Compare commits

...

3 Commits

Author SHA1 Message Date
J-B Orfila
d220008757 (artifact_tches): Cleaning 2025-05-14 11:44:32 +02:00
Loris
b1b55b6426 Typos 2025-02-03 18:20:02 +01:00
Loris
77bea74ac9 (float) Tches Artifact 2025
Co-authored-by: Loris Bergerat <loris.bergerat@zama.ai>
2025-01-31 20:04:58 +01:00
59 changed files with 7377 additions and 172 deletions

View File

@@ -1,6 +1,6 @@
[workspace]
resolver = "2"
members = ["tfhe", "tasks", "apps/trivium", "concrete-csprng"]
members = ["tfhe", "tasks", "apps/trivium", "concrete-csprng", "concrete-float"]
[profile.bench]
lto = "fat"

View File

@@ -149,6 +149,11 @@ fix_newline: check_linelint_installed
check_newline: check_linelint_installed
linelint .
.PHONY: clippy_float # Run clippy lints on core_crypto with and without experimental features
clippy_float: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
-p concrete-float -- --no-deps -D warnings
.PHONY: clippy_core # Run clippy lints on core_crypto with and without experimental features
clippy_core: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
@@ -478,6 +483,59 @@ test_concrete_csprng:
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE) -p concrete-csprng
.PHONY: test_float # Run minifloat bivariate test
test_float: test_float_add test_float_sub test_float_mul test_float_div test_float_cos test_float_sin test_float_relu test_float_sigmoid test_minifloat
.PHONY: test_minifloat # Run minifloat bivariate test
test_minifloat:
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE),shortint -p tfhe float_wopbs_bivariate -- --nocapture
.PHONY: test_float_cos # Run floating points cosine test
test_float_cos:
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE) -p concrete-float "server_key::tests::float_cos" -- --exact --nocapture
.PHONY: test_float_sin # Run floating points sine test
test_float_sin:
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE) -p concrete-float "server_key::tests::float_sin" -- --exact --nocapture
.PHONY: test_float_mul # Run floating points multiplication test
test_float_mul:
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE) -p concrete-float "server_key::tests::test_float_mul" -- --exact --nocapture
.PHONY: test_float_add # Run floating points addition test
test_float_add:
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE) -p concrete-float "server_key::tests::test_float_add" -- --exact --nocapture
.PHONY: test_float_sub # Run floating points subtraction test
test_float_sub:
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE) -p concrete-float "server_key::tests::test_float_sub" -- --exact --nocapture
.PHONY: test_float_div # Run floating points division test
test_float_div:
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE) -p concrete-float "server_key::tests::test_float_div" -- --exact --nocapture
.PHONY: test_float_relu # Run floating points relu test
test_float_relu:
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE) -p concrete-float "server_key::tests::test_float_relu" -- --exact --nocapture
.PHONY: test_float_sigmoid # Run floating points sigmoid test
test_float_sigmoid:
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE) -p concrete-float "server_key::tests::test_float_sigmoid" -- --exact --nocapture
.PHONY: test_float_depth_test # Run floating points depth test
test_float_depth_test:
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
--features=$(TARGET_ARCH_FEATURE) -p concrete-float "server_key::tests::depth_test_parallelized" -- --exact --nocapture
.PHONY: doc # Build rust doc
doc: install_rs_check_toolchain
RUSTDOCFLAGS="--html-in-header katex-header.html" \
@@ -631,6 +689,38 @@ ci_bench_web_js_api_parallel: build_web_js_api_parallel
nvm use node && \
$(MAKE) -C tfhe/web_wasm_parallel_tests bench-ci
.PHONY: bench_float # Run benchmarks for the floating points
bench_float: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
--bench float-bench
.PHONY: bench_float_8bit # Run benchmarks for the floating points
bench_float_8bit: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
--bench float-bench -- PARAM_8
.PHONY: bench_float_16bit # Run benchmarks for the floating points
bench_float_16bit: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
--bench float-bench -- PARAM_16
.PHONY: bench_float_32bit # Run benchmarks for the floating points
bench_float_32bit: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
--bench float-bench -- PARAM_32
.PHONY: bench_float_64bit # Run benchmarks for the floating points
bench_float_64bit: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
--bench float-bench -- PARAM_64
.PHONY: bench_minifloat # Run benchmarks for Wopbs floating points
bench_minifloat: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
--bench float-wopbs-bench
#
# Utility tools
#

297
README.md
View File

@@ -1,175 +1,160 @@
<p align="center">
<!-- product name logo -->
<img width=600 src="https://user-images.githubusercontent.com/5758427/231206749-8f146b97-3c5a-4201-8388-3ffa88580415.png">
</p>
<hr/>
<p align="center">
<a href="https://docs.zama.ai/tfhe-rs"> 📒 Read documentation</a> | <a href="https://zama.ai/community"> 💛 Community support</a>
</p>
<p align="center">
<!-- Version badge using shields.io -->
<a href="https://github.com/zama-ai/tfhe-rs/releases">
<img src="https://img.shields.io/github/v/release/zama-ai/tfhe-rs?style=flat-square">
</a>
<!-- Zama Bounty Program -->
<a href="https://github.com/zama-ai/bounty-program">
<img src="https://img.shields.io/badge/Contribute-Zama%20Bounty%20Program-yellow?style=flat-square">
</a>
</p>
<hr/>
# Artifact:TFHE Gets Real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic
**TFHE-rs** is a pure Rust implementation of TFHE for boolean and integer
arithmetics over encrypted data. It includes:
- a **Rust** API
- a **C** API
- and a **client-side WASM** API
## Description
**TFHE-rs** is meant for developers and researchers who want full control over
what they can do with TFHE, while not having to worry about the low level
implementation. The goal is to have a stable, simple, high-performance, and
production-ready library for all the advanced features of TFHE.
## Getting Started
The steps to run a first example are described below.
In what follows, we provide instructions on how to run the benchmarks from the paper entitled **TFHE Gets Real: An Efficient and Flexible Homomorphic Floating-Point Arithmetic**.
In particular, the benchmarks presented in **Table 5**, **Table 6**, **Table 7**, and the experiments shown in **Table 8** can be easily reproduced using this code. The implementation of the techniques described in the aforementioned paper has been integrated into the **TFHE-rs** library, version 0.5.0. The modified or added source files are organized into two different paths.
### Cargo.toml configuration
To use the latest version of `TFHE-rs` in your project, you first need to add it as a dependency in your `Cargo.toml`:
The Minifloats (Section 3.1) are located in *tfhe/src/float-wopbs*
- Test files are located in *tfhe/src/float_wopbs/server_key/tests.rs*
- Benchmarks are located in *tfhe/benches/float_wopbs/bench.rs*
+ For x86_64-based machines running Unix-like OSes:
```toml
tfhe = { version = "*", features = ["boolean", "shortint", "integer", "x86_64-unix"] }
The homomorphic floating points (Section 3.2) are located in *tfhe/concrete-float/*
- Test files are located *tfhe/concrete-float/src/server_key/tests.rs*
- Benchmarks are located in *tfhe/concrete-float/benches/bench.rs*
## Dependencies
Tested on Linux and Mac OS with Rust version >= 1.80 (see [here](https://www.rust-lang.org/tools/install) a guide to install Rust).
Complete list of dependencies and a guide on how to install TFHE-rs can be found in the online documentation [here](https://docs.zama.ai/tfhe-rs/0.5-3/getting-started/installation) or in the local file [here](./README_TFHE-rs.md).
## How to run benchmarks
At the root of the project (i.e., in the TFHE-rs folder), enter the following commands to run the benchmarks:
- ```make bench_minifloat```: returns the timings associated to the Minifloats (**Table 6**).
- ```make bench_float```: returns the timings associated to the HFP (**Table 5**, **Table 7**).
These benchmarks first launch the parallelized and then the sequential experiments.
This outputs the timings depending on the input precision.
**This takes more than 6 hours to run**.
To run benchmarks for a specific precision over homomorphic floating points, here are the dedicated commands:
- ```make bench_float_8bit```: Runs benchmarks for only 8-bit floating point *(around 15 min)*.
- ```make bench_float_16bit```: Runs benchmarks for only 16-bit floating point *(around 30 min)*.
- ```make bench_float_32bit```: Runs benchmarks for only 32-bit floating point *(around 1h40)*.
- ```make bench_float_64bit```: Runs benchmarks for only 64-bit floating point *(around 6h30)*.
We recall that the benchmarks were performed on AWS using an **m6i.metal** instance with an Intel Xeon 8375C (Ice Lake) processor running at 3.5 GHz, 128 vCPUs, and 512 GiB of memory.
### Understanding Benchmark Output (Criterion.rs)
This project uses [Criterion.rs](https://docs.rs/criterion/latest/criterion/) for benchmarking. Criterion is a powerful and statistically robust benchmarking framework for Rust, and it may produce outputs that are unfamiliar at first glance. This section explains how to interpret them.
#### Sample Output Structure
A typical benchmark result looks like this:
```
test_float time: [53.2 µs 54.0 µs 54.8 µs]
change: [+0.2% +1.0% +1.8%] (p = 0.002)
Found 3 outliers among 100 measurements (3.00%)
3 (3.00%) high mild
```
+ For Apple Silicon or aarch64-based machines running Unix-like OSes:
**Here's what this means:**
```toml
tfhe = { version = "*", features = ["boolean", "shortint", "integer", "aarch64-unix"] }
- `time: [low est. median high est.]`: The estimated execution time of the function.
- `change`: The performance change compared to a previous run (if available).
- `outliers`: Some runs deviated from the typical time. Criterion detects and accounts for these using statistical methods.
---
#### Common Warnings and What They Mean
##### `Found X outliers among Y measurements`
Criterion runs each benchmark many times (default: 100) to get statistically significant results.
An *outlier* is a run that was significantly faster or slower than the others.
- **Why does this happen?** Often, it's due to **other processes on the machine** (e.g., background services, OS interrupts, or CPU scheduling) affecting performance temporarily.
- **Why it doesn't invalidate results:** Criterion uses statistical techniques to minimize the impact of these outliers when estimating performance.
- **Best practice to reduce outliers:** Run the benchmarks on a **freshly rebooted machine**, with as few background processes as possible. Ideally, let the system idle for a minute after boot to stabilize before running benchmarks.
##### `Unable to complete 100 samples in 5.0s.`
The benchmark took longer than the expected 5 seconds.
This is merely a warning indicating that the full set of 100 samples could not be collected within the default 5-second measurement window.
- **No action is required**: Criterion will still proceed to run all 100 samples, and the results remain statistically valid.
- **Why the warning appears**: It's there to inform you that benchmarking is taking longer than expected and to help you tune settings if needed.
- **Optional**: If you're constrained by time (e.g., running in CI), you can:
- Reduce the sample size (e.g., to 10 or 20 samples).
- Or increase the measurement time using:
```bash
cargo bench -- --measurement-time 30
```
## How to run the tests
### MiniFloats
To run the tests related to the **minifloats**, run the following command:
- ```make test_minifloat```: Runs a bivariate operation between two minifloats.
The **minifloat** test is available in the file *tfhe/src/float_wopbs/server_key/tests.rs*.
### Homomorphic Floating Points
At the root of the project (i.e., in the TFHE-rs folder), enter the following commands to run the tests per operation on the **homomorphic floating points**:
- ```make test_float_add```: Runs a 32-bit floating-point addition with two random inputs.
- ```make test_float_sub```: Runs a 32-bit floating-point subtraction with two random inputs.
- ```make test_float_mul```: Runs a 32-bit floating-point multiplication with two random inputs.
- ```make test_float_div```: Runs a 32-bit floating-point division with two random inputs.
- ```make test_float_cos```: Runs the experiment from **Table 8** with a random input value.
- ```make test_float_sin```: Runs the experiment from **Table 8** with a random input value.
- ```make test_float_relu```: Runs a 32-bit floating-point relu with a random input.
- ```make test_float_sigmoid```: Runs a 32-bit floating-point sigmoid with a random input.
- ```make test_float```: Runs all previous tests for operations on 32-bit floating-points.
- ```make test_float_depth_test```: This command runs the following experiment:
- **Step 1**: Create 3 blocks, each composed of a clear 32-bit floating point, a clear 64-bit floating point, and a 32-bit homomorphic floating point.
- **Step 2**: Choose two blocks randomly among the 3 blocks and randomly select a parallelized operation (addition, subtraction, or multiplication).
- **Step 3**: Compute the selected operation between the two selected blocks and store the result randomly in one of the two selected blocks.
(The operation is performed respectively between the two 64-bit floating points, the two 32-bit floating points, and homomorphically between the two 32-bit homomorphic floating points.)
- Repeat Steps 2 and 3 for 50 iterations.
- To avoid reaching + or - infinity, or **NaN**, when the clear 64-bit floating point reaches a fixed bound, compute a multiplication to rescale the value close to 1.
This operation is also performed homomorphically for the encrypted data. This test takes several minutes.
The tests are located in the file *tfhe/concrete-float/src/server_key/tests.rs*.
Due to the representation being close to, but not exactly the same as, a given representation, the obtained result is not identical to the one obtained in clear.
To consider a test as "passed", we accept a difference of less than 0.1% compared to the 64-bit floating-point clear results.
Note that using 8 or 16-bit homomorphic floating points might return errors due to a lack of precision and due to the comparisons with clear 64-bit floating points.
In each test, the different results are presented in the following format:
```
--------------------
"Name":
Result :
Clear 32-bits:
Clear 64-bits:
--------------------
```
Note: users with ARM devices must compile `TFHE-rs` using a stable toolchain with version >= 1.72.
where ```name``` stands for the name of the ciphertext or the name of the operation, result always corresponds to the decryption of a homomorphic floating point, and Clear ``` 32-bits``` and Clear ``` 64-bits``` correspond to the clear floating-point witness.
All tests in *tfhe/concrete-float/src/server_key/tests.rs* are conducted for 32-bit floating-point precision, as it provides the best ratio between execution time and precision.
To change the parameter set used, the parameters in the following ``` const ``` must be uncommented (lines 79 to 87 in the file *tfhe/concrete-float/src/server_key/tests.rs*).
+ For x86_64-based machines with the [`rdseed instruction`](https://en.wikipedia.org/wiki/RDRAND)
running Windows:
```toml
tfhe = { version = "*", features = ["boolean", "shortint", "integer", "x86_64"] }
```rust
const PARAMS: [(&str, Parameters); 1] =
[
//named_param!(PARAM_FP_64_BITS),
named_param!(PARAM_FP_32_BITS),
//named_param!(PARAM_FP_16_BITS),
//named_param!(PARAM_FP_8_BITS),
];
```
Note: aarch64-based machines are not yet supported for Windows as it's currently missing an entropy source to be able to seed the [CSPRNGs](https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator) used in TFHE-rs
Note that the number in ``` [(\&str, Parameters); 1] ``` should correspond to the number of tested parameters, e.g., if another parameter sets is uncommented, this line becomes: ``` [(\&str, Parameters); 2] ```.
The parameter ```PARAM_X``` corresponds to the parameters used in **Table 5**, and ```PARAM_TCHES_X``` corresponds to the parameters used in **Table 7**.
## A simple example
Here is a full example:
``` rust
use tfhe::prelude::*;
use tfhe::{generate_keys, set_server_key, ConfigBuilder, FheUint32, FheUint8};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Basic configuration to use homomorphic integers
let config = ConfigBuilder::default().build();
// Key generation
let (client_key, server_keys) = generate_keys(config);
let clear_a = 1344u32;
let clear_b = 5u32;
let clear_c = 7u8;
// Encrypting the input data using the (private) client_key
// FheUint32: Encrypted equivalent to u32
let mut encrypted_a = FheUint32::try_encrypt(clear_a, &client_key)?;
let encrypted_b = FheUint32::try_encrypt(clear_b, &client_key)?;
// FheUint8: Encrypted equivalent to u8
let encrypted_c = FheUint8::try_encrypt(clear_c, &client_key)?;
// On the server side:
set_server_key(server_keys);
// Clear equivalent computations: 1344 * 5 = 6720
let encrypted_res_mul = &encrypted_a * &encrypted_b;
// Clear equivalent computations: 1344 >> 5 = 42
encrypted_a = &encrypted_res_mul >> &encrypted_b;
// Clear equivalent computations: let casted_a = a as u8;
let casted_a: FheUint8 = encrypted_a.cast_into();
// Clear equivalent computations: min(42, 7) = 7
let encrypted_res_min = &casted_a.min(&encrypted_c);
// Operation between clear and encrypted data:
// Clear equivalent computations: 7 & 1 = 1
let encrypted_res = encrypted_res_min & 1_u8;
// Decrypting on the client side:
let clear_res: u8 = encrypted_res.decrypt(&client_key);
assert_eq!(clear_res, 1_u8);
Ok(())
}
```
To run this code, use the following command:
<p align="center"> <code> cargo run --release </code> </p>
Note that when running code that uses `tfhe-rs`, it is highly recommended
to run in release mode with cargo's `--release` flag to have the best performances possible,
## Contributing
There are two ways to contribute to TFHE-rs:
- you can open issues to report bugs or typos, or to suggest new ideas
- you can ask to become an official contributor by emailing [hello@zama.ai](mailto:hello@zama.ai).
(becoming an approved contributor involves signing our Contributor License Agreement (CLA))
Only approved contributors can send pull requests, so please make sure to get in touch before you do!
## Credits
This library uses several dependencies and we would like to thank the contributors of those
libraries.
## Need support?
<a target="_blank" href="https://community.zama.ai">
<img src="https://user-images.githubusercontent.com/5758427/231115030-21195b55-2629-4c01-9809-be5059243999.png">
</a>
## Citing TFHE-rs
To cite TFHE-rs in academic papers, please use the following entry:
```text
@Misc{TFHE-rs,
title={{TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for Boolean and Integer Arithmetics Over Encrypted Data}},
author={Zama},
year={2022},
note={\url{https://github.com/zama-ai/tfhe-rs}},
}
```
## License
This software is distributed under the BSD-3-Clause-Clear license. If you have any questions,
please contact us at `hello@zama.ai`.
## Disclaimers
### Security Estimation
Security estimations are done using the
[Lattice Estimator](https://github.com/malb/lattice-estimator)
with `red_cost_model = reduction.RC.BDGL16`.
When a new update is published in the Lattice Estimator, we update parameters accordingly.
### Side-Channel Attacks
Mitigation for side channel attacks have not yet been implemented in TFHE-rs,
and will be released in upcoming versions.

69
concrete-float/Cargo.toml Normal file
View File

@@ -0,0 +1,69 @@
[package]
name = "concrete-float"
version = "0.1.0-beta.0"
edition = "2018"
authors = ["Zama team"]
license = "BSD-3-Clause-Clear"
description = "Homomorphic Integer circuit interface for the concrete FHE library."
homepage = "https://www.zama.ai/concrete-framework"
documentation = "https://docs.zama.ai/home/"
repository = "https://github.com/zama-ai/concrete"
readme = "README.md"
keywords = ["fully", "homomorphic", "encryption", "fhe", "cryptography"]
[dependencies]
serde = { version = "1.0", features = ["derive"] }
aligned-vec = { version = "0.5", features = ["serde"] }
dyn-stack = { version = "0.9" }
rayon = "1.5"
lazy_static = { version = "1.4.0", optional = true }
tfhe = { path = "../tfhe", features = ["shortint", "integer"] }
[target.'cfg(target_arch = "x86_64")'.dependencies]
tfhe = { path = "../tfhe", features = ["shortint", "integer", "x86_64-unix"] }
[target.'cfg(target_arch = "aarch64")'.dependencies]
tfhe = { path = "../tfhe", features = ["shortint", "integer", "aarch64-unix"] }
[features]
nightly-avx512 = ["tfhe/nightly-avx512"]
seeder_x86_64_rdseed = []
seeder_unix = []
generator_x86_64_aesni = []
generator_fallback = []
generator_aarch64_aes = []
x86_64 = [
"seeder_x86_64_rdseed",
"generator_x86_64_aesni",
"generator_fallback",
]
x86_64-unix = ["x86_64", "seeder_unix"]
aarch64 = [ "generator_aarch64_aes", "generator_fallback"]
aarch64-unix = ["aarch64", "seeder_unix"]
[dev-dependencies]
criterion = "0.5.1"
lazy_static = "1.4.0"
bincode = "1.3.3"
paste = "1.0.7"
rand = "0.8.4"
doc-comment = "0.3.3"
#concrete-shortint = { path = "../tfhe", features = ["internal-keycache"] }
#[features]
# Keychache used to speed up tests and benches
# by not requiring to regererate keys at each launch
#internal-keycache = ["lazy_static", "shortint/src/internal-keycache"]
[package.metadata.docs.rs]
rustdoc-args = ["--html-in-header", "katex-header.html"]
[[bench]]
name = "float-bench"
path = "benches/bench.rs"
harness = false
required-features = []

32
concrete-float/LICENSE Normal file
View File

@@ -0,0 +1,32 @@
BSD 3-Clause Clear License
Copyright © 2022 ZAMA.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.
3. Neither the name of ZAMA nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE*.
THIS SOFTWARE IS PROVIDED BY THE ZAMA AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
ZAMA OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*In addition to the rights carried by this license, ZAMA grants to the user a non-exclusive,
free and non-commercial license on all patents filed in its name relating to the open-source
code (the "Patents") for the sole purpose of evaluation, development, research, prototyping
and experimentation.

11
concrete-float/README.md Normal file
View File

@@ -0,0 +1,11 @@
# concrete Integer
`concrete-integer` is a Rust library built on top of `concrete-shortint`, it
combines multiple `shortint` to handle encrypted integers of "arbitrary"
size.
## License
This software is distributed under the BSD-3-Clause-Clear license. If you have any questions,
please contact us at `hello@zama.ai`.

View File

@@ -0,0 +1,304 @@
#![allow(dead_code)]
use concrete_float::gen_keys;
use criterion::{criterion_group, criterion_main, Criterion};
use rand::Rng;
// Previous Parameters
#[allow(unused_imports)]
use concrete_float::parameters::{FINAL_PARAM_16,
FINAL_PARAM_2_2_32, FINAL_PARAM_32,
FINAL_PARAM_64, FINAL_PARAM_8,
FINAL_WOP_PARAM_15, FINAL_WOP_PARAM_16,
FINAL_WOP_PARAM_2_2_32, FINAL_WOP_PARAM_32,
FINAL_WOP_PARAM_64, FINAL_WOP_PARAM_8,
FINAL_PARAM_64_TCHESS, FINAL_PARAM_32_TCHESS,
FINAL_WOP_PARAM_64_TCHESS, FINAL_WOP_PARAM_32_TCHESS};
use concrete_float::parameters::{FINAL_PARAM_16_BIS, FINAL_PARAM_32_BIS,
FINAL_PARAM_64_BIS, FINAL_PARAM_8_BIS,
FINAL_WOP_PARAM_16_BIS, FINAL_WOP_PARAM_32_BIS,
FINAL_WOP_PARAM_64_BIS, FINAL_WOP_PARAM_8_BIS};
use tfhe::shortint;
macro_rules! named_param {
($param:ident) => {
(stringify!($param), $param)
};
}
criterion_main!(float_parallelized, float);
struct Parameters {
pbsparameters: shortint::ClassicPBSParameters,
wopbsparameters: shortint::WopbsParameters,
len_man: usize,
len_exp: usize,
}
//Parameter for a Floating point 64-bits equivalent
const PARAM_64: Parameters = Parameters {
pbsparameters: FINAL_PARAM_64_BIS,
wopbsparameters: FINAL_WOP_PARAM_64_BIS,
len_man: 27,
len_exp: 5,
};
//Parameter for a Floating point 32-bits equivalent
const PARAM_32: Parameters = Parameters {
pbsparameters: FINAL_PARAM_32_BIS,
wopbsparameters: FINAL_WOP_PARAM_32_BIS,
len_man: 13,
len_exp: 4,
};
//Parameter for a Floating point 16-bits equivalent
const PARAM_16: Parameters = Parameters {
pbsparameters: FINAL_PARAM_16_BIS,
wopbsparameters: FINAL_WOP_PARAM_16_BIS,
len_man: 6,
len_exp: 3,
};
//Parameter for a Floating point 8-bits equivalent
const PARAM_8: Parameters = Parameters {
pbsparameters: FINAL_PARAM_8_BIS,
wopbsparameters: FINAL_WOP_PARAM_8_BIS,
len_man: 3,
len_exp: 2,
};
//Parameter for a Floating point 64-bits equivalent
//With failure probability smaller than PARAM_64
const PARAM_TCHESS_64: Parameters = Parameters {
pbsparameters: FINAL_PARAM_64_TCHESS,
wopbsparameters: FINAL_WOP_PARAM_64_TCHESS,
len_man: 27,
len_exp: 5,
};
//Parameter for a Floating point 32-bits equivalent
//With failure probability smaller than PARAM_32
const PARAM_TCHESS_32: Parameters = Parameters {
pbsparameters: FINAL_PARAM_32_TCHESS,
wopbsparameters: FINAL_WOP_PARAM_32_TCHESS,
len_man: 13,
len_exp: 4,
};
const SERVER_KEY_BENCH_PARAMS: [(&str, Parameters);6] =
[
named_param!(PARAM_8),
named_param!(PARAM_16),
named_param!(PARAM_32),
named_param!(PARAM_64),
named_param!(PARAM_TCHESS_32),
named_param!(PARAM_TCHESS_64),
];
criterion_group!(
float,
add,
mul,
relu,
sigmoid,
);
criterion_group!(
float_parallelized,
add_parallelized,
mul_parallelized,
div_parallelized,,
);
fn relu(c: &mut Criterion) {
let mut bench_group = c.benchmark_group("operation");
let mut rng = rand::thread_rng();
for (param_name, param) in SERVER_KEY_BENCH_PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
let msg = rng.gen::<f32>() as f64;
let ct = cks.encrypt(msg);
let bench_id = format!("{}::{}", "Relu", param_name);
bench_group.bench_function(&bench_id, |b| {
b.iter(|| {
sks.relu(&ct);
})
});
}
bench_group.finish()
}
fn sigmoid(c: &mut Criterion) {
let mut bench_group = c.benchmark_group("operation");
let mut rng = rand::thread_rng();
for (param_name, param) in SERVER_KEY_BENCH_PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
let msg = rng.gen::<f32>() as f64;
let ct = cks.encrypt(msg);
let bench_id = format!("{}::{}", "sigmoid", param_name);
bench_group.bench_function(&bench_id, |b| {
b.iter(|| {
sks.sigmoid(&ct);
})
});
}
bench_group.finish()
}
fn mul(c: &mut Criterion) {
let mut bench_group = c.benchmark_group("operation");
let mut rng = rand::thread_rng();
for (param_name, param) in SERVER_KEY_BENCH_PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
let msg = rng.gen::<f32>() as f64;
let ct1 = cks.encrypt(msg);
let msg = rng.gen::<f32>() as f64;
let ct2 = cks.encrypt(msg);
let bench_id = format!("{}::{}", "mul", param_name);
bench_group.bench_function(&bench_id, |b| {
b.iter(|| {
sks.mul_total(&ct1, &ct2);
})
});
}
bench_group.finish()
}
fn mul_parallelized(c: &mut Criterion) {
let mut bench_group = c.benchmark_group("operation");
let mut rng = rand::thread_rng();
for (param_name, param) in SERVER_KEY_BENCH_PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
let msg = rng.gen::<f32>() as f64;
let ct1 = cks.encrypt(msg);
let msg = rng.gen::<f32>() as f64;
let ct2 = cks.encrypt(msg);
let bench_id = format!("{}::{}", "mul parallelized", param_name);
bench_group.bench_function(&bench_id, |b| {
b.iter(|| {
sks.mul_total_parallelized(&ct1, &ct2);
})
});
}
bench_group.finish()
}
fn div_parallelized(c: &mut Criterion) {
let mut bench_group = c.benchmark_group("operation");
let mut rng = rand::thread_rng();
for (param_name, param) in SERVER_KEY_BENCH_PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
let msg = rng.gen::<f32>() as f64;
let ct1 = cks.encrypt(msg);
let msg = rng.gen::<f32>() as f64;
let ct2 = cks.encrypt(msg);
let bench_id = format!("{}::{}", "div parallelized", param_name);
bench_group.bench_function(&bench_id, |b| {
b.iter(|| {
sks.division(&ct1, &ct2);
})
});
}
bench_group.finish()
}
fn add(c: &mut Criterion) {
let mut bench_group = c.benchmark_group("operation");
let mut rng = rand::thread_rng();
for (param_name, param) in SERVER_KEY_BENCH_PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
let msg = rng.gen::<f32>() as f64;
let ct1 = cks.encrypt(msg);
let msg = rng.gen::<f32>() as f64;
let ct2 = cks.encrypt(msg);
let bench_id = format!("{}::{}", "add", param_name);
bench_group.bench_function(&bench_id, |b| {
b.iter(|| {
sks.add_total(&ct1, &ct2);
})
});
}
bench_group.finish()
}
fn add_parallelized(c: &mut Criterion) {
let mut bench_group = c.benchmark_group("operation");
let mut rng = rand::thread_rng();
for (param_name, param) in SERVER_KEY_BENCH_PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
let msg = rng.gen::<f32>() as f64;
let ct1 = cks.encrypt(msg);
let msg = rng.gen::<f32>() as f64;
let ct2 = cks.encrypt(msg);
let bench_id = format!("{}::{}", "add parallelized", param_name);
bench_group.bench_function(&bench_id, |b| {
b.iter(|| {
sks.add_total_parallelized(&ct1, &ct2);
})
});
}
bench_group.finish()
}

View File

@@ -0,0 +1,20 @@
# Concrete-Integer User Guide
[Introduction](introduction.md)
# Getting Started
[Installation](getting_started/installation.md)
[Writing Your First Circuit](getting_started/first_circuit.md)
[Types Of Operations](getting_started/operation_types.md)
[List of Operations](getting_started/operation_list.md)
[Cryptographic Parameters](getting_started/parameters.md)
# How to
[Serialization / Deserialization](tutorials/serialization.md)

View File

@@ -0,0 +1,105 @@
# Writing Your First Circuit
## Key Types
`concrete-integer` provides 2 basic key types:
- `ClientKey`
- `ServerKey`
The `ClientKey` is the key that encrypts and decrypts messages,
thus this key is meant to be kept private and should never be shared.
This key is created from parameter values that will dictate both the security and efficiency
of computations. The parameters also set the maximum number of bits of message encrypted
in a ciphertext.
The `ServerKey` is the key that is used to actually do the FHE computations. It contains (among other things)
a bootstrapping key and a keyswitching key.
This key is created from a `ClientKey` that needs to be shared to the server, therefore it is not
meant to be kept private.
A user with a `ServerKey` can compute on the encrypted data sent by the owner of the associated
`ClientKey`.
To reflect that, computation/operation methods are tied to the `ServerKey` type.
## 1. Key Generation
To generate the keys, a user needs two parameters:
- A set of `shortint` cryptographic parameters.
- The number of ciphertexts used to encrypt an integer (we call them "shortint blocks").
For this example we are going to build a pair of keys that can encrypt an **8-bit** integer
by using **4** shortint blocks that store **2** bits of message each.
```rust
use concrete_integer::gen_keys;
use concrete_shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let num_block = 4;
let (client_key, server_key) = gen_keys(&PARAM_MESSAGE_2_CARRY_2, num_block);
}
```
## 2. Encrypting values
Once we have our keys we can encrypt values:
```rust
use concrete_integer::gen_keys;
use concrete_shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let num_block = 4;
let (client_key, server_key) = gen_keys(&PARAM_MESSAGE_2_CARRY_2, num_block);
let msg1 = 128;
let msg2 = 13;
// We use the client key to encrypt two messages:
let ct_1 = client_key.encrypt(msg1);
let ct_2 = client_key.encrypt(msg2);
}
```
## 3. Computing and decrypting
With our `server_key`, and encrypted values, we can now do an addition
and then decrypt the result.
```rust
use concrete_integer::gen_keys;
use concrete_shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let num_block = 4;
let (client_key, server_key) = gen_keys(&PARAM_MESSAGE_2_CARRY_2, num_block);
let msg1 = 128;
let msg2 = 13;
// message_modulus^vec_length
let modulus = client_key.parameters().message_modulus.0.pow(num_block as u32) as u64;
// We use the client key to encrypt two messages:
let ct_1 = client_key.encrypt(msg1);
let ct_2 = client_key.encrypt(msg2);
// We use the server public key to execute an integer circuit:
let ct_3 = server_key.unchecked_add(&ct_1, &ct_2);
// We use the client key to decrypt the output of the circuit:
let output = client_key.decrypt(&ct_3);
assert_eq!(output, (msg1 + msg2) % modulus);
}
```

View File

@@ -0,0 +1,49 @@
# Installation
## Cargo.toml
To use `concrete-integer`, you will need to add it to the list of dependencies
of your project, by updating your `Cargo.toml` file.
```toml
concrete-integer = "0.1.0"
```
### Supported platforms
As `concrete-integer` relies on `concrete-shortint`, which in turn relies on `concrete-core`,
the support ted platforms supported are:
- `x86_64 Linux`
- `x86_64 macOS`.
Windows users can use `concrete-integer` through the `WSL`.
macOS users which have the newer M1 (`arm64`) devices can use `concrete-integer` by cross-compiling to
`x86_64` and run their program with Rosetta.
First install the needed Rust toolchain:
```console
# Install the macOS x86_64 toolchain (you only need to do this once)
rustup toolchain install --force-non-host stable-x86_64-apple-darwin
```
Then you can either:
- Manually specify the toolchain to use in each of the cargo commands:
For example:
```console
cargo +stable-x86_64-apple-darwin build
cargo +stable-x86_64-apple-darwin test
```
- Or override the toolchain to use for the current project:
```console
rustup override set stable-x86_64-apple-darwin
# cargo will use the `stable-x86_64-apple-darwin` toolchain.
cargo build
```

View File

@@ -0,0 +1,15 @@
# List of available operations
`concrete-integer` comes with a set of already implemented functions:
- addition between two ciphertexts
- addition between a ciphertext and an unencrypted scalar
- multiplication of a ciphertext by an unencrypted scalar
- bitwise shift `<<`, `>>`
- bitwise and, or and xor
- multiplication between two ciphertexts
- subtraction of a ciphertext by another ciphertext
- subtraction of a ciphertext by an unencrypted scalar
- negation of a ciphertext

View File

@@ -0,0 +1,86 @@
# How Integers are represented
In `concrete-integer`, the encrypted data is split amongst many ciphertexts
encrypted using the `concrete-shortint` library.
This crate implements two ways to represent an integer:
- the Radix representation
- the CRT (Chinese Reminder Theorem) representation
## Radix based Integers
The first possibility to represent a large integer is to use a radix-based decomposition on the
plaintexts. Let $$B \in \mathbb{N}$$ be a basis such that the size of $$B$$ is smaller (or equal)
to four bits.
Then, an integer $$m \in \mathbb{N}$$ can be written as $$m = m_0 + m_1*B + m_2*B^2 + ... $$, where
each $$m_i$$ is strictly smaller than $$B$$. Each $$m_i$$ is then independently encrypted. In
the end, an Integer ciphertext is defined as a set of Shortint ciphertexts.
In practice, the definition of an Integer requires the basis and the number of blocks. This is
done at the key creation step.
```rust
use concrete_integer::gen_keys;
use concrete_shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
// We generate a set of client/server keys, using the default parameters:
let num_block = 4;
let (client_key, server_key) = gen_keys(&PARAM_MESSAGE_2_CARRY_2, num_block);
}
```
In this example, the keys are dedicated to Integers decomposed as four blocks using the basis
$$B=2^2$$. Otherwise said, they allow to work on Integers modulus $$(2^2)^4 = 2^8$$.
In this representation, the correctness of operations requires to propagate the carries
between the ciphertext. This operation is costly since it relies on the computation of many
programmable bootstrapping over Shortints.
## CRT based Integers
The second approach to represent large integers is based on the Chinese Remainder Theorem.
In this cases, the basis $$B$$ is composed of several integers $$b_i$$, such that there are
pairwise coprime, and each b_i has a size smaller than four bits. Then, the Integer will be
defined modulus $$\prod b_i$$. For an integer $$m$$, its CRT decomposition is simply defined as
$$m % b_0, m % b_1, ...$$. Each part is then encrypted as a Shortint ciphertext. In
the end, an Integer ciphertext is defined as a set of Shortint ciphertexts.
An example of such a basis
could be $$B = [2, 3, 5]$$. This means that the Integer is defined modulus $$2*3*5 = 30$$.
This representation has many advantages: no carry propagation is required, so that only cleaning
the carry buffer of each ciphertexts is enough. This implies that operations can easily be
parallelized. Moreover, it allows to efficiently compute PBS in the case where the function is
CRT compliant.
A variant of the CRT is proposed, where each block might be associated to a different key couple.
In the end, a keychain is required to the computations, but performance might be improved.
# Types of operations
Much like `concrete-shortint`, the operations available via a `ServerKey` may come in different variants:
- operations that take their inputs as encrypted values.
- scalar operations take at least one non-encrypted value as input.
For example, the addition has both variants:
- `ServerKey::unchecked_add` which takes two encrypted values and adds them.
- `ServerKey::unchecked_scalar_add` which takes an encrypted value and a clear value (the
so-called scalar) and adds them.
Each operation may come in different 'flavors':
- `unchecked`: Always does the operation, without checking if the result may exceed the capacity of
the plaintext space.
- `checked`: Checks are done before computing the operation, returning an error if operation
cannot be done safely.
- `smart`: Always does the operation, if the operation cannot be computed safely, the smart operation
will propagate the carry buffer to make the operation possible.
Not all operations have these 3 flavors, as some of them are implemented in a way that the operation
is always possible without ever exceeding the plaintext space capacity.

View File

@@ -0,0 +1,6 @@
# Use of parameters
`concrete-integer` does not come with its own set of parameters, instead it uses
parameters from the `concrete-shortint` crate. Currently, only the parameters
`PARAM_MESSAGE_{X}_CARRY_{X}` with `X` in [1,4] can be used in `concrete-integer`.

View File

@@ -0,0 +1,47 @@
# The tree programmable bootstrapping
In `concrete-integer`, the user can evaluate any function on an encrypted ciphertext. To do so the user must first
create a `treepbs key`, choose a function to evaluate and give them as parameters to the `tree programmable bootstrapping`.
Two versions of the tree pbs are implemented: the `standard` version that computes a result according to every encrypted
bit (message and carry), and the `base` version that only takes into account the message bits of each block.
{% hint style="warning" %}
The `tree pbs` is quite slow, therefore its use is currently restricted to two and three blocks integer ciphertexts.
{% endhint %}
```rust
use concrete_integer::gen_keys;
use concrete_shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
use concrete_integer::treepbs::TreepbsKey;
fn main() {
let num_block = 2;
// Generate the client key and the server key:
let (cks, sks) = gen_keys(&PARAM_MESSAGE_2_CARRY_2, num_block);
let msg: u64 = 27;
let ct = cks.encrypt(msg);
// message_modulus^vec_length
let modulus = cks.parameters().message_modulus.0.pow(2 as u32) as u64;
let treepbs_key = TreepbsKey::new(&cks);
let f = |x: u64| x * x;
// evaluate f
let vec_res = treepbs_key.two_block_pbs(&sks, &ct, f);
// decryption
let res = cks.decrypt(&vec_res);
let clear = f(msg) % modulus;
assert_eq!(res, clear);
}
```
# The WOP programmable bootstrapping

View File

@@ -0,0 +1,8 @@
# Concrete-integer
## Introduction
`concrete-integer` is a Rust library (crate) based on `concrete-shortint`, this crate provides
large precision integers by using multiple `shortint` ciphertexts.
The intended target audience for this library is people who are somewhat familiar with cryptography.

View File

@@ -0,0 +1,120 @@
# Circuit evaluation
Let's try to do a circuit evaluation using the different flavours of operations we already introduced.
For a very small circuit, the `unchecked` flavour may be enough to do the computation correctly.
Otherwise, the `checked` and `smart` are the best options.
As an example, let's do a scalar multiplication, a subtraction and an addition.
```rust
use concrete_integer::gen_keys;
use concrete_shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
let num_block = 4;
let (client_key, server_key) = gen_keys(&PARAM_MESSAGE_2_CARRY_2, num_block);
let msg1 = 12;
let msg2 = 11;
let msg3 = 9;
let scalar = 3;
// message_modulus^vec_length
let modulus = client_key.parameters().message_modulus.0.pow(num_block as u32) as u64;
// We use the client key to encrypt two messages:
let mut ct_1 = client_key.encrypt(msg1);
let ct_2 = client_key.encrypt(msg2);
let ct_3 = client_key.encrypt(msg2);
server_key.unchecked_small_scalar_mul_assign(&mut ct_1, scalar);
server_key.unchecked_sub_assign(&mut ct_1, &ct_2);
server_key.unchecked_add_assign(&mut ct_1, &ct_3);
// We use the client key to decrypt the output of the circuit:
let output = client_key.decrypt(&ct_1);
// The carry buffer has been overflowed, the result is not correct
assert_ne!(output, ((msg1 * scalar as u64 - msg2) + msg3) % modulus as u64);
}
```
During this computation the carry buffer has been overflowed and as all the operations were `unchecked` the output
may be incorrect.
If we redo this same circuit but using the `checked` flavour, a panic will occur.
```rust
use concrete_integer::gen_keys;
use concrete_shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
let num_block = 2;
let (client_key, server_key) = gen_keys(&PARAM_MESSAGE_2_CARRY_2, num_block);
let msg1 = 12;
let msg2 = 11;
let msg3 = 9;
let scalar = 3;
// message_modulus^vec_length
let modulus = client_key.parameters().message_modulus.0.pow(num_block as u32) as u64;
// We use the client key to encrypt two messages:
let mut ct_1 = client_key.encrypt(msg1);
let ct_2 = client_key.encrypt(msg2);
let ct_3 = client_key.encrypt(msg3);
let result = server_key.checked_small_scalar_mul_assign(&mut ct_1, scalar);
assert!(result.is_ok());
let result = server_key.checked_sub_assign(&mut ct_1, &ct_2);
assert!(result.is_err());
// We use the client key to decrypt the output of the circuit:
// Only the scalar multiplication could be done
let output = client_key.decrypt(&ct_1);
assert_eq!(output, (msg1 * scalar) % modulus as u64);
}
```
Therefore the `checked` flavour permits to manually manage the overflow of the carry buffer
by raising an error if the correctness is not guaranteed.
Lastly, using the `smart` flavour will output the correct result all the time. However, the computation may be slower
as the carry buffer may be propagated during the computations.
```rust
use concrete_integer::gen_keys;
use concrete_shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() {
let num_block = 4;
let (client_key, server_key) = gen_keys(&PARAM_MESSAGE_2_CARRY_2, num_block);
let msg1 = 12;
let msg2 = 11;
let msg3 = 9;
let scalar = 3;
// message_modulus^vec_length
let modulus = client_key.parameters().message_modulus.0.pow(num_block as u32) as u64;
// We use the client key to encrypt two messages:
let mut ct_1 = client_key.encrypt(msg1);
let mut ct_2 = client_key.encrypt(msg2);
let mut ct_3 = client_key.encrypt(msg3);
server_key.smart_scalar_mul_assign(&mut ct_1, scalar);
server_key.smart_sub_assign(&mut ct_1, &mut ct_2);
server_key.smart_add_assign(&mut ct_1, &mut ct_3);
// We use the client key to decrypt the output of the circuit:
let output = client_key.decrypt(&ct_1);
assert_eq!(output, ((msg1 * scalar as u64 - msg2) + msg3) % modulus as u64);
}
```

View File

@@ -0,0 +1,78 @@
# Serialization / Deserialization
As explained in the introduction, some types (`Serverkey`, `Ciphertext`) are meant to be shared
with the server that does the computations.
The easiest way to send these data to a server is to use the serialization and deserialization features.
concrete-integer uses the serde framework, serde's Serialize and Deserialize are implemented.
To be able to serialize our data, we need to pick a [data format], for our use case,
[bincode] is a good choice, mainly because it is binary format.
```toml
# Cargo.toml
[dependencies]
# ...
bincode = "1.3.3"
```
```rust
// main.rs
use bincode;
use std::io::Cursor;
use concrete_integer::{gen_keys, ServerKey, Ciphertext};
use concrete_shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// We generate a set of client/server keys, using the default parameters:
let num_block = 4;
let (client_key, server_key) = gen_keys(&PARAM_MESSAGE_2_CARRY_2, num_block);
let msg1 = 201;
let msg2 = 12;
// message_modulus^vec_length
let modulus = client_key.parameters().message_modulus.0.pow(num_block as u32) as u64;
let ct_1 = client_key.encrypt(msg1);
let ct_2 = client_key.encrypt(msg2);
let mut serialized_data = Vec::new();
bincode::serialize_into(&mut serialized_data, &server_key)?;
bincode::serialize_into(&mut serialized_data, &ct_1)?;
bincode::serialize_into(&mut serialized_data, &ct_2)?;
// Simulate sending serialized data to a server and getting
// back the serialized result
let serialized_result = server_function(&serialized_data)?;
let result: Ciphertext = bincode::deserialize(&serialized_result)?;
let output = client_key.decrypt(&result);
assert_eq!(output, (msg1 + msg2) % modulus);
Ok(())
}
fn server_function(serialized_data: &[u8]) -> Result<Vec<u8>, Box<dyn std::error::Error>> {
let mut serialized_data = Cursor::new(serialized_data);
let server_key: ServerKey = bincode::deserialize_from(&mut serialized_data)?;
let ct_1: Ciphertext = bincode::deserialize_from(&mut serialized_data)?;
let ct_2: Ciphertext = bincode::deserialize_from(&mut serialized_data)?;
let result = server_key.unchecked_add(&ct_1, &ct_2);
let serialized_result = bincode::serialize(&result)?;
Ok(serialized_result)
}
```
[serde]: https://crates.io/crates/serde
[data format]: https://serde.rs/#data-formats
[bincode]: https://crates.io/crates/bincode

View File

@@ -0,0 +1,15 @@
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/katex.min.css" integrity="sha384-9eLZqc9ds8eNjO3TmqPeYcDj8n+Qfa4nuSiGYa6DjLNcv9BtN69ZIulL9+8CqC9Y" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/katex.min.js" integrity="sha384-K3vbOmF2BtaVai+Qk37uypf7VrgBubhQreNQe9aGsz9lB63dIFiQVlJbr92dw2Lx" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/contrib/auto-render.min.js" integrity="sha384-kmZOZB5ObwgQnS/DuDg6TScgOiWWBiVt0plIRkZCmE6rDZGrEOQeHM5PcHi+nyqe" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
renderMathInElement(document.body, {
delimiters: [
{left: "$$", right: "$$", display: true},
{left: "\\(", right: "\\)", display: false},
{left: "$", right: "$", display: false},
{left: "\\[", right: "\\]", display: true}
]
});
});
</script>

BIN
concrete-float/long_run Normal file

Binary file not shown.

View File

@@ -0,0 +1,30 @@
//! This module implements the ciphertext structure containing an encryption of an integer message.
use serde::{Deserialize, Serialize};
use tfhe::shortint;
/// Id to recognize the key used to encrypt a block.
#[derive(Debug, PartialEq, Eq, Copy, Clone, Serialize, Deserialize)]
pub struct KeyId(pub usize);
#[derive(Serialize, Clone, Deserialize, PartialEq, Eq, Debug)]
pub struct Ciphertext {
pub ct_vec_mantissa: Vec<shortint::ciphertext::Ciphertext>,
pub ct_vec_exponent: Vec<shortint::ciphertext::Ciphertext>,
pub ct_sign: shortint::ciphertext::Ciphertext,
pub(crate) e_min: i64,
}
impl Ciphertext {
/// Returns the slice of blocks that the ciphertext is composed of.
pub fn mantissa_blocks(&self) -> &[shortint::Ciphertext] {
&self.ct_vec_mantissa
}
pub fn exponent_blocks(&self) -> &[shortint::Ciphertext] {
&self.ct_vec_exponent
}
pub fn sign(&self) -> &shortint::Ciphertext {
&self.ct_sign
}
pub fn e_min(&self) -> &i64 {
&self.e_min
}
}

View File

@@ -0,0 +1,265 @@
//! This module implements the generation of the client secret keys, together with the
//! encryption and decryption methods.
pub(crate) mod utils;
use crate::ciphertext::Ciphertext;
use serde::{Deserialize, Serialize};
use tfhe::shortint;
use tfhe::shortint::{ClassicPBSParameters, WopbsParameters};
pub use utils::radix_decomposition;
/// The number of ciphertexts in the vector.
#[derive(Debug, PartialEq, Eq, Copy, Clone, Serialize, Deserialize)]
pub struct VecLength(pub usize);
/// A structure containing the client key, which must be kept secret.
#[derive(Serialize, Deserialize, PartialEq, Debug, Clone)]
pub struct ClientKey {
pub(crate) key: shortint::client_key::ClientKey,
pub(crate) vector_length_mantissa: VecLength,
pub(crate) vector_length_exponent: VecLength,
}
impl ClientKey {
/// Allocates and generates a client key.
///
/// # Example
///
/// ```rust
/// use concrete_float::client_key::ClientKey;
/// use concrete_float::parameters::{PARAM_MESSAGE_2_CARRY_2_32, WOP_PARAM_MESSAGE_2_CARRY_2_32};
/// use concrete_shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
///
/// // Generate the client key associated to integers over 4 blocks
/// // of messages with modulus over 2 bits
/// let param = (PARAM_MESSAGE_2_CARRY_2_32, WOP_PARAM_MESSAGE_2_CARRY_2_32);
/// let cks = ClientKey::new(param, 4, 1);
/// ```
pub fn new(
parameter_set: (ClassicPBSParameters, WopbsParameters),
size_mantissa: usize,
size_exponent: usize,
) -> Self {
let key = shortint::ClientKey::new(parameter_set);
Self {
key,
vector_length_mantissa: VecLength(size_mantissa),
vector_length_exponent: VecLength(size_exponent),
}
}
/// Returns the parameters used by the client key.
pub fn parameters(&self) -> shortint::parameters::ShortintParameterSet {
self.key.parameters
}
/// Encrypts a float message using the client key.
///
/// # Example
///
/// ```rust
/// use concrete_float::client_key::ClientKey;
/// use concrete_float::parameters::{PARAM_MESSAGE_2_CARRY_2_32, WOP_PARAM_MESSAGE_2_CARRY_2_32};
///
/// let param = (PARAM_MESSAGE_2_CARRY_2_32, WOP_PARAM_MESSAGE_2_CARRY_2_32);
/// let mut cks = ClientKey::new(param, 3, 1);
///
/// let msg = 1844640.;
/// // Encryption of one message:
/// let ct = cks.encrypt(msg);
/// let res = cks.decrypt(&ct);
///
/// //approximation less than 0.1%
/// assert_eq!(res, msg)
/// ```
pub fn encrypt(&self, message: f64) -> Ciphertext {
let ct_sign = self.encrypt_sign(message);
let log_msg_modulus = f64::log2(self.parameters().message_modulus().0 as f64) as usize;
let e_min = -((1 << (self.vector_length_exponent.0 * log_msg_modulus - 1)) as i64)
- (self.vector_length_mantissa.0 as i64 - 1);
if message == 0. {
let exponent = 0;
let mantissa = 0.0;
let ct_vec_mantissa = self.encrypt_mantissa(mantissa as u64);
let ct_vec_exponent = self.encrypt_exponent(exponent as u64);
Ciphertext {
ct_vec_mantissa,
ct_vec_exponent,
ct_sign,
e_min,
}
} else {
let length_mantissa = self.vector_length_mantissa.0;
let log_message_modulus =
f64::log2(self.parameters().message_modulus().0 as f64) as usize;
let value_exponent = log_message_modulus as u64;
let mut exponent = e_min.abs();
let mut cpy_message = message.abs();
while cpy_message < (1_u128 << (length_mantissa * log_message_modulus)) as f64 {
cpy_message *= (1 << value_exponent) as f64;
exponent -= 1;
}
while cpy_message >= (1_u128 << (length_mantissa * log_message_modulus)) as f64 {
cpy_message /= (1 << value_exponent) as f64;
exponent += 1;
}
//TODO
if exponent >= (1 << (log_message_modulus * self.vector_length_exponent.0) as i64) {
println!("encrypt overflow");
}
if exponent < 0 {
for _ in 0..exponent.abs() {
cpy_message /= (1 << value_exponent) as f64;
}
exponent = 0;
//panic!()
}
let mantissa = cpy_message.round() as u64;
let ct_vec_mantissa = self.encrypt_mantissa(mantissa);
let ct_vec_exponent = self.encrypt_exponent(exponent as u64);
Ciphertext {
ct_vec_mantissa,
ct_vec_exponent,
ct_sign,
e_min,
}
}
}
fn encrypt_sign(&self, message: f64) -> shortint::ciphertext::Ciphertext {
let sign: u64;
if message >= 0. {
sign = 0;
} else {
sign = 1
}
self.key.encrypt_without_padding(
sign * (self.key.parameters.message_modulus().0 * self.key.parameters.carry_modulus().0
/ 2) as u64,
)
}
fn encrypt_mantissa(&self, mantissa: u64) -> Vec<shortint::Ciphertext> {
let mut ct_vec_mantissa: Vec<shortint::ciphertext::Ciphertext> = Vec::new();
let mut power = 1_u128;
let message_modulus = self.parameters().message_modulus().0 as u128;
for _ in 0..self.vector_length_mantissa.0 {
let mut decomp = mantissa as u128 & ((message_modulus - 1) * power);
decomp /= power;
// encryption
let ct = self.key.encrypt(decomp as u64);
ct_vec_mantissa.push(ct);
//modulus to the power i
power *= message_modulus;
}
ct_vec_mantissa
}
fn encrypt_exponent(&self, exponent: u64) -> Vec<shortint::Ciphertext> {
let mut ct_vec_exponent: Vec<shortint::ciphertext::Ciphertext> = Vec::new();
let mut power = 1_u64;
let message_modulus = self.parameters().message_modulus().0 as u64;
for _ in 0..self.vector_length_exponent.0 {
let mut decomp = exponent as u64 & ((message_modulus - 1) * power);
decomp /= power;
// encryption
let ct = self.key.encrypt(decomp);
ct_vec_exponent.push(ct);
//modulus to the power i
power *= message_modulus;
}
ct_vec_exponent
}
/// Decrypts a ciphertext encrypting an float message
///
/// # Example
///
/// ```rust
/// use concrete_float::client_key::ClientKey;
/// use concrete_float::parameters::{PARAM_MESSAGE_2_CARRY_2_32, WOP_PARAM_MESSAGE_2_CARRY_2_32};
///
/// let param = (PARAM_MESSAGE_2_CARRY_2_32, WOP_PARAM_MESSAGE_2_CARRY_2_32);
/// let mut cks = ClientKey::new(param, 3, 1);
///
/// let msg = 1844640.;
/// // Encryption of one message:
/// let ct = cks.encrypt(msg);
/// let res = cks.decrypt(&ct);
///
/// //approximation less than 0.1%
/// assert_eq!(res, msg)
/// ```
pub fn decrypt(&self, ctxt: &Ciphertext) -> f64 {
let log_message_modulus = f64::log2(self.parameters().message_modulus().0 as f64) as usize;
let value_exponent = log_message_modulus as i64;
let mut mantissa = self.decrypt_mantissa(&ctxt.ct_vec_mantissa) as f64;
let mut exponent = self.decrypt_exponent(&ctxt.ct_vec_exponent) as i64;
let sign = self.decrypt_sign(&ctxt.ct_sign);
exponent += ctxt.e_min;
if exponent > 0 {
for _ in 0..exponent.abs() {
mantissa *= (1_u128 << value_exponent) as f64
}
} else {
for _ in 0..exponent.abs() {
mantissa /= (1_u128 << value_exponent) as f64
}
}
let res;
if sign == 1 {
res = -mantissa
} else {
res = mantissa
}
res
}
pub fn decrypt_mantissa(&self, ctxt: &Vec<shortint::Ciphertext>) -> u128 {
let mut result = 0_u128;
let mut shift = 1_u128;
for c_i in ctxt.iter() {
//decrypt the component i of the integer and multiply it by the radix product
let tmp = (self.key.decrypt_message_and_carry(c_i) as u128).wrapping_mul(shift);
// update the result
result = result.wrapping_add(tmp as u128);
// update the shift for the next iteration
shift = shift.wrapping_mul(self.parameters().message_modulus().0 as u128);
}
result
}
pub fn decrypt_exponent(&self, ctxt: &Vec<shortint::Ciphertext>) -> u64 {
let mut result = 0_u64;
let mut shift = 1_u64;
for c_i in ctxt.iter() {
//decrypt the component i of the integer and multiply it by the radix product
let tmp = self.key.decrypt_message_and_carry(c_i).wrapping_mul(shift);
// update the result
result = result.wrapping_add(tmp);
// update the shift for the next iteration
shift = shift.wrapping_mul(self.parameters().message_modulus().0 as u64);
}
result
}
pub fn decrypt_sign(&self, ctxt: &shortint::Ciphertext) -> u64 {
let result = self.key.decrypt_message_and_carry_without_padding(ctxt);
result
/ (self.key.parameters.message_modulus().0 * self.key.parameters.carry_modulus().0 / 2)
as u64
}
}

View File

@@ -0,0 +1,51 @@
use serde::{Deserialize, Serialize};
#[derive(Debug, PartialEq, Eq, Copy, Clone, Serialize, Deserialize)]
pub struct RadixDecomposition {
pub msg_space: usize,
pub block_number: usize,
}
/// Computes possible radix decompositions
///
/// Takes the number of bit of the message space as input and output a vector containing all the
/// correct
/// possible block decomposition assuming the same message space for all blocks.
/// Lower and upper bounds define the minimal and maximal space to be considered
/// Example: 6,2,4 -> [ [2,3], [3,2]] : [msg_space = 2 bits, block_number = 3]
///
/// # Example
///
/// ```rust
/// use concrete_float::client_key::radix_decomposition;
/// let input_space = 16; //
/// let min = 2;
/// let max = 4;
/// let decomp = radix_decomposition(input_space, min, max);
///
/// // Check that 3 possible radix decompositions are provided
/// assert_eq!(decomp.len(), 3);
/// ```
pub fn radix_decomposition(
input_space: usize,
min_space: usize,
max_space: usize,
) -> Vec<RadixDecomposition> {
let mut out: Vec<RadixDecomposition> = vec![];
let mut max = max_space;
if max_space > input_space {
max = input_space;
}
for msg_space in min_space..max + 1 {
let mut block_number = input_space / msg_space;
//Manual ceil of the division
if input_space % msg_space != 0 {
block_number += 1;
}
out.push(RadixDecomposition {
msg_space,
block_number,
})
}
out
}

View File

@@ -0,0 +1,41 @@
use std::fs::File;
use std::io::{BufReader, BufWriter};
use std::path::Path;
use lazy_static::lazy_static;
use crate::{ClientKey, ServerKey};
#[derive(Default)]
pub struct FloatKeyCache;
lazy_static! {
pub static ref KEY_CACHE: FloatKeyCache = FloatKeyCache::default();
}
pub fn get_sks(str: &str) -> ServerKey {
let fiptr = format!("key/sks_key/{}", str);
let filepath = Path::new(&fiptr);
let file = BufReader::new(File::open(filepath).unwrap());
let saved_key: ServerKey = bincode::deserialize_from(file).unwrap();
saved_key
}
pub fn get_cks(str: &str) -> ClientKey {
let fiptr = format!("key/cks_key/{}", str);
let filepath = Path::new(&fiptr);
let file = BufReader::new(File::open(filepath).unwrap());
let saved_key: ClientKey = bincode::deserialize_from(file).unwrap();
saved_key
}
pub fn save_sks(key: ServerKey, str: &str) {
let filepath = format!("key/sks_key/{}", str);
let file = BufWriter::new(File::create(filepath).unwrap());
bincode::serialize_into(file, &key).unwrap();
}
pub fn save_cks(key: ClientKey ,str: &str) {
let filepath = format!("key/cks_key/{}", str);
let file = BufWriter::new(File::create(filepath).unwrap());
bincode::serialize_into(file, &key).unwrap();
}

92
concrete-float/src/lib.rs Executable file
View File

@@ -0,0 +1,92 @@
/*
#![allow(clippy::excessive_precision)]
//! Welcome the the `concrete-integer` documentation!
//!
//! # Description
//!
//! This library makes it possible to execute modular operations over encrypted integer.
//!
//! It allows to execute an integer circuit on an untrusted server because both circuit inputs
//! outputs are kept private.
//!
//! Data are encrypted on the client side, before being sent to the server.
//! On the server side every computation is performed on ciphertexts
//!
//! # Quick Example
//!
//! The following piece of code shows how to generate keys and run a integer circuit
//! homomorphically.
//!
//! ```rust
//! use concrete_float::gen_keys;
//! use concrete_shortint::parameters::PARAM_MESSAGE_2_CARRY_2;
//!
//! //4 blocks for the radix decomposition
//! let number_of_blocks = 4;
//! // Modulus = (2^2)*4 = 2^8 (from the parameters chosen and the number of blocks
//! let modulus = 1 << 8;
//!
//! // Generation of the client/server keys, using the default parameters:
//! let (mut client_key, mut server_key) = gen_keys(&PARAM_MESSAGE_2_CARRY_2, number_of_blocks);
//!
//! let msg1 = 153;
//! let msg2 = 125;
//!
//! // Encryption of two messages using the client key:
//! let ct_1 = client_key.encrypt(msg1);
//! let ct_2 = client_key.encrypt(msg2);
//!
//! // Homomorphic evaluation of an integer circuit (here, an addition) using the server key:
//! let ct_3 = server_key.unchecked_add(&ct_1, &ct_2);
//!
//! // Decryption of the ciphertext using the client key:
//! let output = client_key.decrypt(&ct_3);
//! assert_eq!(output, (msg1 + msg2) % modulus);
//! ```
//!
//! # Warning
//! This uses cryptographic parameters from the `concrete-shortint` crates.
//! Currently, the radix approach is only compatible with parameter sets such
//! that the message and carry buffers have the same size.
extern crate core;
*/
extern crate core;
pub mod ciphertext;
pub mod client_key;
pub mod parameters;
pub mod server_key;
use crate::client_key::ClientKey;
use crate::server_key::ServerKey;
//pub mod keycache;
//pub mod wopbs;
#[cfg(doctest)]
//mod test_user_docs;
use tfhe::shortint;
use tfhe::shortint;
/// Generate a couple of client and server keys with given parameters
///
/// * the client key is used to encrypt and decrypt and has to be kept secret;
/// * the server key is used to perform homomorphic operations on the server side and it is meant to
/// be published (the client sends it to the server).
///
/// ```rust
/// use concrete_float::gen_keys;
/// use concrete_shortint::parameters::DEFAULT_PARAMETERS;
///
/// let size_mantissa = 4;
/// let size_exponent = 1;
/// ```
pub fn gen_keys(
parameters_set: shortint::ClassicPBSParameters,
parameters_set_wopbs: shortint::WopbsParameters,
size_mantissa: usize,
size_exponent: usize,
) -> (ClientKey, ServerKey) {
let params = (parameters_set, parameters_set_wopbs);
let cks = ClientKey::new(params, size_mantissa, size_exponent);
let sks = ServerKey::new(&cks);
(cks, sks)
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,158 @@
use crate::server_key::Ciphertext;
use crate::ServerKey;
use rayon::prelude::*;
use tfhe::shortint;
//use crate::keycache::{get_sks, get_cks};
impl ServerKey {
/// Computes homomorphically an addition between two ciphertexts encrypting integer values.
///
/// This function computes the operation without checking if it exceeds the capacity of the
/// ciphertext.
///
/// The result is returned as a new ciphertext.
///
/// # Example
///
/// ```rust
/// ```
pub fn unchecked_add_mantissa(
&self,
ct_left: &Ciphertext,
ct_right: &Ciphertext,
) -> Ciphertext {
let mut result = ct_left.clone();
self.unchecked_add_mantissa_assign(&mut result, ct_right);
result
}
/// Computes homomorphically an addition between two ciphertexts encrypting integer values.
///
/// This function computes the operation without checking if it exceeds the capacity of the
/// ciphertext.
///
/// The result is assigned to the `ct_left` ciphertext.
/// ```rust
/// ```
pub fn unchecked_add_mantissa_assign(&self, ct_left: &mut Ciphertext, ct_right: &Ciphertext) {
for (ct_left_i, ct_right_i) in ct_left
.ct_vec_mantissa
.iter_mut()
.zip(ct_right.ct_vec_mantissa.iter())
{
self.key.unchecked_add_assign(ct_left_i, ct_right_i);
}
}
/// we suppose that the mantissa are align
pub fn add_mantissa(&self, ct_left: &mut Ciphertext, ct_right: &mut Ciphertext) {
for (ct_left_i, ct_right_i) in ct_left
.ct_vec_mantissa
.iter_mut()
.zip(ct_right.ct_vec_mantissa.iter())
{
self.key.unchecked_add_assign(ct_left_i, ct_right_i);
}
}
/// Verifies if ct1 and ct2 can be added together.
///
/// # Example
///
///```rust
/// ```
pub fn is_add_possible(
&self,
ct_left: &[shortint::ciphertext::Ciphertext],
ct_right: &[shortint::ciphertext::Ciphertext],
) -> bool {
for (ct_left_i, ct_right_i) in ct_left.iter().zip(ct_right.iter()) {
if self.key.is_add_possible(ct_left_i, ct_right_i).is_err() {
return false;
}
}
true
}
pub fn add_total(&self, ct1: &Ciphertext, ct2: &Ciphertext) -> Ciphertext {
let res_sign = self.key.unchecked_add(&ct1.ct_sign, &ct2.ct_sign);
let (mut ct1_aligned, mut ct2_aligned) = self.align_mantissa(&ct1, &ct2);
let ct_sub = self.sub_mantissa(&ct1_aligned, &ct2_aligned);
self.add_mantissa(&mut ct1_aligned, &mut ct2_aligned);
// message space == 0 because the sign is on the padding bit
let ggsw = self.ggsw_ks_cbs(&res_sign, 0); // let ggsw = self.wopbs_key.extract_one_bit_cbs(&self.key, &res_sign, 63);
let mut res = self.cmuxes_full(&ct1_aligned, &ct_sub, &ggsw);
self.clean_degree(&mut res);
res
}
/// Computes homomorphically an addition between two ciphertexts encrypting integer values.
///
/// This function computes the operation without checking if it exceeds the capacity of the
/// ciphertext.
///
/// The result is returned as a new ciphertext.
///
/// # Example
///
/// ```rust
/// ```
pub fn unchecked_add_mantissa_parallelized(
&self,
ct_left: &Ciphertext,
ct_right: &Ciphertext,
) -> Ciphertext {
let mut result = ct_left.clone();
self.unchecked_add_mantissa_assign_parallelized(&mut result, ct_right);
result
}
/// Computes homomorphically an addition between two ciphertexts encrypting integer values.
///
/// This function computes the operation without checking if it exceeds the capacity of the
/// ciphertext.
///
/// The result is assigned to the `ct_left` ciphertext.
/// ```rust
/// ```
pub fn unchecked_add_mantissa_assign_parallelized(
&self,
ct_left: &mut Ciphertext,
ct_right: &Ciphertext,
) {
ct_left
.ct_vec_mantissa
.par_iter_mut()
.zip(ct_right.ct_vec_mantissa.par_iter())
.for_each(|(ct_left_i, ct_right_i)| {
self.key.unchecked_add_assign(ct_left_i, ct_right_i);
});
}
/// we suppose that the mantissa are align
pub fn add_mantissa_parallelized(&self, ct_left: &mut Ciphertext, ct_right: &mut Ciphertext) {
// The operation is too small to be worth parallelizing
ct_left
.ct_vec_mantissa
.iter_mut()
.zip(ct_right.ct_vec_mantissa.iter())
.for_each(|(ct_left_i, ct_right_i)| {
self.key.unchecked_add_assign(ct_left_i, ct_right_i);
});
}
pub fn add_total_parallelized(&self, ct1: &Ciphertext, ct2: &Ciphertext) -> Ciphertext {
let res_sign = self.key.unchecked_add(&ct1.ct_sign, &ct2.ct_sign);
let (mut ct1_aligned, mut ct2_aligned) = self.align_mantissa_parallelized(&ct1, &ct2);
let ct_sub = self.sub_mantissa_parallelized(&ct1_aligned, &ct2_aligned);
self.add_mantissa_parallelized(&mut ct1_aligned, &mut ct2_aligned);
// message space == 0 because the sign is on the padding bit
let ggsw = self.ggsw_ks_cbs_parallelized(&res_sign, 0); // let ggsw = self.wopbs_key.extract_one_bit_cbs(&self.key, &res_sign, 63);
let mut res = self.cmuxes_full_parallelized(&ct1_aligned, &ct_sub, &ggsw);
self.clean_degree_parallelized(&mut res);
res
}
}

View File

@@ -0,0 +1,162 @@
use crate::server_key::Ciphertext;
use crate::ServerKey;
use aligned_vec::ABox;
use rayon::prelude::*;
use tfhe::core_crypto::fft_impl::fft64::c64;
use tfhe::core_crypto::fft_impl::fft64::crypto::ggsw::FourierGgswCiphertext;
use tfhe::shortint;
impl ServerKey {
// align the two mantissas of to floating points
pub fn align_mantissa(
&self,
ct_left: &Ciphertext,
ct_right: &Ciphertext,
) -> (Ciphertext, Ciphertext) {
let (ct_res, sign) = self.sub(&ct_left.ct_vec_exponent, &ct_right.ct_vec_exponent);
let (vec_ggsw, sign_ggsw) =
self.create_vec_ggsw_after_sub(&ct_res, &sign, ct_left.ct_vec_mantissa.len());
let mut need_to_be_aligned = self.cmuxes(
&ct_left.ct_vec_mantissa,
&ct_right.ct_vec_mantissa,
&sign_ggsw,
);
let aligned_exp = self.cmuxes(
&ct_right.ct_vec_exponent,
&ct_left.ct_vec_exponent,
&sign_ggsw,
);
let aligned = self.cmux_tree_mantissa(&mut need_to_be_aligned, &vec_ggsw);
let ct_left_aligned = self.cmuxes(&aligned, &ct_left.ct_vec_mantissa, &sign_ggsw);
let ct_right_aligned = self.cmuxes(&ct_right.ct_vec_mantissa, &aligned, &sign_ggsw);
let new_left = Ciphertext {
ct_vec_mantissa: ct_left_aligned,
ct_vec_exponent: aligned_exp.clone(),
ct_sign: ct_left.ct_sign.clone(),
e_min: ct_left.e_min,
};
let new_right = Ciphertext {
ct_vec_mantissa: ct_right_aligned,
ct_vec_exponent: aligned_exp,
ct_sign: ct_right.ct_sign.clone(),
e_min: ct_right.e_min,
};
(new_left, new_right)
}
pub fn align_mantissa_parallelized(
&self,
ct_left: &Ciphertext,
ct_right: &Ciphertext,
) -> (Ciphertext, Ciphertext) {
let (mut ct_res, sign) =
self.abs_diff_parallelized(&ct_left.ct_vec_exponent, &ct_right.ct_vec_exponent);
let (vec_ggsw, sign_ggsw) = self.create_vec_ggsw_after_sub_parallelized(
&mut ct_res,
&sign,
ct_left.ct_vec_mantissa.len(),
);
let (mut need_to_be_aligned, aligned_exp) = rayon::join(
|| {
self.cmuxes_parallelized(
&ct_left.ct_vec_mantissa,
&ct_right.ct_vec_mantissa,
&sign_ggsw,
)
},
|| {
self.cmuxes_parallelized(
&ct_right.ct_vec_exponent,
&ct_left.ct_vec_exponent,
&sign_ggsw,
)
},
);
let aligned = self.cmux_tree_mantissa_parallelized(&mut need_to_be_aligned, &vec_ggsw);
let (ct_left_aligned, ct_right_aligned) = rayon::join(
|| self.cmuxes_parallelized(&aligned, &ct_left.ct_vec_mantissa, &sign_ggsw),
|| self.cmuxes_parallelized(&ct_right.ct_vec_mantissa, &aligned, &sign_ggsw),
);
let new_left = Ciphertext {
ct_vec_mantissa: ct_left_aligned,
ct_vec_exponent: aligned_exp.clone(),
ct_sign: ct_left.ct_sign.clone(),
e_min: ct_left.e_min,
};
let new_right = Ciphertext {
ct_vec_mantissa: ct_right_aligned,
ct_vec_exponent: aligned_exp,
ct_sign: ct_right.ct_sign.clone(),
e_min: ct_right.e_min,
};
(new_left, new_right)
}
pub fn create_vec_ggsw_after_sub(
&self,
ct_res: &Vec<shortint::ciphertext::Ciphertext>,
sign: &shortint::ciphertext::Ciphertext,
len_mantissa: usize,
) -> (
Vec<FourierGgswCiphertext<ABox<[c64]>>>,
FourierGgswCiphertext<ABox<[c64]>>,
) {
let msg_modulus = self.wopbs_key.param.message_modulus.0 as u64;
let car_modulus = self.wopbs_key.param.carry_modulus.0 as u64;
let msg_space = (msg_modulus * car_modulus) as usize;
let mut ct_res = ct_res.clone();
self.full_propagate_exponent(&mut ct_res);
let mut vec_ggsw = Vec::new();
for i in 0..ct_res.len() {
if len_mantissa < ((f64::log2(msg_modulus as f64) as usize) * i) {
let mut ggsw = vec![self.ggsw_pbs_ks_cbs(&ct_res[i], msg_space)];
ggsw.append(&mut vec_ggsw);
vec_ggsw = ggsw
} else {
let mut ggsw = self.extract_bit_cbs(&ct_res[i]);
ggsw.append(&mut vec_ggsw);
vec_ggsw = ggsw;
}
}
// message space == 0 because the sign is on the padding bit
let sign_ggsw = self.ggsw_ks_cbs(&sign, 0);
(vec_ggsw, sign_ggsw)
}
pub fn create_vec_ggsw_after_sub_parallelized(
&self,
ct_res: &mut [shortint::ciphertext::Ciphertext],
sign: &shortint::ciphertext::Ciphertext,
len_mantissa: usize,
) -> (
Vec<FourierGgswCiphertext<ABox<[c64]>>>,
FourierGgswCiphertext<ABox<[c64]>>,
) {
let msg_modulus = self.wopbs_key.param.message_modulus.0 as u64;
let car_modulus = self.wopbs_key.param.carry_modulus.0 as u64;
let msg_space = (msg_modulus * car_modulus) as usize;
self.full_propagate_exponent_parallelized(ct_res);
let vec_ggsw: Vec<_> = ct_res
.par_iter()
.enumerate()
.rev()
.map(|(i, block)| {
if (msg_modulus.ilog2() as usize * i) > len_mantissa {
vec![self.is_block_non_zero_ggsw_pbs_ks_cbs_parallelized(&block, msg_space)]
} else {
self.extract_bit_cbs_parallelized(&block)
}
})
.flatten()
.collect();
// message space == 0 because the sign is on the padding bit
let sign_ggsw = self.ggsw_ks_cbs_parallelized(&sign, 0);
(vec_ggsw, sign_ggsw)
}
}

View File

@@ -0,0 +1,53 @@
use crate::ciphertext::Ciphertext;
use crate::server_key::ServerKey;
use tfhe::integer::ciphertext::RadixCiphertext;
use tfhe::integer::IntegerCiphertext;
impl ServerKey {
pub fn division(&self, ct1: &Ciphertext, ct2: &Ciphertext) -> Ciphertext {
let msg_modulus = self.wopbs_key.param.message_modulus.0 as u64;
let log_msg_modulus = f64::log2(msg_modulus as f64) as u64;
let len_vec_exp = ct1.ct_vec_exponent.len();
let len_vec_man = ct1.ct_vec_mantissa.len();
let mut res = self.create_trivial_zero(
ct1.ct_vec_mantissa.len(),
ct1.ct_vec_exponent.len(),
ct1.e_min,
);
let zero = self.create_trivial_zero(
ct1.ct_vec_mantissa.len(),
ct1.ct_vec_exponent.len(),
ct1.e_min,
);
res.ct_sign = self.key.unchecked_add(&ct1.ct_sign, &ct2.ct_sign);
res.ct_vec_exponent = ct1.ct_vec_exponent.clone();
let cst = ct1.e_min + len_vec_man as i64 - 1;
for i in 0..len_vec_exp {
let cst = (cst.abs() as u64) >> (log_msg_modulus * i as u64);
self.key.unchecked_scalar_add_assign(
&mut res.ct_vec_exponent[i],
(cst % msg_modulus) as u8,
);
}
let (res_exp, sign) = self.sub(&res.ct_vec_exponent, &ct2.ct_vec_exponent);
res.ct_vec_exponent = res_exp;
let mut cct1 = RadixCiphertext::from(ct1.ct_vec_mantissa.clone());
let mut cct2 = RadixCiphertext::from(ct2.ct_vec_mantissa.clone());
let int_key = tfhe::integer::ServerKey::from_shortint_ex(self.key.clone());
int_key.extend_radix_with_trivial_zero_blocks_lsb_assign(&mut cct1, len_vec_man - 1);
int_key.extend_radix_with_trivial_zero_blocks_msb_assign(&mut cct2, len_vec_man - 1);
let res_mantissa = int_key.unchecked_div_parallelized(&cct1, &cct2);
// message space == 0 because the sign is on the padding bit
let sign_ggsw = self.ggsw_ks_cbs(&sign, 0);
res.ct_vec_mantissa = res_mantissa.blocks()[..len_vec_man].to_vec();
res = self.cmuxes_full(&zero, &res, &sign_ggsw);
res
}
}

View File

@@ -0,0 +1,390 @@
//! Module with the definition of the ServerKey.
//!
//! This module implements the generation of the server public key, together with all the
//! available homomorphic integer operations.
mod add;
mod align_mantissa;
mod division;
mod mul;
mod relu;
mod sigmoid;
mod sub;
mod tools;
#[cfg(test)]
mod tests;
use tfhe::shortint;
use crate::ciphertext::Ciphertext;
use crate::client_key::ClientKey;
use serde::{Deserialize, Serialize};
use shortint::ciphertext::{Degree, MaxDegree};
/// Error returned when the carry buffer is full.
pub use shortint::CheckError;
/// A structure containing the server public key.
///
/// The server key is generated by the client and is meant to be published: the client
/// sends it to the server so it can compute homomorphic integer circuits.
#[derive(Serialize, Deserialize, Clone)]
pub struct ServerKey {
pub key: shortint::server_key::ServerKey,
pub integer_key: tfhe::integer::server_key::ServerKey,
pub wopbs_key: shortint::wopbs::WopbsKey,
}
impl ServerKey {
/// Generates a server key.
///
/// # Example
///
/// ```rust
/// use concrete_float::parameters::{PARAM_MESSAGE_2_CARRY_2_32, WOP_PARAM_MESSAGE_2_CARRY_2_32};
/// use concrete_float::{ClientKey, ServerKey};
/// //mantissa and exponent defined over 4 blocks ///
/// let size_mantissa = 4;
/// let size_exponent = 2;
///
/// // Generate the client key:
/// let param = (PARAM_MESSAGE_2_CARRY_2_32, WOP_PARAM_MESSAGE_2_CARRY_2_32);
/// let cks = ClientKey::new(param, size_mantissa, size_exponent);
///
/// // Generate the server key:
/// let sks = ServerKey::new(&cks);
/// ```
pub fn new(cks: &ClientKey) -> ServerKey {
// It should remain just enough space to add a carry
let max =
(cks.key.parameters.message_modulus().0 - 1) * cks.key.parameters.carry_modulus().0 - 1;
let key =
shortint::server_key::ServerKey::new_with_max_degree(&cks.key, MaxDegree::new(max));
let integer_key = tfhe::integer::server_key::ServerKey::from_shortint_ex(key.clone());
let wopbs_key =
shortint::wopbs::WopbsKey::new_wopbs_key_only_for_wopbs(&cks.key, &key.clone());
ServerKey {
key,
integer_key,
wopbs_key,
}
}
/// Create a ciphertext filled with zeros
///
/// # Example
///
/// ```rust
/// use concrete_float::gen_keys;
/// use concrete_shortint::parameters::DEFAULT_PARAMETERS;
///
/// let size_mantissa = 4;
/// let size_exponent = 4;
/// let e_min = -2;
/// // Generate the client key and the server key:
/// let (cks, sks) = gen_keys(&DEFAULT_PARAMETERS, size, size);
///
/// let ctxt = sks.create_trivial_zero(size_mantissa, size_exponent, e_min, vec![]);
///
/// // Decrypt:
/// let dec = cks.decrypt(&ctxt);
/// assert_eq!(0, dec);
/// ```
pub fn create_trivial_zero(
&self,
size_mantissa: usize,
size_exponent: usize,
e_min: i64,
) -> Ciphertext {
let mut vec_res_mantissa = Vec::<shortint::Ciphertext>::with_capacity(size_mantissa);
let mut zero = self.key.create_trivial(0_u64);
zero.degree = Degree::new(0);
for _ in 0..size_mantissa {
vec_res_mantissa.push(zero.clone());
}
let mut vec_res_exponent = Vec::<shortint::Ciphertext>::with_capacity(size_exponent);
for _ in 0..size_exponent {
vec_res_exponent.push(zero.clone());
}
let sign = zero;
Ciphertext {
ct_vec_mantissa: vec_res_mantissa,
ct_vec_exponent: vec_res_exponent,
ct_sign: sign,
e_min,
}
}
pub fn create_trivial_zero_from_ct(&self, ctxt: &Ciphertext) -> Ciphertext {
self.create_trivial_zero(
ctxt.ct_vec_mantissa.len(),
ctxt.ct_vec_exponent.len(),
ctxt.e_min,
)
}
/// Propagate the carry of the 'index' block to the next one.
/// if index is equals to the MS LWE, this operation do nothing.
/// We want to keep all the information on this LWE ( with this operation we can't create a
/// new LWE
pub fn propagate_mantissa(&self, ctxt: &mut [shortint::Ciphertext], index: usize) {
if index < ctxt.len() - 1 {
let carry = self.key.carry_extract(&ctxt[index]);
ctxt[index] = self.key.message_extract(&ctxt[index]);
self.key.unchecked_add_assign(&mut ctxt[index + 1], &carry);
}
//TODO maybe just BS to decrease the noise ?
}
/// Propagate all the carries.
pub fn full_propagate_mantissa(&self, ctxt: &mut [shortint::Ciphertext]) {
let len = ctxt.len();
for i in 0..len {
self.propagate_mantissa(ctxt, i);
}
}
pub fn propagate_exponent(&self, ctxt: &mut Vec<shortint::Ciphertext>, index: usize) {
if index < ctxt.len() - 1 {
let carry = self.key.carry_extract(&ctxt[index]);
ctxt[index] = self.key.message_extract(&ctxt[index]);
self.key.unchecked_add_assign(&mut ctxt[index + 1], &carry);
} else {
ctxt[index] = self.key.message_extract(&ctxt[index]);
}
}
/// Propagate all the carries.
/// except the msb lwe
pub fn partial_propagate(&self, ctxt: &mut Vec<shortint::Ciphertext>) {
for i in 0..(ctxt.len() - 1) {
self.propagate_exponent(ctxt, i);
}
}
/// Propagate all the carries.
pub fn full_propagate_exponent(&self, ctxt: &mut Vec<shortint::Ciphertext>) {
for i in 0..(ctxt.len()) {
self.propagate_exponent(ctxt, i);
}
}
/// boolean bootstrapping
pub fn reduce_noise_sign(&self, ctxt: &mut Ciphertext) {
let msg_modulus = ctxt.ct_sign.message_modulus.0 as u64;
let car_modulus = ctxt.ct_sign.carry_modulus.0 as u64;
let msg_space = msg_modulus * car_modulus;
self.key
.unchecked_scalar_add_assign(&mut ctxt.ct_sign, (msg_space / 2) as u8);
let accumulator = self
.key
.generate_lookup_table(|x| (x & (msg_space / 2)).wrapping_neg());
//self.key.keyswitch_programmable_bootstrap_assign(&mut ctxt.ct_sign, &accumulator);
self.key
.apply_lookup_table_assign(&mut ctxt.ct_sign, &accumulator);
self.key
.unchecked_scalar_add_assign(&mut ctxt.ct_sign, (msg_space / 2) as u8);
// We can always add as the sign is managed on the padding bit, the only important thing is
// the noise
ctxt.ct_sign.degree = Degree::new(0);
}
fn propagate_mantissa_increase_exponent_if_necessary(
&self,
ctxt: &mut Ciphertext,
index: usize,
) {
if index < ctxt.ct_vec_mantissa.len() - 1 {
let carry = self.key.carry_extract(&ctxt.ct_vec_mantissa[index]);
ctxt.ct_vec_mantissa[index] = self.key.message_extract(&ctxt.ct_vec_mantissa[index]);
self.key
.unchecked_add_assign(&mut ctxt.ct_vec_mantissa[index + 1], &carry);
} else {
self.increase_exponent_if_necessary(ctxt);
}
}
fn increase_exponent_if_necessary(&self, ctxt: &mut Ciphertext) {
let msg_modulus = self.wopbs_key.param.message_modulus.0 as usize;
let car_modulus = self.wopbs_key.param.carry_modulus.0 as usize;
let msg_space = f64::log2((msg_modulus * car_modulus) as f64) as usize;
let len = ctxt.ct_vec_mantissa.len();
let carry = self
.key
.carry_extract(&ctxt.ct_vec_mantissa.last().unwrap());
ctxt.ct_vec_mantissa[len - 1] = self
.key
.message_extract(&ctxt.ct_vec_mantissa.last().clone().unwrap());
let mut tmp = ctxt.clone();
tmp.ct_vec_mantissa.push(carry.clone());
let _ = tmp.ct_vec_mantissa.remove(0);
self.key
.unchecked_scalar_add_assign(&mut tmp.ct_vec_exponent[0], 1);
let ggsw_carry = self.ggsw_pbs_ks_cbs(&carry, msg_space);
let res = self.cmuxes_full(ctxt, &tmp, &ggsw_carry);
ctxt.ct_vec_mantissa = res.ct_vec_mantissa;
ctxt.ct_vec_exponent = res.ct_vec_exponent;
}
pub fn full_propagate_mantissa_increase_exponent_if_necessary(&self, ctxt: &mut Ciphertext) {
let len = ctxt.ct_vec_mantissa.len();
for i in 0..len {
self.propagate_mantissa_increase_exponent_if_necessary(ctxt, i);
}
}
pub fn clean_degree(&self, ctxt: &mut Ciphertext) {
self.reduce_noise_sign(ctxt);
self.full_propagate_exponent(&mut ctxt.ct_vec_exponent);
self.full_propagate_mantissa_increase_exponent_if_necessary(ctxt)
}
/// Propagate the carry of the 'index' block to the next one.
/// if index is equals to the MS LWE, this operation do nothing.
/// We want to keep all the information on this LWE ( with this operation we can't create a
/// new LWE
pub fn propagate_mantissa_parallelized(&self, ctxt: &mut [shortint::Ciphertext], index: usize) {
// todo!("propagate_mantissa_parallelized");
if index < ctxt.len() - 1 {
let (carry, msg) = rayon::join(
|| self.key.carry_extract(&ctxt[index]),
|| self.key.message_extract(&ctxt[index]),
);
ctxt[index] = msg;
self.key.unchecked_add_assign(&mut ctxt[index + 1], &carry);
}
//TODO maybe just BS to decrease the noise ?
}
/// Propagate all the carries.
pub fn full_propagate_mantissa_parallelized(&self, ctxt: &mut [shortint::Ciphertext]) {
// todo!("full_propagate_mantissa_parallelized");
let len = ctxt.len();
for i in 0..len {
self.propagate_mantissa_parallelized(ctxt, i);
}
}
// TODO use the low latency propagation
pub fn propagate_exponent_parallelized(&self, ctxt: &mut [shortint::Ciphertext], index: usize) {
if index < ctxt.len() - 1 {
let (carry, msg) = rayon::join(
|| self.key.carry_extract(&ctxt[index]),
|| self.key.message_extract(&ctxt[index]),
);
ctxt[index] = msg;
self.key.unchecked_add_assign(&mut ctxt[index + 1], &carry);
} else {
self.key.message_extract_assign(&mut ctxt[index]);
}
}
/// Propagate all the carries.
/// except the msb lwe
pub fn partial_propagate_parallelized(&self, ctxt: &mut Vec<shortint::Ciphertext>) {
for i in 0..(ctxt.len() - 1) {
self.propagate_exponent_parallelized(ctxt, i);
}
}
/// Propagate all the carries.
pub fn full_propagate_exponent_parallelized(&self, ctxt: &mut [shortint::Ciphertext]) {
for i in 0..(ctxt.len()) {
self.propagate_exponent_parallelized(ctxt, i);
}
}
fn propagate_mantissa_increase_exponent_if_necessary_parallelized(
&self,
ctxt: &mut Ciphertext,
index: usize,
) {
if index < ctxt.ct_vec_mantissa.len() - 1 {
let (carry, msg) = rayon::join(
|| self.key.carry_extract(&ctxt.ct_vec_mantissa[index]),
|| self.key.message_extract(&ctxt.ct_vec_mantissa[index]),
);
ctxt.ct_vec_mantissa[index] = msg;
self.key
.unchecked_add_assign(&mut ctxt.ct_vec_mantissa[index + 1], &carry);
} else {
self.increase_exponent_if_necessary_parallelized(ctxt);
}
}
fn increase_exponent_if_necessary_parallelized(&self, ctxt: &mut Ciphertext) {
let msg_modulus = self.wopbs_key.param.message_modulus.0 as usize;
let car_modulus = self.wopbs_key.param.carry_modulus.0 as usize;
let msg_space = f64::log2((msg_modulus * car_modulus) as f64) as usize;
let len = ctxt.ct_vec_mantissa.len();
let (carry, msg) = rayon::join(
|| {
self.key
.carry_extract(&ctxt.ct_vec_mantissa.last().unwrap())
},
|| {
self.key
.message_extract(&ctxt.ct_vec_mantissa.last().clone().unwrap())
},
);
ctxt.ct_vec_mantissa[len - 1] = msg;
let mut tmp = ctxt.clone();
tmp.ct_vec_mantissa.push(carry.clone());
let _ = tmp.ct_vec_mantissa.remove(0);
self.key
.unchecked_scalar_add_assign(&mut tmp.ct_vec_exponent[0], 1);
let ggsw_carry = self.is_block_non_zero_ggsw_pbs_ks_cbs_parallelized(&carry, msg_space);
let res = self.cmuxes_full_parallelized(ctxt, &tmp, &ggsw_carry);
ctxt.ct_vec_mantissa = res.ct_vec_mantissa;
ctxt.ct_vec_exponent = res.ct_vec_exponent;
}
fn increase_exponent_if_necessary_parallelized_carry(
&self,
ctxt: &mut Ciphertext,
mantissa_carry: &shortint::Ciphertext,
) {
let msg_modulus = self.wopbs_key.param.message_modulus.0 as usize;
let car_modulus = self.wopbs_key.param.carry_modulus.0 as usize;
let msg_space = (msg_modulus * car_modulus).ilog2() as usize;
let mut tmp = ctxt.clone();
tmp.ct_vec_mantissa.push(mantissa_carry.clone());
let _ = tmp.ct_vec_mantissa.remove(0);
self.key
.unchecked_scalar_add_assign(&mut tmp.ct_vec_exponent[0], 1);
let ggsw_carry =
self.is_block_non_zero_ggsw_pbs_ks_cbs_parallelized(&mantissa_carry, msg_space);
let res = self.cmuxes_full_parallelized(ctxt, &tmp, &ggsw_carry);
ctxt.ct_vec_mantissa = res.ct_vec_mantissa;
ctxt.ct_vec_exponent = res.ct_vec_exponent;
}
pub fn full_propagate_mantissa_increase_exponent_if_necessary_parallelized(
&self,
ctxt: &mut Ciphertext,
) {
let len = ctxt.ct_vec_mantissa.len();
for i in 0..len {
self.propagate_mantissa_increase_exponent_if_necessary_parallelized(ctxt, i);
}
}
pub fn clean_degree_parallelized(&self, ctxt: &mut Ciphertext) {
// todo!("clean_degree_parallelized");
self.reduce_noise_sign(ctxt);
// let now = std::time::Instant::now();
self.full_propagate_exponent_parallelized(&mut ctxt.ct_vec_exponent);
// let elapsed = now.elapsed();
// println!("elapsed exponent propagate: {elapsed:?}");
// let now = std::time::Instant::now();
self.full_propagate_mantissa_increase_exponent_if_necessary_parallelized(ctxt);
// let elapsed = now.elapsed();
// println!("elapsed mantissa propagate: {elapsed:?}");
}
}

View File

@@ -0,0 +1,373 @@
use crate::server_key::Ciphertext;
use crate::ServerKey;
use std::cmp::{max, min};
use tfhe::shortint;
impl ServerKey {
pub fn mul(&self, ct1: &mut Ciphertext, ct2: &mut Ciphertext) -> Ciphertext {
// carry need to be empty
for ct in ct1.ct_vec_mantissa.iter_mut() {
if ct.degree.get() > self.wopbs_key.param.message_modulus.0 {
self.full_propagate_mantissa(&mut ct1.ct_vec_mantissa);
break;
}
}
for ct in ct2.ct_vec_mantissa.iter() {
if ct.degree.get() > self.wopbs_key.param.message_modulus.0 {
self.full_propagate_mantissa(&mut ct2.ct_vec_mantissa);
break;
}
}
let mut res = self.mul_mantissa(ct1, ct2);
res = self.add_exponent_for_mul(&mut res.clone(), ct2);
res.ct_sign = self.add_sign_for_mul(ct1, ct2);
res
}
pub fn mul_parallelized(
&self,
ct1: &mut Ciphertext,
ct2: &mut Ciphertext,
) -> (Ciphertext, shortint::Ciphertext) {
// let now = std::time::Instant::now();
let (mut res, mantissa_carry) = self.mul_mantissa_parallelized(ct1, ct2);
// let elapsed = now.elapsed();
// println!("mul_mantissa: {elapsed:?}");
res = self.add_exponent_for_mul_parallelized(&mut res.clone(), ct2, &mantissa_carry);
res.ct_sign = self.add_sign_for_mul_parallelized(ct1, ct2);
(res, mantissa_carry)
}
fn mul_mantissa(&self, ct1: &mut Ciphertext, ct2: &mut Ciphertext) -> Ciphertext {
let mantissa_len = ct1.ct_vec_mantissa.len();
let value = (mantissa_len - 1) / 2;
let mut result = self.create_trivial_zero(
2 * mantissa_len - value - 1,
ct1.ct_vec_exponent.len(),
ct1.e_min,
);
for (i, ct2_i) in ct2.ct_vec_mantissa.iter().enumerate() {
let bound = max((value - i) as i64, 0) as usize;
let tmp = self.block_mul(
&ct1.ct_vec_mantissa[bound..].to_vec(),
ct2_i,
i,
ct1.ct_vec_mantissa.len(),
);
if !self.is_add_possible(
&tmp,
&result.ct_vec_mantissa
[min(0, (value - i) as i64).abs() as usize..(i + mantissa_len - value)],
) {
// we propagate only the necessary blocks,
// to not loose any information, we propagate one blocks before and one blocks after
self.full_propagate_mantissa(
&mut result.ct_vec_mantissa[min(0, (value + 1 - i) as i64).abs() as usize
..min(i + mantissa_len + 2 - value, 2 * mantissa_len - 1 - value)],
);
//self.full_propagate_mantissa(&mut result.ct_vec_mantissa);
}
for (ct_left_j, ct_right_j) in result.ct_vec_mantissa[min(0, (value - i) as i64).abs()
as usize
..min(i + mantissa_len + 1 - value, 2 * mantissa_len - 1 - value)]
.iter_mut()
.zip(tmp.iter())
{
self.key.unchecked_add_assign(ct_left_j, ct_right_j);
}
}
// the (log_msg_modulus * mantissa.len()) most significant bit of a multiplication are
// include either in the [mantissa_len, 2*mantissa_len] or in [mantissa_len - 1,
// 2*mantissa_len - 1] we choose the first one if the block 2*mantissa_len is not
// empty otherwise we choose the first one
let mut result_trunc = self.create_trivial_zero_from_ct(ct1);
result_trunc.ct_vec_mantissa =
result.ct_vec_mantissa[(mantissa_len - 1 - value)..].to_vec();
result_trunc.ct_vec_exponent = ct1.ct_vec_exponent.clone();
result_trunc
}
// Return the float ciphertext and the mantissa carry
fn mul_mantissa_parallelized(
&self,
ct1: &Ciphertext,
ct2: &Ciphertext,
) -> (Ciphertext, shortint::Ciphertext) {
use tfhe::integer::{IntegerCiphertext, IntegerRadixCiphertext, RadixCiphertext};
let mantissa_len = ct1.ct_vec_mantissa.len();
let mantissa_len_for_mul_with_carry = mantissa_len * 2;
let mut ct1_mantissa = ct1.ct_vec_mantissa.to_vec();
ct1_mantissa.resize(mantissa_len_for_mul_with_carry, self.key.create_trivial(0));
let mut ct2_mantissa = ct2.ct_vec_mantissa.to_vec();
ct2_mantissa.resize(mantissa_len_for_mul_with_carry, self.key.create_trivial(0));
let ct1_mantissa_as_integer = RadixCiphertext::from_blocks(ct1_mantissa);
let ct2_mantissa_as_integer = RadixCiphertext::from_blocks(ct2_mantissa);
// println!("ct1_len = {}", ct1_mantissa_as_integer.blocks().len());
// println!("ct2_len = {}", ct2_mantissa_as_integer.blocks().len());
// let now = std::time::Instant::now();
let mul_result = self
.integer_key
.mul_parallelized(&ct1_mantissa_as_integer, &ct2_mantissa_as_integer);
// let elapsed = now.elapsed();
// println!("integer mul: {elapsed:?}");
let mut mul_result_blocks = mul_result.into_blocks();
let carry_block = mul_result_blocks.pop().unwrap();
let mantissa = mul_result_blocks[mantissa_len - 1..].to_vec();
assert_eq!(mantissa.len(), ct1.ct_vec_mantissa.len());
let mut result_trunc = self.create_trivial_zero_from_ct(ct1);
result_trunc.ct_vec_mantissa = mantissa;
result_trunc.ct_vec_exponent = ct1.ct_vec_exponent.clone();
(result_trunc, carry_block)
}
// multiply one block of a mantissa by each block of another mantissa and create a mantissa of
// this mul
fn block_mul(
&self,
ct1: &Vec<shortint::ciphertext::Ciphertext>,
ct2: &shortint::ciphertext::Ciphertext,
index: usize,
len_man: usize,
) -> Vec<shortint::ciphertext::Ciphertext> {
let zero = self.key.create_trivial(0);
let mut result = vec![zero.clone()];
let mut result_lsb = ct1.clone();
let mut result_msb = ct1.clone();
if index != len_man - 1 {
for (ct_lsb_i, ct_msb_i) in result_lsb.iter_mut().zip(result_msb.iter_mut()) {
self.key.unchecked_mul_msb_assign(ct_msb_i, ct2);
self.key.unchecked_mul_lsb_assign(ct_lsb_i, ct2);
}
result_lsb.push(zero.clone());
result.append(&mut result_msb.clone());
} else {
for (ct_lsb_i, ct_msb_i) in result_lsb[..len_man - 1]
.iter_mut()
.zip(result_msb[..len_man - 1].iter_mut())
{
self.key.unchecked_mul_msb_assign(ct_msb_i, ct2);
self.key.unchecked_mul_lsb_assign(ct_lsb_i, ct2);
}
let msg_mod = self.key.message_modulus.0 as u64;
let tmp = self.key.unchecked_scalar_mul(ct2, msg_mod as u8);
self.key
.unchecked_add_assign(result_lsb.last_mut().unwrap(), &tmp);
// Generate the accumulator for the multiplication
let acc = self
.key
.generate_lookup_table(|x| (x / msg_mod) * (x % msg_mod));
self.key
.apply_lookup_table_assign(result_lsb.last_mut().unwrap(), &acc);
result.append(&mut result_msb.clone());
result.pop();
}
for (ct1_i, ct2_i) in result.iter_mut().zip(result_lsb.iter()) {
self.key.unchecked_add_assign(ct1_i, ct2_i)
}
result
}
//sum the two sign for the mul
fn add_sign_for_mul(
&self,
ct1: &mut Ciphertext,
ct2: &mut Ciphertext,
) -> shortint::ciphertext::Ciphertext {
if self
.key
.is_add_possible(&ct1.ct_sign, &ct2.ct_sign)
.is_err()
{
self.reduce_noise_sign(ct1);
self.reduce_noise_sign(ct2);
}
self.key.unchecked_add(&ct1.ct_sign, &ct2.ct_sign)
}
fn add_sign_for_mul_parallelized(
&self,
ct1: &mut Ciphertext,
ct2: &mut Ciphertext,
) -> shortint::ciphertext::Ciphertext {
if self
.key
.is_add_possible(&ct1.ct_sign, &ct2.ct_sign)
.is_err()
{
rayon::join(
|| self.reduce_noise_sign(ct1),
|| self.reduce_noise_sign(ct2),
);
}
self.key.unchecked_add(&ct1.ct_sign, &ct2.ct_sign)
}
// add the two exponent and subtract the value e_min and the shift on the MSB blocks
fn add_exponent_for_mul(&self, ct1: &mut Ciphertext, ct2: &mut Ciphertext) -> Ciphertext {
let msg_modulus = self.wopbs_key.param.message_modulus.0 as u64;
let carry_modulus = self.wopbs_key.param.carry_modulus.0 as u64;
let log_msg_modulus = f64::log2(msg_modulus as f64) as u64;
let log_msg_space = f64::log2((carry_modulus * msg_modulus) as f64) as usize;
let len_vec_exp = ct1.ct_vec_exponent.len();
if !self.is_add_possible(&ct1.ct_vec_exponent, &ct2.ct_vec_exponent) {
self.partial_propagate(&mut ct1.ct_vec_exponent);
self.partial_propagate(&mut ct2.ct_vec_exponent);
}
let mut res = ct1.clone();
for (ct_left_j, ct_right_j) in res
.ct_vec_exponent
.iter_mut()
.zip(ct2.ct_vec_exponent.iter())
{
self.key.unchecked_add_assign(ct_left_j, ct_right_j);
}
let cst = ct1.e_min + ct1.ct_vec_mantissa.len() as i64 - 1;
let cst = (cst.abs() as u64) >> (log_msg_modulus * (len_vec_exp - 1) as u64);
//check if the exponent is big enough (return 1 if e is to small, 0 otherwise)
let accumulator = self.key.generate_lookup_table(|x| ((x < cst) as u64));
let mut ct_sign = self
.key
.apply_lookup_table(&mut res.ct_vec_exponent.last().unwrap(), &accumulator);
//check if the mantissa is not equals to zero (return 1 if ms_lwe== 0, 0 otherwise)
let accumulator = self.key.generate_lookup_table(|x| ((x == 0) as u64));
let ms_lwe = self
.key
.apply_lookup_table(&mut ct1.ct_vec_mantissa.last().unwrap(), &accumulator);
self.key.unchecked_add_assign(&mut ct_sign, &ms_lwe);
let accumulator = self.key.generate_lookup_table(|x| ((x > 0) as u64));
let ct_sign = self.key.apply_lookup_table(&mut ct_sign, &accumulator);
let sign_ggsw = self.ggsw_ks_cbs(&ct_sign, log_msg_space);
let zero = self.create_trivial_zero_from_ct(ct1);
let accumulator = self.key.generate_lookup_table(|x| (x - cst) % msg_modulus);
self.key
.apply_lookup_table_assign(&mut res.ct_vec_exponent[len_vec_exp - 1], &accumulator);
res = self.cmuxes_full(&res, &zero, &sign_ggsw);
res
}
// add the two exponent and subtract the value e_min and the shift on the MSB blocks
fn add_exponent_for_mul_parallelized(
&self,
ct1: &mut Ciphertext,
ct2: &mut Ciphertext,
mantissa_carry: &shortint::Ciphertext,
) -> Ciphertext {
let msg_modulus = self.wopbs_key.param.message_modulus.0 as u64;
let carry_modulus = self.wopbs_key.param.carry_modulus.0 as u64;
let log_msg_modulus = msg_modulus.ilog2() as u64;
let log_msg_space = (carry_modulus * msg_modulus).ilog2() as usize;
let len_vec_exp = ct1.ct_vec_exponent.len();
if !self.is_add_possible(&ct1.ct_vec_exponent, &ct2.ct_vec_exponent) {
rayon::join(
|| self.partial_propagate(&mut ct1.ct_vec_exponent),
|| self.partial_propagate(&mut ct2.ct_vec_exponent),
);
}
let mut res = ct1.clone();
for (ct_left_j, ct_right_j) in res
.ct_vec_exponent
.iter_mut()
.zip(ct2.ct_vec_exponent.iter())
{
self.key.unchecked_add_assign(ct_left_j, ct_right_j);
}
let cst = ct1.e_min + ct1.ct_vec_mantissa.len() as i64 - 1;
let cst = (cst.abs() as u64) >> (log_msg_modulus * (len_vec_exp - 1) as u64);
let (mut ct_sign, ms_lwe) = rayon::join(
|| {
//check if the exponent is big enough (return 1 if e is to small, 0 otherwise)
let accumulator = self.key.generate_lookup_table(|x| ((x < cst) as u64));
self.key
.apply_lookup_table(&mut res.ct_vec_exponent.last().unwrap(), &accumulator)
},
|| {
//check if the mantissa is not equals to zero (return 1 if ms_lwe== 0, 0 otherwise)
let accumulator = self.key.generate_lookup_table(|x| ((x == 0) as u64));
let mut last_mantissa_block = ct1.ct_vec_mantissa.last().unwrap().clone();
// We recreate a mantissa block containing the msg + carry as we only want to know
// if it was 0
self.key
.unchecked_add_assign(&mut last_mantissa_block, &mantissa_carry);
self.key
.apply_lookup_table(&last_mantissa_block, &accumulator)
},
);
self.key.unchecked_add_assign(&mut ct_sign, &ms_lwe);
rayon::join(
|| {
let accumulator = self.key.generate_lookup_table(|x| ((x > 0) as u64));
self.key
.apply_lookup_table_assign(&mut ct_sign, &accumulator);
},
|| {
let accumulator = self.key.generate_lookup_table(|x| (x - cst) % msg_modulus);
self.key.apply_lookup_table_assign(
&mut res.ct_vec_exponent[len_vec_exp - 1],
&accumulator,
);
},
);
let sign_ggsw = self.ggsw_ks_cbs_parallelized(&ct_sign, log_msg_space);
let zero = self.create_trivial_zero_from_ct(ct1);
res = self.cmuxes_full_parallelized(&res, &zero, &sign_ggsw);
res
}
pub fn mul_total(&self, ct1: &Ciphertext, ct2: &Ciphertext) -> Ciphertext {
let mut res = self.mul(&mut ct1.clone(), &mut ct2.clone());
self.clean_degree(&mut res);
res
}
pub fn mul_total_parallelized(&self, ct1: &Ciphertext, ct2: &Ciphertext) -> Ciphertext {
// let now = std::time::Instant::now();
let (mut res, mantissa_carry) = self.mul_parallelized(&mut ct1.clone(), &mut ct2.clone());
// let elapsed = now.elapsed();
// println!("mul_parallelized: {elapsed:?}");
// self.clean_degree_parallelized(&mut res);
self.reduce_noise_sign(&mut res);
// let now = std::time::Instant::now();
self.full_propagate_exponent_parallelized(&mut res.ct_vec_exponent);
// let elapsed = now.elapsed();
// println!("elapsed exponent propagate: {elapsed:?}");
// let now = std::time::Instant::now();
// No need to propagate the mantissa it is clean after the integer mul parallelized
// self.full_propagate_mantissa_increase_exponent_if_necessary_parallelized(&mut res);
// TODO change the management of the carry
self.increase_exponent_if_necessary_parallelized_carry(&mut res, &mantissa_carry);
// let elapsed = now.elapsed();
// println!("elapsed mantissa propagate: {elapsed:?}");
res
}
}

View File

@@ -0,0 +1,10 @@
use crate::server_key::Ciphertext;
use crate::ServerKey;
impl ServerKey {
pub fn relu(&self, ct: &Ciphertext) -> Ciphertext {
let zero = self.create_trivial_zero_from_ct(ct);
let ggsw = self.ggsw_ks_cbs(&ct.ct_sign, 0);
self.cmuxes_full(&ct, &zero, &ggsw)
}
}

View File

@@ -0,0 +1,43 @@
use crate::ciphertext::Ciphertext;
use crate::server_key::ServerKey;
impl ServerKey {
pub fn sigmoid(&self, ct: &Ciphertext) -> Ciphertext {
let msg_modulus = self.wopbs_key.param.message_modulus.0 as u64;
let carry_modulus = self.wopbs_key.param.carry_modulus.0 as u64;
let log_msg_modulus = f64::log2(msg_modulus as f64) as u64;
let log_carry_modulus = f64::log2(carry_modulus as f64) as u64;
let cst = ct.e_min + ct.ct_vec_mantissa.len() as i64 - 1;
let cst = (cst.abs() as u64) >> (log_msg_modulus * (ct.ct_vec_exponent.len() - 1) as u64);
let mut one = self.create_trivial_zero_from_ct(ct);
self.key
.unchecked_scalar_add_assign(&mut one.ct_vec_mantissa.last_mut().unwrap(), 1 as u8);
self.key
.unchecked_scalar_add_assign(&mut one.ct_vec_exponent.last_mut().unwrap(), cst as u8);
let mut minus_one = one.clone();
self.change_sign_assign(&mut minus_one);
let ggsw = self.ggsw_ks_cbs(&ct.ct_sign, 0);
let tmp = self.cmuxes_full(&one, &minus_one, &ggsw);
let value = msg_modulus / 2;
let accumulator = self.key.generate_lookup_table(|x| (x > value) as u64);
let ct_last = self
.key
.apply_lookup_table(&mut ct.ct_vec_mantissa.last().unwrap(), &accumulator);
//check if the exponent is big enough (return 1 if e is to small, 0 otherwise)
let accumulator = self.key.generate_lookup_table(|x| ((x < cst) as u64));
let mut ct_sign = self
.key
.apply_lookup_table(&mut ct.ct_vec_exponent.last().unwrap(), &accumulator);
self.key.unchecked_add_assign(&mut ct_sign, &ct_last);
let accumulator = self.key.generate_lookup_table(|x| ((x > 0) as u64));
let ct_sign = self.key.apply_lookup_table(&mut ct_sign, &accumulator);
let ggsw = self.ggsw_ks_cbs(&ct_sign, (log_carry_modulus + log_msg_modulus) as usize);
self.cmuxes_full(&tmp, &ct, &ggsw)
}
}

View File

@@ -0,0 +1,448 @@
use crate::ciphertext::Ciphertext;
use crate::ServerKey;
use rayon::prelude::*;
use shortint::ciphertext::Degree;
use std::cmp::max;
use tfhe::core_crypto::prelude::{Cleartext, Plaintext};
use tfhe::shortint;
impl ServerKey {
// This operation return |a - b| and sing(a-b)
// after sub all the blocks have the smallest degree except the most significant block
pub fn sub(
&self,
ctxt_left: &Vec<shortint::Ciphertext>,
ctxt_right: &Vec<shortint::Ciphertext>,
) -> (Vec<shortint::Ciphertext>, shortint::Ciphertext) {
let mut ct_tmp: Vec<shortint::Ciphertext> = Vec::new();
let msg_modulus = self.wopbs_key.param.message_modulus.0 as u64;
let car_modulus = self.wopbs_key.param.carry_modulus.0 as u64;
let msg_space = (msg_modulus * car_modulus) as u64;
let size_ct = ctxt_left.len();
for ct in ctxt_left.iter() {
ct_tmp.push(
self.key
.unchecked_scalar_add(ct, ((msg_space / 2) - car_modulus / 2) as u8),
);
}
self.key
.unchecked_scalar_add_assign(&mut ct_tmp[0], (car_modulus / 2) as u8);
let cpy_right = ctxt_right.clone();
for (c_left, c_right) in ct_tmp.iter_mut().zip(cpy_right.iter()) {
tfhe::core_crypto::algorithms::lwe_ciphertext_sub_assign(&mut c_left.ct, &c_right.ct);
let noise_level = c_left.noise_level() + c_right.noise_level();
c_left.set_noise_level(noise_level);
}
self.partial_propagate(&mut ct_tmp);
//extract the sign (the first value add on the most significant block)
let accumulator = self.key.generate_lookup_table(|x| (x & (msg_space / 2)));
let mut sign = self
.key
.apply_lookup_table(ct_tmp.last_mut().unwrap(), &accumulator);
// the value sign encrypt only 1 or 0 so the degree is 1
// We can always add as the sign is managed on the padding bit, the only important thing is
// the noise
sign.degree = Degree::new(0);
// add the sign on each block
for i in 0..(size_ct - 1) {
self.key.unchecked_add_assign(&mut ct_tmp[i], &sign);
}
// if the sign on each block ==0, we take the opposite, otherwise we return the value.
// to find the opposite we perform the same idea than the subtraction (but only with pbs as
// we know one value ) opposite = (1 << (len * precision)) - x
for (i, ct) in ct_tmp.iter_mut().enumerate() {
if i == 0 {
let accumulator = self.key.generate_lookup_table(|x| {
(((x - (msg_space / 2)) - (msg_modulus - x))
* ((x & (msg_space / 2)) / (msg_space / 2)))
+ (msg_modulus - x)
});
self.key.apply_lookup_table_assign(ct, &accumulator);
ct.degree = Degree::new(msg_modulus as usize)
} else if i == size_ct - 1 {
let accumulator = self.key.generate_lookup_table(|x| {
(((x - (msg_space / 2)) - (msg_space / 2 - x - 1))
* ((x & (msg_space / 2)) / (msg_space / 2)))
+ (msg_space / 2 - x - 1)
});
self.key.apply_lookup_table_assign(ct, &accumulator);
ct.degree = Degree::new(max(
(msg_space as usize / 2) - ct.degree.get(),
ct.degree.get(),
));
} else {
let accumulator = self.key.generate_lookup_table(|x| {
(((x - (msg_space / 2)) - (msg_modulus - x - 1))
* ((x & (msg_space / 2)) / (msg_space / 2)))
+ (msg_modulus - x - 1)
});
self.key.apply_lookup_table_assign(ct, &accumulator);
ct.degree = Degree::new(msg_modulus as usize)
}
}
// move the sign bit on the msb
// uncheck add, we juste create the sign
tfhe::core_crypto::algorithms::lwe_ciphertext_cleartext_mul_assign(
&mut sign.ct,
Cleartext(2),
);
//self.key.unchecked_scalar_mul_assign(&mut sign, 2);
(ct_tmp, sign)
}
// subtract the two mantissas
// after the subtraction put the msb of the result on the mst significant block
// if exponent == 0 and the first block == 0, the result is 0
pub fn sub_mantissa(&self, ctxt_left: &Ciphertext, ctxt_right: &Ciphertext) -> Ciphertext {
let msg_modulus = self.wopbs_key.param.message_modulus.0 as u64;
let car_modulus = self.wopbs_key.param.carry_modulus.0 as u64;
let msg_space = (msg_modulus * car_modulus) as usize;
let (res, sign) = self.sub(&ctxt_left.ct_vec_mantissa, &ctxt_right.ct_vec_mantissa);
let mut new = self.create_trivial_zero_from_ct(ctxt_left);
new.ct_vec_mantissa = res;
new.ct_vec_exponent = ctxt_left.ct_vec_exponent.clone();
// if sign == 0 => need to change the sign of the operation
// if sign == 1 we want to keep the same sign
// new_s = old_s + sign + 1
new.ct_sign = self.key.unchecked_add(&sign, ctxt_left.sign());
self.key
.unchecked_scalar_add_assign(&mut new.ct_sign, msg_space as u8);
new = self.realign_sub(&new);
new
}
// move the msb on the most significant block.
// if e = 0 and the first block is empty, return zero
// (no subnormal value)
pub fn realign_sub(&self, ct0: &Ciphertext) -> Ciphertext {
let msg_modulus = self.wopbs_key.param.message_modulus.0 as usize;
let car_modulus = self.wopbs_key.param.carry_modulus.0 as usize;
let msg_space = f64::log2((msg_modulus * car_modulus) as f64) as usize;
let size_mantissa = ct0.ct_vec_mantissa.len();
let zero = self.create_trivial_zero_from_ct(ct0);
let mut res = zero.clone();
res.ct_vec_mantissa = ct0.ct_vec_mantissa.clone();
res.ct_sign = ct0.ct_sign.clone();
let mut msb_mantissa_ggsw =
self.ggsw_pbs_ks_cbs(&res.ct_vec_mantissa[size_mantissa - 1], msg_space);
for i in 0..size_mantissa {
let mut tmp = zero.clone();
tmp.ct_vec_mantissa = zero.ct_vec_mantissa.clone();
for j in 0..(size_mantissa - 1) {
tmp.ct_vec_mantissa[j + 1] = res.ct_vec_mantissa[j].clone();
}
for (k, ct_exp_i) in tmp.ct_vec_exponent.iter_mut().enumerate() {
self.key.unchecked_scalar_add_assign(
ct_exp_i,
(((i + 1) >> (f64::log2(msg_modulus as f64) as usize * (k))) % msg_modulus)
as u8,
);
}
// return tmp if ggsw == 0; res otherwise
res.ct_vec_mantissa = self.cmuxes(
&tmp.ct_vec_mantissa,
&res.ct_vec_mantissa,
&msb_mantissa_ggsw,
);
res.ct_vec_exponent = self.cmuxes(
&tmp.ct_vec_exponent,
&res.ct_vec_exponent,
&msb_mantissa_ggsw,
);
if i < size_mantissa - 1 {
msb_mantissa_ggsw =
self.ggsw_pbs_ks_cbs(&res.ct_vec_mantissa[size_mantissa - 1], msg_space);
}
}
let (mut diff_exp, sub_exp_sign) = self.sub(&ct0.ct_vec_exponent, &res.ct_vec_exponent);
// message space == 0 because the sign is on the padding bit
let sign_ggsw = self.ggsw_ks_cbs(&sub_exp_sign, 0); //let sign_ggsw = self.wopbs_key.extract_one_bit_cbs(&self.key, &sub_exp_sign, 63);
diff_exp = self.cmuxes(&zero.ct_vec_exponent, &diff_exp, &msb_mantissa_ggsw);
res.ct_vec_exponent = self.cmuxes(&zero.ct_vec_exponent, &diff_exp, &sign_ggsw);
res.ct_vec_mantissa = self.cmuxes(&zero.ct_vec_mantissa, &res.ct_vec_mantissa, &sign_ggsw);
res.ct_sign = res.ct_sign;
res
}
// change the sign
pub fn change_sign_assign(&self, ct0: &mut Ciphertext) {
tfhe::core_crypto::algorithms::lwe_ciphertext_plaintext_add_assign(
&mut ct0.ct_sign.ct,
Plaintext(1 << 63),
);
}
pub fn change_sign(&self, ct0: &Ciphertext) -> Ciphertext {
let mut ct = ct0.clone();
self.change_sign_assign(&mut ct);
ct
}
pub fn sub_total(&self, ct1: &Ciphertext, ct2: &Ciphertext) -> Ciphertext {
let ct2 = self.change_sign(ct2);
self.add_total(&ct1, &ct2)
}
// This operation return |a - b| and sing(a-b)
// after sub all the blocks have the smallest degree except the most significant block
// TODO: would the overflowing_sub from integer (with some slight adaptations perhaps) do the
// trick ?
pub fn abs_diff_parallelized(
&self,
ctxt_left: &Vec<shortint::Ciphertext>,
ctxt_right: &Vec<shortint::Ciphertext>,
) -> (Vec<shortint::Ciphertext>, shortint::Ciphertext) {
let mut ct_tmp: Vec<shortint::Ciphertext> = Vec::with_capacity(ctxt_left.len());
let msg_modulus = self.wopbs_key.param.message_modulus.0 as u64;
let car_modulus = self.wopbs_key.param.carry_modulus.0 as u64;
let msg_space = (msg_modulus * car_modulus) as u64;
let size_ct = ctxt_left.len();
for ct in ctxt_left.iter() {
ct_tmp.push(
self.key
.unchecked_scalar_add(ct, ((msg_space / 2) - car_modulus / 2) as u8),
);
}
self.key
.unchecked_scalar_add_assign(&mut ct_tmp[0], (car_modulus / 2) as u8);
let cpy_right = ctxt_right.clone();
// The operation is too small to be worth parallelizing
ct_tmp
.iter_mut()
.zip(cpy_right.iter())
.for_each(|(c_left, c_right)| {
tfhe::core_crypto::algorithms::lwe_ciphertext_sub_assign(
&mut c_left.ct,
&c_right.ct,
);
let noise_level = c_left.noise_level() + c_right.noise_level();
c_left.set_noise_level(noise_level);
});
self.partial_propagate_parallelized(&mut ct_tmp);
//extract the sign (the first value add on the most significant block)
let accumulator = self.key.generate_lookup_table(|x| (x & (msg_space / 2)));
let mut sign = self
.key
.apply_lookup_table(ct_tmp.last_mut().unwrap(), &accumulator);
// the value sign encrypt only 1 or 0 so the degree is 1
// We can always add as the sign is managed on the padding bit, the only important thing is
// the noise
sign.degree = Degree::new(0);
// add the sign on each block, except the last one
// Operation is too small to be worth parallelizing
ct_tmp[0..(size_ct - 1)]
.iter_mut()
.for_each(|tmp_block| self.key.unchecked_add_assign(tmp_block, &sign));
// if the sign on each block ==0, we take the opposite, otherwise we return the value.
// to find the opposite we perform the same idea than the subtraction (but only with pbs as
// we know one value ) opposite = (1 << (len * precision)) - x
ct_tmp.par_iter_mut().enumerate().for_each(|(i, ct)| {
if i == 0 {
let accumulator = self.key.generate_lookup_table(|x| {
(((x - (msg_space / 2)) - (msg_modulus - x))
* ((x & (msg_space / 2)) / (msg_space / 2)))
+ (msg_modulus - x)
});
self.key.apply_lookup_table_assign(ct, &accumulator);
} else if i == size_ct - 1 {
let accumulator = self.key.generate_lookup_table(|x| {
(((x - (msg_space / 2)) - (msg_space / 2 - x - 1))
* ((x & (msg_space / 2)) / (msg_space / 2)))
+ (msg_space / 2 - x - 1)
});
self.key.apply_lookup_table_assign(ct, &accumulator);
} else {
let accumulator = self.key.generate_lookup_table(|x| {
(((x - (msg_space / 2)) - (msg_modulus - x - 1))
* ((x & (msg_space / 2)) / (msg_space / 2)))
+ (msg_modulus - x - 1)
});
self.key.apply_lookup_table_assign(ct, &accumulator);
}
});
// move the sign bit on the msb
// uncheck add, we juste create the sign
tfhe::core_crypto::algorithms::lwe_ciphertext_cleartext_mul_assign(
&mut sign.ct,
Cleartext(2),
);
//self.key.unchecked_scalar_mul_assign(&mut sign, 2);
(ct_tmp, sign)
}
// subtract the two mantissas
// after the subtraction put the msb of the result on the mst significant block
// if exponent == 0 and the first block == 0, the result is 0
pub fn sub_mantissa_parallelized(
&self,
ctxt_left: &Ciphertext,
ctxt_right: &Ciphertext,
) -> Ciphertext {
// todo!("sub_mantissa_parallelized");
let msg_modulus = self.wopbs_key.param.message_modulus.0 as u64;
let car_modulus = self.wopbs_key.param.carry_modulus.0 as u64;
let msg_space = (msg_modulus * car_modulus) as usize;
// let now = std::time::Instant::now();
let (res, sign) =
self.abs_diff_parallelized(&ctxt_left.ct_vec_mantissa, &ctxt_right.ct_vec_mantissa);
// let elapsed = now.elapsed();
// println!("sub_mantissa_parallelized::sub_parallelized: {elapsed:?}");
let mut new = self.create_trivial_zero_from_ct(ctxt_left);
new.ct_vec_mantissa = res;
new.ct_vec_exponent = ctxt_left.ct_vec_exponent.clone();
// if sign == 0 => need to change the sign of the operation
// if sign == 1 we want to keep the same sign
// new_s = old_s + sign + 1
new.ct_sign = self.key.unchecked_add(&sign, ctxt_left.sign());
self.key
.unchecked_scalar_add_assign(&mut new.ct_sign, msg_space as u8);
// let now = std::time::Instant::now();
new = self.realign_sub_parallelized(&new);
// let elapsed = now.elapsed();
// println!("sub_mantissa_parallelized::realign_sub_parallelized: {elapsed:?}");
new
}
// move the msb on the most significant block.
// if e = 0 and the first block is empty, return zero
// (no subnormal value)
pub fn realign_sub_parallelized(&self, ct0: &Ciphertext) -> Ciphertext {
// todo!("realign_sub_parallelized");
let msg_modulus = self.wopbs_key.param.message_modulus.0 as usize;
let car_modulus = self.wopbs_key.param.carry_modulus.0 as usize;
let msg_space = (msg_modulus * car_modulus).ilog2() as usize;
let size_mantissa = ct0.ct_vec_mantissa.len();
let zero = self.create_trivial_zero_from_ct(ct0);
let cmux_tree_size = if size_mantissa.is_power_of_two() {
size_mantissa
} else {
size_mantissa.next_power_of_two()
};
let mut ciphertexts_to_cmux: Vec<Ciphertext> = Vec::with_capacity(cmux_tree_size);
let mut cmux_outputs: Vec<Ciphertext> = Vec::with_capacity(cmux_tree_size / 2);
(0..cmux_tree_size)
.into_par_iter()
.map(|ciphertext_idx| {
if ciphertext_idx < size_mantissa {
let mut ciphertext = zero.clone();
for (k, ct_exp_i) in ciphertext.ct_vec_exponent.iter_mut().enumerate() {
self.key.unchecked_scalar_add_assign(
ct_exp_i,
((ciphertext_idx >> (msg_modulus.ilog2() as usize * (k))) % msg_modulus)
as u8,
);
}
let exponent_block_count = size_mantissa - ciphertext_idx;
ciphertext.ct_vec_mantissa[ciphertext_idx..]
.clone_from_slice(&ct0.ct_vec_mantissa[..exponent_block_count]);
ciphertext
} else {
zero.clone()
}
})
.collect_into_vec(&mut ciphertexts_to_cmux);
while ciphertexts_to_cmux.len() > 1 {
ciphertexts_to_cmux
.par_chunks_exact(2)
.map(|chunk| {
let less_modified_exponent = &chunk[0];
let more_modified_exponent = &chunk[1];
let msb_mantissa_ggsw = self.is_block_non_zero_ggsw_pbs_ks_cbs_parallelized(
&less_modified_exponent.ct_vec_mantissa[size_mantissa - 1],
msg_space,
);
// return tmp if ggsw == 0; res otherwise
let (mantissa, exponent) = rayon::join(
|| {
self.cmuxes_parallelized(
&more_modified_exponent.ct_vec_mantissa,
&less_modified_exponent.ct_vec_mantissa,
&msb_mantissa_ggsw,
)
},
|| {
self.cmuxes_parallelized(
&more_modified_exponent.ct_vec_exponent,
&less_modified_exponent.ct_vec_exponent,
&msb_mantissa_ggsw,
)
},
);
let mut res = zero.clone();
res.ct_vec_exponent = exponent;
res.ct_vec_mantissa = mantissa;
res
})
.collect_into_vec(&mut cmux_outputs);
std::mem::swap(&mut ciphertexts_to_cmux, &mut cmux_outputs);
}
let mut res = ciphertexts_to_cmux.into_iter().next().unwrap();
let (mut diff_exp, sub_exp_sign) =
self.abs_diff_parallelized(&ct0.ct_vec_exponent, &res.ct_vec_exponent);
// message space == 0 because the sign is on the padding bit
let (sign_ggsw, msb_mantissa_ggsw) = rayon::join(
|| self.ggsw_ks_cbs_parallelized(&sub_exp_sign, 0),
|| {
self.is_block_non_zero_ggsw_pbs_ks_cbs_parallelized(
&res.ct_vec_mantissa[size_mantissa - 1],
msg_space,
)
},
);
let (exponent, mantissa) = rayon::join(
|| {
diff_exp =
self.cmuxes_parallelized(&zero.ct_vec_exponent, &diff_exp, &msb_mantissa_ggsw);
self.cmuxes_parallelized(&zero.ct_vec_exponent, &diff_exp, &sign_ggsw)
},
|| self.cmuxes_parallelized(&zero.ct_vec_mantissa, &res.ct_vec_mantissa, &sign_ggsw),
);
res.ct_vec_exponent = exponent;
res.ct_vec_mantissa = mantissa;
res.ct_sign = ct0.ct_sign.clone();
res
}
pub fn sub_total_parallelized(&self, ct1: &Ciphertext, ct2: &Ciphertext) -> Ciphertext {
let ct2 = self.change_sign(ct2);
self.add_total_parallelized(&ct1, &ct2)
}
}

View File

@@ -0,0 +1,835 @@
#![allow(dead_code)]
use std::cmp::{max, min};
use rand::Rng;
use tfhe::shortint;
#[allow(unused_imports)]
use crate::parameters::{PARAM_SAM_32, WOP_PARAM_SAM_32, PARAM_MESSAGE_2_CARRY_2_32,
PARAM_MESSAGE_2_CARRY_2_64, WOP_PARAM_MESSAGE_2_CARRY_2_32,
WOP_PARAM_MESSAGE_2_CARRY_2_64, FINAL_WOP_PARAM_2_2_32, FINAL_PARAM_2_2_32,
FINAL_WOP_PARAM_8, FINAL_PARAM_8, FINAL_PARAM_15,
FINAL_WOP_PARAM_15, FINAL_PARAM_16, FINAL_WOP_PARAM_16, FINAL_PARAM_32,
FINAL_WOP_PARAM_32, FINAL_PARAM_64, FINAL_WOP_PARAM_64,
FINAL_PARAM_64_BIS, FINAL_WOP_PARAM_64_BIS,
FINAL_PARAM_32_BIS, FINAL_WOP_PARAM_32_BIS, FINAL_PARAM_16_BIS,
FINAL_WOP_PARAM_16_BIS, FINAL_PARAM_15_BIS, FINAL_WOP_PARAM_15_BIS,
FINAL_PARAM_8_BIS, FINAL_WOP_PARAM_8_BIS, FINAL_PARAM_32_TCHESS, FINAL_WOP_PARAM_32_TCHESS
};
use crate::server_key::*;
use crate::{gen_keys, ClientKey};
const NB_OPE: i32 = 50;
const LEN_MAN: usize = 13; //13;
const LEN_EXP: usize = 4; //4;
const LEN_MAN8: usize = 2;
const LEN_EXP8: usize = 2;
const LEN_MAN16: usize = 6;
const LEN_EXP16: usize = 3;
const LEN_MAN32: usize = 13;
const LEN_EXP32: usize = 4;
const LEN_MAN64: usize = 27;
const LEN_EXP64: usize = 5;
macro_rules! named_param {
($param:ident) => {
(stringify!($param), $param)
};
}
struct Parameters {
pbsparameters: shortint::ClassicPBSParameters,
wopbsparameters: shortint::WopbsParameters,
len_man: usize,
len_exp: usize,
}
const PARAM_FP_64_BITS: Parameters = Parameters {
pbsparameters: FINAL_PARAM_64_BIS,
wopbsparameters: FINAL_WOP_PARAM_64_BIS,
len_man: LEN_MAN64,
len_exp: LEN_EXP64,
};
const PARAM_FP_32_BITS: Parameters = Parameters {
pbsparameters: FINAL_PARAM_32_BIS,
wopbsparameters: FINAL_WOP_PARAM_32_BIS,
len_man: LEN_MAN32,
len_exp: LEN_EXP32,
};
const PARAM_FP_16_BITS: Parameters = Parameters {
pbsparameters: FINAL_PARAM_16_BIS,
wopbsparameters: FINAL_WOP_PARAM_16_BIS,
len_man: LEN_MAN16,
len_exp: LEN_EXP16,
};
const PARAM_FP_8_BITS: Parameters = Parameters {
pbsparameters: FINAL_PARAM_8_BIS,
wopbsparameters: FINAL_WOP_PARAM_8_BIS,
len_man: LEN_MAN8,
len_exp: LEN_EXP8,
};
const PARAMS: [(&str, Parameters); 1] =
[
//named_param!(PARAM_FP_64_BITS),
named_param!(PARAM_FP_32_BITS),
//named_param!(PARAM_FP_16_BITS),
//named_param!(PARAM_FP_8_BITS),
];
#[test]
fn test_float_encrypt() {
for (_, param) in PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
print_info(&cks);
println!("parameters :: {:?}", cks.key.parameters);
let msg = 1.;
// Encryption of one message:
let mut ct = cks.encrypt(msg);
print_res(&cks, &ct, "decrypt", msg as f32, msg);
sks.clean_degree(&mut ct);
print_res(&cks, &ct, "decrypt", msg as f32, msg);
let res = cks.decrypt(&ct);
assert_eq!(res, msg);
}
}
#[test]
pub fn test_float_mul() {
let mut rng = rand::thread_rng();
for (name_parameters, param) in PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
let msg1 = rng.gen::<f32>() as f64;
let msg2 = rng.gen::<f32>() as f64;
let ct1 = cks.encrypt(msg1);
let ct2 = cks.encrypt(msg2);
println!("--------------------------");
println!("---- {name_parameters} ----");
println!("--------------------------");
print_res(&cks, &ct1, "ct 1", msg1 as f32, msg1);
print_res(&cks, &ct2, "ct 2", msg2 as f32, msg2);
let res = sks.mul_total_parallelized(&mut ct1.clone(), &mut ct2.clone());
print_res(&cks, &res, "Multiplication", (msg2 * msg1) as f32, msg2 * msg1);
let res = cks.decrypt(&res);
assert!(res.abs() < ((msg1 * msg2) * 1.001).abs());
assert!(res.abs() > ((msg1 * msg2) * 0.999).abs());
}
}
#[test]
pub fn test_float_div() {
let mut rng = rand::thread_rng();
for (name_parameters, param) in PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
let msg2 = rng.gen::<f32>() as f64;
let msg1 = -rng.gen::<f32>() as f64;
let ct1 = cks.encrypt(msg1);
let ct2 = cks.encrypt(msg2);
println!("--------------------------");
println!("---- {name_parameters} ----");
println!("--------------------------");
print_res(&cks, &ct1, "ct1", (msg1) as f32, msg1);
print_res(&cks, &ct2, "ct2", (msg2) as f32, msg2);
let mut res = sks.division(&ct1, &ct2);
print_res(&cks, &res, "Division", (msg1 / msg2) as f32, msg1 / msg2);
sks.clean_degree(&mut res);
let res = cks.decrypt(&res);
assert!(res.abs() < ((msg1 / msg2) * 1.001).abs());
assert!(res.abs() > ((msg1 / msg2) * 0.999).abs());
}
}
#[test]
pub fn float_cos() {
let mut rng = rand::thread_rng();
for (name_parameters, param) in PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
println!("--------------------------");
println!("---- {name_parameters} ----");
println!("--------------------------");
let msg1 = rng.gen::<f32>() as f64;
let ct1 = cks.encrypt(msg1);
let one = cks.encrypt(1.); //should be in trivial encrypt
let one_div_by_2 = cks.encrypt(1. / 2.); //should be in trivial encrypt
let one_div_by_24 = cks.encrypt(1. / 24.); //should be in trivial encrypt
print_res(&cks, &one, "one", 1 as f32, 1.);
print_res(&cks, &one_div_by_2, "oneDivBy2", (1. / 2.) as f32, 1. / 2.);
print_res(&cks, &one_div_by_24, "oneDivBy24", (1. / 24.) as f32, 1. / 24.);
print_res(&cks, &ct1, "ct1", msg1 as f32, msg1);
let ct1_square = sks.mul_total_parallelized(&ct1, &ct1);
print_res(&cks, &ct1_square, "ct1_square", (msg1 * msg1) as f32, msg1 * msg1);
let ct1_square_square = sks.mul_total_parallelized(&ct1_square, &ct1_square);
print_res(&cks, &ct1_square_square, "ct1_square_square", (msg1 * msg1 * msg1 * msg1) as f32, msg1 * msg1 * msg1 * msg1);
let ct1_square_time_one_div_by_2 = sks.mul_total_parallelized(&ct1_square, &one_div_by_2);
print_res(&cks, &ct1_square_time_one_div_by_2, "ct1_square_time_1DivBy2", (msg1 * msg1 / 2.) as f32, msg1 * msg1 / 2.);
let ct1_square_square_time_one_div_by_24 = sks.mul_total_parallelized(&ct1_square_square, &one_div_by_24);
print_res(&cks, &ct1_square_square_time_one_div_by_24, "ct1_square_square_time_1DivBy24", (msg1 * msg1 * msg1 * msg1 / 24.) as f32, msg1 * msg1 * msg1 * msg1 / 24.);
let res = sks.add_total_parallelized(&one, &ct1_square_square_time_one_div_by_24);
print_res(&cks, &res, "first res", (1. + msg1 * msg1 * msg1 * msg1 / 24.) as f32, 1. + msg1 * msg1 * msg1 * msg1 / 24.);
let res = sks.sub_total_parallelized(&res, &ct1_square_time_one_div_by_2);
println!("Cosine, exact result : {:?}", msg1.cos());
let approximation = 1. + msg1 * msg1 * msg1 * msg1 / 24. - msg1 * msg1 / 2.;
print_res(&cks, &res, "Cosine approximation", approximation as f32, approximation);
let res = cks.decrypt(&res);
assert!(res < (approximation * 1.001).abs());
assert!(res > (approximation * 0.999).abs());
}
}
#[test]
pub fn float_sin() {
let mut rng = rand::thread_rng();
for (name_parameters, param) in PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
println!("--------------------------");
println!("---- {name_parameters} ----");
println!("--------------------------");
let msg1 = rng.gen::<f32>() as f64;
let ct1 = cks.encrypt(msg1);
print_res(&cks, &ct1, "ct1", msg1 as f32, msg1);
let one_div_by_6 = cks.encrypt(1. / 6.); //should be in trivial encrypt
let one_div_by_120 = cks.encrypt(1. / 120.); //should be in trivial encrypt
let ct1_square = sks.mul_total_parallelized(&ct1, &ct1);
print_res(&cks, &ct1_square, "ct1_square", (msg1 * msg1) as f32, msg1 * msg1);
let ct1_cube = sks.mul_total_parallelized(&ct1_square, &ct1);
print_res(&cks, &ct1_cube, "ct1_cube", (msg1 * msg1 * msg1) as f32, msg1 * msg1 * msg1);
let ct1_power_five = sks.mul_total_parallelized(&ct1_square, &ct1_cube);
print_res(&cks, &ct1_power_five, "ct1_power_five", (msg1 * msg1 * msg1 * msg1 * msg1) as f32, msg1 * msg1 * msg1 * msg1 * msg1);
let ct1_cube_time_one_div_by_6 = sks.mul_total_parallelized(&ct1_cube, &one_div_by_6);
print_res(&cks, &ct1_cube_time_one_div_by_6, "ct1_cube_time_one_div_by_6", (msg1 * msg1 * msg1 / 6.) as f32, msg1 * msg1 * msg1 / 6.);
let ct1_power_five_time_one_div_by_120 = sks.mul_total_parallelized(&ct1_power_five, &one_div_by_120);
print_res(&cks, &ct1_power_five_time_one_div_by_120, "ct1_power_five_time_one_div_by_120", (msg1 * msg1 * msg1 * msg1 * msg1 / 120.) as f32, msg1 * msg1 * msg1 * msg1 * msg1 / 120.);
let res = sks.add_total_parallelized(&ct1, &ct1_power_five_time_one_div_by_120);
print_res(&cks, &ct1_power_five_time_one_div_by_120, "res_1", (msg1 * msg1 * msg1 * msg1 * msg1 / 120.) as f32, msg1 * msg1 * msg1 * msg1 * msg1 / 120.);
let res = sks.sub_total_parallelized(&res, &ct1_cube_time_one_div_by_6);
println!("Sine, exact result : {:?}", msg1.sin());
let approximation = msg1 + msg1 * msg1 * msg1 * msg1 * msg1 / 120. - msg1 * msg1 * msg1 / 6.;
print_res(&cks, &res, "Sine approximation", approximation as f32, approximation);
let res = cks.decrypt(&res);
assert!(res < (approximation * 1.001).abs());
assert!(res > (approximation * 0.999).abs());
}
}
#[test]
pub fn test_float_add() {
let mut rng = rand::thread_rng();
for (name_parameters, param) in PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
println!("--------------------------");
println!("---- {name_parameters} ----");
println!("--------------------------");
let msg2 = rng.gen::<f32>() as f64;
let msg1 = rng.gen::<f32>() as f64;
let ct1 = cks.encrypt(msg1);
let ct2 = cks.encrypt(msg2);
print_res(&cks, &ct1, "ct 1", msg1 as f32, msg1);
print_res(&cks, &ct2, "ct 2", msg2 as f32, msg2);
let res = sks.add_total_parallelized(&ct1, &ct2);
print_res(&cks, &res, "Addition", (msg1 + msg2) as f32, msg1 + msg2);
let res = cks.decrypt(&res);
assert!(res.abs() < ((msg1 + msg2) * 1.001).abs());
assert!(res.abs() > ((msg1 + msg2) * 0.999).abs());
}
}
#[test]
pub fn test_float_sub() {
let mut rng = rand::thread_rng();
for (name_parameters, param) in PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
println!("--------------------------");
println!("---- {name_parameters} ----");
println!("--------------------------");
let msg1 = rng.gen::<f32>() as f64;
let msg2 = rng.gen::<f32>() as f64;
let ct1 = cks.encrypt(msg1);
let ct2 = cks.encrypt(msg2);
print_res(&cks, &ct1, "ct 1", msg1 as f32, msg1);
print_res(&cks, &ct2, "ct 2", msg2 as f32, msg2);
let res = sks.sub_total_parallelized(&ct1, &ct2);
print_res(&cks, &res, "Subtraction", (msg1 - msg2) as f32, msg1 - msg2);
let res = cks.decrypt(&res);
assert!(res.abs() < ((msg1 - msg2) * 1.001).abs());
assert!(res.abs() > ((msg1 - msg2) * 0.999).abs());
}
}
#[test]
pub fn depth_test_parallelized() {
let mut rng = rand::thread_rng();
for (name_parameters, param) in PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
println!("--------------------------");
println!("---- {name_parameters} ----");
println!("--------------------------");
let max_i = 1_000.;
let mut vec_float_32 = vec![];
let mut vec_float_64 = vec![];
let mut vec_hom_float = vec![];
let mut vec_deep = vec![];
let mut vec_nb_operation = vec![];
let len_vec = 3 as u16;
for i in 0..len_vec {
let msg = rng.gen::<f32>() as f64;
println!("msg_{:?}: {:?}", i, msg);
let ct = cks.encrypt(msg);
print_res(&cks, &ct, "encrypt/decrypt", msg as f32, msg);
vec_float_64.push(msg);
vec_float_32.push(msg as f32);
vec_hom_float.push(ct);
vec_deep.push(0);
vec_nb_operation.push(0);
}
for i in 0..NB_OPE {
println!("\n----Round {:?}----", i);
let r_ope = rng.gen::<u16>() % 3;
let r_value_1 = (rng.gen::<u16>() % len_vec) as usize;
let mut r_value_2 = (rng.gen::<u16>() % len_vec) as usize;
let mut r_place = (rng.gen::<u16>() % 2) as usize;
while r_value_1 == r_value_2 {
r_value_2 = (rng.gen::<u16>() % len_vec) as usize;
}
if r_place == 0 {
r_place = r_value_1
} else {
r_place = r_value_2
}
vec_deep[r_place] = min(vec_deep[r_value_1], vec_deep[r_value_2]) + 1;
vec_nb_operation[r_place] =
max(vec_nb_operation[r_value_1], vec_nb_operation[r_value_2]) + 1;
if r_ope == 0 {
println!(
"block {:?} * block {:?} -> block{:?}\n",
r_value_1, r_value_2, r_place
);
println!(
"expected: {:?} * {:?} = {:?}",
vec_float_64[r_value_1],
vec_float_64[r_value_2],
vec_float_64[r_value_1] * vec_float_64[r_value_2]
);
vec_hom_float[r_place] = sks.mul_total_parallelized(
&mut vec_hom_float[r_value_1].clone(),
&mut vec_hom_float[r_value_2].clone(),
);
vec_float_32[r_place] = vec_float_32[r_value_1] * vec_float_32[r_value_2];
vec_float_64[r_place] = vec_float_64[r_value_1] * vec_float_64[r_value_2];
print_res(
&cks,
&vec_hom_float[r_place],
"res mul",
vec_float_32[r_place],
vec_float_64[r_place],
);
} else if r_ope == 1 {
println!(
"block {:?} + block {:?} -> block{:?}\n",
r_value_1, r_value_2, r_place
);
println!(
"expected: {:?} + {:?} = {:?}",
vec_float_64[r_value_1],
vec_float_64[r_value_2],
vec_float_64[r_value_1] + vec_float_64[r_value_2]
);
vec_hom_float[r_place] =
sks.add_total_parallelized(&vec_hom_float[r_value_1], &vec_hom_float[r_value_2]);
vec_float_32[r_place] = vec_float_32[r_value_1] + vec_float_32[r_value_2];
vec_float_64[r_place] = vec_float_64[r_value_1] + vec_float_64[r_value_2];
print_res(
&cks,
&vec_hom_float[r_place],
"res add",
vec_float_32[r_place],
vec_float_64[r_place],
);
} else {
println!(
"block {:?} - block {:?} -> block{:?}\n",
r_value_1, r_value_2, r_place
);
println!(
"expected: {:?} - {:?} = {:?}",
vec_float_64[r_value_1],
vec_float_64[r_value_2],
vec_float_64[r_value_1] - vec_float_64[r_value_2]
);
vec_hom_float[r_place] =
sks.sub_total_parallelized(&vec_hom_float[r_value_1], &vec_hom_float[r_value_2]);
vec_float_32[r_place] = vec_float_32[r_value_1] - vec_float_32[r_value_2];
vec_float_64[r_place] = vec_float_64[r_value_1] - vec_float_64[r_value_2];
print_res(
&cks,
&vec_hom_float[r_place],
"res sub",
vec_float_32[r_place],
vec_float_64[r_place],
);
}
if vec_float_64[r_value_1].abs() > max_i {
let msg_tmp = (1. / max_i) * rng.gen::<f32>() as f64; // 1. / (vec_float_64[r_value_1].abs() + vec_float_64[r_value_2].clone().abs() );
let mut ct_tmp = cks.encrypt(msg_tmp);
println!(
"block {:?} * {:?} -> block{:?}\n",
r_value_1, msg_tmp, r_value_1
);
println!(
"expected: {:?} * {:?} = {:?}",
vec_float_64[r_value_1],
msg_tmp,
vec_float_64[r_value_1] * msg_tmp
);
vec_hom_float[r_place] =
sks.mul_total_parallelized(&mut vec_hom_float[r_value_1].clone(), &mut ct_tmp);
vec_float_32[r_value_1] = vec_float_32[r_value_1] * msg_tmp as f32;
vec_float_64[r_value_1] = vec_float_64[r_value_1] * msg_tmp;
vec_nb_operation[r_value_1] += 1;
print_res(
&cks,
&vec_hom_float[r_place],
"res mul",
vec_float_32[r_place],
vec_float_64[r_place],
);
}
if vec_float_64[r_value_2].abs() > max_i {
let msg_tmp = (1. / max_i) * rng.gen::<f32>() as f64; // 1. / (vec_float_64[r_value_1].abs() + vec_float_64[r_value_2].clone().abs() );
let mut ct_tmp = cks.encrypt(msg_tmp);
println!(
"block {:?} * {:?} -> block{:?}\n",
r_value_2, msg_tmp, r_value_2
);
println!(
"expected: {:?} * {:?} = {:?}",
vec_float_64[r_value_1],
msg_tmp,
vec_float_64[r_value_1] * msg_tmp
);
vec_hom_float[r_value_2] =
sks.mul_total_parallelized(&mut vec_hom_float[r_value_2].clone(), &mut ct_tmp);
vec_float_32[r_value_2] = vec_float_32[r_value_2] * msg_tmp as f32;
vec_float_64[r_value_2] = vec_float_64[r_value_2] * msg_tmp;
vec_nb_operation[r_value_2] += 1;
print_res(
&cks,
&vec_hom_float[r_place],
"res mul",
vec_float_32[r_place],
vec_float_64[r_place],
);
}
if vec_float_64[r_value_1].abs() < 1. / max_i {
let msg_tmp = max_i * rng.gen::<f32>() as f64; // 1. / (vec_float_64[r_value_1].abs() + vec_float_64[r_value_2].clone().abs() );
let mut ct_tmp = cks.encrypt(msg_tmp);
println!(
"block {:?} * {:?} -> block{:?}\n",
r_value_1, msg_tmp, r_value_1
);
println!(
"expected: {:?} * {:?} = {:?}",
vec_float_64[r_value_1],
msg_tmp,
vec_float_64[r_value_1] * msg_tmp
);
vec_hom_float[r_value_1] =
sks.mul_total_parallelized(&mut vec_hom_float[r_value_1].clone(), &mut ct_tmp);
vec_float_32[r_value_1] = vec_float_32[r_value_1] * msg_tmp as f32;
vec_float_64[r_value_1] = vec_float_64[r_value_1] * msg_tmp;
vec_nb_operation[r_value_1] += 1;
print_res(
&cks,
&vec_hom_float[r_place],
"res mul",
vec_float_32[r_place],
vec_float_64[r_place],
);
}
if vec_float_64[r_value_2].abs() < 1. / max_i {
let msg_tmp = max_i * rng.gen::<f32>() as f64; // 1. / (vec_float_64[r_value_1].abs() + vec_float_64[r_value_2].clone().abs() );
let mut ct_tmp = cks.encrypt(msg_tmp);
println!(
"block {:?} * {:?} -> block{:?}\n",
r_value_2, msg_tmp, r_value_2
);
println!(
"expected: {:?} * {:?} = {:?}",
vec_float_64[r_value_1],
msg_tmp,
vec_float_64[r_value_1] * msg_tmp
);
vec_hom_float[r_value_2] =
sks.mul_total_parallelized(&mut vec_hom_float[r_value_2].clone(), &mut ct_tmp);
vec_float_32[r_value_2] = vec_float_32[r_value_2] * msg_tmp as f32;
vec_float_64[r_value_2] = vec_float_64[r_value_2] * msg_tmp;
vec_nb_operation[r_value_2] += 1;
print_res(
&cks,
&vec_hom_float[r_place],
"res mul",
vec_float_32[r_place],
vec_float_64[r_place],
);
}
println!("----End Round {:?}----", i);
println!("--------------------");
println!("--------------------");
println!("--------------------");
}
for i in 0..len_vec as usize {
println!("------");
print_res(
&cks,
&vec_hom_float[i],
"Final result",
vec_float_32[i],
vec_float_64[i],
);
//println!("Deep : {:?}", vec_deep[i]);
//println!("Ope : {:?}", vec_nb_operation[i]);
let res = cks.decrypt(&vec_hom_float[i]);
assert!(res.abs() < (vec_float_64[i] * 1.001).abs());
assert!(res.abs() > (vec_float_64[i] * 0.999).abs());
//println!("------");
}
//println!("Info :");
//println!("len mantissa : {:?}", LEN_MAN);
//println!("len exponent : {:?}", LEN_EXP);
//println!("number operations : {:?}", NB_OPE);
}
}
#[test]
pub fn float_same_as_ls_22_32() {
let (cks, sks) = gen_keys(
PARAM_MESSAGE_2_CARRY_2_32,
WOP_PARAM_MESSAGE_2_CARRY_2_32,
LEN_MAN32,
LEN_EXP32,
);
print_info(&cks);
let msg1 = -2.7914999921796382_e-15;
let ct1 = cks.encrypt(msg1);
print_res(&cks, &ct1, "Encrypt/Decrypt", msg1 as f32, msg1);
let msg2 = 8.3867001884896375_e-12;
let ct2 = cks.encrypt(msg2);
print_res(&cks, &ct2, "Encrypt/Decrypt", msg2 as f32, msg2);
let msg3 = 1.82634005135360_e14;
let ct3 = cks.encrypt(msg3);
print_res(&cks, &ct3, "Encrypt/Decrypt", msg3 as f32, msg3);
let msg4 = -6.278269952_e9;
let ct4 = cks.encrypt(msg4);
print_res(&cks, &ct4, "Encrypt/Decrypt", msg4 as f32, msg4);
let res_1 = sks.add_total_parallelized(&ct1, &ct2);
print_res(
&cks,
&res_1,
"res add",
msg1 as f32 + msg2 as f32,
msg1 + msg2,
);
let res_2 = sks.sub_total_parallelized(&ct3, &ct4);
print_res(
&cks,
&res_2,
"res add",
msg3 as f32 - msg4 as f32,
msg3 - msg4,
);
let mut witness32 = (msg3 as f32 - msg4 as f32) * (msg1 as f32 + msg2 as f32);
let mut witness64 = (msg3 - msg4) * (msg1 + msg2);
let res = sks.mul_total_parallelized(&res_1, &res_2);
print_res(&cks, &res, "res mul", witness32, witness64);
let res = sks.mul_total_parallelized(&res, &res);
witness32 *= witness32;
witness64 *= witness64;
print_res(&cks, &res, "res mul", witness32, witness64);
let res = cks.decrypt(&res);
assert!(res.abs() < ((witness32 * 1.001 as f32) as f64).abs());
assert!(res.abs() > ((witness32 * 0.999 as f32) as f64).abs());
}
#[test]
pub fn float_same_as_ls_22_64() {
let (cks, sks) = gen_keys(
PARAM_MESSAGE_2_CARRY_2_64,
WOP_PARAM_MESSAGE_2_CARRY_2_64,
LEN_MAN64,
LEN_EXP64,
);
print_info(&cks);
let msg1 = -9.1763514236254290_e-32;
let ct1 = cks.encrypt(msg1);
print_res(&cks, &ct1, "Encrypt/Decrypt", msg1 as f32, msg1);
let msg2 = 6.2467247246375865_e-24;
let ct2 = cks.encrypt(msg2);
print_res(&cks, &ct2, "Encrypt/Decrypt", msg2 as f32, msg2);
let msg3 = 2.4523526872362373_e22;
let ct3 = cks.encrypt(msg3);
print_res(&cks, &ct3, "Encrypt/Decrypt", msg3 as f32, msg3);
let msg4 = -5.4324663335297274_e17;
let ct4 = cks.encrypt(msg4);
print_res(&cks, &ct4, "Encrypt/Decrypt", msg4 as f32, msg4);
let res_1 = sks.add_total_parallelized(&ct1, &ct2);
print_res(
&cks,
&res_1,
"res add",
msg1 as f32 + msg2 as f32,
msg1 + msg2,
);
let res_2 = sks.sub_total_parallelized(&ct3, &ct4);
print_res(
&cks,
&res_2,
"res add",
msg3 as f32 - msg4 as f32,
msg3 - msg4,
);
let mut witness32 = (msg3 as f32 - msg4 as f32) * (msg1 as f32 + msg2 as f32);
let mut witness64 = (msg3 - msg4) * (msg1 + msg2);
let res = sks.mul_total_parallelized(&res_1, &res_2);
print_res(&cks, &res, "res mul", witness32, witness64);
let res = sks.mul_total_parallelized(&res, &res);
witness32 *= witness32;
witness64 *= witness64;
print_res(&cks, &res, "res mul", witness32, witness64);
let res = cks.decrypt(&res);
assert!(res.abs() < (witness64 * 1.001).abs());
assert!(res.abs() > (witness64 * 0.999).abs());
}
#[test]
pub fn test_float_relu() {
let mut rng = rand::thread_rng();
for (name_parameters, param) in PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
println!("--------------------------");
println!("---- {name_parameters} ----");
println!("--------------------------");
let msg = rng.gen::<f32>() as f64 - rng.gen::<f32>() as f64;
let ct = cks.encrypt(msg);
print_res(&cks, &ct, "decrypt", msg as f32, msg);
let res = sks.relu(&ct);
print_res(&cks, &res, "relu", 0.0_f32.max(msg as f32), msg.max(0.));
let res = cks.decrypt(&res);
assert_eq!(res, msg.max(0.));
}
}
#[test]
pub fn test_float_sigmoid() {
let mut rng = rand::thread_rng();
for (name_parameters, param) in PARAMS {
let (cks, sks) = gen_keys(
param.pbsparameters,
param.wopbsparameters,
param.len_man,
param.len_exp,
);
println!("--------------------------");
println!("---- {name_parameters} ----");
println!("--------------------------");
let msg = (rng.gen::<f32>() as f64 + 0.4).abs();
let ct = cks.encrypt(msg);
print_res(&cks, &ct, "ct", msg as f32, msg);
let res = sks.sigmoid(&ct);
print_res(&cks, &res, "approx sigmoid", 1.0_f32.min(msg as f32), msg.min(1.));
let res = cks.decrypt(&res);
assert!(res > msg.min(1.) * 0.999);
assert!(res < msg.min(1.) * 1.001);
}
}
pub fn print_res(
cks: &ClientKey,
ct: &Ciphertext,
operation: &str,
witness32: f32,
witness64: f64,
) {
println!("\n--------------------",);
println!("{:?}:\n", operation);
println!("Result : {:?}", cks.decrypt(&ct));
println!("Clear 32-bits: {:?}", witness32);
println!("Clear 64-bits: {:?}\n", witness64);
println!("--------------------");
}
pub fn print_info(cks: &ClientKey) {
println!("\n-----Info-----");
println!("length exp {:?}", cks.vector_length_exponent);
println!("length man {:?}", cks.vector_length_mantissa);
let msg_modulus = cks.parameters().message_modulus().0;
let car_modulus = cks.parameters().carry_modulus().0;
println!("msg modulus {:?}, 0b{:b}", msg_modulus, msg_modulus);
println!("car modulus {:?}, 0b{:b}", car_modulus, car_modulus);
println!(
"total space {:?}, 0b{:b}",
car_modulus * msg_modulus,
car_modulus * msg_modulus
);
let log_msg_modulus = f64::log2(msg_modulus as f64) as usize;
let bias = -((1 << (cks.vector_length_exponent.0 * log_msg_modulus - 1)) as i64)
- (cks.vector_length_mantissa.0 as i64 - 1);
println!("Bias {:?}", bias);
println!("--------------\n");
}

View File

@@ -0,0 +1,551 @@
use crate::server_key::Ciphertext;
use crate::ServerKey;
use shortint::ciphertext::{Ciphertext as ShortintCiphertext, Degree};
use std::cmp::{max, min};
use tfhe::core_crypto::algorithms::{
cmux_assign, extract_lwe_sample_from_glwe_ciphertext, keyswitch_lwe_ciphertext,
par_keyswitch_lwe_ciphertext,
};
use aligned_vec::ABox;
use dyn_stack::{GlobalPodBuffer, PodStack, ReborrowMut, StackReq};
use tfhe::core_crypto::commons::parameters::*;
use tfhe::core_crypto::entities::*;
use tfhe::core_crypto::fft_impl::fft64::c64;
use tfhe::core_crypto::fft_impl::fft64::crypto::ggsw::fill_with_forward_fourier_scratch;
use tfhe::core_crypto::fft_impl::fft64::crypto::wop_pbs::{
circuit_bootstrap_boolean, circuit_bootstrap_boolean_parallelized,
circuit_bootstrap_boolean_scratch, extract_bits, extract_bits_parallelized,
extract_bits_scratch,
};
use tfhe::core_crypto::fft_impl::fft64::math::fft::par_convert_polynomials_list_to_fourier;
use tfhe::core_crypto::prelude::{ContiguousEntityContainer, Fft};
use tfhe::shortint;
use tfhe::shortint::ciphertext::NoiseLevel;
use rayon::prelude::*;
impl ServerKey {
pub fn ggsw_pbs_ks_cbs(
&self,
ct1: &ShortintCiphertext,
message_space: usize,
) -> FourierGgswCiphertext<ABox<[c64]>> {
let accumulator = self.key.generate_lookup_table(|x| min(1, x) as u64);
let res = self.key.apply_lookup_table(&ct1, &accumulator);
self.ggsw_ks_cbs(&res, message_space)
}
/// return ggsw(0) if ct1 = 0, return ggsw(1) otherwise
pub fn ggsw_ks_cbs(
&self,
ct1: &ShortintCiphertext,
message_space: usize,
) -> FourierGgswCiphertext<ABox<[c64]>> {
let ciphertext_modulus = ct1.ct.ciphertext_modulus();
let mut res_ks = LweCiphertext::new(
0u64,
LweSize(self.wopbs_key.param.lwe_dimension.to_lwe_size().0),
ciphertext_modulus,
);
keyswitch_lwe_ciphertext(&self.key.key_switching_key, &ct1.ct, &mut res_ks);
self.ggsw_cbs(&res_ks.as_view(), message_space)
}
/// return ggsw(0) if ct1 = 0, return ggsw(1) otherwise
pub fn ggsw_cbs(
&self,
ct: &LweCiphertext<&[u64]>,
message_space: usize,
) -> FourierGgswCiphertext<ABox<[c64]>> {
let glwe_dimension = self.wopbs_key.param.glwe_dimension;
let polynomial_size = self.wopbs_key.param.polynomial_size;
let base_log_cbs = self.wopbs_key.param.cbs_base_log;
let level_count_cbs = self.wopbs_key.param.cbs_level;
let ciphertext_modulus = ct.ciphertext_modulus();
let fourier_bsk = match &self.wopbs_key.wopbs_server_key.bootstrapping_key {
shortint::server_key::ShortintBootstrappingKey::Classic(fbsk) => fbsk.as_view(),
_ => unreachable!(),
};
let fft = Fft::new(polynomial_size);
let fft = fft.as_view();
let mut cbs_res = GgswCiphertext::new(
0u64,
glwe_dimension.to_glwe_size(),
polynomial_size,
base_log_cbs,
level_count_cbs,
ciphertext_modulus,
);
let mut ggsw = FourierGgswCiphertext::new(
glwe_dimension.to_glwe_size(),
polynomial_size,
base_log_cbs,
level_count_cbs,
);
let mut mem = GlobalPodBuffer::new(
circuit_bootstrap_boolean_scratch::<u64>(
ct.lwe_size(),
fourier_bsk.output_lwe_dimension().to_lwe_size(),
glwe_dimension.to_glwe_size(),
polynomial_size,
fft,
)
.unwrap(),
);
let mut stack = PodStack::new(&mut mem);
circuit_bootstrap_boolean(
fourier_bsk,
ct.as_view(),
cbs_res.as_mut_view(),
DeltaLog(63 - message_space),
self.wopbs_key.cbs_pfpksk.as_view(),
fft,
stack.rb_mut(),
);
let mut mem = GlobalPodBuffer::new(fill_with_forward_fourier_scratch(fft).unwrap());
let mut stack = PodStack::new(&mut mem);
ggsw.as_mut_view()
.fill_with_forward_fourier(cbs_res.as_view(), fft, stack.rb_mut());
ggsw
}
pub fn extract_bit_cbs(
&self,
ct1: &ShortintCiphertext,
) -> Vec<FourierGgswCiphertext<ABox<[c64]>>> {
let glwe_dimension = self.wopbs_key.param.glwe_dimension;
let polynomial_size = self.wopbs_key.param.polynomial_size;
let lwe_dimension = self.wopbs_key.param.lwe_dimension;
let message_modulus = self.wopbs_key.param.message_modulus;
let log_message_modulus = f64::log2(message_modulus.0 as f64) as usize;
let log_carry_modulus = f64::log2(self.wopbs_key.param.carry_modulus.0 as f64) as usize;
let ciphertext_modulus = ct1.ct.ciphertext_modulus();
let ksk = &self.key.key_switching_key;
let delta_log = 63 - log_message_modulus * log_carry_modulus;
let fft = Fft::new(polynomial_size);
let fft = fft.as_view();
let req = || {
StackReq::try_any_of([
fill_with_forward_fourier_scratch(fft)?,
extract_bits_scratch::<u64>(
lwe_dimension,
LweDimension(polynomial_size.0 * glwe_dimension.0 + 1),
glwe_dimension.to_glwe_size(),
polynomial_size,
fft,
)?,
])
};
let req = req().unwrap();
let mut mem = GlobalPodBuffer::new(req);
let stack = PodStack::new(&mut mem);
let fourier_bsk = match &self.wopbs_key.wopbs_server_key.bootstrapping_key {
shortint::server_key::ShortintBootstrappingKey::Classic(fbsk) => fbsk.as_view(),
_ => unreachable!(),
};
let mut lwe_out_list = LweCiphertextList::new(
0u64,
ksk.output_lwe_size(),
LweCiphertextCount(log_message_modulus),
ciphertext_modulus,
);
extract_bits(
lwe_out_list.as_mut_view(),
ct1.ct.as_view(),
ksk.as_view(),
fourier_bsk,
DeltaLog(delta_log),
ExtractedBitsCount(log_message_modulus),
fft,
stack,
);
let mut out_vec_ggsw: Vec<FourierGgswCiphertext<ABox<[c64]>>> = Vec::new();
for lwe in lwe_out_list.iter() {
let ggsw = self.ggsw_cbs_parallelized(&lwe, 0);
out_vec_ggsw.append(&mut vec![ggsw]);
}
out_vec_ggsw
}
//return ct0 if we have ggsw(0)
//return ct1 if we have ggsw(1)
//with cti a ShortintCiphertext
pub fn cmux(
&self,
ct0: &ShortintCiphertext,
ct1: &ShortintCiphertext,
ggsw: &FourierGgswCiphertext<ABox<[c64]>>,
) -> ShortintCiphertext {
let polynomial_size = self.wopbs_key.param.polynomial_size;
let glwe_dim = self.wopbs_key.param.glwe_dimension;
let mut vec_0 = vec![0u64; polynomial_size.0 * (glwe_dim.0 + 1)];
let mut vec_1 = vec![0u64; polynomial_size.0 * (glwe_dim.0 + 1)];
for (i, (ct_i_0, ct_i_1)) in ct0
.ct
.as_ref()
.iter()
.zip(ct1.ct.as_ref().iter())
.enumerate()
{
if i % polynomial_size.0 == 0 {
vec_0[i] = *ct_i_0;
vec_1[i] = *ct_i_1;
} else {
let index =
(i / polynomial_size.0 + 1) * polynomial_size.0 - (i % polynomial_size.0);
vec_0[index] = 0 - (*ct_i_0);
vec_1[index] = 0 - (*ct_i_1);
}
}
let mut rlwe_0 =
GlweCiphertext::from_container(vec_0, polynomial_size, self.key.ciphertext_modulus);
let mut rlwe_1 =
GlweCiphertext::from_container(vec_1, polynomial_size, self.key.ciphertext_modulus);
cmux_assign(&mut rlwe_0, &mut rlwe_1, ggsw);
let mut output = LweCiphertext::new(
0_u64,
LweSize(polynomial_size.0 * glwe_dim.0 + 1),
self.key.ciphertext_modulus,
);
extract_lwe_sample_from_glwe_ciphertext(&rlwe_0, &mut output, MonomialDegree(0));
let ct_out = shortint::Ciphertext::new(
output,
Degree::new(max(ct0.degree.get(), ct1.degree.get())),
NoiseLevel::NOMINAL, // TODO: check this is valid in the context of floats
ct0.message_modulus,
ct0.carry_modulus,
PBSOrder::KeyswitchBootstrap,
);
ct_out
}
//return ct0 in ct0 if we have ggsw(0)
//return ct1 in ct0 if we have ggsw(1)
//with cti = [Ciphertext]
pub fn cmuxes(
&self,
ct0: &[ShortintCiphertext],
ct1: &[ShortintCiphertext],
ggsw: &FourierGgswCiphertext<ABox<[c64]>>,
) -> Vec<shortint::Ciphertext> {
let mut vec_output: Vec<ShortintCiphertext> = Vec::new();
for (ct_0, ct_1) in ct0.iter().zip(ct1.iter()) {
let output = self.cmux(ct_0, ct_1, ggsw);
vec_output.push(output);
}
vec_output
}
//return ct0 in a nwe ct if we have ggsw(0)
//return ct1 in a new ct if we have ggsw(1)
//with cti a fp
pub fn cmuxes_full(
&self,
ct0: &Ciphertext,
ct1: &Ciphertext,
ggsw: &FourierGgswCiphertext<ABox<[c64]>>,
) -> Ciphertext {
let res_man = self.cmuxes(&ct0.ct_vec_mantissa, &ct1.ct_vec_mantissa, &ggsw);
let res_exp = self.cmuxes(&ct0.ct_vec_exponent, &ct1.ct_vec_exponent, &ggsw);
let res_sig = self.cmux(&ct0.ct_sign, &ct1.ct_sign, &ggsw);
let mut new = self.create_trivial_zero_from_ct(ct0);
new.ct_vec_mantissa = res_man;
new.ct_vec_exponent = res_exp;
new.ct_sign = res_sig;
new
}
pub fn cmux_tree_mantissa(
&self,
vec_mantissa: &Vec<shortint::Ciphertext>,
vec_ggsw: &[FourierGgswCiphertext<ABox<[c64]>>],
) -> Vec<shortint::Ciphertext> {
let zero = self.key.create_trivial(0_u64);
let mut cpy = vec_mantissa.clone();
let mut vec_fp = Vec::new();
for _ in 0..(vec_mantissa.len() + 1) {
vec_fp.push(cpy.clone());
cpy.push(zero.clone());
let _ = cpy.remove(0);
}
let vec_zero = cpy;
for ggsw in vec_ggsw.iter().rev() {
if vec_fp.len() == 1 {
vec_fp[0] = self.cmuxes(&mut vec_fp[0], &vec_zero, ggsw);
} else {
if vec_fp.len() % 2 == 0 {
for i in 0..vec_fp.len() / 2 {
let ct_0 = vec_fp.get_mut(2 * i).unwrap().clone();
let ct_1 = vec_fp.get_mut(2 * i + 1).unwrap().clone();
vec_fp[i] = self.cmuxes(&ct_0, &ct_1, ggsw);
}
vec_fp.truncate(vec_fp.len() / 2);
} else {
for i in 0..vec_fp.len() / 2 {
let ct_0 = vec_fp.get_mut(2 * i).unwrap().clone();
let ct_1 = vec_fp.get_mut(2 * i + 1).unwrap().clone();
vec_fp[i] = self.cmuxes(&ct_0, &ct_1, ggsw);
}
let last = vec_fp.len();
let ct_0 = vec_fp.last().unwrap().clone();
let ct_1 = &vec_zero;
vec_fp[last / 2] = self.cmuxes(&ct_0, &ct_1, ggsw);
vec_fp.truncate((vec_fp.len() + 1) / 2);
}
}
}
vec_fp[0].clone()
}
pub fn is_block_non_zero_ggsw_pbs_ks_cbs_parallelized(
&self,
ct1: &ShortintCiphertext,
message_space: usize,
) -> FourierGgswCiphertext<ABox<[c64]>> {
let accumulator = self.key.generate_lookup_table(|x| u64::from(x != 0));
let res = self.key.apply_lookup_table(&ct1, &accumulator);
self.ggsw_ks_cbs_parallelized(&res, message_space)
}
/// return ggsw(0) if ct1 = 0, return ggsw(1) otherwise
pub fn ggsw_ks_cbs_parallelized(
&self,
ct1: &ShortintCiphertext,
message_space: usize,
) -> FourierGgswCiphertext<ABox<[c64]>> {
let ciphertext_modulus = ct1.ct.ciphertext_modulus();
let mut res_ks = LweCiphertext::new(
0u64,
LweSize(self.wopbs_key.param.lwe_dimension.to_lwe_size().0),
ciphertext_modulus,
);
par_keyswitch_lwe_ciphertext(&self.key.key_switching_key, &ct1.ct, &mut res_ks);
self.ggsw_cbs_parallelized(&res_ks.as_view(), message_space)
}
/// return ggsw(0) if ct1 = 0, return ggsw(1) otherwise
pub fn ggsw_cbs_parallelized(
&self,
ct: &LweCiphertext<&[u64]>,
message_space: usize,
) -> FourierGgswCiphertext<ABox<[c64]>> {
// todo!("ggsw_cbs_parallelized");
let glwe_dimension = self.wopbs_key.param.glwe_dimension;
let polynomial_size = self.wopbs_key.param.polynomial_size;
let base_log_cbs = self.wopbs_key.param.cbs_base_log;
let level_count_cbs = self.wopbs_key.param.cbs_level;
let ciphertext_modulus = ct.ciphertext_modulus();
let fourier_bsk = match &self.wopbs_key.wopbs_server_key.bootstrapping_key {
shortint::server_key::ShortintBootstrappingKey::Classic(fbsk) => fbsk.as_view(),
_ => unreachable!(),
};
let fft = Fft::new(polynomial_size);
let fft = fft.as_view();
let mut cbs_res = GgswCiphertext::new(
0u64,
glwe_dimension.to_glwe_size(),
polynomial_size,
base_log_cbs,
level_count_cbs,
ciphertext_modulus,
);
let mut ggsw = FourierGgswCiphertext::new(
glwe_dimension.to_glwe_size(),
polynomial_size,
base_log_cbs,
level_count_cbs,
);
let mut mem = GlobalPodBuffer::new(
circuit_bootstrap_boolean_scratch::<u64>(
ct.lwe_size(),
fourier_bsk.output_lwe_dimension().to_lwe_size(),
glwe_dimension.to_glwe_size(),
polynomial_size,
fft,
)
.unwrap(),
);
let mut stack = PodStack::new(&mut mem);
circuit_bootstrap_boolean_parallelized(
fourier_bsk,
ct.as_view(),
cbs_res.as_mut_view(),
DeltaLog(63 - message_space),
self.wopbs_key.cbs_pfpksk.as_view(),
fft,
stack.rb_mut(),
);
let mut mem = GlobalPodBuffer::new(fill_with_forward_fourier_scratch(fft).unwrap());
let mut _stack = PodStack::new(&mut mem);
par_convert_polynomials_list_to_fourier(
ggsw.as_mut_view().data(),
cbs_res.as_ref(),
polynomial_size,
fft,
);
// ggsw.as_mut_view()
// .fill_with_forward_fourier(cbs_res.as_view(), fft, stack.rb_mut());
ggsw
}
pub fn extract_bit_cbs_parallelized(
&self,
ct1: &ShortintCiphertext,
) -> Vec<FourierGgswCiphertext<ABox<[c64]>>> {
// todo!("extract_bit_cbs_parallelized");
let glwe_dimension = self.wopbs_key.param.glwe_dimension;
let polynomial_size = self.wopbs_key.param.polynomial_size;
let lwe_dimension = self.wopbs_key.param.lwe_dimension;
let message_modulus = self.wopbs_key.param.message_modulus;
let log_message_modulus = f64::log2(message_modulus.0 as f64) as usize;
let log_carry_modulus = f64::log2(self.wopbs_key.param.carry_modulus.0 as f64) as usize;
let ciphertext_modulus = ct1.ct.ciphertext_modulus();
let ksk = &self.key.key_switching_key;
let delta_log = 63 - log_message_modulus * log_carry_modulus;
let fft = Fft::new(polynomial_size);
let fft = fft.as_view();
let req = || {
StackReq::try_any_of([
fill_with_forward_fourier_scratch(fft)?,
extract_bits_scratch::<u64>(
lwe_dimension,
LweDimension(polynomial_size.0 * glwe_dimension.0 + 1),
glwe_dimension.to_glwe_size(),
polynomial_size,
fft,
)?,
])
};
let req = req().unwrap();
let mut mem = GlobalPodBuffer::new(req);
let stack = PodStack::new(&mut mem);
let fourier_bsk = match &self.wopbs_key.wopbs_server_key.bootstrapping_key {
shortint::server_key::ShortintBootstrappingKey::Classic(fbsk) => fbsk.as_view(),
_ => unreachable!(),
};
let mut lwe_out_list = LweCiphertextList::new(
0u64,
ksk.output_lwe_size(),
LweCiphertextCount(log_message_modulus),
ciphertext_modulus,
);
extract_bits_parallelized(
lwe_out_list.as_mut_view(),
ct1.ct.as_view(),
ksk.as_view(),
fourier_bsk,
DeltaLog(delta_log),
ExtractedBitsCount(log_message_modulus),
fft,
stack,
);
let mut out_vec_ggsw: Vec<FourierGgswCiphertext<ABox<[c64]>>> = Vec::new();
for lwe in lwe_out_list.iter() {
let ggsw = self.ggsw_cbs(&lwe, 0);
out_vec_ggsw.append(&mut vec![ggsw]);
}
out_vec_ggsw
}
//return ct0 in ct0 if we have ggsw(0)
//return ct1 in ct0 if we have ggsw(1)
//with cti = [Ciphertext]
pub fn cmuxes_parallelized(
&self,
ct0: &[ShortintCiphertext],
ct1: &[ShortintCiphertext],
ggsw: &FourierGgswCiphertext<ABox<[c64]>>,
) -> Vec<shortint::Ciphertext> {
assert_eq!(ct0.len(), ct1.len());
let len = ct0.len();
let mut vec_output: Vec<ShortintCiphertext> = Vec::with_capacity(len);
ct0.par_iter()
.zip(ct1.par_iter())
.map(|(ct_0_i, ct_1_i)| self.cmux(ct_0_i, ct_1_i, ggsw))
.collect_into_vec(&mut vec_output);
vec_output
}
//return ct0 in a nwe ct if we have ggsw(0)
//return ct1 in a new ct if we have ggsw(1)
//with cti a fp
pub fn cmuxes_full_parallelized(
&self,
ct0: &Ciphertext,
ct1: &Ciphertext,
ggsw: &FourierGgswCiphertext<ABox<[c64]>>,
) -> Ciphertext {
// todo!("cmuxes_full_parallelized");
let (res_man, res_exp) = rayon::join(
|| self.cmuxes_parallelized(&ct0.ct_vec_mantissa, &ct1.ct_vec_mantissa, &ggsw),
|| self.cmuxes_parallelized(&ct0.ct_vec_exponent, &ct1.ct_vec_exponent, &ggsw),
);
let res_sig = self.cmux(&ct0.ct_sign, &ct1.ct_sign, &ggsw);
let mut new = self.create_trivial_zero_from_ct(ct0);
new.ct_vec_mantissa = res_man;
new.ct_vec_exponent = res_exp;
new.ct_sign = res_sig;
new
}
pub fn cmux_tree_mantissa_parallelized(
&self,
vec_mantissa: &Vec<shortint::Ciphertext>,
vec_ggsw: &[FourierGgswCiphertext<ABox<[c64]>>],
) -> Vec<shortint::Ciphertext> {
// todo!("cmux_tree_mantissa_parallelized");
let zero = self.key.create_trivial(0_u64);
let mut cpy = vec_mantissa.clone();
let mut vec_fp = Vec::new();
for _ in 0..(vec_mantissa.len() + 1) {
vec_fp.push(cpy.clone());
cpy.push(zero.clone());
let _ = cpy.remove(0);
}
let vec_zero = cpy;
// TODO cmux tree in parallel
for ggsw in vec_ggsw.iter().rev() {
if vec_fp.len() == 1 {
vec_fp[0] = self.cmuxes_parallelized(&mut vec_fp[0], &vec_zero, ggsw);
} else {
if vec_fp.len() % 2 == 0 {
for i in 0..vec_fp.len() / 2 {
let ct_0 = vec_fp.get_mut(2 * i).unwrap().clone();
let ct_1 = vec_fp.get_mut(2 * i + 1).unwrap().clone();
vec_fp[i] = self.cmuxes_parallelized(&ct_0, &ct_1, ggsw);
}
vec_fp.truncate(vec_fp.len() / 2);
} else {
for i in 0..vec_fp.len() / 2 {
let ct_0 = vec_fp.get_mut(2 * i).unwrap().clone();
let ct_1 = vec_fp.get_mut(2 * i + 1).unwrap().clone();
vec_fp[i] = self.cmuxes_parallelized(&ct_0, &ct_1, ggsw);
}
let last = vec_fp.len();
let ct_0 = vec_fp.last().unwrap().clone();
let ct_1 = &vec_zero;
vec_fp[last / 2] = self.cmuxes_parallelized(&ct_0, &ct_1, ggsw);
vec_fp.truncate((vec_fp.len() + 1) / 2);
}
}
}
vec_fp[0].clone()
}
}

View File

@@ -0,0 +1,9 @@
use doc_comment::doctest;
doctest!("../docs/getting_started/first_circuit.md", first_circuit);
doctest!("../docs/tutorials/serialization.md", serialization_tuto);
doctest!(
"../docs/tutorials/circuit_evaluation.md",
circuit_evaluation
);
doctest!("../docs/how_to/pbs.md", pbs);

View File

@@ -55,7 +55,7 @@ concrete-csprng = { version = "0.4.0", path = "../concrete-csprng", features = [
] }
lazy_static = { version = "1.4.0", optional = true }
serde = { version = "1.0", features = ["derive"] }
rayon = { version = "1.5.0" }
rayon = { version = "1.5" }
bincode = { version = "1.3.3", optional = true }
concrete-fft = { version = "0.3.0", features = ["serde", "fft128"] }
pulp = "0.13"
@@ -82,6 +82,7 @@ bytemuck = "1.13.1"
boolean = ["dep:paste"]
shortint = ["dep:paste"]
integer = ["shortint", "dep:paste"]
float_wopbs = ["shortint", "dep:paste"]
internal-keycache = ["dep:lazy_static", "dep:fs2", "dep:bincode", "dep:paste"]
safe-deserialization = ["dep:bincode"]
@@ -103,7 +104,6 @@ __wasm_api = [
"dep:console_error_panic_hook",
"dep:serde-wasm-bindgen",
"dep:getrandom",
"getrandom/js",
"dep:bincode",
"safe-deserialization",
]
@@ -210,6 +210,12 @@ path = "benches/utilities.rs"
harness = false
required-features = ["boolean", "shortint", "integer", "internal-keycache"]
[[bench]]
name = "float-wopbs-bench"
path = "benches/float_wopbs/bench.rs"
harness = false
required-features = []
# Examples used as tools
[[example]]
@@ -263,3 +269,7 @@ required-features = ["boolean"]
[lib]
crate-type = ["lib", "staticlib", "cdylib"]
[lints.rust]
unexpected_cfgs = { level = "warn", check-cfg = ['cfg(bench)'] }

View File

@@ -0,0 +1,90 @@
#![allow(dead_code)]
use criterion::{criterion_group, criterion_main, Criterion};
use tfhe::float_wopbs::gen_keys;
#[allow(unused_imports)]
use tfhe::float_wopbs::parameters::{
PARAM_MESSAGE_2_16_BITS, PARAM_MESSAGE_4_16_BITS, PARAM_MESSAGE_8_16_BITS,
};
use tfhe::float_wopbs::parameters::{ PARAM_MESSAGE_2_4_8_BITS_BIV, PARAM_MESSAGE_4_2_8_BITS_BIV};
use tfhe::shortint::WopbsParameters;
macro_rules! named_param {
($param:ident) => {
(stringify!($param), $param)
};
}
struct Parameters {
parameters: WopbsParameters,
bit_mantissa: usize,
bit_exponent: usize,
}
const PARAM_4_BIT_LWE_8_BITS: Parameters = Parameters {
parameters: PARAM_MESSAGE_2_4_8_BITS_BIV,
bit_mantissa: 4,
bit_exponent: 3,
};
const PARAM_2_BIT_LWE_8_BITS: Parameters = Parameters {
parameters: PARAM_MESSAGE_4_2_8_BITS_BIV,
bit_mantissa: 4,
bit_exponent: 3,
};
const SERVER_KEY_BENCH_PARAMS: [(&str, Parameters); 2] =
[ named_param!(PARAM_4_BIT_LWE_8_BITS),
named_param!(PARAM_2_BIT_LWE_8_BITS)];
criterion_main!(float);
criterion_group!(float, float_wopbs_bivariate);
pub fn float_wopbs_mut_eval(c: &mut Criterion) {
for name_param in SERVER_KEY_BENCH_PARAMS {
let (cks, sks) = gen_keys(name_param.1.parameters);
let bit_mantissa = &name_param.1.bit_mantissa;
let bit_exponent = &name_param.1.bit_exponent;
let e_min = -2;
let msg_1 = 0.375;
// Encryption:
let mut ct_1 = cks.encrypt(msg_1, e_min, *bit_mantissa, *bit_exponent);
let lut = sks.create_lut(&mut ct_1, |x| x);
let bench_id = format!("8-bit floats WoP-PBS lut eval::{}", name_param.0);
c.bench_function(&bench_id, |b| {
b.iter(|| {
sks.wop_pbs(&sks, &mut ct_1, &lut);
})
});
}
}
pub fn float_wopbs_bivariate(c: &mut Criterion) {
for name_param in SERVER_KEY_BENCH_PARAMS {
let (cks, sks) = gen_keys(name_param.1.parameters);
let bit_mantissa = &name_param.1.bit_mantissa;
let bit_exponent = &name_param.1.bit_exponent;
let e_min = -2;
let msg_1 = 0.375;
// Encryption:
let mut ct_1 = cks.encrypt(msg_1, e_min, *bit_mantissa, *bit_exponent);
let msg_2 = -44.;
let mut ct_2 = cks.encrypt(msg_2, e_min, *bit_mantissa, *bit_exponent);
let lut = sks.create_bivariate_lut(&mut ct_1, |x, y| y * x);
let bench_id = format!("8-bit floats WoP-PBS bivariate::{}", name_param.0);
c.bench_function(&bench_id, |b| {
b.iter(|| {
sks.wop_pbs_bivariate(&sks, &mut ct_1, &mut ct_2, &lut);
})
});
}
}

View File

@@ -355,7 +355,7 @@ pub fn add_external_product_assign_scratch<Scalar>(
substack0.try_and(StackReq::try_all_of([fourier_scratch; 4])?)
}
#[cfg_attr(__profiling, inline(never))]
#[cfg_attr(feature = "__profiling", inline(never))]
pub fn add_external_product_assign<Scalar, ContOut, ContGgsw, ContGlwe>(
out: &mut GlweCiphertext<ContOut>,
ggsw: &Fourier128GgswCiphertext<ContGgsw>,

View File

@@ -13,7 +13,7 @@ use crate::core_crypto::prelude::{Container, ContainerMut, SignedDecomposer};
use aligned_vec::CACHELINE_ALIGN;
use dyn_stack::{PodStack, ReborrowMut};
#[cfg_attr(__profiling, inline(never))]
#[cfg_attr(feature = "__profiling", inline(never))]
pub fn add_external_product_assign_split<ContOutLo, ContOutHi, ContGgsw, ContGlweLo, ContGlweHi>(
out_lo: &mut GlweCiphertext<ContOutLo>,
out_hi: &mut GlweCiphertext<ContOutHi>,

View File

@@ -473,7 +473,7 @@ pub fn add_external_product_assign_scratch<Scalar>(
}
/// Perform the external product of `ggsw` and `glwe`, and adds the result to `out`.
#[cfg_attr(__profiling, inline(never))]
#[cfg_attr(feature = "__profiling", inline(never))]
pub fn add_external_product_assign<Scalar>(
mut out: GlweCiphertextMutView<'_, Scalar>,
ggsw: FourierGgswCiphertextView<'_>,
@@ -597,7 +597,7 @@ pub fn add_external_product_assign<Scalar>(
}
}
#[cfg_attr(__profiling, inline(never))]
#[cfg_attr(feature = "__profiling", inline(never))]
fn collect_next_term<'a, Scalar: UnsignedTorus>(
decomposition: &mut TensorSignedDecompositionLendingIter<'_, Scalar>,
substack1: &'a mut PodStack,
@@ -612,7 +612,7 @@ fn collect_next_term<'a, Scalar: UnsignedTorus>(
(glwe_level, glwe_decomp_term, substack2)
}
#[cfg_attr(__profiling, inline(never))]
#[cfg_attr(feature = "__profiling", inline(never))]
pub(crate) fn update_with_fmadd(
output_fft_buffer: &mut [c64],
lhs_polynomial_list: &[c64],

View File

@@ -12,6 +12,7 @@ use super::ggsw::{
};
use crate::core_crypto::algorithms::polynomial_algorithms::*;
use crate::core_crypto::algorithms::*;
use crate::core_crypto::commons::computation_buffers::ComputationBuffers;
use crate::core_crypto::commons::math::decomposition::DecompositionLevel;
use crate::core_crypto::commons::numeric::CastInto;
use crate::core_crypto::commons::parameters::*;
@@ -19,6 +20,8 @@ use crate::core_crypto::commons::traits::*;
use crate::core_crypto::commons::utils::izip;
use crate::core_crypto::entities::*;
use rayon::prelude::*;
use concrete_fft::c64;
pub fn extract_bits_scratch<Scalar>(
@@ -224,6 +227,167 @@ pub fn extract_bits<Scalar: UnsignedTorus + CastInto<usize>>(
}
}
pub fn extract_bits_parallelized<Scalar: UnsignedTorus + CastInto<usize>>(
mut lwe_list_out: LweCiphertextList<&'_ mut [Scalar]>,
lwe_in: LweCiphertext<&'_ [Scalar]>,
ksk: LweKeyswitchKey<&'_ [Scalar]>,
fourier_bsk: FourierLweBootstrapKeyView<'_>,
delta_log: DeltaLog,
number_of_bits_to_extract: ExtractedBitsCount,
fft: FftView<'_>,
stack: PodStack<'_>,
) {
debug_assert!(lwe_list_out.ciphertext_modulus() == lwe_in.ciphertext_modulus());
debug_assert!(lwe_in.ciphertext_modulus() == ksk.ciphertext_modulus());
debug_assert!(
ksk.ciphertext_modulus().is_native_modulus(),
"This operation only supports native moduli"
);
let ciphertext_n_bits = Scalar::BITS;
let number_of_bits_to_extract = number_of_bits_to_extract.0;
debug_assert!(
ciphertext_n_bits >= number_of_bits_to_extract + delta_log.0,
"Tried to extract {} bits, while the maximum number of extractable bits for {} bits
ciphertexts and a scaling factor of 2^{} is {}",
number_of_bits_to_extract,
ciphertext_n_bits,
delta_log.0,
ciphertext_n_bits - delta_log.0,
);
debug_assert!(
lwe_list_out.lwe_size().to_lwe_dimension() == ksk.output_key_lwe_dimension(),
"lwe_list_out needs to have an lwe_size of {}, got {}",
ksk.output_key_lwe_dimension().0,
lwe_list_out.lwe_size().to_lwe_dimension().0,
);
debug_assert!(
lwe_list_out.lwe_ciphertext_count().0 == number_of_bits_to_extract,
"lwe_list_out needs to have a ciphertext count of {}, got {}",
number_of_bits_to_extract,
lwe_list_out.lwe_ciphertext_count().0,
);
debug_assert!(
lwe_in.lwe_size() == fourier_bsk.output_lwe_dimension().to_lwe_size(),
"lwe_in needs to have an LWE dimension of {}, got {}",
fourier_bsk.output_lwe_dimension().to_lwe_size().0,
lwe_in.lwe_size().0,
);
debug_assert!(
ksk.output_key_lwe_dimension() == fourier_bsk.input_lwe_dimension(),
"ksk needs to have an output LWE dimension of {}, got {}",
fourier_bsk.input_lwe_dimension().0,
ksk.output_key_lwe_dimension().0,
);
debug_assert!(lwe_list_out.ciphertext_modulus() == lwe_in.ciphertext_modulus());
debug_assert!(lwe_in.ciphertext_modulus() == ksk.ciphertext_modulus());
let polynomial_size = fourier_bsk.polynomial_size();
let glwe_size = fourier_bsk.glwe_size();
let glwe_dimension = glwe_size.to_glwe_dimension();
let ciphertext_modulus = lwe_in.ciphertext_modulus();
let align = CACHELINE_ALIGN;
let (mut lwe_in_buffer_data, stack) =
stack.collect_aligned(align, lwe_in.as_ref().iter().copied());
let mut lwe_in_buffer =
LweCiphertext::from_container(&mut *lwe_in_buffer_data, lwe_in.ciphertext_modulus());
let (mut lwe_out_ks_buffer_data, stack) =
stack.make_aligned_with(ksk.output_lwe_size().0, align, |_| Scalar::ZERO);
let mut lwe_out_ks_buffer =
LweCiphertext::from_container(&mut *lwe_out_ks_buffer_data, ksk.ciphertext_modulus());
let (mut pbs_accumulator_data, stack) =
stack.make_aligned_with(glwe_size.0 * polynomial_size.0, align, |_| Scalar::ZERO);
let mut pbs_accumulator = GlweCiphertextMutView::from_container(
&mut *pbs_accumulator_data,
polynomial_size,
ciphertext_modulus,
);
let lwe_size = glwe_dimension
.to_equivalent_lwe_dimension(polynomial_size)
.to_lwe_size();
let (mut lwe_out_pbs_buffer_data, mut stack) =
stack.make_aligned_with(lwe_size.0, align, |_| Scalar::ZERO);
let mut lwe_out_pbs_buffer = LweCiphertext::from_container(
&mut *lwe_out_pbs_buffer_data,
lwe_list_out.ciphertext_modulus(),
);
// We iterate on the list in reverse as we want to store the extracted MSB at index 0
for (bit_idx, mut output_ct) in lwe_list_out.iter_mut().rev().enumerate() {
// Shift on padding bit
let (lwe_bit_left_shift_buffer_data, _) = stack.rb_mut().collect_aligned(
align,
lwe_in_buffer
.as_ref()
.iter()
.map(|s| *s << (ciphertext_n_bits - delta_log.0 - bit_idx - 1)),
);
// Key switch to input PBS key
par_keyswitch_lwe_ciphertext(
&ksk,
&LweCiphertext::from_container(
&*lwe_bit_left_shift_buffer_data,
lwe_in.ciphertext_modulus(),
),
&mut lwe_out_ks_buffer,
);
drop(lwe_bit_left_shift_buffer_data);
// Store the keyswitch output unmodified to the output list (as we need to to do other
// computations on the output of the keyswitch)
output_ct
.as_mut()
.copy_from_slice(lwe_out_ks_buffer.as_ref());
// If this was the last extracted bit, break
// we subtract 1 because if the number_of_bits_to_extract is 1 we want to stop right away
if bit_idx == number_of_bits_to_extract - 1 {
break;
}
// Add q/4 to center the error while computing a negacyclic LUT
let out_ks_body = lwe_out_ks_buffer.get_mut_body().data;
*out_ks_body = (*out_ks_body).wrapping_add(Scalar::ONE << (ciphertext_n_bits - 2));
// Fill lut for the current bit (equivalent to trivial encryption as mask is 0s)
// The LUT is filled with -alpha in each coefficient where alpha = delta*2^{bit_idx-1}
for poly_coeff in &mut pbs_accumulator
.as_mut_view()
.get_mut_body()
.as_mut_polynomial()
.iter_mut()
{
*poly_coeff = Scalar::ZERO.wrapping_sub(Scalar::ONE << (delta_log.0 - 1 + bit_idx));
}
fourier_bsk.bootstrap(
lwe_out_pbs_buffer.as_mut_view(),
lwe_out_ks_buffer.as_view(),
pbs_accumulator.as_view(),
fft,
stack.rb_mut(),
);
// Add alpha where alpha = delta*2^{bit_idx-1} to end up with an encryption of 0 if the
// extracted bit was 0 and 1 in the other case
let out_pbs_body = lwe_out_pbs_buffer.get_mut_body().data;
*out_pbs_body = (*out_pbs_body).wrapping_add(Scalar::ONE << (delta_log.0 + bit_idx - 1));
// Remove the extracted bit from the initial LWE to get a 0 at the extracted bit location.
izip!(lwe_in_buffer.as_mut(), lwe_out_pbs_buffer.as_ref())
.for_each(|(out, inp)| *out = (*out).wrapping_sub(*inp));
}
}
pub fn circuit_bootstrap_boolean_scratch<Scalar>(
lwe_in_size: LweSize,
bsk_output_lwe_size: LweSize,
@@ -343,6 +507,137 @@ pub fn circuit_bootstrap_boolean<Scalar: UnsignedTorus + CastInto<usize>>(
}
}
pub fn circuit_bootstrap_boolean_parallelized<Scalar: UnsignedTorus + CastInto<usize>>(
fourier_bsk: FourierLweBootstrapKeyView<'_>,
lwe_in: LweCiphertext<&[Scalar]>,
mut ggsw_out: GgswCiphertext<&mut [Scalar]>,
delta_log: DeltaLog,
pfpksk_list: LwePrivateFunctionalPackingKeyswitchKeyList<&[Scalar]>,
fft: FftView<'_>,
_stack: PodStack<'_>,
) {
debug_assert!(lwe_in.ciphertext_modulus() == ggsw_out.ciphertext_modulus());
debug_assert!(ggsw_out.ciphertext_modulus() == pfpksk_list.ciphertext_modulus());
debug_assert!(
pfpksk_list.ciphertext_modulus().is_native_modulus(),
"This operation currently only supports native moduli"
);
let level_cbs = ggsw_out.decomposition_level_count();
let base_log_cbs = ggsw_out.decomposition_base_log();
debug_assert!(
level_cbs.0 >= 1,
"level_cbs needs to be >= 1, got {}",
level_cbs.0
);
debug_assert!(
base_log_cbs.0 >= 1,
"base_log_cbs needs to be >= 1, got {}",
base_log_cbs.0
);
let fpksk_input_lwe_key_dimension = pfpksk_list.input_key_lwe_dimension();
let fourier_bsk_output_lwe_dimension = fourier_bsk.output_lwe_dimension();
debug_assert!(
fpksk_input_lwe_key_dimension == fourier_bsk_output_lwe_dimension,
"The fourier_bsk output_lwe_dimension, got {}, must be equal to the fpksk \
input_lwe_key_dimension, got {}",
fourier_bsk_output_lwe_dimension.0,
fpksk_input_lwe_key_dimension.0
);
let fpksk_output_polynomial_size = pfpksk_list.output_polynomial_size();
let fpksk_output_glwe_key_dimension = pfpksk_list.output_key_glwe_dimension();
debug_assert!(
ggsw_out.polynomial_size() == fpksk_output_polynomial_size,
"The output GGSW ciphertext needs to have the same polynomial size as the fpksks, \
got {}, expected {}",
ggsw_out.polynomial_size().0,
fpksk_output_polynomial_size.0
);
debug_assert!(
ggsw_out.glwe_size().to_glwe_dimension() == fpksk_output_glwe_key_dimension,
"The output GGSW ciphertext needs to have the same GLWE dimension as the fpksks, \
got {}, expected {}",
ggsw_out.glwe_size().to_glwe_dimension().0,
fpksk_output_glwe_key_dimension.0
);
debug_assert!(
ggsw_out.glwe_size().0 == pfpksk_list.lwe_pfpksk_count().0,
"The input vector of pfpksk_list needs to have {} ggsw.glwe_size elements got {}",
ggsw_out.glwe_size().0,
pfpksk_list.lwe_pfpksk_count().0,
);
// // Output for every bootstrapping
// let (mut lwe_out_bs_buffer_data, mut stack) = stack.make_aligned_with(
// fourier_bsk_output_lwe_dimension.to_lwe_size().0,
// CACHELINE_ALIGN,
// |_| Scalar::ZERO,
// );
// let mut lwe_out_bs_buffer =
// LweCiphertext::from_container(&mut *lwe_out_bs_buffer_data, lwe_in.ciphertext_modulus());
ggsw_out.par_iter_mut().enumerate().for_each(
|(decomposition_level_minus_one, mut ggsw_level_matrix)| {
let mut computation_buffers = ComputationBuffers::new();
computation_buffers.resize(
circuit_bootstrap_boolean_scratch::<u64>(
lwe_in.lwe_size(),
fourier_bsk.output_lwe_dimension().to_lwe_size(),
fourier_bsk.glwe_size(),
fourier_bsk.polynomial_size(),
fft,
)
.unwrap()
.try_unaligned_bytes_required()
.unwrap(),
);
let stack = computation_buffers.stack();
let (mut lwe_out_bs_buffer_data, mut stack) = stack.make_aligned_with(
fourier_bsk_output_lwe_dimension.to_lwe_size().0,
CACHELINE_ALIGN,
|_| Scalar::ZERO,
);
let mut lwe_out_bs_buffer = LweCiphertext::from_container(
&mut *lwe_out_bs_buffer_data,
lwe_in.ciphertext_modulus(),
);
let decomposition_level = DecompositionLevel(decomposition_level_minus_one + 1);
homomorphic_shift_boolean(
fourier_bsk,
lwe_out_bs_buffer.as_mut_view(),
lwe_in.as_view(),
decomposition_level,
base_log_cbs,
delta_log,
fft,
stack.rb_mut(),
);
pfpksk_list
.par_iter()
.zip(ggsw_level_matrix.as_mut_glwe_list().par_iter_mut())
.for_each(|(pfpksk, mut glwe_out)| {
par_private_functional_keyswitch_lwe_ciphertext_into_glwe_ciphertext(
&pfpksk,
&mut glwe_out,
&lwe_out_bs_buffer,
);
});
},
);
}
pub fn homomorphic_shift_boolean_scratch<Scalar>(
lwe_in_size: LweSize,
glwe_size: GlweSize,

View File

@@ -193,7 +193,7 @@ impl Fft {
}
}
#[cfg_attr(__profiling, inline(never))]
#[cfg_attr(feature = "__profiling", inline(never))]
fn convert_forward_torus<Scalar: UnsignedTorus>(
out: &mut [c64],
in_re: &[Scalar],
@@ -238,7 +238,7 @@ fn convert_forward_integer_scalar<Scalar: UnsignedTorus>(
);
}
#[cfg_attr(__profiling, inline(never))]
#[cfg_attr(feature = "__profiling", inline(never))]
fn convert_forward_integer<Scalar: UnsignedTorus>(
out: &mut [c64],
in_re: &[Scalar],
@@ -260,7 +260,7 @@ fn convert_forward_integer<Scalar: UnsignedTorus>(
convert_forward_integer_scalar::<Scalar>(out, in_re, in_im, twisties);
}
#[cfg_attr(__profiling, inline(never))]
#[cfg_attr(feature = "__profiling", inline(never))]
fn convert_backward_torus<Scalar: UnsignedTorus>(
out_re: &mut [Scalar],
out_im: &mut [Scalar],
@@ -303,7 +303,7 @@ fn convert_add_backward_torus_scalar<Scalar: UnsignedTorus>(
);
}
#[cfg_attr(__profiling, inline(never))]
#[cfg_attr(feature = "__profiling", inline(never))]
fn convert_add_backward_torus<Scalar: UnsignedTorus>(
out_re: &mut [Scalar],
out_im: &mut [Scalar],

View File

@@ -0,0 +1,33 @@
//! This module implements the ciphertext structure containing an encryption of an integer message.
use crate::shortint::ciphertext::Ciphertext as ShortintCiphertext;
use serde::{Deserialize, Serialize};
/// Id to recognize the key used to encrypt a block.
#[derive(Debug, PartialEq, Eq, Copy, Clone, Serialize, Deserialize)]
pub struct KeyId(pub usize);
#[derive(Serialize, Clone, Deserialize)]
pub struct Ciphertext {
pub(crate) ct_vec_float: Vec<ShortintCiphertext>,
pub(crate) nb_bit_mantissa: usize,
pub(crate) nb_bit_exponent: usize,
pub(crate) e_min: i64,
pub(crate) key_id_vec: Vec<KeyId>,
}
impl Ciphertext {
/// Returns the slice of blocks that the ciphertext is composed of.
pub fn ct_vec_float(&self) -> &[ShortintCiphertext] {
&self.ct_vec_float
}
pub fn nb_bit_mantissa(&self) -> &usize {
&self.nb_bit_mantissa
}
pub fn nb_bit_exponent(&self) -> &usize {
&self.nb_bit_exponent
}
pub fn e_min(&self) -> &i64 {
&self.e_min
}
}

View File

@@ -0,0 +1,165 @@
//! This module implements the generation of the client secret keys, together with the
//! encryption and decryption methods.
pub(crate) mod utils;
use crate::float_wopbs::ciphertext::Ciphertext;
use serde::{Deserialize, Serialize};
pub use utils::radix_decomposition;
use crate::shortint::ClassicPBSParameters;
use crate::shortint::WopbsParameters;
/// The number of ciphertexts in the vector.
#[derive(Debug, PartialEq, Eq, Copy, Clone, Serialize, Deserialize)]
pub struct VecLength(pub usize);
/// A structure containing the client key, which must be kept secret.
#[derive(Serialize, Deserialize, PartialEq, Debug, Clone)]
pub struct ClientKey {
pub(crate) key: crate::shortint::client_key::ClientKey,
}
impl ClientKey {
pub fn new(parameter_set: (ClassicPBSParameters, WopbsParameters))-> Self {
Self {
key: crate::shortint::ClientKey::new(parameter_set),
}
}
pub fn from_shortint(key: crate::shortint::client_key::ClientKey) -> Self {
Self { key }
}
/// Returns the parameters used by the client key.
pub fn parameters(&self) -> crate::shortint::parameters::ShortintParameterSet {
self.key.parameters
}
pub fn encrypt(
&self,
message: f64,
e_min: i64,
nb_bit_mantissa: usize,
nb_bit_exponent: usize,
) -> Ciphertext {
let uint = float_to_uint(message, e_min, nb_bit_mantissa, nb_bit_exponent);
let mut ct_vec_float: Vec<crate::shortint::ciphertext::Ciphertext> = Vec::new();
let message_modulus = f64::log2((self.parameters().message_modulus().0) as f64) as usize;
let mut vector_length = (nb_bit_mantissa + nb_bit_exponent + 1) / message_modulus;
if vector_length * message_modulus != nb_bit_mantissa + nb_bit_exponent + 1 {
vector_length += 1;
}
let mut power = 1_u64;
for _ in 0..vector_length {
let mut decomp = uint & (((1 << message_modulus) - 1) * power);
decomp /= power;
// encryption
let ct = self.key.encrypt(decomp);
ct_vec_float.push(ct);
//modulus to the power i
power *= 1 << message_modulus;
}
Ciphertext {
ct_vec_float,
nb_bit_mantissa,
nb_bit_exponent,
e_min,
key_id_vec: vec![],
}
}
//decrypt function for the all wopbs representation
pub fn decrypt(&self, ctxt: &Ciphertext) -> f64 {
let integer_result = self.decrypt_(ctxt);
uint_to_float(
integer_result,
ctxt.e_min,
ctxt.nb_bit_mantissa,
ctxt.nb_bit_exponent,
)
}
pub fn decrypt_(&self, ctxt: &Ciphertext) -> u64 {
let mut result = 0_u64;
let mut shift = 1_u64;
for c_i in ctxt.ct_vec_float.iter() {
//decrypt the component i of the integer and multiply it by the radix product
let tmp = self.key.decrypt_message_and_carry(c_i).wrapping_mul(shift);
// update the result
result = result.wrapping_add(tmp);
// update the shift for the next iteration
shift = shift.wrapping_mul(self.parameters().message_modulus().0 as u64);
}
result
}
}
pub fn float_to_uint(
mut float: f64,
e_min: i64,
nb_bit_mantissa: usize,
nb_bit_exponent: usize,
) -> u64 {
let min = 2.0_f64.powi(e_min as i32);
let max = (2.0_f64.powi(nb_bit_mantissa as i32) - 1.) * (2.0_f64.powi(nb_bit_exponent as i32 + e_min as i32) );
let sign: u64;
if float > 0. {
sign = 0;
} else {
sign = 1;
float *= -1.;
}
let mut exponent = 0;
let mut mantissa;
if float == 0. {
exponent = 0;
mantissa = 0;
} else if float >= max {
//infinity
exponent = (1 << nb_bit_exponent) - 1;
mantissa = 0;
} else if float < min {
//subnormal values
exponent = 0;
mantissa =
(float * ((1 << (nb_bit_mantissa - 1)) * (1 << (e_min.abs() - 1))) as f64) as u64;
} else {
//Normalized values
while float < 1. {
float *= 2.;
exponent -= 1
}
while float > 1. {
float /= 2.;
exponent += 1
}
mantissa = (float * (1 << (nb_bit_mantissa)) as f64).round() as u64;
if mantissa >= 1 << (nb_bit_mantissa){
mantissa = mantissa >> 1;
exponent += 1
}
exponent -= e_min;
}
let mantissa = mantissa & ((1 << nb_bit_mantissa) - 1);
let exponent = (exponent as u64) & ((1 << nb_bit_exponent) - 1);
(sign << (nb_bit_mantissa + nb_bit_exponent)) + (exponent << nb_bit_mantissa) + mantissa
}
pub fn uint_to_float(int: u64, e_min: i64, nb_bit_mantissa: usize, nb_bit_exponent: usize) -> f64 {
let mantissa = (int % (1 << nb_bit_mantissa)) as f64 / (1 << (nb_bit_mantissa)) as f64;
let exponent = ((int >> nb_bit_mantissa) % (1 << nb_bit_exponent)) as i64;
let sign = int >> (nb_bit_exponent + nb_bit_mantissa);
let value = mantissa * 2_f64.powi((exponent + e_min) as i32);
if sign == 0 {
value
} else {
-value
}
}

View File

@@ -0,0 +1,51 @@
use serde::{Deserialize, Serialize};
#[derive(Debug, PartialEq, Eq, Copy, Clone, Serialize, Deserialize)]
pub struct RadixDecomposition {
pub msg_space: usize,
pub block_number: usize,
}
/// Computes possible radix decompositions
///
/// Takes the number of bit of the message space as input and output a vector containing all the
/// correct
/// possible block decomposition assuming the same message space for all blocks.
/// Lower and upper bounds define the minimal and maximal space to be considered
/// Example: 6,2,4 -> \[\[2,3\], \[3,2\]\] : \[msg_space = 2 bits, block_number = 3\]
///
/// # Example
///
/// ```rust
/// use tfhe::float::client_key::radix_decomposition;
/// let input_space = 16; //
/// let min = 2;
/// let max = 4;
/// let decomp = radix_decomposition(input_space, min, max);
///
/// // Check that 3 possible radix decompositions are provided
/// assert_eq!(decomp.len(), 3);
/// ```
pub fn radix_decomposition(
input_space: usize,
min_space: usize,
max_space: usize,
) -> Vec<RadixDecomposition> {
let mut out: Vec<RadixDecomposition> = vec![];
let mut max = max_space;
if max_space > input_space {
max = input_space;
}
for msg_space in min_space..max + 1 {
let mut block_number = input_space / msg_space;
//Manual ceil of the division
if input_space % msg_space != 0 {
block_number += 1;
}
out.push(RadixDecomposition {
msg_space,
block_number,
})
}
out
}

View File

@@ -0,0 +1,86 @@
use crate::float_wopbs::{ClientKey, ServerKey};
use crate::shortint::WopbsParameters;
use lazy_static::lazy_static;
use std::fs::File;
use std::io::{BufReader, BufWriter};
use std::path::Path;
#[derive(Default)]
pub struct FloatKeyCache;
const FLOAT_KEY_DIR: &str = "../keys/float/";
impl FloatKeyCache {
pub fn get_from_params(&self, wopbs_params: WopbsParameters) -> (ClientKey, ServerKey) {
let pbs_params = crate::shortint::parameters::ClassicPBSParameters {
lwe_dimension: wopbs_params.lwe_dimension,
glwe_dimension: wopbs_params.glwe_dimension,
polynomial_size: wopbs_params.polynomial_size,
lwe_modular_std_dev: wopbs_params.lwe_modular_std_dev,
glwe_modular_std_dev: wopbs_params.glwe_modular_std_dev,
pbs_base_log: wopbs_params.pbs_base_log,
pbs_level: wopbs_params.pbs_level,
ks_base_log: wopbs_params.ks_base_log,
ks_level: wopbs_params.ks_level,
message_modulus: wopbs_params.message_modulus,
carry_modulus: wopbs_params.carry_modulus,
ciphertext_modulus: wopbs_params.ciphertext_modulus,
encryption_key_choice: wopbs_params.encryption_key_choice,
};
let params = (pbs_params, wopbs_params);
let keys = crate::shortint::keycache::KEY_CACHE_WOPBS.get_from_param(params);
let (client_key, server_key) = (keys.client_key(), keys.server_key());
// TODO DANGER
let wopbs_key =
crate::shortint::wopbs::WopbsKey::new_wopbs_key_only_for_wopbs(client_key, server_key);
let client_key = ClientKey::from_shortint(client_key.clone());
let server_key = ServerKey::from_shortint(&client_key, server_key.clone(), wopbs_key);
(client_key, server_key)
}
}
lazy_static! {
pub static ref KEY_CACHE: FloatKeyCache = FloatKeyCache::default();
}
pub fn get_sks(str: &str) -> Option<ServerKey> {
let fiptr = format!("{}SKS_{}.bin", FLOAT_KEY_DIR,str);
let filepath = Path::new(&fiptr);
let file = File::open(filepath);
let file = match file {
Ok(file) => file,
Err(_) => return None,
};
let file = BufReader::new(file);
let saved_key: ServerKey = bincode::deserialize_from(file).unwrap();
Some(saved_key)
}
pub fn get_cks(str: &str) -> Option<ClientKey> {
let fiptr = format!("{}CKS_{}.bin", FLOAT_KEY_DIR,str);
let filepath = Path::new(&fiptr);
let file = File::open(filepath);
let file = match file {
Ok(file) => file,
Err(_) => return None,
};
let file = BufReader::new(file);
let saved_key: ClientKey = bincode::deserialize_from(file).unwrap();
Some(saved_key)
}
pub fn save_sks(key: &ServerKey, str: &str) {
let filepath = format!("{}SKS_{}.bin", FLOAT_KEY_DIR,str);
std::fs::create_dir_all(FLOAT_KEY_DIR).unwrap();
let file = BufWriter::new(File::create(filepath).unwrap());
bincode::serialize_into(file, key).unwrap();
}
pub fn save_cks(key: &ClientKey, str: &str) {
let filepath = format!("{}CKS_{}.bin", FLOAT_KEY_DIR,str);
std::fs::create_dir_all(FLOAT_KEY_DIR).unwrap();
let file = BufWriter::new(File::create(filepath).unwrap());
bincode::serialize_into(file, key).unwrap();
}

55
tfhe/src/float_wopbs/mod.rs Executable file
View File

@@ -0,0 +1,55 @@
//! Welcome the the `concrete-float` documentation!
//!
//! # Description
//!
//! This library makes it possible to execute floating point operations.
//!
//! It allows to execute a floating point circuit on an untrusted server because both circuit inputs
//! and outputs are kept private.
//!
//! Data is encrypted on the client side, before being sent to the server.
//! On the server side every computation is performed on ciphertexts
extern crate core;
pub mod ciphertext;
pub mod client_key;
#[cfg(any(test, doctest, feature = "internal-keycache"))]
pub mod keycache;
pub mod parameters;
pub mod server_key;
pub use ciphertext::Ciphertext;
pub use client_key::ClientKey;
pub use server_key::{CheckError, ServerKey};
/// Generate a couple of client and server keys with given parameters
///
/// * the client key is used to encrypt and decrypt and has to be kept secret;
/// * the server key is used to perform homomorphic operations on the server side and it is meant to
/// be published (the client sends it to the server).
///
pub fn gen_keys(
parameters_set: crate::shortint::parameters::WopbsParameters,
) -> (ClientKey, ServerKey) {
let pbs_params = crate::shortint::parameters::ClassicPBSParameters {
lwe_dimension: parameters_set.lwe_dimension,
glwe_dimension: parameters_set.glwe_dimension,
polynomial_size: parameters_set.polynomial_size,
lwe_modular_std_dev: parameters_set.lwe_modular_std_dev,
glwe_modular_std_dev: parameters_set.glwe_modular_std_dev,
pbs_base_log: parameters_set.pbs_base_log,
pbs_level: parameters_set.pbs_level,
ks_base_log: parameters_set.ks_base_log,
ks_level: parameters_set.ks_level,
message_modulus: parameters_set.message_modulus,
carry_modulus: parameters_set.carry_modulus,
ciphertext_modulus: parameters_set.ciphertext_modulus,
encryption_key_choice: parameters_set.encryption_key_choice,
};
let params = (pbs_params, parameters_set);
let cks = ClientKey::new(params);
let sks = ServerKey::new(&cks);
(cks,sks)
}

View File

@@ -0,0 +1,213 @@
#![allow(clippy::excessive_precision)]
pub use crate::shortint::parameters::{EncryptionKeyChoice, WopbsParameters};
use crate::shortint::CiphertextModulus;
use crate::shortint::parameters::{CarryModulus, MessageModulus};
pub use crate::shortint::parameters::{
DecompositionBaseLog, DecompositionLevelCount, DispersionParameter, GlweDimension,
LweDimension, PolynomialSize, StandardDev,
};
pub const ALL_PARAMETER_VEC_INTEGER_16_BITS: [WopbsParameters; 4] = [
PARAM_MESSAGE_8_16_BITS,
PARAM_MESSAGE_4_16_BITS,
PARAM_MESSAGE_2_16_BITS,
PARAM_TEST_WOP,
];
//TODO toy parameters
// /!\ unsecure
pub const PARAM_TEST_WOP: WopbsParameters = WopbsParameters {
lwe_dimension: LweDimension(10),
glwe_dimension: GlweDimension(1),
polynomial_size: PolynomialSize(1024),
lwe_modular_std_dev: StandardDev(0.0000000000000000000004168323308734758),
glwe_modular_std_dev: StandardDev(0.00000000000000000000000000000000000004905643852600863),
pbs_base_log: DecompositionBaseLog(7),
pbs_level: DecompositionLevelCount(6),
ks_base_log: DecompositionBaseLog(1),
ks_level: DecompositionLevelCount(14),
pfks_level: DecompositionLevelCount(6),
pfks_base_log: DecompositionBaseLog(7),
pfks_modular_std_dev: StandardDev(0.000000000000000000000000000000000000004905643852600863),
cbs_level: DecompositionLevelCount(7),
cbs_base_log: DecompositionBaseLog(4),
message_modulus: MessageModulus(16),
carry_modulus: CarryModulus(1),
encryption_key_choice: EncryptionKeyChoice::Big,
ciphertext_modulus: CiphertextModulus::new_native(),
};
pub const PARAM_MESSAGE_2_4_8_BITS_BIV: WopbsParameters = WopbsParameters {
lwe_dimension: LweDimension(592),
glwe_dimension: GlweDimension(2),
polynomial_size: PolynomialSize(1024),
lwe_modular_std_dev: StandardDev(0.00014316832876365714),
glwe_modular_std_dev: StandardDev(0.0000000000000003162026630747649),
pbs_base_log: DecompositionBaseLog(9),
pbs_level: DecompositionLevelCount(4),
ks_base_log: DecompositionBaseLog(2),
ks_level: DecompositionLevelCount(5),
pfks_level: DecompositionLevelCount(2),
pfks_base_log: DecompositionBaseLog(17),
pfks_modular_std_dev: StandardDev(0.0000000000000003162026630747649),
cbs_level: DecompositionLevelCount(1),
cbs_base_log: DecompositionBaseLog(14),
message_modulus: MessageModulus(16),
carry_modulus: CarryModulus(1),
encryption_key_choice: EncryptionKeyChoice::Big,
ciphertext_modulus: CiphertextModulus::new_native(),
};
pub const PARAM_MESSAGE_4_2_8_BITS_BIV: WopbsParameters = WopbsParameters {
lwe_dimension: LweDimension(564),
glwe_dimension: GlweDimension(2),
polynomial_size: PolynomialSize(1024),
lwe_modular_std_dev: StandardDev(0.00024077946887044908),
glwe_modular_std_dev: StandardDev(0.0000000000000003162026630747649),
pbs_base_log: DecompositionBaseLog(12),
pbs_level: DecompositionLevelCount(3),
ks_base_log: DecompositionBaseLog(2),
ks_level: DecompositionLevelCount(5),
pfks_level: DecompositionLevelCount(2),
pfks_base_log: DecompositionBaseLog(17),
pfks_modular_std_dev: StandardDev(0.0000000000000003162026630747649),
cbs_level: DecompositionLevelCount(1),
cbs_base_log: DecompositionBaseLog(13),
message_modulus: MessageModulus(4),
carry_modulus: CarryModulus(1),
encryption_key_choice: EncryptionKeyChoice::Big,
ciphertext_modulus: CiphertextModulus::new_native(),
};
pub const PARAM_MESSAGE_5_2_8_BITS_BIV: WopbsParameters = WopbsParameters {
lwe_dimension: LweDimension(635),
glwe_dimension: GlweDimension(4),
polynomial_size: PolynomialSize(512),
lwe_modular_std_dev: StandardDev(-13.91),
glwe_modular_std_dev: StandardDev(-51.49),
pbs_base_log: DecompositionBaseLog(8),
pbs_level: DecompositionLevelCount(5),
ks_base_log: DecompositionBaseLog(2),
ks_level: DecompositionLevelCount(6),
pfks_level: DecompositionLevelCount(2),
pfks_base_log: DecompositionBaseLog(17),
pfks_modular_std_dev: StandardDev(-51.49),
cbs_level: DecompositionLevelCount(1),
cbs_base_log: DecompositionBaseLog(14),
message_modulus: MessageModulus(32),
carry_modulus: CarryModulus(1),
encryption_key_choice: EncryptionKeyChoice::Big,
ciphertext_modulus: CiphertextModulus::new_native(),
};
pub const PARAM_MESSAGE_2_4_8_BITS_TRI: WopbsParameters = WopbsParameters {
lwe_dimension: LweDimension(589),
glwe_dimension: GlweDimension(1),
polynomial_size: PolynomialSize(2048),
lwe_modular_std_dev: StandardDev(0.00015133150634020836),
glwe_modular_std_dev: StandardDev(0.0000000000000003162026630747649),
pbs_base_log: DecompositionBaseLog(8),
pbs_level: DecompositionLevelCount(5),
ks_base_log: DecompositionBaseLog(2),
ks_level: DecompositionLevelCount(5),
pfks_level: DecompositionLevelCount(2),
pfks_base_log: DecompositionBaseLog(17),
pfks_modular_std_dev: StandardDev(0.0000000000000003162026630747649),
cbs_level: DecompositionLevelCount(1),
cbs_base_log: DecompositionBaseLog(14),
message_modulus: MessageModulus(16),
carry_modulus: CarryModulus(1),
encryption_key_choice: EncryptionKeyChoice::Big,
ciphertext_modulus: CiphertextModulus::new_native(),
};
pub const PARAM_MESSAGE_4_2_8_BITS_TRI: WopbsParameters = WopbsParameters {
lwe_dimension: LweDimension(573),
glwe_dimension: GlweDimension(1),
polynomial_size: PolynomialSize(2048),
lwe_modular_std_dev: StandardDev(0.00020387888657919176),
glwe_modular_std_dev: StandardDev(0.0000000000000003162026630747649),
pbs_base_log: DecompositionBaseLog(11),
pbs_level: DecompositionLevelCount(3),
ks_base_log: DecompositionBaseLog(2),
ks_level: DecompositionLevelCount(5),
pfks_level: DecompositionLevelCount(2),
pfks_base_log: DecompositionBaseLog(17),
pfks_modular_std_dev: StandardDev(0.0000000000000003162026630747649),
cbs_level: DecompositionLevelCount(1),
cbs_base_log: DecompositionBaseLog(12),
message_modulus: MessageModulus(4),
carry_modulus: CarryModulus(1),
ciphertext_modulus: CiphertextModulus::new_native(),
encryption_key_choice: EncryptionKeyChoice::Big,
};
pub const PARAM_MESSAGE_2_16_BITS: WopbsParameters = WopbsParameters {
lwe_dimension: LweDimension(493),
glwe_dimension: GlweDimension(1),
polynomial_size: PolynomialSize(2048),
lwe_modular_std_dev: StandardDev(0.00049144710341316649172),
glwe_modular_std_dev: StandardDev(0.00000000000000022148688116005568513645324585951),
pbs_base_log: DecompositionBaseLog(16),
pbs_level: DecompositionLevelCount(2),
ks_level: DecompositionLevelCount(5),
ks_base_log: DecompositionBaseLog(2),
pfks_level: DecompositionLevelCount(2),
pfks_base_log: DecompositionBaseLog(16),
pfks_modular_std_dev: StandardDev(0.00000000000000022148688116005568513645324585951),
cbs_level: DecompositionLevelCount(6),
cbs_base_log: DecompositionBaseLog(3),
message_modulus: MessageModulus(4),
carry_modulus: CarryModulus(1),
encryption_key_choice: EncryptionKeyChoice::Big,
ciphertext_modulus: CiphertextModulus::new_native(),
};
pub const PARAM_MESSAGE_8_16_BITS: WopbsParameters = WopbsParameters {
lwe_dimension: LweDimension(481),
glwe_dimension: GlweDimension(1),
polynomial_size: PolynomialSize(2048),
lwe_modular_std_dev: StandardDev(0.00061200133780220371345),
glwe_modular_std_dev: StandardDev(0.00000000000000022148688116005568513645324585951),
pbs_base_log: DecompositionBaseLog(9),
pbs_level: DecompositionLevelCount(4),
ks_level: DecompositionLevelCount(9),
ks_base_log: DecompositionBaseLog(1),
pfks_level: DecompositionLevelCount(4),
pfks_base_log: DecompositionBaseLog(9),
pfks_modular_std_dev: StandardDev(0.00000000000000022148688116005568513645324585951),
cbs_level: DecompositionLevelCount(4),
cbs_base_log: DecompositionBaseLog(6),
message_modulus: MessageModulus(256),
carry_modulus: CarryModulus(1),
encryption_key_choice: EncryptionKeyChoice::Big,
ciphertext_modulus: CiphertextModulus::new_native(),
};
pub const PARAM_MESSAGE_4_16_BITS: WopbsParameters = WopbsParameters {
lwe_dimension: LweDimension(493),
glwe_dimension: GlweDimension(1),
polynomial_size: PolynomialSize(2048),
lwe_modular_std_dev: StandardDev(0.00049144710341316649172),
glwe_modular_std_dev: StandardDev(0.00000000000000022148688116005568513645324585951),
pbs_base_log: DecompositionBaseLog(16),
pbs_level: DecompositionLevelCount(2),
ks_level: DecompositionLevelCount(5),
ks_base_log: DecompositionBaseLog(2),
pfks_level: DecompositionLevelCount(2),
pfks_base_log: DecompositionBaseLog(16),
pfks_modular_std_dev: StandardDev(0.00000000000000022148688116005568513645324585951),
cbs_level: DecompositionLevelCount(6),
cbs_base_log: DecompositionBaseLog(3),
message_modulus: MessageModulus(16),
carry_modulus: CarryModulus(1),
encryption_key_choice: EncryptionKeyChoice::Big,
ciphertext_modulus: CiphertextModulus::new_native(),
};

View File

@@ -0,0 +1,290 @@
//! Module with the definition of the ServerKey.
//!
//! This module implements the generation of the server public key, together with all the
//! available homomorphic integer operations.
#[cfg(test)]
mod tests;
use crate::core_crypto::commons::parameters::{CiphertextCount, DeltaLog, LweCiphertextCount};
use crate::core_crypto::commons::traits::*;
use crate::core_crypto::entities::*;
use crate::float_wopbs::ciphertext::Ciphertext;
use crate::float_wopbs::client_key::{float_to_uint, uint_to_float, ClientKey};
use crate::shortint::ciphertext::Degree;
use crate::shortint::wopbs::WopbsLUTBase;
use crate::core_crypto::commons::parameters;
use crate::shortint::ciphertext::MaxDegree;
use crate::shortint::ciphertext::NoiseLevel;
use serde::{Deserialize, Serialize};
use crate::shortint;
/// Error returned when the carry buffer is full.
pub use crate::shortint::CheckError;
/// A structure containing the server public key.
///
/// The server key is generated by the client and is meant to be published: the client
/// sends it to the server so it can compute homomorphic integer circuits.
#[derive(Serialize, Deserialize, Clone)]
pub struct ServerKey {
pub key: shortint::server_key::ServerKey,
pub wopbs_key: shortint::wopbs::WopbsKey,
}
impl ServerKey {
/// Generates a server key.
///
/// # Example
///
/// ```rust
/// use tfhe::float::parameters::PARAM_MESSAGE_4_16_BITS;
/// use tfhe::float::{ClientKey, ServerKey};
///
/// // Generate the client key:
/// let cks = ClientKey::new(PARAM_MESSAGE_4_16_BITS);
///
/// // Generate the server key:
/// let sks = ServerKey::new(&cks);
/// ```
pub fn new(cks: &ClientKey) -> ServerKey {
// It should remain just enough space to add a carry
let max =
(cks.key.parameters.message_modulus().0 - 1) * cks.key.parameters.carry_modulus().0 - 1;
let sks =
shortint::server_key::ServerKey::new_with_max_degree(&cks.key, MaxDegree(max));
// TODO DANGER
let wopbs_key =
shortint::wopbs::WopbsKey::new_wopbs_key_only_for_wopbs(&cks.key, &sks);
ServerKey {
key: sks,
wopbs_key,
}
}
/// Creates a ServerKey from an already generated shortint::ServerKey.
pub fn from_shortint(
cks: &ClientKey,
mut key: crate::shortint::server_key::ServerKey,
wopbs_key: crate::shortint::wopbs::WopbsKey,
) -> ServerKey {
// It should remain just enough space add a carry
let max =
(cks.key.parameters.message_modulus().0 - 1) * cks.key.parameters.carry_modulus().0 - 1;
key.max_degree = MaxDegree(max);
ServerKey { key, wopbs_key }
}
pub fn create_lut<F: Fn(f64) -> f64>(&self, ct: &mut Ciphertext, f: F) -> Vec<Vec<u64>> {
let log_msg_mod = f64::log2(self.wopbs_key.param.message_modulus.0 as f64).ceil() as u64;
let bit_mantissa = ct.nb_bit_mantissa;
let bit_exponent = ct.nb_bit_exponent;
let len_vec = ct.ct_vec_float.len();
let e_min = ct.e_min;
let total_bit = (bit_exponent + bit_mantissa) as u64 + 1;
let mut lut_len = 1 << total_bit;
if 1 << total_bit < self.wopbs_key.param.polynomial_size.0 as u64 {
lut_len = self.wopbs_key.param.polynomial_size.0;
}
let mut vec_lut = vec![vec![0; lut_len]; len_vec];
for value in 0..1 << total_bit {
let float = uint_to_float(value, e_min, bit_mantissa, bit_exponent);
let mut encoded_float = float_to_uint(f(float), e_min, bit_mantissa, bit_exponent);
for lut in vec_lut.iter_mut() {
lut[value as usize] =
(encoded_float % (1 << log_msg_mod)) * ((1_u64 << 63) / (1 << log_msg_mod));
encoded_float >>= log_msg_mod;
}
}
vec_lut
}
pub fn create_bivariate_lut<F: Fn(f64, f64) -> f64>(
&self,
ct: &mut Ciphertext,
f: F,
) -> Vec<Vec<u64>> {
let log_msg_mod = f64::log2(self.wopbs_key.param.message_modulus.0 as f64).ceil() as u64;
let bit_mantissa = ct.nb_bit_mantissa;
let bit_exponent = ct.nb_bit_exponent;
let len_vec = ct.ct_vec_float.len();
let e_min = ct.e_min;
let total_bit = 2 * ((bit_exponent + bit_mantissa) as u64 + 1);
let mut lut_len = 1 << total_bit;
if 1 << total_bit < self.wopbs_key.param.polynomial_size.0 as u64 {
lut_len = self.wopbs_key.param.polynomial_size.0;
}
let mut vec_lut = vec![vec![0; lut_len]; len_vec];
for value in 0..1 << total_bit {
let value_1 = value % (1 << (total_bit / 2));
let value_2 = value >> (total_bit / 2);
let float_1 = uint_to_float(value_1, e_min, bit_mantissa, bit_exponent);
let float_2 = uint_to_float(value_2, e_min, bit_mantissa, bit_exponent);
let float = f(float_1, float_2);
let mut encoded_float = float_to_uint(float, e_min, bit_mantissa, bit_exponent);
for lut in vec_lut.iter_mut() {
lut[value as usize] =
(encoded_float % (1 << log_msg_mod)) * ((1_u64 << 63) / (1 << log_msg_mod));
encoded_float >>= log_msg_mod;
}
}
vec_lut
}
pub fn create_trivariate_lut<F: Fn(f64, f64, f64) -> f64>(
&self,
ct: &mut Ciphertext,
f: F,
) -> Vec<Vec<u64>> {
let log_msg_mod = f64::log2(self.wopbs_key.param.message_modulus.0 as f64).ceil() as u64;
let bit_mantissa = ct.nb_bit_mantissa;
let bit_exponent = ct.nb_bit_exponent;
let len_vec = ct.ct_vec_float.len();
let e_min = ct.e_min;
let total_bit = 3 * ((bit_exponent + bit_mantissa) as u64 + 1);
let mut lut_len = 1 << total_bit;
if 1 << total_bit < self.wopbs_key.param.polynomial_size.0 as u64 {
lut_len = self.wopbs_key.param.polynomial_size.0;
}
let mut vec_lut = vec![vec![0; lut_len]; len_vec];
for value in 0..1 << total_bit {
let value_1 = value % (1 << (total_bit / 3));
let value_2 = (value >> (total_bit / 3)) % (1 << (total_bit / 3));
let value_3 = (value >> (2 * total_bit / 3)) % (1 << (total_bit / 3));
let float_1 = uint_to_float(value_1, e_min, bit_mantissa, bit_exponent);
let float_2 = uint_to_float(value_2, e_min, bit_mantissa, bit_exponent);
let float_3 = uint_to_float(value_3, e_min, bit_mantissa, bit_exponent);
let float = f(float_1, float_2, float_3);
let mut encoded_float = float_to_uint(float, e_min, bit_mantissa, bit_exponent);
for lut in vec_lut.iter_mut() {
lut[value as usize] =
(encoded_float % (1 << log_msg_mod)) * ((1_u64 << 63) / (1 << log_msg_mod));
encoded_float >>= log_msg_mod;
}
}
vec_lut
}
pub fn wop_pbs_bivariate(
&self,
sks: &ServerKey,
ct_in_1: &mut Ciphertext,
ct_in_2: &mut Ciphertext,
lut: &[Vec<u64>],
) -> Ciphertext {
let mut vec_ct = vec![ct_in_1, ct_in_2];
self.wop(sks, &mut vec_ct, lut)
}
pub fn wop_pbs_trivariate(
&self,
sks: &ServerKey,
ct_in_1: &mut Ciphertext,
ct_in_2: &mut Ciphertext,
ct_in_3: &mut Ciphertext,
lut: &[Vec<u64>],
) -> Ciphertext {
let mut vec_ct = vec![ct_in_1, ct_in_2, ct_in_3];
self.wop(sks, &mut vec_ct, lut)
}
pub fn wop_pbs(&self, sks: &ServerKey, ct_in: &mut Ciphertext, lut: &[Vec<u64>]) -> Ciphertext {
let mut vec_ct = vec![ct_in];
self.wop(sks, &mut vec_ct, lut)
}
fn wop(
&self,
// TODO DANGER
_sks: &ServerKey,
vec_ct_in: &mut [&mut Ciphertext],
lut: &[Vec<u64>],
) -> Ciphertext {
let total_bits_extracted = vec_ct_in.iter().fold(0usize, |acc, ct_in| {
acc + ct_in.nb_bit_mantissa + ct_in.nb_bit_exponent + 1
});
let extract_bits_output_lwe_size = self
.wopbs_key
.wopbs_server_key
.key_switching_key
.output_key_lwe_dimension()
.to_lwe_size();
let mut vec_lwe = LweCiphertextList::new(
0u64,
extract_bits_output_lwe_size,
LweCiphertextCount(total_bits_extracted),
self.wopbs_key.param.ciphertext_modulus,
);
let mut bits_extracted_so_far = 0;
// Extraction of each bit for each block
for ct_in in vec_ct_in.iter_mut() {
let mut remain_bit_to_extract = ct_in.nb_bit_mantissa + ct_in.nb_bit_exponent + 1;
let mut nb_bit_to_extract = f64::log2((self.key.message_modulus.0) as f64) as usize;
for block in ct_in.ct_vec_float.iter_mut() {
let delta = (1_usize << 63) / (block.message_modulus.0 * block.carry_modulus.0);
let delta_log = DeltaLog(f64::log2(delta as f64) as usize);
if nb_bit_to_extract > remain_bit_to_extract {
nb_bit_to_extract = remain_bit_to_extract;
remain_bit_to_extract = 0;
} else {
remain_bit_to_extract -= nb_bit_to_extract
}
// Fill in reverse to have the proper order for float ops
bits_extracted_so_far += nb_bit_to_extract;
let extract_from_bit = total_bits_extracted - bits_extracted_so_far;
let extract_to_bit = extract_from_bit + nb_bit_to_extract;
// TODO DANGER
let tmp = self
.wopbs_key
.extract_bits(delta_log, block, parameters::ExtractedBitsCount(nb_bit_to_extract));
let mut lwe_sub_list = vec_lwe.get_sub_mut(extract_from_bit..extract_to_bit);
lwe_sub_list.as_mut().copy_from_slice(tmp.as_ref());
}
}
let out_ct_count = lut.len();
let lut = WopbsLUTBase::from_vec(
lut.iter().flatten().cloned().collect(),
CiphertextCount(out_ct_count),
);
// TODO DANGER
let mut vec_ct_out = self
.wopbs_key
.circuit_bootstrapping_vertical_packing(&lut, &vec_lwe);
let mut ct_vec_out_float: Vec<crate::shortint::Ciphertext> = vec![];
for (block_mantissa, result_ct) in
vec_ct_in[0].ct_vec_float.iter().zip(vec_ct_out.drain(..))
{
ct_vec_out_float.push(crate::shortint::Ciphertext::new(
result_ct,
Degree(block_mantissa.message_modulus.0 - 1),
NoiseLevel::NOMINAL,
block_mantissa.message_modulus,
block_mantissa.carry_modulus,
crate::shortint::PBSOrder::KeyswitchBootstrap,
));
}
Ciphertext {
ct_vec_float: ct_vec_out_float,
nb_bit_mantissa: vec_ct_in[0].nb_bit_mantissa,
nb_bit_exponent: vec_ct_in[0].nb_bit_exponent,
key_id_vec: vec_ct_in[0].key_id_vec.clone(),
e_min: vec_ct_in[0].e_min,
}
}
}

View File

@@ -0,0 +1,233 @@
use crate::float_wopbs::client_key::{float_to_uint, uint_to_float};
use crate::float_wopbs::gen_keys;
use crate::float_wopbs::keycache::{get_cks, get_sks, save_cks, save_sks};
use crate::float_wopbs::parameters::*;
use rand::Rng;
use std::time::Instant;
#[test]
pub fn float_wopbs_encode() {
let mut rng = rand::thread_rng();
let bit_mantissa = 3_usize;
let bit_exponent = 4_usize;
let e_min = -5;
let (cks, _) = gen_keys(PARAM_TEST_WOP);
let msg = rng.gen::<f32>() as f64;
// Encryption of one message:
let ct = cks.encrypt(msg, e_min, bit_mantissa, bit_exponent);
let clear = uint_to_float(
float_to_uint(msg, e_min, bit_mantissa, bit_exponent),
e_min,
bit_mantissa,
bit_exponent,
);
println!("///////////////////////////////////////////////");
let res = cks.decrypt(&ct);
println!("clear : {res:?}");
println!("result: {res:?}");
println!("///////////////////////////////////////////////");
assert_eq!(res, clear);
}
#[test]
pub fn float_wopbs_lut() {
let mut rng = rand::thread_rng();
let bit_mantissa = 3_usize;
let bit_exponent = 4_usize;
let e_min = -5;
let param_set = "PARAM_MESSAGE_2_16_BITS";
let cks = get_cks(param_set);
let sks = get_sks(param_set);
let (cks, sks) = match (cks, sks) {
(Some(cks), Some(sks)) => (cks, sks),
_ => {
// Generate the client key and the server key:
let (cks, sks) = gen_keys(PARAM_MESSAGE_2_16_BITS);
save_cks(&cks, param_set);
save_sks(&sks, param_set);
(cks, sks)
}
};
let msg = rng.gen::<f32>() as f64;
// Encryption of one message:
let mut ct = cks.encrypt(msg, e_min, bit_mantissa, bit_exponent);
println!("///////////////////////////////////////////////");
let res = cks.decrypt(&ct);
println!("res_1 {res:?}");
let lut = sks.create_lut(&mut ct, |x| x);
let now = Instant::now();
let ct = sks.wop_pbs(&sks, &mut ct, &lut);
let res_wop = cks.decrypt(&ct);
println!("res_wop {res_wop:?}");
let elapsed = now.elapsed();
println!(
"sks param modulus {:?} time : {elapsed:.2?}",
sks.key.message_modulus
);
println!("///////////////////////////////////////////////");
assert_eq!(res, res_wop);
// panic!()
}
#[test]
pub fn float_wopbs_bivariate() {
let bit_mantissa = 4_usize;
let bit_exponent = 3_usize;
let e_min = -5;
let param_set = "PARAM_2_BIT_LWE_8_BITS";
//generate secret keys
let cks = get_cks(param_set);
let sks = get_sks(param_set);
let (cks, sks) = match (cks, sks) {
(Some(cks), Some(sks)) => (cks, sks),
_ => {
// Generate the client key and the server key:
let (cks, sks) = gen_keys(PARAM_MESSAGE_2_16_BITS);
save_cks(&cks, param_set);
save_sks(&sks, param_set);
(cks, sks)
}
};
// take two random messages
let mut rng = rand::thread_rng();
let msg_1 = rng.gen::<f32>() as f64;
let msg_2 = -rng.gen::<f32>() as f64;
// convert 64 bits floating point in 8 bits floating point
let msg_1_round = uint_to_float(
float_to_uint(msg_1, e_min, bit_mantissa, bit_exponent),
e_min,
bit_mantissa,
bit_exponent,
);
let msg_2_round = uint_to_float(
float_to_uint(msg_2, e_min, bit_mantissa, bit_exponent),
e_min,
bit_mantissa,
bit_exponent,
);
println!("\nmessage 1 (8 bits floating point): {:?}", msg_1_round);
println!("message 2 (8 bits floating point): {:?} \n", msg_2_round);
let mut ct_1 = cks.encrypt(msg_1, e_min, bit_mantissa, bit_exponent);
let res = cks.decrypt(&ct_1);
println!("encrypt/decrypt ct_1 (8 bits): {res:?}");
let mut ct_2 = cks.encrypt(msg_2, e_min, bit_mantissa, bit_exponent);
let res = cks.decrypt(&ct_2);
println!("encrypt/decrypt ct_2 (8 bits): {res:?}");
let lut = sks.create_bivariate_lut(&mut ct_1, |x, y| x + y);
let ct = sks.wop_pbs_bivariate(&sks, &mut ct_1, &mut ct_2, &lut);
let res = cks.decrypt(&ct);
// Clear operation done on 64 bits floating point
let exact = msg_1_round + msg_2_round;
// Convert result on 8 bits floating points
let exact = uint_to_float(
float_to_uint(exact, e_min, bit_mantissa, bit_exponent),
e_min,
bit_mantissa,
bit_exponent,
);
println!("\n//////////////////////////////////////////");
println!("Clear result :{exact:?}");
println!("Decrypted result (WoPBS-based) :{res:?}");
println!("///////////////////////////////////////////////\n");
assert_eq!(res, exact);
}
#[test]
pub fn float_wopbs_trivariate() {
let bit_mantissa = 3_usize;
let bit_exponent = 4_usize;
let e_min = -5;
let param_set = "PARAM_MESSAGE_2_16_BITS";
let cks = get_cks(param_set);
let sks = get_sks(param_set);
let (cks, sks) = match (cks, sks) {
(Some(cks), Some(sks)) => (cks, sks),
_ => {
// Generate the client key and the server key:
let (cks, sks) = gen_keys(PARAM_MESSAGE_2_4_8_BITS_TRI);
save_cks(&cks, param_set);
save_sks(&sks, param_set);
(cks, sks)
}
};
let mut rng = rand::thread_rng();
let msg_1 = rng.gen::<f32>() as f64;
let msg_2 = -rng.gen::<f32>() as f64;
let msg_3 = rng.gen::<f32>() as f64;
println!("message 1 (64 bits): {:?}", msg_1);
println!("message 2 (64 bits): {:?}", msg_2);
println!("message 3 (64 bits): {:?}", msg_3);
let mut ct_1 = cks.encrypt(msg_1, e_min, bit_mantissa, bit_exponent);
let mut ct_2 = cks.encrypt(msg_2, e_min, bit_mantissa, bit_exponent);
let mut ct_3 = cks.encrypt(msg_3, e_min, bit_mantissa, bit_exponent);
println!("encrypt/decrypt ct_1 (8 bits): {:?}", cks.decrypt(&ct_1));
println!("encrypt/decrypt ct_2 (8 bits): {:?}", cks.decrypt(&ct_2));
println!("encrypt/decrypt ct_3 (8 bits): {:?}", cks.decrypt(&ct_3));
let lut = sks.create_trivariate_lut(&mut ct_1, |x, y, z| x + y - z);
let ct = sks.wop_pbs_trivariate(&sks, &mut ct_1, &mut ct_2, &mut ct_3, &lut);
let res = cks.decrypt(&ct);
let exact = msg_1 + msg_2 - msg_3;
let msg_1_round = uint_to_float(
float_to_uint(msg_1, e_min, bit_mantissa, bit_exponent),
e_min,
bit_mantissa,
bit_exponent,
);
let msg_2_round = uint_to_float(
float_to_uint(msg_2, e_min, bit_mantissa, bit_exponent),
e_min,
bit_mantissa,
bit_exponent,
);
let msg_3_round = uint_to_float(
float_to_uint(msg_3, e_min, bit_mantissa, bit_exponent),
e_min,
bit_mantissa,
bit_exponent,
);
let exact_round = uint_to_float(
float_to_uint(
msg_1_round + msg_2_round - msg_3_round,
e_min,
bit_mantissa,
bit_exponent,
),
e_min,
bit_mantissa,
bit_exponent,
);
println!("\n///////////////////////////////////////////////");
println!("Clear result (64 bits) :{exact:?}");
println!("Clear result (8 bits) :{exact_round:?}");
println!("Decrypted result (WoPBS-based) :{res:?}");
println!("///////////////////////////////////////////////\n");
assert_eq!(res, exact_round);
}

View File

@@ -1,5 +1,6 @@
/// Meant to be implemented on the inner server key
/// eg the crate::integer::ServerKey
#[allow(dead_code)]
pub trait EvaluationIntegerKey<ClientKey> {
fn new(client_key: &ClientKey) -> Self;

View File

@@ -10,6 +10,7 @@ pub(crate) trait DecryptionKey<CiphertextType, ClearType> {
fn decrypt(&self, ciphertext: &CiphertextType) -> ClearType;
}
#[allow(dead_code)]
pub trait TypeIdentifier {
fn type_variant(&self) -> crate::high_level_api::errors::Type;
}

View File

@@ -61,6 +61,18 @@ impl MaxDegree {
}
}
fn integer_server_key_max_degree_ex(
msg_modulus: MessageModulus,
carry_modulus: CarryModulus,
) -> MaxDegree {
let full_max_degree = msg_modulus.0 * carry_modulus.0 - 1;
let carry_max_degree = carry_modulus.0 - 1;
// We want to be have a margin to add a carry from another block
MaxDegree::new(full_max_degree - carry_max_degree)
}
impl ServerKey {
/// Generates a server key.
///
@@ -167,6 +179,15 @@ impl ServerKey {
mut key: crate::shortint::server_key::ServerKey,
) -> Self {
key.max_degree = MaxDegree::integer_crt_server_key(cks.key.parameters);
Self { key }
}
pub fn from_shortint_ex(mut key: crate::shortint::server_key::ServerKey) -> Self {
// It should remain just enough space add a carry
let max_degree = integer_server_key_max_degree_ex(key.message_modulus, key.carry_modulus);
key.max_degree = max_degree;
Self { key }
}

View File

@@ -122,6 +122,50 @@ impl ServerKey {
}
}
pub fn partial_propagate_parallelized_w_carry<T>(
&self,
ctxt: &mut T,
start_index: usize,
) -> crate::shortint::Ciphertext
where
T: IntegerRadixCiphertext,
{
if self.is_eligible_for_parallel_single_carry_propagation(ctxt) {
let num_blocks = ctxt.blocks().len();
let (mut message_blocks, carry_blocks) = rayon::join(
|| {
ctxt.blocks()[start_index..]
.par_iter()
.map(|block| self.key.message_extract(block))
.collect::<Vec<_>>()
},
|| {
let mut carry_blocks = Vec::with_capacity(num_blocks);
// No need to compute the carry of the last block, we would just throw it away
ctxt.blocks()[start_index..num_blocks - 1]
.par_iter()
.map(|block| self.key.carry_extract(block))
.collect_into_vec(&mut carry_blocks);
carry_blocks.insert(0, self.key.create_trivial(0));
carry_blocks
},
);
ctxt.blocks_mut()[start_index..].swap_with_slice(&mut message_blocks);
let carries = T::from_blocks(carry_blocks);
self.unchecked_add_assign_parallelized_low_latency(ctxt, &carries)
} else {
let len = ctxt.blocks().len();
let mut carry = self.key.create_trivial(0);
for i in start_index..len {
carry = self.propagate_parallelized(ctxt, i);
}
carry
}
}
/// Propagate all the carries.
///
/// # Example

View File

@@ -46,6 +46,7 @@
// End allowed pedantic lints
// Nursery lints
#![allow(unknown_lints)]
#![warn(clippy::nursery)]
// The following lints have been temporarily allowed
// They are expected to be fixed progressively
@@ -61,6 +62,8 @@
#![cfg_attr(all(doc, not(doctest)), feature(doc_auto_cfg))]
#![cfg_attr(all(doc, not(doctest)), feature(doc_cfg))]
#![warn(rustdoc::broken_intra_doc_links)]
#![allow(elided_named_lifetimes)]
#![allow(unstable_name_collisions)]
#[cfg(feature = "__c_api")]
pub mod c_api;
@@ -78,6 +81,12 @@ pub mod boolean;
/// cbindgen:ignore
pub mod core_crypto;
/// Welcome to the TFHE-rs [`float_wopbs`](`crate::float_wopbs`) module documentation!
///
/// # Special module attributes
/// cbindgen:ignore
pub mod float_wopbs;
#[cfg(feature = "integer")]
/// Welcome to the TFHE-rs [`integer`](`crate::integer`) module documentation!
///

View File

@@ -112,7 +112,7 @@ impl std::ops::Mul<usize> for NoiseLevel {
/// Maximum value that the degree can reach.
#[derive(Debug, PartialEq, Eq, Copy, Clone, Serialize, Deserialize)]
pub struct MaxDegree(usize);
pub struct MaxDegree(pub usize);
impl MaxDegree {
pub fn new(value: usize) -> Self {
@@ -143,7 +143,7 @@ impl MaxDegree {
/// This tracks the number of operations that has been done.
#[derive(Debug, PartialEq, Eq, Copy, Clone, Serialize, Deserialize)]
pub struct Degree(usize);
pub struct Degree(pub usize);
impl Degree {
pub fn new(degree: usize) -> Self {

View File

@@ -36,7 +36,7 @@ pub struct MessageModulus(pub usize);
/// The number of bits on which the carry will be encoded.
#[derive(Debug, PartialEq, Eq, Copy, Clone, Serialize, Deserialize)]
pub struct CarryModulus(pub usize);
pub struct CarryModulus(pub usize);
/// Determines in what ring computations are made
pub type CiphertextModulus = CoreCiphertextModulus<u64>;

View File

@@ -1 +1 @@
nightly-2023-11-30
nightly-2024-07-05