Compare commits

...

3 Commits

Author SHA1 Message Date
Agnes Leroy
84af5e983a revert optim flags 2025-05-13 10:05:23 +02:00
Agnes Leroy
069d47309d fix 2025-05-12 17:35:31 +02:00
Beka Barbakadze
7389494c45 draft 2025-05-12 15:38:19 +02:00
11 changed files with 650 additions and 341 deletions

View File

@@ -1116,14 +1116,32 @@ template <typename Torus> struct int_overflowing_sub_memory {
};
template <typename Torus> struct int_sum_ciphertexts_vec_memory {
CudaRadixCiphertextFFI *new_blocks;
CudaRadixCiphertextFFI *new_blocks_copy;
CudaRadixCiphertextFFI *old_blocks;
CudaRadixCiphertextFFI *small_lwe_vector;
int_radix_params params;
int32_t *d_smart_copy_in;
int32_t *d_smart_copy_out;
int_radix_params params;
uint32_t active_gpu_count;
size_t chunk_size;
size_t max_pbs_count;
// temporary buffers
CudaRadixCiphertextFFI *current_blocks;
CudaRadixCiphertextFFI *small_lwe_vector;
uint32_t *d_columns_data;
uint32_t *d_columns_counter;
uint32_t **d_columns;
uint32_t *d_new_columns_data;
uint32_t *d_new_columns_counter;
uint32_t **d_new_columns;
uint64_t *d_degrees;
uint32_t *d_pbs_counters;
// additional streams
cudaStream_t *helper_streams;
// lookup table for extracting message and carry
int_radix_lut<Torus> *luts_message_carry;
bool mem_reuse = false;
bool gpu_memory_allocated;
@@ -1137,100 +1155,139 @@ template <typename Torus> struct int_sum_ciphertexts_vec_memory {
uint64_t *size_tracker) {
this->params = params;
gpu_memory_allocated = allocate_gpu_memory;
this->chunk_size = (params.message_modulus * params.carry_modulus - 1) /
(params.message_modulus - 1);
this->max_pbs_count =
num_blocks_in_radix * max_num_radix_in_vec * 2 / chunk_size;
this->active_gpu_count = get_active_gpu_count(2 * max_pbs_count, gpu_count);
int max_pbs_count = num_blocks_in_radix * max_num_radix_in_vec;
size_t max_total_blocks_in_vec = num_blocks_in_radix * max_num_radix_in_vec;
uint32_t message_modulus = params.message_modulus;
printf("max_total_blocks_in_vec: %d\n", max_total_blocks_in_vec);
// process streams
helper_streams =
(cudaStream_t *)malloc(active_gpu_count * sizeof(cudaStream_t));
for (uint j = 0; j < active_gpu_count; j++) {
helper_streams[j] = cuda_create_stream(gpu_indexes[j]);
}
// allocate gpu memory for intermediate buffers
new_blocks = new CudaRadixCiphertextFFI;
current_blocks = new CudaRadixCiphertextFFI;
create_zero_radix_ciphertext_async<Torus>(
streams[0], gpu_indexes[0], new_blocks, max_pbs_count,
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
new_blocks_copy = new CudaRadixCiphertextFFI;
create_zero_radix_ciphertext_async<Torus>(
streams[0], gpu_indexes[0], new_blocks_copy, max_pbs_count,
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
old_blocks = new CudaRadixCiphertextFFI;
create_zero_radix_ciphertext_async<Torus>(
streams[0], gpu_indexes[0], old_blocks, max_pbs_count,
streams[0], gpu_indexes[0], current_blocks, max_total_blocks_in_vec,
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
small_lwe_vector = new CudaRadixCiphertextFFI;
create_zero_radix_ciphertext_async<Torus>(
streams[0], gpu_indexes[0], small_lwe_vector, max_pbs_count,
streams[0], gpu_indexes[0], small_lwe_vector, max_total_blocks_in_vec,
params.small_lwe_dimension, size_tracker, allocate_gpu_memory);
d_smart_copy_in = (int32_t *)cuda_malloc_with_size_tracking_async(
max_pbs_count * sizeof(int32_t), streams[0], gpu_indexes[0],
d_degrees = (uint64_t *)cuda_malloc_with_size_tracking_async(
max_total_blocks_in_vec * sizeof(uint64_t), streams[0], gpu_indexes[0],
size_tracker, allocate_gpu_memory);
d_smart_copy_out = (int32_t *)cuda_malloc_with_size_tracking_async(
max_pbs_count * sizeof(int32_t), streams[0], gpu_indexes[0],
size_tracker, allocate_gpu_memory);
cuda_memset_with_size_tracking_async(
d_smart_copy_in, 0, max_pbs_count * sizeof(int32_t), streams[0],
gpu_indexes[0], allocate_gpu_memory);
cuda_memset_with_size_tracking_async(
d_smart_copy_out, 0, max_pbs_count * sizeof(int32_t), streams[0],
gpu_indexes[0], allocate_gpu_memory);
}
int_sum_ciphertexts_vec_memory(
cudaStream_t const *streams, uint32_t const *gpu_indexes,
uint32_t gpu_count, int_radix_params params, uint32_t num_blocks_in_radix,
uint32_t max_num_radix_in_vec, CudaRadixCiphertextFFI *new_blocks,
CudaRadixCiphertextFFI *old_blocks,
CudaRadixCiphertextFFI *small_lwe_vector, bool allocate_gpu_memory,
uint64_t *size_tracker) {
mem_reuse = true;
gpu_memory_allocated = allocate_gpu_memory;
this->params = params;
d_pbs_counters = (uint32_t *)cuda_malloc_with_size_tracking_async(
3 * sizeof(uint32_t), streams[0], gpu_indexes[0], size_tracker,
allocate_gpu_memory);
int max_pbs_count = num_blocks_in_radix * max_num_radix_in_vec;
auto setup_columns = [num_blocks_in_radix, max_num_radix_in_vec, streams,
gpu_indexes, size_tracker, allocate_gpu_memory](
uint32_t **&columns, uint32_t *&columns_data,
uint32_t *&columns_counter) {
columns_data = (uint32_t *)cuda_malloc_with_size_tracking_async(
num_blocks_in_radix * max_num_radix_in_vec * sizeof(uint32_t),
streams[0], gpu_indexes[0], size_tracker, allocate_gpu_memory);
columns_counter = (uint32_t *)cuda_malloc_with_size_tracking_async(
num_blocks_in_radix * sizeof(uint32_t), streams[0], gpu_indexes[0],
size_tracker, allocate_gpu_memory);
cuda_memset_with_size_tracking_async(
columns_counter, 0, num_blocks_in_radix * sizeof(uint32_t),
streams[0], gpu_indexes[0], allocate_gpu_memory);
// assign gpu memory for intermediate buffers
this->new_blocks = new_blocks;
this->old_blocks = old_blocks;
this->small_lwe_vector = small_lwe_vector;
new_blocks_copy = new CudaRadixCiphertextFFI;
create_zero_radix_ciphertext_async<Torus>(
streams[0], gpu_indexes[0], new_blocks_copy, max_pbs_count,
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
uint32_t **h_columns = new uint32_t *[num_blocks_in_radix];
for (int i = 0; i < num_blocks_in_radix; ++i) {
h_columns[i] = columns_data + i * max_num_radix_in_vec;
}
columns = (uint32_t **)cuda_malloc_with_size_tracking_async(
num_blocks_in_radix * sizeof(uint32_t *), streams[0], gpu_indexes[0],
size_tracker, allocate_gpu_memory);
cuda_memcpy_with_size_tracking_async_to_gpu(
columns, h_columns, num_blocks_in_radix * sizeof(uint32_t *),
streams[0], gpu_indexes[0], allocate_gpu_memory);
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
delete[] h_columns;
};
d_smart_copy_in = (int32_t *)cuda_malloc_with_size_tracking_async(
max_pbs_count * sizeof(int32_t), streams[0], gpu_indexes[0],
size_tracker, allocate_gpu_memory);
d_smart_copy_out = (int32_t *)cuda_malloc_with_size_tracking_async(
max_pbs_count * sizeof(int32_t), streams[0], gpu_indexes[0],
size_tracker, allocate_gpu_memory);
cuda_memset_with_size_tracking_async(
d_smart_copy_in, 0, max_pbs_count * sizeof(int32_t), streams[0],
gpu_indexes[0], allocate_gpu_memory);
cuda_memset_with_size_tracking_async(
d_smart_copy_out, 0, max_pbs_count * sizeof(int32_t), streams[0],
gpu_indexes[0], allocate_gpu_memory);
setup_columns(d_columns, d_columns_data, d_columns_counter);
setup_columns(d_new_columns, d_new_columns_data, d_new_columns_counter);
luts_message_carry = new int_radix_lut<Torus>(
streams, gpu_indexes, gpu_count, params, 2, max_total_blocks_in_vec,
allocate_gpu_memory, size_tracker);
auto message_acc = luts_message_carry->get_lut(0, 0);
auto carry_acc = luts_message_carry->get_lut(0, 1);
// define functions for each accumulator
auto lut_f_message = [message_modulus](Torus x) -> Torus {
return x % message_modulus;
};
auto lut_f_carry = [message_modulus](Torus x) -> Torus {
return x / message_modulus;
};
// generate accumulators
generate_device_accumulator<Torus>(
streams[0], gpu_indexes[0], message_acc,
luts_message_carry->get_degree(0),
luts_message_carry->get_max_degree(0), params.glwe_dimension,
params.polynomial_size, message_modulus, params.carry_modulus,
lut_f_message, allocate_gpu_memory);
generate_device_accumulator<Torus>(
streams[0], gpu_indexes[0], carry_acc,
luts_message_carry->get_degree(1),
luts_message_carry->get_max_degree(1), params.glwe_dimension,
params.polynomial_size, message_modulus, params.carry_modulus,
lut_f_carry, allocate_gpu_memory);
luts_message_carry->broadcast_lut(streams, gpu_indexes, 0);
}
void release(cudaStream_t const *streams, uint32_t const *gpu_indexes,
uint32_t gpu_count) {
cuda_drop_with_size_tracking_async(d_smart_copy_in, streams[0],
gpu_indexes[0], gpu_memory_allocated);
cuda_drop_with_size_tracking_async(d_smart_copy_out, streams[0],
cuda_drop_with_size_tracking_async(d_degrees, streams[0], gpu_indexes[0],
gpu_memory_allocated);
cuda_drop_with_size_tracking_async(d_pbs_counters, streams[0],
gpu_indexes[0], gpu_memory_allocated);
cuda_drop_with_size_tracking_async(d_columns_data, streams[0],
gpu_indexes[0], gpu_memory_allocated);
cuda_drop_with_size_tracking_async(d_columns_counter, streams[0],
gpu_indexes[0], gpu_memory_allocated);
cuda_drop_with_size_tracking_async(d_columns, streams[0], gpu_indexes[0],
gpu_memory_allocated);
cuda_drop_with_size_tracking_async(d_new_columns_data, streams[0],
gpu_indexes[0], gpu_memory_allocated);
cuda_drop_with_size_tracking_async(d_new_columns_counter, streams[0],
gpu_indexes[0], gpu_memory_allocated);
cuda_drop_with_size_tracking_async(d_new_columns, streams[0],
gpu_indexes[0], gpu_memory_allocated);
for (uint i = 0; i < active_gpu_count; i++) {
cuda_destroy_stream(helper_streams[i], gpu_indexes[i]);
}
free(helper_streams);
if (!mem_reuse) {
release_radix_ciphertext_async(streams[0], gpu_indexes[0], new_blocks,
gpu_memory_allocated);
release_radix_ciphertext_async(streams[0], gpu_indexes[0], old_blocks,
release_radix_ciphertext_async(streams[0], gpu_indexes[0], current_blocks,
gpu_memory_allocated);
release_radix_ciphertext_async(streams[0], gpu_indexes[0],
small_lwe_vector, gpu_memory_allocated);
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
delete new_blocks;
delete old_blocks;
luts_message_carry->release(streams, gpu_indexes, gpu_count);
delete luts_message_carry;
delete current_blocks;
delete small_lwe_vector;
}
release_radix_ciphertext_async(streams[0], gpu_indexes[0], new_blocks_copy,
gpu_memory_allocated);
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
delete new_blocks_copy;
}
};
// For sequential algorithm in group propagation
@@ -2604,8 +2661,7 @@ template <typename Torus> struct int_mul_memory {
// create memory object for sum ciphertexts
sum_ciphertexts_mem = new int_sum_ciphertexts_vec_memory<Torus>(
streams, gpu_indexes, gpu_count, params, num_radix_blocks,
2 * num_radix_blocks, block_mul_res, vector_result_sb, small_lwe_vector,
allocate_gpu_memory, size_tracker);
2 * num_radix_blocks, allocate_gpu_memory, size_tracker);
uint32_t uses_carry = 0;
uint32_t requested_flag = outputFlag::FLAG_NONE;
sc_prop_mem = new int_sc_prop_memory<Torus>(

View File

@@ -212,6 +212,7 @@ uint64_t scratch_cuda_integer_radix_partial_sum_ciphertexts_vec_kb_64(
uint32_t message_modulus, uint32_t carry_modulus, PBS_TYPE pbs_type,
bool allocate_gpu_memory, bool allocate_ms_array) {
printf("pbs_type: %d\n", pbs_type);
int_radix_params params(pbs_type, glwe_dimension, polynomial_size,
glwe_dimension * polynomial_size, lwe_dimension,
ks_level, ks_base_log, pbs_level, pbs_base_log,
@@ -234,11 +235,6 @@ void cuda_integer_radix_partial_sum_ciphertexts_vec_kb_64(
if (radix_lwe_vec->num_radix_blocks % radix_lwe_out->num_radix_blocks != 0)
PANIC("Cuda error: input vector length should be a multiple of the "
"output's number of radix blocks")
// FIXME: this should not be necessary, we should make sure sum_ctxt works in
// the general case
for (int i = 0; i < radix_lwe_vec->num_radix_blocks; i++) {
radix_lwe_vec->degrees[i] = mem->params.message_modulus - 1;
}
switch (mem->params.polynomial_size) {
case 512:
host_integer_partial_sum_ciphertexts_vec_kb<uint64_t, AmortizedDegree<512>>(

View File

@@ -20,6 +20,7 @@
#include <fstream>
#include <iostream>
#include <omp.h>
#include <queue>
#include <sstream>
#include <string>
#include <vector>
@@ -123,6 +124,173 @@ __global__ void tree_add_chunks(Torus *result_blocks, Torus *input_blocks,
}
}
__global__ inline void radix_vec_to_columns(
uint32_t *const *const columns, uint32_t *const columns_counter,
const uint64_t *const degrees, const uint32_t num_radix_blocks,
const uint32_t total_blocks_in_vec) {
const uint32_t idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= total_blocks_in_vec)
return;
const uint64_t degree = degrees[idx];
if (degree == 0)
return;
const uint32_t column_id = idx % num_radix_blocks;
const uint32_t out_idx = atomicAdd(&columns_counter[column_id], 1);
columns[column_id][out_idx] = idx;
}
template <typename Torus>
__global__ inline void prepare_new_columns_and_pbs_indexes(
uint32_t *const *const new_columns, uint32_t *const new_columns_counter,
Torus *const pbs_indexes_in, Torus *const pbs_indexes_out,
Torus *const lut_indexes, uint32_t *const pbs_counters,
const uint32_t *const *const columns, const uint32_t *const columns_counter,
const uint32_t chunk_size) {
__shared__ uint32_t counter, sharedOr;
if (threadIdx.x == 0) {
counter = 0;
sharedOr = 0;
}
__syncthreads();
const uint32_t base_id = threadIdx.x;
const uint32_t column_len = columns_counter[base_id];
uint32_t ct_count = 0;
for (uint32_t i = 0; i + chunk_size <= column_len; i += chunk_size) {
// those indexes are for message ciphertexts
// for message ciphertexts in and out index should be same
const uint32_t in_index = columns[base_id][i];
new_columns[base_id][ct_count] = in_index;
const uint32_t pbs_index = atomicAdd(&counter, 1);
pbs_indexes_in[pbs_index] = in_index;
pbs_indexes_out[pbs_index] = in_index;
lut_indexes[pbs_index] = 0;
++ct_count;
}
__syncthreads();
uint32_t message_count = counter;
if (base_id > 0) {
const uint32_t prev_base_id = base_id - 1;
const uint32_t prev_column_len = columns_counter[prev_base_id];
for (uint32_t i = 0; i + chunk_size <= prev_column_len; i += chunk_size) {
// those indexes are for carry ciphertexts
// for carry ciphertexts input is same as for message
// output will be placed to next block in the column
const uint32_t in_index = columns[prev_base_id][i];
const uint32_t out_index = columns[prev_base_id][i + 1];
new_columns[base_id][ct_count] = out_index;
const uint32_t pbs_index = atomicAdd(&counter, 1);
pbs_indexes_in[pbs_index] = in_index;
pbs_indexes_out[pbs_index] = out_index;
lut_indexes[pbs_index] = 1;
++ct_count;
}
}
const uint32_t start_index = column_len - column_len % chunk_size;
for (uint32_t i = start_index; i < column_len; ++i) {
new_columns[base_id][ct_count] = columns[base_id][i];
++ct_count;
}
new_columns_counter[base_id] = ct_count;
if (ct_count > chunk_size) {
atomicOr(&sharedOr, 1);
}
__syncthreads();
if (threadIdx.x == 0) {
pbs_counters[0] = counter;
pbs_counters[1] = message_count;
pbs_counters[2] = sharedOr;
}
}
template <typename Torus>
__global__ inline void prepare_final_pbs_indexes(
Torus *const pbs_indexes_in, Torus *const pbs_indexes_out,
Torus *const lut_indexes, const uint32_t num_radix_blocks) {
int idx = threadIdx.x;
pbs_indexes_in[idx] = idx % num_radix_blocks;
pbs_indexes_out[idx] = idx + idx / num_radix_blocks;
lut_indexes[idx] = idx / num_radix_blocks;
}
template <typename Torus>
__global__ void calculate_chunks(Torus *const input_blocks,
const uint32_t *const *const columns,
const uint32_t *const columns_counter,
const uint32_t chunk_size,
const uint32_t block_size) {
const uint32_t part_size = blockDim.x;
const uint32_t base_id = blockIdx.x;
const uint32_t part_id = blockIdx.y;
const uint32_t coef_id = part_id * part_size + threadIdx.x;
if (coef_id >= block_size)
return;
const uint32_t column_len = columns_counter[base_id];
if (column_len >= chunk_size) {
const uint32_t num_chunks = column_len / chunk_size;
Torus result = 0;
for (uint32_t chunk_id = 0; chunk_id < num_chunks; ++chunk_id) {
const uint32_t first_ct_id = columns[base_id][chunk_id * chunk_size];
result = input_blocks[first_ct_id * block_size + coef_id];
for (uint32_t ct_id = 1; ct_id < chunk_size; ++ct_id) {
const uint32_t cur_ct_id =
columns[base_id][chunk_id * chunk_size + ct_id];
result += input_blocks[cur_ct_id * block_size + coef_id];
}
input_blocks[first_ct_id * block_size + coef_id] = result;
}
}
}
template <typename Torus>
__global__ void calculate_final_chunk_into_radix(
Torus *const out_radix, const Torus *const input_blocks,
const uint32_t *const *const columns, const uint32_t *const columns_counter,
const uint32_t chunk_size, const uint32_t block_size) {
const uint32_t part_size = blockDim.x;
const uint32_t base_id = blockIdx.x;
const uint32_t part_id = blockIdx.y;
const uint32_t coef_id = part_id * part_size + threadIdx.x;
if (coef_id >= block_size)
return;
const uint32_t column_len = columns_counter[base_id];
Torus result = 0;
if (column_len) {
const uint32_t first_ct_id = columns[base_id][0];
result = input_blocks[first_ct_id * block_size + coef_id];
for (uint32_t i = 1; i < column_len; ++i) {
const uint32_t cur_ct_it = columns[base_id][i];
result += input_blocks[cur_ct_it * block_size + coef_id];
}
}
out_radix[base_id * block_size + coef_id] = result;
}
template <typename Torus, class params>
__global__ void fill_radix_from_lsb_msb(Torus *result_blocks, Torus *lsb_blocks,
Torus *msb_blocks,
@@ -167,6 +335,65 @@ __global__ void fill_radix_from_lsb_msb(Torus *result_blocks, Torus *lsb_blocks,
(process_msb) ? cur_msb_ct[params::degree] : 0;
}
}
inline bool at_least_one_column_needs_processing(
const uint64_t *const degrees, const uint32_t num_radix_blocks,
const uint32_t num_radix_in_vec, const uint32_t chunk_size) {
std::vector<uint32_t> columns_count(num_radix_blocks, 0);
for (size_t column = 0; column < num_radix_blocks; ++column) {
for (size_t block = 0; block < num_radix_in_vec; ++block) {
const size_t block_index = block * num_radix_blocks + column;
if (degrees[block_index]) {
columns_count[column]++;
if (columns_count[column] > chunk_size) {
return true;
}
}
}
}
return false;
}
inline void calculate_final_degrees(uint64_t *const out_degrees,
const uint64_t *const input_degrees,
size_t num_blocks, size_t num_radix_in_vec,
size_t chunk_size,
uint64_t message_modulus) {
auto get_degree = [message_modulus](uint64_t degree) -> uint64_t {
return std::min(message_modulus - 1, degree);
};
std::vector<std::queue<uint64_t>> columns(num_blocks);
for (size_t i = 0; i < num_radix_in_vec; ++i) {
for (size_t j = 0; j < num_blocks; ++j) {
if (input_degrees[i * num_blocks + j])
columns[j].push(input_degrees[i * num_blocks + j]);
}
}
for (size_t i = 0; i < num_blocks; ++i) {
auto &col = columns[i];
while (col.size() > 1) {
uint32_t cur_degree = 0;
size_t mn = std::min(chunk_size, col.size());
for (int j = 0; j < mn; ++j) {
cur_degree += col.front();
col.pop();
}
const uint64_t new_degree = get_degree(cur_degree);
col.push(new_degree);
if ((i + 1) < num_blocks) {
columns[i + 1].push(new_degree);
}
}
}
for (int i = 0; i < num_blocks; i++) {
out_degrees[i] = (columns[i].empty()) ? 0 : columns[i].front();
}
}
template <typename Torus>
__host__ uint64_t scratch_cuda_integer_partial_sum_ciphertexts_vec_kb(
cudaStream_t const *streams, uint32_t const *gpu_indexes,
@@ -181,6 +408,70 @@ __host__ uint64_t scratch_cuda_integer_partial_sum_ciphertexts_vec_kb(
return size_tracker;
}
void static DEBUG_PRINT_COLUMNS(uint32_t *d_column_data,
uint32_t *d_columns_count,
uint64_t *d_pbs_indexes_in,
uint64_t *d_pbs_indexes_out,
uint64_t *d_lut_indexes, int L, int N,
int pbs_cnt) {
cudaDeviceSynchronize(); // Ensure all device work is done
std::vector<uint64_t> h_pbs_indexes_in(pbs_cnt);
std::vector<uint64_t> h_pbs_indexes_out(pbs_cnt);
std::vector<uint64_t> h_lut_indexes(pbs_cnt);
check_cuda_error(cudaMemcpy(h_pbs_indexes_in.data(), d_pbs_indexes_in,
pbs_cnt * sizeof(uint64_t),
cudaMemcpyDeviceToHost));
check_cuda_error(cudaMemcpy(h_pbs_indexes_out.data(), d_pbs_indexes_out,
pbs_cnt * sizeof(uint64_t),
cudaMemcpyDeviceToHost));
check_cuda_error(cudaMemcpy(h_lut_indexes.data(), d_lut_indexes,
pbs_cnt * sizeof(uint64_t),
cudaMemcpyDeviceToHost));
std::vector<uint32_t> h_columns_count(L);
check_cuda_error(cudaMemcpy(h_columns_count.data(), d_columns_count,
L * sizeof(uint32_t), cudaMemcpyDeviceToHost));
std::vector<uint32_t> h_column_data(L * N);
check_cuda_error(cudaMemcpy(h_column_data.data(), d_column_data,
L * N * sizeof(uint32_t),
cudaMemcpyDeviceToHost));
cudaDeviceSynchronize(); // Ensure all device work is done
std::cout << "column_counters: ";
for (auto a : h_columns_count) {
std::cout << a << " ";
}
std::cout << std::endl;
for (int col = 0; col < L; ++col) {
std::cout << "Column[" << col << "]: ";
uint32_t count = h_columns_count[col];
for (uint32_t i = 0; i < count; ++i) {
std::cout << h_column_data[col * N + i] << " ";
}
std::cout << "\n";
}
printf("pbs_indexes %d\n", pbs_cnt);
for (auto a : h_pbs_indexes_in) {
printf("%d ", a);
}
printf("\n");
for (auto a : h_pbs_indexes_out) {
printf("%d ", a);
}
printf("\n");
for (auto a : h_lut_indexes) {
printf("%d ", a);
}
printf("\n");
printf("=========================================================\n");
}
template <typename Torus, class params>
__host__ void host_integer_partial_sum_ciphertexts_vec_kb(
cudaStream_t const *streams, uint32_t const *gpu_indexes,
@@ -199,22 +490,30 @@ __host__ void host_integer_partial_sum_ciphertexts_vec_kb(
PANIC("Cuda error: input vector does not have enough blocks")
if (num_radix_blocks > radix_lwe_out->num_radix_blocks)
PANIC("Cuda error: output does not have enough blocks")
auto new_blocks = mem_ptr->new_blocks;
auto new_blocks_copy = mem_ptr->new_blocks_copy;
auto old_blocks = mem_ptr->old_blocks;
auto current_blocks = mem_ptr->current_blocks;
auto small_lwe_vector = mem_ptr->small_lwe_vector;
auto d_degrees = mem_ptr->d_degrees;
auto d_columns = mem_ptr->d_columns;
auto d_columns_counter = mem_ptr->d_columns_counter;
auto d_new_columns = mem_ptr->d_new_columns;
auto d_new_columns_counter = mem_ptr->d_new_columns_counter;
auto d_pbs_indexes_in = mem_ptr->luts_message_carry->lwe_indexes_in;
auto d_pbs_indexes_out = mem_ptr->luts_message_carry->lwe_indexes_out;
auto d_pbs_counters = mem_ptr->d_pbs_counters;
auto d_smart_copy_in = mem_ptr->d_smart_copy_in;
auto d_smart_copy_out = mem_ptr->d_smart_copy_out;
auto luts_message_carry = mem_ptr->luts_message_carry;
auto message_modulus = mem_ptr->params.message_modulus;
auto carry_modulus = mem_ptr->params.carry_modulus;
auto big_lwe_dimension = mem_ptr->params.big_lwe_dimension;
auto big_lwe_size = big_lwe_dimension + 1;
auto glwe_dimension = mem_ptr->params.glwe_dimension;
auto polynomial_size = mem_ptr->params.polynomial_size;
auto small_lwe_dimension = mem_ptr->params.small_lwe_dimension;
auto small_lwe_size = small_lwe_dimension + 1;
auto helper_streams = mem_ptr->helper_streams;
auto chunk_size = mem_ptr->chunk_size;
size_t total_blocks_in_vec = num_radix_blocks * num_radix_in_vec;
// In the case of extracting a single LWE this parameters are dummy
uint32_t num_many_lut = 1;
@@ -228,244 +527,153 @@ __host__ void host_integer_partial_sum_ciphertexts_vec_kb(
terms, 0, num_radix_blocks);
return;
}
if (old_blocks != terms) {
copy_radix_ciphertext_async<Torus>(streams[0], gpu_indexes[0], old_blocks,
terms);
}
if (num_radix_in_vec == 2) {
CudaRadixCiphertextFFI old_blocks_slice;
as_radix_ciphertext_slice<Torus>(&old_blocks_slice, old_blocks,
num_radix_blocks, 2 * num_radix_blocks);
host_addition<Torus>(streams[0], gpu_indexes[0], radix_lwe_out, old_blocks,
&old_blocks_slice, num_radix_blocks);
CudaRadixCiphertextFFI terms_slice;
as_radix_ciphertext_slice<Torus>(&terms_slice, terms, num_radix_blocks,
2 * num_radix_blocks);
host_addition<Torus>(streams[0], gpu_indexes[0], radix_lwe_out, terms,
&terms_slice, num_radix_blocks);
return;
}
size_t r = num_radix_in_vec;
size_t total_modulus = message_modulus * carry_modulus;
size_t message_max = message_modulus - 1;
size_t chunk_size = (total_modulus - 1) / message_max;
size_t h_lwe_idx_in[terms->num_radix_blocks];
size_t h_lwe_idx_out[terms->num_radix_blocks];
int32_t h_smart_copy_in[terms->num_radix_blocks];
int32_t h_smart_copy_out[terms->num_radix_blocks];
/// Here it is important to query the default max shared memory on device 0
/// instead of cuda_get_max_shared_memory,
/// to avoid bugs with tree_add_chunks trying to use too much shared memory
auto max_shared_memory = 0;
check_cuda_error(cudaDeviceGetAttribute(
&max_shared_memory, cudaDevAttrMaxSharedMemoryPerBlock, 0));
// create lut object for message and carry
// we allocate luts_message_carry in the host function (instead of scratch)
// to reduce average memory consumption
int_radix_lut<Torus> *luts_message_carry;
size_t ch_amount = r / chunk_size;
if (!ch_amount)
ch_amount++;
if (reused_lut == nullptr) {
luts_message_carry = new int_radix_lut<Torus>(
streams, gpu_indexes, gpu_count, mem_ptr->params, 2,
2 * ch_amount * num_radix_blocks, true, nullptr);
} else {
luts_message_carry = new int_radix_lut<Torus>(
streams, gpu_indexes, gpu_count, mem_ptr->params, 2,
2 * ch_amount * num_radix_blocks, reused_lut, true, nullptr);
if (current_blocks != terms) {
copy_radix_ciphertext_async<Torus>(streams[0], gpu_indexes[0],
current_blocks, terms);
}
auto message_acc = luts_message_carry->get_lut(0, 0);
auto carry_acc = luts_message_carry->get_lut(0, 1);
// define functions for each accumulator
auto lut_f_message = [message_modulus](Torus x) -> Torus {
return x % message_modulus;
};
auto lut_f_carry = [message_modulus](Torus x) -> Torus {
return x / message_modulus;
};
cuda_memcpy_async_to_gpu(d_degrees, current_blocks->degrees,
total_blocks_in_vec * sizeof(uint64_t), streams[0],
gpu_indexes[0]);
// generate accumulators
generate_device_accumulator<Torus>(
streams[0], gpu_indexes[0], message_acc,
luts_message_carry->get_degree(0), luts_message_carry->get_max_degree(0),
glwe_dimension, polynomial_size, message_modulus, carry_modulus,
lut_f_message, true);
generate_device_accumulator<Torus>(
streams[0], gpu_indexes[0], carry_acc, luts_message_carry->get_degree(1),
luts_message_carry->get_max_degree(1), glwe_dimension, polynomial_size,
message_modulus, carry_modulus, lut_f_carry, true);
luts_message_carry->broadcast_lut(streams, gpu_indexes, 0);
int number_of_threads = 512;
int number_of_blocks =
(total_blocks_in_vec + number_of_threads - 1) / number_of_threads;
while (r > 2) {
size_t cur_total_blocks = r * num_radix_blocks;
size_t ch_amount = r / chunk_size;
if (!ch_amount)
ch_amount++;
dim3 add_grid(ch_amount, num_radix_blocks, 1);
radix_vec_to_columns<<<number_of_blocks, number_of_threads, 0, streams[0]>>>(
d_columns, d_columns_counter, d_degrees, num_radix_blocks,
total_blocks_in_vec);
cuda_set_device(gpu_indexes[0]);
tree_add_chunks<Torus><<<add_grid, 512, 0, streams[0]>>>(
(Torus *)new_blocks->ptr, (Torus *)old_blocks->ptr,
std::min(r, chunk_size), big_lwe_size, num_radix_blocks);
DEBUG_PRINT_COLUMNS(mem_ptr->d_columns_data, d_columns_counter,
d_pbs_indexes_in, d_pbs_indexes_out,
luts_message_carry->get_lut_indexes(0, 0),
num_radix_blocks, num_radix_in_vec, 0);
bool needs_processing = at_least_one_column_needs_processing(
current_blocks->degrees, num_radix_blocks, num_radix_in_vec, chunk_size);
check_cuda_error(cudaGetLastError());
number_of_threads = min(256, params::degree);
int part_count = (big_lwe_size + number_of_threads - 1) / number_of_threads;
const dim3 number_of_blocks_2d(num_radix_blocks, part_count, 1);
size_t total_count = 0;
size_t message_count = 0;
size_t carry_count = 0;
size_t sm_copy_count = 0;
// h_pbs_counters[0] - total ciphertexts
// h_pbs_counters[1] - message ciphertexts
// h_pbs_counters[2] - at_leaast_one_column_needs_processing
uint32_t *h_pbs_counters = (uint32_t *)malloc(3 * sizeof(uint32_t));
generate_ids_update_degrees(
terms->degrees, h_lwe_idx_in, h_lwe_idx_out, h_smart_copy_in,
h_smart_copy_out, ch_amount, r, num_radix_blocks, chunk_size,
message_max, total_count, message_count, carry_count, sm_copy_count);
auto lwe_indexes_in = luts_message_carry->lwe_indexes_in;
auto lwe_indexes_out = luts_message_carry->lwe_indexes_out;
luts_message_carry->set_lwe_indexes(streams[0], gpu_indexes[0],
h_lwe_idx_in, h_lwe_idx_out);
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
int DEBUG_I = 0;
while (needs_processing) {
calculate_chunks<Torus>
<<<number_of_blocks_2d, number_of_threads, 0, streams[0]>>>(
(Torus *)(current_blocks->ptr), d_columns, d_columns_counter,
chunk_size, big_lwe_size);
size_t copy_size = sm_copy_count * sizeof(int32_t);
cuda_memcpy_async_to_gpu(d_smart_copy_in, h_smart_copy_in, copy_size,
streams[0], gpu_indexes[0]);
cuda_memcpy_async_to_gpu(d_smart_copy_out, h_smart_copy_out, copy_size,
streams[0], gpu_indexes[0]);
prepare_new_columns_and_pbs_indexes<<<1, num_radix_blocks, 0,
helper_streams[0]>>>(
d_new_columns, d_new_columns_counter, d_pbs_indexes_in,
d_pbs_indexes_out, luts_message_carry->get_lut_indexes(0, 0),
d_pbs_counters, d_columns, d_columns_counter, chunk_size);
// inside d_smart_copy_in there are only -1 values
// it's fine to call smart_copy with same pointer
// as source and destination
copy_radix_ciphertext_slice_async<Torus>(
streams[0], gpu_indexes[0], new_blocks_copy, 0, r * num_radix_blocks,
new_blocks, 0, r * num_radix_blocks);
smart_copy<Torus><<<sm_copy_count, 1024, 0, streams[0]>>>(
(Torus *)new_blocks->ptr, (Torus *)new_blocks_copy->ptr,
d_smart_copy_out, d_smart_copy_in, big_lwe_size);
check_cuda_error(cudaGetLastError());
cuda_memcpy_async_to_cpu(h_pbs_counters, d_pbs_counters,
3 * sizeof(uint32_t), helper_streams[0],
gpu_indexes[0]);
if (carry_count > 0)
cuda_set_value_async<Torus>(
streams[0], gpu_indexes[0],
luts_message_carry->get_lut_indexes(0, message_count), 1,
carry_count);
cuda_synchronize_stream(helper_streams[0], gpu_indexes[0]);
luts_message_carry->broadcast_lut(streams, gpu_indexes, 0);
const uint32_t total_ciphertexts = h_pbs_counters[0];
const uint32_t total_messages = h_pbs_counters[1];
needs_processing = (h_pbs_counters[2] != 0);
/// For multi GPU execution we create vectors of pointers for inputs and
/// outputs
std::vector<Torus *> new_blocks_vec = luts_message_carry->lwe_array_in_vec;
std::vector<Torus *> small_lwe_vector_vec =
luts_message_carry->lwe_after_ks_vec;
std::vector<Torus *> lwe_after_pbs_vec =
luts_message_carry->lwe_after_pbs_vec;
std::vector<Torus *> lwe_trivial_indexes_vec =
luts_message_carry->lwe_trivial_indexes_vec;
auto active_gpu_count = get_active_gpu_count(total_count, gpu_count);
if (active_gpu_count == 1) {
/// Apply KS to go from a big LWE dimension to a small LWE dimension
/// After this keyswitch execution, we need to synchronize the streams
/// because the keyswitch and PBS do not operate on the same number of
/// inputs
execute_keyswitch_async<Torus>(
streams, gpu_indexes, 1, (Torus *)small_lwe_vector->ptr,
lwe_indexes_in, (Torus *)new_blocks->ptr, lwe_indexes_in, ksks,
polynomial_size * glwe_dimension, small_lwe_dimension,
mem_ptr->params.ks_base_log, mem_ptr->params.ks_level, message_count);
/// Apply PBS to apply a LUT, reduce the noise and go from a small LWE
/// dimension to a big LWE dimension
execute_pbs_async<Torus>(
streams, gpu_indexes, 1, (Torus *)new_blocks->ptr, lwe_indexes_out,
luts_message_carry->lut_vec, luts_message_carry->lut_indexes_vec,
(Torus *)small_lwe_vector->ptr, lwe_indexes_in, bsks,
ms_noise_reduction_key, luts_message_carry->buffer, glwe_dimension,
small_lwe_dimension, polynomial_size, mem_ptr->params.pbs_base_log,
mem_ptr->params.pbs_level, mem_ptr->params.grouping_factor,
total_count, mem_ptr->params.pbs_type, num_many_lut, lut_stride);
if (DEBUG_I % 2 == 0) {
DEBUG_PRINT_COLUMNS(
mem_ptr->d_new_columns_data, d_new_columns_counter, d_pbs_indexes_in,
d_pbs_indexes_out, luts_message_carry->get_lut_indexes(0, 0),
num_radix_blocks, num_radix_in_vec, total_ciphertexts);
} else {
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
multi_gpu_scatter_lwe_async<Torus>(
streams, gpu_indexes, active_gpu_count, new_blocks_vec,
(Torus *)new_blocks->ptr, luts_message_carry->h_lwe_indexes_in,
luts_message_carry->using_trivial_lwe_indexes, message_count,
big_lwe_size);
/// Apply KS to go from a big LWE dimension to a small LWE dimension
/// After this keyswitch execution, we need to synchronize the streams
/// because the keyswitch and PBS do not operate on the same number of
/// inputs
execute_keyswitch_async<Torus>(
streams, gpu_indexes, active_gpu_count, small_lwe_vector_vec,
lwe_trivial_indexes_vec, new_blocks_vec, lwe_trivial_indexes_vec,
ksks, big_lwe_dimension, small_lwe_dimension,
mem_ptr->params.ks_base_log, mem_ptr->params.ks_level, total_count);
/// Copy data back to GPU 0, rebuild the lwe array, and scatter again on a
/// different configuration
multi_gpu_gather_lwe_async<Torus>(
streams, gpu_indexes, gpu_count, (Torus *)small_lwe_vector->ptr,
small_lwe_vector_vec, luts_message_carry->h_lwe_indexes_in,
luts_message_carry->using_trivial_lwe_indexes, message_count,
small_lwe_size);
/// Synchronize all GPUs
for (uint i = 0; i < active_gpu_count; i++) {
cuda_synchronize_stream(streams[i], gpu_indexes[i]);
}
multi_gpu_scatter_lwe_async<Torus>(
streams, gpu_indexes, gpu_count, small_lwe_vector_vec,
(Torus *)small_lwe_vector->ptr, luts_message_carry->h_lwe_indexes_in,
luts_message_carry->using_trivial_lwe_indexes, total_count,
small_lwe_size);
/// Apply PBS to apply a LUT, reduce the noise and go from a small LWE
/// dimension to a big LWE dimension
execute_pbs_async<Torus>(
streams, gpu_indexes, active_gpu_count, lwe_after_pbs_vec,
lwe_trivial_indexes_vec, luts_message_carry->lut_vec,
luts_message_carry->lut_indexes_vec, small_lwe_vector_vec,
lwe_trivial_indexes_vec, bsks, ms_noise_reduction_key,
luts_message_carry->buffer, glwe_dimension, small_lwe_dimension,
polynomial_size, mem_ptr->params.pbs_base_log,
mem_ptr->params.pbs_level, mem_ptr->params.grouping_factor,
total_count, mem_ptr->params.pbs_type, num_many_lut, lut_stride);
multi_gpu_gather_lwe_async<Torus>(
streams, gpu_indexes, active_gpu_count, (Torus *)new_blocks->ptr,
lwe_after_pbs_vec, luts_message_carry->h_lwe_indexes_out,
luts_message_carry->using_trivial_lwe_indexes, total_count,
big_lwe_size);
/// Synchronize all GPUs
for (uint i = 0; i < active_gpu_count; i++) {
cuda_synchronize_stream(streams[i], gpu_indexes[i]);
}
}
for (uint i = 0; i < total_count; i++) {
auto degrees_index = luts_message_carry->h_lut_indexes[i];
new_blocks->degrees[i] = luts_message_carry->degrees[degrees_index];
new_blocks->noise_levels[i] = NoiseLevel::NOMINAL;
DEBUG_PRINT_COLUMNS(
mem_ptr->d_columns_data, d_new_columns_counter, d_pbs_indexes_in,
d_pbs_indexes_out, luts_message_carry->get_lut_indexes(0, 0),
num_radix_blocks, num_radix_in_vec, total_ciphertexts);
}
int rem_blocks = (r > chunk_size) ? r % chunk_size * num_radix_blocks : 0;
int new_blocks_created = 2 * ch_amount * num_radix_blocks;
cudaDeviceSynchronize();
if (rem_blocks > 0)
copy_radix_ciphertext_slice_async<Torus>(
streams[0], gpu_indexes[0], new_blocks, new_blocks_created,
new_blocks_created + rem_blocks, old_blocks,
cur_total_blocks - rem_blocks, cur_total_blocks);
std::swap(new_blocks, old_blocks);
r = (new_blocks_created + rem_blocks) / num_radix_blocks;
printf("total_messages: %d\n", total_messages);
printf("total_ct: %d\n", total_ciphertexts);
execute_keyswitch_async<Torus>(
streams, gpu_indexes, 1, (Torus *)small_lwe_vector->ptr,
d_pbs_indexes_in, (Torus *)current_blocks->ptr, d_pbs_indexes_in, ksks,
big_lwe_dimension, small_lwe_dimension, mem_ptr->params.ks_base_log,
mem_ptr->params.ks_level, total_messages);
execute_pbs_async<Torus>(
streams, gpu_indexes, 1, (Torus *)current_blocks->ptr,
d_pbs_indexes_out, luts_message_carry->lut_vec,
luts_message_carry->lut_indexes_vec, (Torus *)small_lwe_vector->ptr,
d_pbs_indexes_in, bsks, ms_noise_reduction_key,
luts_message_carry->buffer, glwe_dimension, small_lwe_dimension,
polynomial_size, mem_ptr->params.pbs_base_log,
mem_ptr->params.pbs_level, mem_ptr->params.grouping_factor,
total_ciphertexts, mem_ptr->params.pbs_type, num_many_lut, lut_stride);
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
std::swap(d_columns, d_new_columns);
std::swap(d_columns_counter, d_new_columns_counter);
++DEBUG_I;
}
luts_message_carry->release(streams, gpu_indexes, gpu_count);
delete (luts_message_carry);
CudaRadixCiphertextFFI old_blocks_slice;
as_radix_ciphertext_slice<Torus>(&old_blocks_slice, old_blocks,
calculate_final_chunk_into_radix<Torus>
<<<number_of_blocks_2d, number_of_threads, 0, streams[0]>>>(
(Torus *)(radix_lwe_out->ptr), (Torus *)(current_blocks->ptr),
d_columns, d_columns_counter, chunk_size, big_lwe_size);
prepare_final_pbs_indexes<Torus>
<<<1, 2 * num_radix_blocks, 0, helper_streams[0]>>>(
d_pbs_indexes_in, d_pbs_indexes_out,
luts_message_carry->get_lut_indexes(0, 0), num_radix_blocks);
cuda_memset_async(
(Torus *)(current_blocks->ptr) + big_lwe_size * num_radix_blocks, 0,
big_lwe_size * sizeof(Torus), streams[0], gpu_indexes[0]);
cuda_synchronize_stream(helper_streams[0], gpu_indexes[0]);
print_debug<Torus>("indexes_in", d_pbs_indexes_in, 2 * num_radix_blocks);
print_debug<Torus>("indexes_out", d_pbs_indexes_out, 2 * num_radix_blocks);
print_debug<Torus>("lut_indexes", luts_message_carry->get_lut_indexes(0, 0),
2 * num_radix_blocks);
execute_keyswitch_async<Torus>(
streams, gpu_indexes, 1, (Torus *)small_lwe_vector->ptr, d_pbs_indexes_in,
(Torus *)radix_lwe_out->ptr, d_pbs_indexes_in, ksks, big_lwe_dimension,
small_lwe_dimension, mem_ptr->params.ks_base_log,
mem_ptr->params.ks_level, num_radix_blocks);
execute_pbs_async<Torus>(
streams, gpu_indexes, 1, (Torus *)current_blocks->ptr, d_pbs_indexes_out,
luts_message_carry->lut_vec, luts_message_carry->lut_indexes_vec,
(Torus *)small_lwe_vector->ptr, d_pbs_indexes_in, bsks,
ms_noise_reduction_key, luts_message_carry->buffer, glwe_dimension,
small_lwe_dimension, polynomial_size, mem_ptr->params.pbs_base_log,
mem_ptr->params.pbs_level, mem_ptr->params.grouping_factor,
2 * num_radix_blocks, mem_ptr->params.pbs_type, num_many_lut, lut_stride);
CudaRadixCiphertextFFI current_blocks_slice;
as_radix_ciphertext_slice<Torus>(&current_blocks_slice, current_blocks,
num_radix_blocks, 2 * num_radix_blocks);
host_addition<Torus>(streams[0], gpu_indexes[0], radix_lwe_out, old_blocks,
&old_blocks_slice, num_radix_blocks);
host_addition<Torus>(streams[0], gpu_indexes[0], radix_lwe_out,
current_blocks, &current_blocks_slice, num_radix_blocks);
}
template <typename Torus, class params>

View File

@@ -118,7 +118,7 @@ __global__ void __launch_bounds__(params::degree / params::opt)
add_to_torus<Torus, params>(accumulator_fft, accumulator_rotated, true);
}
__syncthreads();
auto accumulator = accumulator_rotated;
if (blockIdx.z == 0) {

View File

@@ -357,16 +357,19 @@ uint64_t scratch_cuda_programmable_bootstrap_64(
#endif
if (has_support_to_cuda_programmable_bootstrap_cg<uint64_t>(
glwe_dimension, polynomial_size, level_count,
input_lwe_ciphertext_count, max_shared_memory))
input_lwe_ciphertext_count, max_shared_memory)) {
printf("it is cg\n");
return scratch_cuda_programmable_bootstrap_cg<uint64_t>(
stream, gpu_index, (pbs_buffer<uint64_t, CLASSICAL> **)buffer,
lwe_dimension, glwe_dimension, polynomial_size, level_count,
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
else
} else {
printf("it is default\n");
return scratch_cuda_programmable_bootstrap<uint64_t>(
stream, gpu_index, (pbs_buffer<uint64_t, CLASSICAL> **)buffer,
lwe_dimension, glwe_dimension, polynomial_size, level_count,
input_lwe_ciphertext_count, allocate_gpu_memory, allocate_ms_array);
}
}
template <typename Torus>

View File

@@ -3235,6 +3235,8 @@ pub unsafe fn unchecked_partial_sum_ciphertexts_integer_radix_kb_assign_async<
.iter()
.map(|b| b.noise_level.0)
.collect();
println!("radix_list_degrees: {:?}", radix_list_degrees);
let mut cuda_ffi_radix_list = prepare_cuda_radix_ffi(
radix_list,
&mut radix_list_degrees,

View File

@@ -317,6 +317,8 @@ impl CudaServerKey {
let mut terms = CudaRadixCiphertext::from_radix_ciphertext_vec(ciphertexts, streams);
println!("terms.blocks.lem: {:?}", terms.info.blocks.len());
println!("terms: {:?}", terms.info.blocks.get(0).unwrap().degree);
match &self.bootstrapping_key {
CudaBootstrappingKey::Classic(d_bsk) => {
unchecked_partial_sum_ciphertexts_integer_radix_kb_assign_async(
@@ -394,7 +396,8 @@ impl CudaServerKey {
.unchecked_partial_sum_ciphertexts_async(ciphertexts, streams)
.unwrap();
self.propagate_single_carry_assign_async(&mut result, streams, None, OutputFlag::None);
//self.propagate_single_carry_assign_async(&mut result, streams, None, OutputFlag::None);
//self.full_propagate_assign_async(&mut result, streams);
assert!(result.block_carries_are_empty());
result
}

View File

@@ -134,6 +134,7 @@ impl ServerKey {
};
if self.is_eligible_for_parallel_single_carry_propagation(blocks.len()) {
println!("is_eligible_for_parallel_single_carry_propagation");
let highest_degree = blocks
.iter()
.max_by(|block_a, block_b| block_a.degree.get().cmp(&block_b.degree.get()))
@@ -233,8 +234,11 @@ impl ServerKey {
.position(|block| !block.carry_is_empty())
.unwrap_or(num_blocks);
println!("start_index: {:?}", start_index);
let (to_be_cleaned, to_be_propagated) = ctxt.blocks_mut().split_at_mut(start_index);
println!("to_be_cleaned.len: {:?}", to_be_cleaned.len());
println!("to_be_propagated.len: {:?}", to_be_propagated.len());
rayon::scope(|s| {
if !to_be_propagated.is_empty() {
s.spawn(|_| {

View File

@@ -73,39 +73,53 @@ impl ServerKey {
};
while at_least_one_column_has_enough_elements(&columns) {
columns
.par_drain(..)
.zip(column_output_buffer.par_iter_mut())
for (column_index, (mut column, out_buf)) in columns
.drain(..)
.zip(column_output_buffer.iter_mut())
.enumerate()
.map(|(column_index, (mut column, out_buf))| {
if column.len() < num_elements_to_fill_carry {
return column;
{
if column.len() < num_elements_to_fill_carry {
columns_buffer.push(column);
continue;
}
let mut output_pairs = Vec::new();
for chunk in column.chunks_exact(num_elements_to_fill_carry) {
let mut result = chunk[0].clone();
for c in &chunk[1..] {
self.key.unchecked_add_assign(&mut result, c);
}
column
.par_chunks_exact(num_elements_to_fill_carry)
.map(|chunk| {
let mut result = chunk[0].clone();
for c in &chunk[1..] {
self.key.unchecked_add_assign(&mut result, c);
}
if (column_index < num_columns - 1) || output_carries.is_some() {
rayon::join(
|| self.key.message_extract(&result),
|| Some(self.key.carry_extract(&result)),
)
} else {
(self.key.message_extract(&result), None)
}
})
.collect_into_vec(out_buf);
println!(
"chunk_result: {:?} {:?}",
column_index,
result.ct.get_body()
);
let num_elem_in_rest = column.len() % num_elements_to_fill_carry;
column.rotate_right(num_elem_in_rest);
column.truncate(num_elem_in_rest);
column
})
.collect_into_vec(&mut columns_buffer);
if (column_index < num_columns - 1) || output_carries.is_some() {
println!("Before message_extract: {:?}", result.ct.get_body().data);
let msg = self.key.message_extract(&result);
println!("After message_extract: {:?}", msg.ct.get_body().data);
println!("Before carry_extract: {:?}", result.ct.get_body().data);
let carry = self.key.carry_extract(&result);
println!("After carry_extract: {:?}", carry.ct.get_body().data);
output_pairs.push((msg, Some(carry)));
} else {
let msg = self.key.message_extract(&result);
output_pairs.push((msg, None));
}
}
*out_buf = output_pairs;
let num_elem_in_rest = column.len() % num_elements_to_fill_carry;
column.rotate_right(num_elem_in_rest);
column.truncate(num_elem_in_rest);
columns_buffer.push(column);
}
std::mem::swap(&mut columns, &mut columns_buffer);
@@ -123,6 +137,16 @@ impl ServerKey {
}
}
}
let mut index = 0;
for column in &columns {
print!("column_{:?} ", index);
for ct in column {
print!("{:?} ", ct.ct.get_body().data);
}
println!("");
index += 1;
}
}
// Reconstruct a radix from the columns
@@ -136,6 +160,7 @@ impl ServerKey {
column.as_mut_slice().split_first_mut().unwrap();
for other in other_blocks {
self.key.unchecked_add_assign(first_block, other);
println!("after_add: {:?}", first_block.ct.get_body());
}
column.swap_remove(0)
}
@@ -143,6 +168,9 @@ impl ServerKey {
.collect::<Vec<_>>();
assert_eq!(blocks.len(), num_blocks);
for block in &blocks {
println!("final_result: {:?} {:?}", block.ct.get_body(), block.degree);
}
Some(T::from_blocks(blocks))
}
@@ -160,7 +188,7 @@ impl ServerKey {
self.unchecked_partial_sum_ciphertexts_vec_parallelized(ciphertexts, None)?;
self.full_propagate_parallelized(&mut result);
assert!(result.block_carries_are_empty());
//assert!(result.block_carries_are_empty());
Some(result)
}

View File

@@ -143,7 +143,8 @@ where
T: for<'a> FunctionExecutor<&'a Vec<RadixCiphertext>, Option<RadixCiphertext>>,
{
let param = param.into();
let nb_tests_smaller = nb_tests_smaller_for_params(param);
println!("params: {:?}", &param);
let nb_tests_smaller: usize = 1;
let (cks, sks) = KEY_CACHE.get_from_params(param, IntegerKeyKind::Radix);
let cks = RadixClientKey::from((
cks,
@@ -160,9 +161,14 @@ where
.0
.pow(crate::integer::server_key::radix_parallel::tests_unsigned::NB_CTXT as u32);
println!("modulus, {:?}", modulus);
println!(
"NB_CTXT, {:?}",
crate::integer::server_key::radix_parallel::tests_unsigned::NB_CTXT
);
executor.setup(&cks, sks);
for len in [1, 2, 15, 16, 17, 64, 65] {
for len in [64] {
for _ in 0..nb_tests_smaller {
let clears = (0..len)
.map(|_| rng.gen::<u64>() % modulus)

View File

@@ -889,15 +889,18 @@ impl<AP: AtomicPattern> GenericServerKey<AP> {
}
pub fn apply_lookup_table_assign(&self, ct: &mut Ciphertext, acc: &LookupTableOwned) {
println!("degree_before: {:?}", ct.degree);
if ct.is_trivial() {
self.trivial_pbs_assign(ct, acc);
println!("degree_after: {:?}", ct.degree);
return;
}
self.atomic_pattern.apply_lookup_table_assign(ct, acc);
ct.degree = acc.degree;
ct.set_noise_level_to_nominal();
ct.set_noise_level(NoiseLevel::NOMINAL, self.max_noise_level);
println!("degree_after: {:?}", ct.degree);
}
/// Compute a keyswitch and programmable bootstrap applying several functions on an input