_t *device_mem,
|
||||
uint64_t device_memory_size_per_block) {
|
||||
const __uint128_t *__restrict__ lut_vector,
|
||||
const InputTorus *__restrict__ lwe_array_in,
|
||||
const double *__restrict__ bootstrapping_key,
|
||||
__uint128_t *global_accumulator, double *global_join_buffer,
|
||||
uint32_t lwe_iteration, uint32_t lwe_dimension,
|
||||
uint32_t polynomial_size, uint32_t base_log, uint32_t level_count,
|
||||
int8_t *device_mem, uint64_t device_memory_size_per_block) {
|
||||
|
||||
// We use shared memory for the polynomials that are used often during the
|
||||
// bootstrap, since shared memory is kept in L1 cache and accessing it is
|
||||
@@ -100,22 +101,22 @@ __global__ void __launch_bounds__(params::degree / params::opt)
|
||||
selected_memory = &device_mem[block_index * device_memory_size_per_block];
|
||||
}
|
||||
|
||||
Torus *accumulator = (Torus *)selected_memory;
|
||||
__uint128_t *accumulator = (__uint128_t *)selected_memory;
|
||||
double *accumulator_fft =
|
||||
(double *)accumulator +
|
||||
(ptrdiff_t)(sizeof(Torus) * polynomial_size / sizeof(double));
|
||||
(ptrdiff_t)(sizeof(__uint128_t) * polynomial_size / sizeof(double));
|
||||
|
||||
if constexpr (SMD == PARTIALSM)
|
||||
accumulator_fft = (double *)sharedmem;
|
||||
|
||||
// The third dimension of the block is used to determine on which ciphertext
|
||||
// this block is operating, in the case of batch bootstraps
|
||||
const Torus *block_lwe_array_in =
|
||||
const InputTorus *block_lwe_array_in =
|
||||
&lwe_array_in[blockIdx.x * (lwe_dimension + 1)];
|
||||
|
||||
const Torus *block_lut_vector = lut_vector;
|
||||
const __uint128_t *block_lut_vector = lut_vector;
|
||||
|
||||
Torus *global_slice =
|
||||
__uint128_t *global_slice =
|
||||
global_accumulator +
|
||||
(blockIdx.y + blockIdx.x * (glwe_dimension + 1)) * params::degree;
|
||||
|
||||
@@ -127,12 +128,12 @@ __global__ void __launch_bounds__(params::degree / params::opt)
|
||||
if constexpr (first_iter) {
|
||||
// First iteration
|
||||
// Put "b" in [0, 2N[
|
||||
Torus b_hat = 0;
|
||||
modulus_switch(block_lwe_array_in[lwe_dimension], b_hat,
|
||||
params::log2_degree + 1);
|
||||
InputTorus b_hat = 0;
|
||||
modulus_switch<InputTorus>(block_lwe_array_in[lwe_dimension], b_hat,
|
||||
params::log2_degree + 1);
|
||||
// The y-dimension is used to select the element of the GLWE this block will
|
||||
// compute
|
||||
divide_by_monomial_negacyclic_inplace<Torus, params::opt,
|
||||
divide_by_monomial_negacyclic_inplace<__uint128_t, params::opt,
|
||||
params::degree / params::opt>(
|
||||
accumulator, &block_lut_vector[blockIdx.y * params::degree], b_hat,
|
||||
false);
|
||||
@@ -146,20 +147,21 @@ __global__ void __launch_bounds__(params::degree / params::opt)
|
||||
}
|
||||
|
||||
// Put "a" in [0, 2N[
|
||||
Torus a_hat = 0;
|
||||
modulus_switch(block_lwe_array_in[lwe_iteration], a_hat,
|
||||
params::log2_degree + 1); // 2 * params::log2_degree + 1);
|
||||
InputTorus a_hat = 0;
|
||||
modulus_switch<InputTorus>(block_lwe_array_in[lwe_iteration], a_hat,
|
||||
params::log2_degree +
|
||||
1); // 2 * params::log2_degree + 1);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Perform ACC * (X^ä - 1)
|
||||
multiply_by_monomial_negacyclic_and_sub_polynomial<
|
||||
Torus, params::opt, params::degree / params::opt>(global_slice,
|
||||
accumulator, a_hat);
|
||||
__uint128_t, params::opt, params::degree / params::opt>(
|
||||
global_slice, accumulator, a_hat);
|
||||
|
||||
// Perform a rounding to increase the accuracy of the
|
||||
// bootstrapped ciphertext
|
||||
init_decomposer_state_inplace<Torus, params::opt,
|
||||
init_decomposer_state_inplace<__uint128_t, params::opt,
|
||||
params::degree / params::opt>(
|
||||
accumulator, base_log, level_count);
|
||||
|
||||
@@ -168,7 +170,8 @@ __global__ void __launch_bounds__(params::degree / params::opt)
|
||||
// Decompose the accumulator. Each block gets one level of the
|
||||
// decomposition, for the mask and the body (so block 0 will have the
|
||||
// accumulator decomposed at level 0, 1 at 1, etc.)
|
||||
GadgetMatrix<Torus, params> gadget_acc(base_log, level_count, accumulator);
|
||||
GadgetMatrix<__uint128_t, params> gadget_acc(base_log, level_count,
|
||||
accumulator);
|
||||
gadget_acc.decompose_and_compress_level_128(accumulator_fft, blockIdx.z);
|
||||
|
||||
// We are using the same memory space for accumulator_fft and
|
||||
@@ -314,10 +317,10 @@ __global__ void __launch_bounds__(params::degree / params::opt)
|
||||
*
|
||||
* Each y-block computes one element of the lwe_array_out.
|
||||
*/
|
||||
template <typename Torus, class params, sharedMemDegree SMD>
|
||||
template <typename InputTorus, class params, sharedMemDegree SMD>
|
||||
__global__ void device_programmable_bootstrap_cg_128(
|
||||
Torus *lwe_array_out, const Torus *__restrict__ lut_vector,
|
||||
const Torus *__restrict__ lwe_array_in,
|
||||
__uint128_t *lwe_array_out, const __uint128_t *__restrict__ lut_vector,
|
||||
const InputTorus *__restrict__ lwe_array_in,
|
||||
const double *__restrict__ bootstrapping_key, double *join_buffer,
|
||||
uint32_t lwe_dimension, uint32_t polynomial_size, uint32_t base_log,
|
||||
uint32_t level_count, int8_t *device_mem,
|
||||
@@ -342,23 +345,22 @@ __global__ void device_programmable_bootstrap_cg_128(
|
||||
|
||||
// We always compute the pointer with most restrictive alignment to avoid
|
||||
// alignment issues
|
||||
Torus *accumulator = (Torus *)selected_memory;
|
||||
Torus *accumulator_rotated =
|
||||
(Torus *)accumulator + (ptrdiff_t)(polynomial_size);
|
||||
__uint128_t *accumulator = (__uint128_t *)selected_memory;
|
||||
__uint128_t *accumulator_rotated =
|
||||
(__uint128_t *)accumulator + (ptrdiff_t)(polynomial_size);
|
||||
double *accumulator_fft =
|
||||
(double *)(accumulator_rotated) +
|
||||
(ptrdiff_t)(polynomial_size * sizeof(Torus) / sizeof(double));
|
||||
(ptrdiff_t)(polynomial_size * sizeof(__uint128_t) / sizeof(double));
|
||||
|
||||
if constexpr (SMD == PARTIALSM)
|
||||
accumulator_fft = (double *)sharedmem;
|
||||
|
||||
// The third dimension of the block is used to determine on which ciphertext
|
||||
// this block is operating, in the case of batch bootstraps
|
||||
const Torus *block_lwe_array_in =
|
||||
const InputTorus *block_lwe_array_in =
|
||||
&lwe_array_in[blockIdx.x * (lwe_dimension + 1)];
|
||||
|
||||
const Torus *block_lut_vector =
|
||||
&lut_vector[blockIdx.x * params::degree * (glwe_dimension + 1)];
|
||||
const __uint128_t *block_lut_vector = lut_vector;
|
||||
|
||||
double *block_join_buffer =
|
||||
&join_buffer[blockIdx.x * level_count * (glwe_dimension + 1) *
|
||||
@@ -368,11 +370,11 @@ __global__ void device_programmable_bootstrap_cg_128(
|
||||
// rotated array is not in use anymore by the time we perform the fft
|
||||
|
||||
// Put "b" in [0, 2N[
|
||||
Torus b_hat = 0;
|
||||
modulus_switch(block_lwe_array_in[lwe_dimension], b_hat,
|
||||
params::log2_degree + 1);
|
||||
InputTorus b_hat = 0;
|
||||
modulus_switch<InputTorus>(block_lwe_array_in[lwe_dimension], b_hat,
|
||||
params::log2_degree + 1);
|
||||
|
||||
divide_by_monomial_negacyclic_inplace<Torus, params::opt,
|
||||
divide_by_monomial_negacyclic_inplace<__uint128_t, params::opt,
|
||||
params::degree / params::opt>(
|
||||
accumulator, &block_lut_vector[blockIdx.y * params::degree], b_hat,
|
||||
false);
|
||||
@@ -381,17 +383,18 @@ __global__ void device_programmable_bootstrap_cg_128(
|
||||
__syncthreads();
|
||||
|
||||
// Put "a" in [0, 2N[
|
||||
Torus a_hat = 0;
|
||||
modulus_switch(block_lwe_array_in[i], a_hat, params::log2_degree + 1);
|
||||
InputTorus a_hat = 0;
|
||||
modulus_switch<InputTorus>(block_lwe_array_in[i], a_hat,
|
||||
params::log2_degree + 1);
|
||||
|
||||
// Perform ACC * (X^ä - 1)
|
||||
multiply_by_monomial_negacyclic_and_sub_polynomial<
|
||||
Torus, params::opt, params::degree / params::opt>(
|
||||
__uint128_t, params::opt, params::degree / params::opt>(
|
||||
accumulator, accumulator_rotated, a_hat);
|
||||
|
||||
// Perform a rounding to increase the accuracy of the
|
||||
// bootstrapped ciphertext
|
||||
init_decomposer_state_inplace<Torus, params::opt,
|
||||
init_decomposer_state_inplace<__uint128_t, params::opt,
|
||||
params::degree / params::opt>(
|
||||
accumulator_rotated, base_log, level_count);
|
||||
|
||||
@@ -400,8 +403,8 @@ __global__ void device_programmable_bootstrap_cg_128(
|
||||
// Decompose the accumulator. Each block gets one level of the
|
||||
// decomposition, for the mask and the body (so block 0 will have the
|
||||
// accumulator decomposed at level 0, 1 at 1, etc.)
|
||||
GadgetMatrix<Torus, params> gadget_acc(base_log, level_count,
|
||||
accumulator_rotated);
|
||||
GadgetMatrix<__uint128_t, params> gadget_acc(base_log, level_count,
|
||||
accumulator_rotated);
|
||||
gadget_acc.decompose_and_compress_level_128(accumulator_fft, blockIdx.z);
|
||||
|
||||
auto acc_fft_re_hi = accumulator_fft + 0 * params::degree / 2;
|
||||
@@ -420,8 +423,9 @@ __global__ void device_programmable_bootstrap_cg_128(
|
||||
acc_fft_re_hi, acc_fft_re_lo, acc_fft_im_hi, acc_fft_im_lo);
|
||||
__syncthreads();
|
||||
|
||||
add_to_torus_128<Torus, params>(acc_fft_re_hi, acc_fft_re_lo, acc_fft_im_hi,
|
||||
acc_fft_im_lo, accumulator);
|
||||
add_to_torus_128<__uint128_t, params>(acc_fft_re_hi, acc_fft_re_lo,
|
||||
acc_fft_im_hi, acc_fft_im_lo,
|
||||
accumulator);
|
||||
}
|
||||
|
||||
auto block_lwe_array_out =
|
||||
@@ -433,17 +437,20 @@ __global__ void device_programmable_bootstrap_cg_128(
|
||||
// Perform a sample extract. At this point, all blocks have the result,
|
||||
// but we do the computation at block 0 to avoid waiting for extra blocks,
|
||||
// in case they're not synchronized
|
||||
sample_extract_mask<Torus, params>(block_lwe_array_out, accumulator);
|
||||
sample_extract_mask<__uint128_t, params>(block_lwe_array_out,
|
||||
accumulator);
|
||||
|
||||
} else if (blockIdx.y == glwe_dimension) {
|
||||
sample_extract_body<Torus, params>(block_lwe_array_out, accumulator, 0);
|
||||
sample_extract_body<__uint128_t, params>(block_lwe_array_out, accumulator,
|
||||
0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename params>
|
||||
template <typename InputTorus, typename params>
|
||||
__host__ uint64_t scratch_programmable_bootstrap_cg_128(
|
||||
cudaStream_t stream, uint32_t gpu_index, pbs_buffer_128<CLASSICAL> **buffer,
|
||||
cudaStream_t stream, uint32_t gpu_index,
|
||||
pbs_buffer_128<InputTorus, PBS_TYPE::CLASSICAL> **buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t level_count, uint32_t input_lwe_ciphertext_count,
|
||||
bool allocate_gpu_memory, bool allocate_ms_array) {
|
||||
@@ -457,33 +464,34 @@ __host__ uint64_t scratch_programmable_bootstrap_cg_128(
|
||||
auto max_shared_memory = cuda_get_max_shared_memory(gpu_index);
|
||||
if (max_shared_memory >= partial_sm && max_shared_memory < full_sm) {
|
||||
check_cuda_error(cudaFuncSetAttribute(
|
||||
device_programmable_bootstrap_cg_128<__uint128_t, params, PARTIALSM>,
|
||||
device_programmable_bootstrap_cg_128<InputTorus, params, PARTIALSM>,
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize, partial_sm));
|
||||
cudaFuncSetCacheConfig(
|
||||
device_programmable_bootstrap_cg_128<__uint128_t, params, PARTIALSM>,
|
||||
device_programmable_bootstrap_cg_128<InputTorus, params, PARTIALSM>,
|
||||
cudaFuncCachePreferShared);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
} else if (max_shared_memory >= partial_sm) {
|
||||
check_cuda_error(cudaFuncSetAttribute(
|
||||
device_programmable_bootstrap_cg_128<__uint128_t, params, FULLSM>,
|
||||
device_programmable_bootstrap_cg_128<InputTorus, params, FULLSM>,
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize, full_sm));
|
||||
cudaFuncSetCacheConfig(
|
||||
device_programmable_bootstrap_cg_128<__uint128_t, params, FULLSM>,
|
||||
device_programmable_bootstrap_cg_128<InputTorus, params, FULLSM>,
|
||||
cudaFuncCachePreferShared);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
}
|
||||
|
||||
uint64_t size_tracker = 0;
|
||||
*buffer = new pbs_buffer_128<CLASSICAL>(
|
||||
*buffer = new pbs_buffer_128<InputTorus, PBS_TYPE::CLASSICAL>(
|
||||
stream, gpu_index, lwe_dimension, glwe_dimension, polynomial_size,
|
||||
level_count, input_lwe_ciphertext_count, PBS_VARIANT::CG,
|
||||
allocate_gpu_memory, allocate_ms_array, &size_tracker);
|
||||
return size_tracker;
|
||||
}
|
||||
|
||||
template <typename params>
|
||||
template <typename InputTorus, typename params>
|
||||
__host__ uint64_t scratch_programmable_bootstrap_128(
|
||||
cudaStream_t stream, uint32_t gpu_index, pbs_buffer_128<CLASSICAL> **buffer,
|
||||
cudaStream_t stream, uint32_t gpu_index,
|
||||
pbs_buffer_128<InputTorus, PBS_TYPE::CLASSICAL> **buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t level_count, uint32_t input_lwe_ciphertext_count,
|
||||
bool allocate_gpu_memory, bool allocate_ms_array) {
|
||||
@@ -504,37 +512,37 @@ __host__ uint64_t scratch_programmable_bootstrap_128(
|
||||
// Configure step one
|
||||
if (max_shared_memory >= partial_sm && max_shared_memory < full_sm_step_one) {
|
||||
check_cuda_error(cudaFuncSetAttribute(
|
||||
device_programmable_bootstrap_step_one_128<__uint128_t, params,
|
||||
device_programmable_bootstrap_step_one_128<InputTorus, params,
|
||||
PARTIALSM, true>,
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize, partial_sm));
|
||||
cudaFuncSetCacheConfig(
|
||||
device_programmable_bootstrap_step_one_128<__uint128_t, params,
|
||||
device_programmable_bootstrap_step_one_128<InputTorus, params,
|
||||
PARTIALSM, true>,
|
||||
cudaFuncCachePreferShared);
|
||||
check_cuda_error(cudaFuncSetAttribute(
|
||||
device_programmable_bootstrap_step_one_128<__uint128_t, params,
|
||||
device_programmable_bootstrap_step_one_128<InputTorus, params,
|
||||
PARTIALSM, false>,
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize, partial_sm));
|
||||
cudaFuncSetCacheConfig(
|
||||
device_programmable_bootstrap_step_one_128<__uint128_t, params,
|
||||
device_programmable_bootstrap_step_one_128<InputTorus, params,
|
||||
PARTIALSM, false>,
|
||||
cudaFuncCachePreferShared);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
} else if (max_shared_memory >= partial_sm) {
|
||||
check_cuda_error(cudaFuncSetAttribute(
|
||||
device_programmable_bootstrap_step_one_128<__uint128_t, params, FULLSM,
|
||||
device_programmable_bootstrap_step_one_128<InputTorus, params, FULLSM,
|
||||
true>,
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize, full_sm_step_one));
|
||||
cudaFuncSetCacheConfig(
|
||||
device_programmable_bootstrap_step_one_128<__uint128_t, params, FULLSM,
|
||||
device_programmable_bootstrap_step_one_128<InputTorus, params, FULLSM,
|
||||
true>,
|
||||
cudaFuncCachePreferShared);
|
||||
check_cuda_error(cudaFuncSetAttribute(
|
||||
device_programmable_bootstrap_step_one_128<__uint128_t, params, FULLSM,
|
||||
device_programmable_bootstrap_step_one_128<InputTorus, params, FULLSM,
|
||||
false>,
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize, full_sm_step_one));
|
||||
cudaFuncSetCacheConfig(
|
||||
device_programmable_bootstrap_step_one_128<__uint128_t, params, FULLSM,
|
||||
device_programmable_bootstrap_step_one_128<InputTorus, params, FULLSM,
|
||||
false>,
|
||||
cudaFuncCachePreferShared);
|
||||
check_cuda_error(cudaGetLastError());
|
||||
@@ -580,17 +588,122 @@ __host__ uint64_t scratch_programmable_bootstrap_128(
|
||||
}
|
||||
|
||||
uint64_t size_tracker = 0;
|
||||
*buffer = new pbs_buffer_128<CLASSICAL>(
|
||||
*buffer = new pbs_buffer_128<InputTorus, PBS_TYPE::CLASSICAL>(
|
||||
stream, gpu_index, lwe_dimension, glwe_dimension, polynomial_size,
|
||||
level_count, input_lwe_ciphertext_count, PBS_VARIANT::DEFAULT,
|
||||
allocate_gpu_memory, allocate_ms_array, &size_tracker);
|
||||
return size_tracker;
|
||||
}
|
||||
|
||||
template <class params, bool first_iter>
|
||||
/*
|
||||
* This scratch function allocates the necessary amount of data on the GPU for
|
||||
* the PBS on 128 bits inputs, into `buffer`. It also configures SM options on
|
||||
* the GPU in case FULLSM or PARTIALSM mode is going to be used.
|
||||
*/
|
||||
template <typename InputTorus>
|
||||
uint64_t scratch_cuda_programmable_bootstrap_128_vector(
|
||||
void *stream, uint32_t gpu_index,
|
||||
pbs_buffer_128<InputTorus, PBS_TYPE::CLASSICAL> **pbs_buffer,
|
||||
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t level_count, uint32_t input_lwe_ciphertext_count,
|
||||
bool allocate_gpu_memory, bool allocate_ms_array) {
|
||||
|
||||
auto max_shared_memory = cuda_get_max_shared_memory(gpu_index);
|
||||
auto buffer = (pbs_buffer_128<InputTorus, PBS_TYPE::CLASSICAL> **)pbs_buffer;
|
||||
|
||||
if (has_support_to_cuda_programmable_bootstrap_128_cg(
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, max_shared_memory)) {
|
||||
switch (polynomial_size) {
|
||||
case 256:
|
||||
return scratch_programmable_bootstrap_cg_128<InputTorus,
|
||||
AmortizedDegree<256>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
break;
|
||||
case 512:
|
||||
return scratch_programmable_bootstrap_cg_128<InputTorus,
|
||||
AmortizedDegree<512>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
break;
|
||||
case 1024:
|
||||
return scratch_programmable_bootstrap_cg_128<InputTorus,
|
||||
AmortizedDegree<1024>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
break;
|
||||
case 2048:
|
||||
return scratch_programmable_bootstrap_cg_128<InputTorus,
|
||||
AmortizedDegree<2048>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
break;
|
||||
case 4096:
|
||||
return scratch_programmable_bootstrap_cg_128<InputTorus,
|
||||
AmortizedDegree<4096>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
break;
|
||||
default:
|
||||
PANIC("Cuda error (classical PBS128): unsupported polynomial size. "
|
||||
"Supported N's are powers of two"
|
||||
" in the interval [256..4096].")
|
||||
}
|
||||
} else {
|
||||
switch (polynomial_size) {
|
||||
case 256:
|
||||
return scratch_programmable_bootstrap_128<InputTorus,
|
||||
AmortizedDegree<256>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
break;
|
||||
case 512:
|
||||
return scratch_programmable_bootstrap_128<InputTorus,
|
||||
AmortizedDegree<512>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
break;
|
||||
case 1024:
|
||||
return scratch_programmable_bootstrap_128<InputTorus,
|
||||
AmortizedDegree<1024>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
break;
|
||||
case 2048:
|
||||
return scratch_programmable_bootstrap_128<InputTorus,
|
||||
AmortizedDegree<2048>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
break;
|
||||
case 4096:
|
||||
return scratch_programmable_bootstrap_128<InputTorus,
|
||||
AmortizedDegree<4096>>(
|
||||
static_cast<cudaStream_t>(stream), gpu_index, buffer, lwe_dimension,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
|
||||
break;
|
||||
default:
|
||||
PANIC("Cuda error (classical PBS): unsupported polynomial size. "
|
||||
"Supported N's are powers of two"
|
||||
" in the interval [256..4096].")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename InputTorus, class params, bool first_iter>
|
||||
__host__ void execute_step_one_128(
|
||||
cudaStream_t stream, uint32_t gpu_index, __uint128_t const *lut_vector,
|
||||
__uint128_t *lwe_array_in, double const *bootstrapping_key,
|
||||
InputTorus *lwe_array_in, double const *bootstrapping_key,
|
||||
__uint128_t *global_accumulator, double *global_join_buffer,
|
||||
uint32_t input_lwe_ciphertext_count, uint32_t lwe_dimension,
|
||||
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t base_log,
|
||||
@@ -603,21 +716,21 @@ __host__ void execute_step_one_128(
|
||||
dim3 grid(input_lwe_ciphertext_count, glwe_dimension + 1, level_count);
|
||||
|
||||
if (max_shared_memory < partial_sm) {
|
||||
device_programmable_bootstrap_step_one_128<__uint128_t, params, NOSM,
|
||||
device_programmable_bootstrap_step_one_128<InputTorus, params, NOSM,
|
||||
first_iter>
|
||||
<<<grid, thds, 0, stream>>>(
|
||||
lut_vector, lwe_array_in, bootstrapping_key, global_accumulator,
|
||||
global_join_buffer, lwe_iteration, lwe_dimension, polynomial_size,
|
||||
base_log, level_count, d_mem, full_dm);
|
||||
} else if (max_shared_memory < full_sm) {
|
||||
device_programmable_bootstrap_step_one_128<__uint128_t, params, PARTIALSM,
|
||||
device_programmable_bootstrap_step_one_128<InputTorus, params, PARTIALSM,
|
||||
first_iter>
|
||||
<<<grid, thds, partial_sm, stream>>>(
|
||||
lut_vector, lwe_array_in, bootstrapping_key, global_accumulator,
|
||||
global_join_buffer, lwe_iteration, lwe_dimension, polynomial_size,
|
||||
base_log, level_count, d_mem, partial_dm);
|
||||
} else {
|
||||
device_programmable_bootstrap_step_one_128<__uint128_t, params, FULLSM,
|
||||
device_programmable_bootstrap_step_one_128<InputTorus, params, FULLSM,
|
||||
first_iter>
|
||||
<<<grid, thds, full_sm, stream>>>(
|
||||
lut_vector, lwe_array_in, bootstrapping_key, global_accumulator,
|
||||
@@ -670,11 +783,12 @@ __host__ void execute_step_two_128(
|
||||
/*
|
||||
* Host wrapper to the programmable bootstrap 128
|
||||
*/
|
||||
template <class params>
|
||||
template <typename InputTorus, class params>
|
||||
__host__ void host_programmable_bootstrap_128(
|
||||
cudaStream_t stream, uint32_t gpu_index, __uint128_t *lwe_array_out,
|
||||
__uint128_t const *lut_vector, __uint128_t *lwe_array_in,
|
||||
double const *bootstrapping_key, pbs_buffer_128<CLASSICAL> *pbs_buffer,
|
||||
__uint128_t const *lut_vector, InputTorus *lwe_array_in,
|
||||
double const *bootstrapping_key,
|
||||
pbs_buffer_128<InputTorus, PBS_TYPE::CLASSICAL> *pbs_buffer,
|
||||
uint32_t glwe_dimension, uint32_t lwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t base_log, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count) {
|
||||
@@ -704,14 +818,14 @@ __host__ void host_programmable_bootstrap_128(
|
||||
|
||||
for (int i = 0; i < lwe_dimension; i++) {
|
||||
if (i == 0) {
|
||||
execute_step_one_128<params, true>(
|
||||
execute_step_one_128<InputTorus, params, true>(
|
||||
stream, gpu_index, lut_vector, lwe_array_in, bootstrapping_key,
|
||||
global_accumulator, global_join_buffer, input_lwe_ciphertext_count,
|
||||
lwe_dimension, glwe_dimension, polynomial_size, base_log, level_count,
|
||||
d_mem, i, partial_sm, partial_dm_step_one, full_sm_step_one,
|
||||
full_dm_step_one);
|
||||
} else {
|
||||
execute_step_one_128<params, false>(
|
||||
execute_step_one_128<InputTorus, params, false>(
|
||||
stream, gpu_index, lut_vector, lwe_array_in, bootstrapping_key,
|
||||
global_accumulator, global_join_buffer, input_lwe_ciphertext_count,
|
||||
lwe_dimension, glwe_dimension, polynomial_size, base_log, level_count,
|
||||
@@ -736,11 +850,12 @@ __host__ void host_programmable_bootstrap_128(
|
||||
}
|
||||
}
|
||||
|
||||
template <class params>
|
||||
template <typename InputTorus, class params>
|
||||
__host__ void host_programmable_bootstrap_cg_128(
|
||||
cudaStream_t stream, uint32_t gpu_index, __uint128_t *lwe_array_out,
|
||||
__uint128_t const *lut_vector, __uint128_t const *lwe_array_in,
|
||||
double const *bootstrapping_key, pbs_buffer_128<CLASSICAL> *buffer,
|
||||
__uint128_t const *lut_vector, InputTorus const *lwe_array_in,
|
||||
double const *bootstrapping_key,
|
||||
pbs_buffer_128<InputTorus, PBS_TYPE::CLASSICAL> *buffer,
|
||||
uint32_t glwe_dimension, uint32_t lwe_dimension, uint32_t polynomial_size,
|
||||
uint32_t base_log, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count) {
|
||||
@@ -783,20 +898,20 @@ __host__ void host_programmable_bootstrap_cg_128(
|
||||
if (max_shared_memory < partial_sm) {
|
||||
kernel_args[10] = &full_dm;
|
||||
check_cuda_error(cudaLaunchCooperativeKernel(
|
||||
(void *)device_programmable_bootstrap_cg_128<__uint128_t, params, NOSM>,
|
||||
(void *)device_programmable_bootstrap_cg_128<InputTorus, params, NOSM>,
|
||||
grid, thds, (void **)kernel_args, 0, stream));
|
||||
} else if (max_shared_memory < full_sm) {
|
||||
kernel_args[10] = &partial_dm;
|
||||
check_cuda_error(cudaLaunchCooperativeKernel(
|
||||
(void *)device_programmable_bootstrap_cg_128<__uint128_t, params,
|
||||
PARTIALSM>,
|
||||
(void *)
|
||||
device_programmable_bootstrap_cg_128<InputTorus, params, PARTIALSM>,
|
||||
grid, thds, (void **)kernel_args, partial_sm, stream));
|
||||
} else {
|
||||
int no_dm = 0;
|
||||
kernel_args[10] = &no_dm;
|
||||
check_cuda_error(cudaLaunchCooperativeKernel(
|
||||
(void *)
|
||||
device_programmable_bootstrap_cg_128<__uint128_t, params, FULLSM>,
|
||||
device_programmable_bootstrap_cg_128<InputTorus, params, FULLSM>,
|
||||
grid, thds, (void **)kernel_args, full_sm, stream));
|
||||
}
|
||||
|
||||
|
||||
@@ -398,20 +398,32 @@ uint64_t scratch_cuda_multi_bit_programmable_bootstrap_64(
|
||||
uint32_t polynomial_size, uint32_t level_count,
|
||||
uint32_t input_lwe_ciphertext_count, bool allocate_gpu_memory) {
|
||||
|
||||
bool supports_cg =
|
||||
supports_cooperative_groups_on_multibit_programmable_bootstrap<uint64_t>(
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, cuda_get_max_shared_memory(gpu_index));
|
||||
#if (CUDA_ARCH >= 900)
|
||||
if (has_support_to_cuda_programmable_bootstrap_tbc_multi_bit<uint64_t>(
|
||||
// On H100s we should be using TBC until num_samples < num_sms / 2.
|
||||
// After that we switch to CG until not supported anymore.
|
||||
// At this point we return to TBC.
|
||||
int num_sms = 0;
|
||||
check_cuda_error(cudaDeviceGetAttribute(
|
||||
&num_sms, cudaDevAttrMultiProcessorCount, gpu_index));
|
||||
|
||||
bool supports_tbc =
|
||||
has_support_to_cuda_programmable_bootstrap_tbc_multi_bit<uint64_t>(
|
||||
input_lwe_ciphertext_count, glwe_dimension, polynomial_size,
|
||||
level_count, cuda_get_max_shared_memory(gpu_index)))
|
||||
level_count, cuda_get_max_shared_memory(gpu_index));
|
||||
|
||||
if (supports_tbc &&
|
||||
!(input_lwe_ciphertext_count > num_sms / 2 && supports_cg))
|
||||
return scratch_cuda_tbc_multi_bit_programmable_bootstrap<uint64_t>(
|
||||
stream, gpu_index, (pbs_buffer<uint64_t, MULTI_BIT> **)buffer,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count, allocate_gpu_memory);
|
||||
else
|
||||
#endif
|
||||
if (supports_cooperative_groups_on_multibit_programmable_bootstrap<
|
||||
uint64_t>(glwe_dimension, polynomial_size, level_count,
|
||||
input_lwe_ciphertext_count,
|
||||
cuda_get_max_shared_memory(gpu_index)))
|
||||
if (supports_cg)
|
||||
return scratch_cuda_cg_multi_bit_programmable_bootstrap<uint64_t>(
|
||||
stream, gpu_index, (pbs_buffer<uint64_t, MULTI_BIT> **)buffer,
|
||||
glwe_dimension, polynomial_size, level_count,
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user