Compare commits

...

71 Commits

Author SHA1 Message Date
Agnes Leroy
071934532e add back functions 2025-06-04 12:53:45 +02:00
Agnes Leroy
87b41ebbe5 More prints degrees 2025-06-04 12:53:44 +02:00
Agnes Leroy
7ba7dd3e19 Debug with long run tests 2025-06-04 12:53:44 +02:00
Beka Barbakadze
7f122bb435 refactor(gpu): remove debug prints 2025-06-04 12:53:32 +02:00
Beka Barbakadze
56c0811751 fix(gpu): fix ilog2 bug 2025-06-04 12:53:32 +02:00
Beka Barbakadze
580ac5aa99 fix(gpu): mul not using mem reuse 2025-06-04 12:53:32 +02:00
Beka Barbakadze
cf34e9b7f0 refactor(gpu): refactor and optimize sum_ciphertext in cuda backend 2025-06-04 12:53:31 +02:00
David Testé
856fc1a709 chore(ci): ignore stale action refs on rust-toolchain action
This action doesn't create releases so the action refs doesn't point to a known tag.
If this zizmor findings is not ignored, then continuous integration pipeline is broken.
2025-06-04 11:48:01 +02:00
Pedro Alves
fe0a195630 chore(gpu): switches from the TBC PBS to the other variants for many inputs 2025-06-04 05:45:53 -03:00
tmontaigu
aca7e79585 feat(csprng): add Xof random generation
This adds a new kind of seed to the csprng

When created which such seed, the AES-CTR random generator
initialization changes:
- The AES-KEY used is initialized differently
- The AES-CTR starts with a CTR that may not be 0

The changes make it so that the counter still goes from 0..MAX,
but now the AES-CTR will encrypt the counter + some offset allowing
to keep the regular behavior and the new one
2025-06-04 09:57:18 +02:00
tmontaigu
c0e89a53ef fix(csprng): fix and endian for the counter
This commit fixes an endian (little) for the counter
representation of the counter used in the AES-CTR counter.

This is so that, the random bytes generated are the same not matter
the endian of the system.

A test case with known answers is added, as well as make command
to run the test in an emulated big-endian arch using the `cross`
utility.

This also include a small refactor where now the block cipher
do not encrypt `AesIndex`. This is done as it makes more sense
(AES encrypts bytes, not numbers), so this allows to move and centralize
the concept of endian as well a centralize where batch created.
2025-06-04 09:57:18 +02:00
David Testé
312952007f chore(ci): lock zizmor version to avoid breaking ci pipelines
Newer version of Zizmor can trigger errors due to new findings in workflows. To avoid breaking any ongoing pull-request, due to this unhandled update, zizmor version is locked.
2025-06-03 12:29:36 +02:00
Enzo Di Maria
ff51ed3f34 refactor(gpu): moving trim_radix_blocks_lsb_async to backend 2025-06-03 11:42:18 +02:00
Agnes Leroy
9737bdcb98 fix(gpu): fix degrees after bitxor 2025-06-03 08:47:12 +02:00
tmontaigu
87a43a4900 chore(integer): add determinism check for sum 2025-06-02 17:37:21 +02:00
Agnes Leroy
345bdbf17f feat(gpu): add memory tracking function for cmux 2025-06-02 17:29:17 +02:00
Agnes Leroy
cc54ba2236 chore(gpu): fix overflow in div in long run tests 2025-06-02 17:05:09 +02:00
David Testé
11df6c69ee chore(ci): fix workflow security warnings
Since Zizmor v1.9.0, new pedantic warnings are detected especially
regarding template-injection patterns.
2025-06-02 14:46:14 +02:00
Guillermo Oyarzun
b76f4dbfe0 fix(gpu): fix hardcoded use of message modulus 2025-06-02 10:43:14 +02:00
Enzo Di Maria
be21c15c80 refactor(gpu): moving extend_radix_with_trivial_zero_blocks_msb to backend 2025-06-02 09:19:51 +02:00
tmontaigu
aa51b25313 chore(ci): fix test_user_docs run and add hpu
Due to #[cfg] before the test_user_docs module, the module would
not actually be compiled (thus run user doc test) unless all required
features where activated when running.

So we remove these cfg, as each hardware doc supports its own set of
features and its better to have a test fail because a feature is
missing rather than silently not run anything

Also, add commands and ci stuff to check HPU docs
2025-05-30 16:36:56 +02:00
tmontaigu
300c95fe3d fix(doc): finish HPU example fix 2025-05-30 16:36:56 +02:00
pgardratzama
524adda8f6 fix(doc): hpu example was not compiling 2025-05-30 16:36:56 +02:00
tmontaigu
dedcf205b4 feat(integer): improve default neg 2025-05-30 15:02:35 +02:00
tmontaigu
2c8d4c0fb0 feat(hlapi): add overflowing_neg 2025-05-30 15:02:35 +02:00
tmontaigu
3370fb5b7e feat(gpu): add overflowing_neg 2025-05-30 15:02:35 +02:00
tmontaigu
cd77eac42b feat(integer): add overflowing_neg 2025-05-30 15:02:35 +02:00
Baptiste Roux
40f20b4ecb fix(hpu): Rewrite hpu_bench iteration loop
hpu_bench example was wrong for iter > 1 following clippy modifications.
NB: Vector is collect but intermediate value are explicitly drop to enable long-time stressed tests.
2025-05-28 14:45:45 +02:00
Agnes Leroy
59a78c76a9 fix(gpu): fix build after shift/rotate mem tracking merge 2025-05-28 12:08:09 +02:00
Pedro Alves
1025246b17 fix(gpu): fix a linking problem on Hopper GPUs 2025-05-28 09:27:33 +02:00
Agnes Leroy
338e9eaeef feat(gpu): add memory tracking functions for shift/rotate 2025-05-28 09:26:27 +02:00
David Testé
0bec4d2ba1 chore(ci): pin rust-toolchain action to v1 2025-05-27 17:31:33 +02:00
David Testé
c5fab98900 chore(ci): add token to do online workflow security checks 2025-05-27 17:31:33 +02:00
Nicolas Sarlin
14e1ee5bd3 fix(gpu): build with hpu and zk features 2025-05-27 16:10:38 +02:00
Pedro Alves
52bc778629 feat(gpu): completely remove the internal CUDA_STREAMS in the HL API
- From now on the streams stored in the available cuda server key are the ones to be
2025-05-27 10:29:34 -03:00
Pedro Alves
10405c9836 feat(gpu): improve test_specific_gpu_selection() so it always tests all possible GPU configurations 2025-05-27 10:29:34 -03:00
Pedro Alves
5eaf6cec55 feat(gpu): reintroduce the feature that allows a user to perform computation on multi-gpu using a custom selection of GPUs
This reverts commit a7d8d2b1d4.
2025-05-27 10:29:34 -03:00
Agnes Leroy
3bfacc1e9d chore(bench): add swap throughput benchmark 2025-05-27 12:08:31 +02:00
Agnes Leroy
a47a418d41 chore(gpu): rework dex bench to prepare throughput benchmark 2025-05-27 12:08:31 +02:00
David Testé
75b3141e19 chore(ci): fix command parsing for gpu benchmark common workflow
Quote escaping was flawed and would generate an array containing a unique string instead of several ones separated by commas.
2025-05-27 10:14:06 +02:00
Agnes Leroy
d01328e0fe fix(gpu): fix overflow error in clear inputs remainder in long run tests 2025-05-26 22:51:18 +02:00
Agnes Leroy
6e102b5fa1 chore(gpu): fix oom error in ci 2025-05-26 22:50:55 +02:00
Pedro Alves
8aa6fa514e fix(gpu): add missing error checks after some kernels 2025-05-26 16:29:23 -03:00
Nicolas Sarlin
21a19cd3c5 chore(shortint): modswitch noise reduction key upgrade without clone 2025-05-26 16:53:35 +02:00
Nicolas Sarlin
f51c70d536 feat(shortint): adds generic client key for atomic pattern support 2025-05-26 16:53:35 +02:00
Agnes Leroy
66e3c02838 feat(gpu): add memory tracking functions for comparisons 2025-05-23 14:37:39 +02:00
Pedro Alves
408e81c45a feat(gpu): add support for GPU-accelerated expand on the HL Api
- includes documentation about GPU's accelerated expand on the HL API
- rework CudaKeySwitchingKey
- Cloning the key is no longer necessary on the HL API
2025-05-23 11:54:29 +02:00
dependabot[bot]
4152906c5d chore(deps): bump actions/upload-artifact from 4.6.0 to 4.6.2
Bumps [actions/upload-artifact](https://github.com/actions/upload-artifact) from 4.6.0 to 4.6.2.
- [Release notes](https://github.com/actions/upload-artifact/releases)
- [Commits](https://github.com/actions/upload-artifact/compare/v4.6.0...ea165f8d65b6e75b540449e92b4886f43607fa02)

---
updated-dependencies:
- dependency-name: actions/upload-artifact
  dependency-version: 4.6.2
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-05-23 11:23:02 +02:00
dependabot[bot]
9fc8a0b5bc chore(deps): bump codecov/codecov-action from 5.4.2 to 5.4.3
Bumps [codecov/codecov-action](https://github.com/codecov/codecov-action) from 5.4.2 to 5.4.3.
- [Release notes](https://github.com/codecov/codecov-action/releases)
- [Changelog](https://github.com/codecov/codecov-action/blob/main/CHANGELOG.md)
- [Commits](ad3126e916...18283e04ce)

---
updated-dependencies:
- dependency-name: codecov/codecov-action
  dependency-version: 5.4.3
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-05-23 11:22:55 +02:00
dependabot[bot]
5dc3e59d13 chore(deps): bump zgosalvez/github-actions-ensure-sha-pinned-actions
Bumps [zgosalvez/github-actions-ensure-sha-pinned-actions](https://github.com/zgosalvez/github-actions-ensure-sha-pinned-actions) from 3.0.23 to 3.0.25.
- [Release notes](https://github.com/zgosalvez/github-actions-ensure-sha-pinned-actions/releases)
- [Commits](4830be28ce...fc87bb5b5a)

---
updated-dependencies:
- dependency-name: zgosalvez/github-actions-ensure-sha-pinned-actions
  dependency-version: 3.0.25
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-05-23 11:22:48 +02:00
Nicolas Sarlin
b40996a7e5 chore(shortint): prepare the v1.3 params folder 2025-05-23 10:57:56 +02:00
Pedro Alves
b066ef19fa fix(gpu): fix the internal benchmark 2025-05-23 10:32:24 +02:00
Nicolas Sarlin
25d008bae8 fix(bench): add missing internal keycache feature 2025-05-22 16:14:30 +02:00
David Testé
2749c1088c chore(ci): handle multi directories for parameters records 2025-05-22 15:03:02 +02:00
Guillermo Oyarzun
c19cd9f021 fix(gpu): add indexes to modulus switch noise reduction 2025-05-22 10:50:51 +02:00
Nicolas Sarlin
45fdba04b1 fix(gpu): allow to build with hpu feature enabled 2025-05-22 10:21:35 +02:00
youben11
69d46810b8 feat(core): chunked seeded_lwe_ksk generation 2025-05-21 18:06:58 +01:00
youben11
a16eeb983f feat(core): chunked lwe_ksk generation 2025-05-21 18:06:58 +01:00
Agnes Leroy
8278a9373c fix(gpu): fix degrees after abs 2025-05-21 15:46:18 +02:00
Arthur Meyre
e2a2768484 chore: fix typos
Co-authored-by: crStiv <cryptostiv7@gmail.com>
2025-05-21 13:06:42 +02:00
Arthur Meyre
57cfc38b66 chore: some more CODEOWNERS 2025-05-21 11:30:35 +02:00
Pedro Alves
259d125434 fix(gpu): fix pbs and ks benchmarks 2025-05-20 17:37:48 +02:00
Arthur Meyre
2571196b41 chore: fix ambiguous decrypt 2025-05-20 17:32:05 +02:00
Arthur Meyre
9f3dc6167d chore: remove raw decomposition
- this was left in by mistake
2025-05-20 17:32:05 +02:00
Agnes Leroy
59c17692a3 feat(gpu): add memory tracking functions for bitops 2025-05-20 16:16:22 +02:00
David Testé
e29d615b9d chore(bench): add suitable heuristic for zk throughput
Heuristic based on PBS count was flawed since a ZK verification operation will eat up to 32 threads on the machine. The previous heuristic could generate an input data vector way bigger than the total of threads divided by 32. This in turn lead to long execution time for benchmark and generate bad results.
2025-05-20 15:02:59 +02:00
tmontaigu
8caff604ed chore: use wrapping div in long_run 2025-05-20 14:36:22 +02:00
Agnes Leroy
16badf0c00 chore(gpu): add degree prints in long run tests in case of failure 2025-05-20 14:13:59 +02:00
Nicolas Sarlin
99a27c1cbe chore(hpu): fix Cargo.toml for release 2025-05-19 17:47:40 +02:00
Nicolas Sarlin
9131aaa383 fix(doc): uniformized readme file names 2025-05-19 15:22:34 +02:00
Nicolas Sarlin
a01949e630 fix(bench): compilation error without the internal-keycache feature 2025-05-19 09:50:29 +02:00
324 changed files with 16432 additions and 3526 deletions

View File

@@ -33,7 +33,9 @@ runs:
if: inputs.github-instance == 'true'
shell: bash
run: |
TOOLKIT_VERSION="$(echo ${CUDA_VERSION} | sed 's/\(.*\)\.\(.*\)/\1-\2/')"
# Use Sed to extract a value from a string, this cannot be done with the ${variable//search/replace} pattern.
# shellcheck disable=SC2001
TOOLKIT_VERSION="$(echo "${CUDA_VERSION}" | sed 's/\(.*\)\.\(.*\)/\1-\2/')"
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/${env.CUDA_KEYRING_PACKAGE}
echo "${CUDA_KEYRING_SHA} ${CUDA_KEYRING_PACKAGE}" > checksum
sha256sum -c checksum

View File

@@ -67,7 +67,7 @@ jobs:
token: ${{ env.CHECKOUT_TOKEN }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -126,9 +126,10 @@ jobs:
- name: Set pull-request URL
if: ${{ failure() && github.event_name == 'pull_request' }}
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -174,7 +174,7 @@ jobs:
token: ${{ env.CHECKOUT_TOKEN }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -182,6 +182,7 @@ jobs:
if: needs.should-run.outputs.csprng_test == 'true'
run: |
make test_tfhe_csprng
make test_tfhe_csprng_big_endian
- name: Run tfhe-zk-pok tests
if: needs.should-run.outputs.zk_pok_test == 'true'
@@ -272,9 +273,10 @@ jobs:
- name: Set pull-request URL
if: ${{ failure() && github.event_name == 'pull_request' }}
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Slack Notification
if: ${{ failure() && env.SECRETS_AVAILABLE == 'true' }}

View File

@@ -114,7 +114,7 @@ jobs:
token: ${{ env.CHECKOUT_TOKEN }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -142,9 +142,10 @@ jobs:
- name: Set pull-request URL
if: ${{ failure() && github.event_name == 'pull_request' }}
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -115,7 +115,7 @@ jobs:
token: ${{ env.CHECKOUT_TOKEN }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -147,9 +147,10 @@ jobs:
- name: Set pull-request URL
if: ${{ failure() && github.event_name == 'pull_request' }}
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -185,7 +185,7 @@ jobs:
token: ${{ env.CHECKOUT_TOKEN }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -254,9 +254,10 @@ jobs:
- name: Set pull-request URL
if: ${{ failure() && github.event_name == 'pull_request' }}
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -68,7 +68,7 @@ jobs:
token: ${{ env.CHECKOUT_TOKEN }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -123,9 +123,10 @@ jobs:
- name: Set pull-request URL
if: ${{ failure() && github.event_name == 'pull_request' }}
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -58,14 +58,17 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -114,8 +117,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -58,14 +58,17 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -107,8 +110,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -58,14 +58,17 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -116,8 +119,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -59,14 +59,17 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -111,8 +114,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -46,15 +46,18 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
echo "FAST_BENCH=TRUE";
} >> "${GITHUB_ENV}"
echo "FAST_BENCH=TRUE" >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -93,8 +96,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}
@@ -124,14 +130,17 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -170,8 +179,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -84,7 +84,7 @@ jobs:
run: |
# Use Sed to extract a value from a string, this cannot be done with the ${variable//search/replace} pattern.
# shellcheck disable=SC2001
PARSED_COMMAND=$(echo "${INPUTS_COMMAND}" | sed 's/[[:space:]]*,[[:space:]]*/\\", \\"/g')
PARSED_COMMAND=$(echo "${INPUTS_COMMAND}" | sed 's/[[:space:]]*,[[:space:]]*/\", \"/g')
echo "COMMAND=[\"${PARSED_COMMAND}\"]" >> "${GITHUB_ENV}"
- name: Set single operations flavor
@@ -120,26 +120,33 @@ jobs:
env:
INPUTS_PARAMS_TYPE: ${{ inputs.params_type }}
- name: Set command output
id: set_command
run: |
echo "command=${{ toJSON(env.COMMAND) }}" >> "${GITHUB_OUTPUT}"
echo "command=${COMMAND_OUTPUT}" >> "${GITHUB_OUTPUT}"
env:
COMMAND_OUTPUT: ${{ toJSON(env.COMMAND) }}
- name: Set operation flavor output
id: set_op_flavor
run: |
echo "op_flavor=${{ toJSON(env.OP_FLAVOR) }}" >> "${GITHUB_OUTPUT}"
echo "op_flavor=${OP_FLAVOR_OUTPUT}" >> "${GITHUB_OUTPUT}"
env:
OP_FLAVOR_OUTPUT: ${{ toJSON(env.OP_FLAVOR) }}
- name: Set benchmark types output
id: set_bench_type
run: |
echo "bench_type=${{ toJSON(env.BENCH_TYPE) }}" >> "${GITHUB_OUTPUT}"
echo "bench_type=${BENCH_TYPE_OUTPUT}" >> "${GITHUB_OUTPUT}"
env:
BENCH_TYPE_OUTPUT: ${{ toJSON(env.BENCH_TYPE) }}
- name: Set parameters types output
id: set_params_type
run: |
echo "params_type=${{ toJSON(env.PARAMS_TYPE) }}" >> "${GITHUB_OUTPUT}"
echo "params_type=${PARAMS_TYPE_OUTPUT}" >> "${GITHUB_OUTPUT}"
env:
PARAMS_TYPE_OUTPUT: ${{ toJSON(env.PARAMS_TYPE) }}
setup-instance:
name: Setup instance (cuda-${{ inputs.profile }}-benchmarks)
@@ -227,6 +234,8 @@ jobs:
include:
- cuda: "12.2"
gcc: 11
env:
CUDA_PATH: /usr/local/cuda-${{ matrix.cuda }}
steps:
- name: Checkout tfhe-rs repo with tags
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683
@@ -237,18 +246,20 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
# Re-export environment variables as dependencies setup perform this task in the previous job.
# Local env variables are cleaned at the end of each job.
- name: Export CUDA variables
shell: bash
run: |
CUDA_PATH=/usr/local/cuda-${{ matrix.cuda }}
echo "CUDA_PATH=$CUDA_PATH" >> "${GITHUB_ENV}"
echo "PATH=$PATH:$CUDA_PATH/bin" >> "${GITHUB_PATH}"
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib64:$LD_LIBRARY_PATH" >> "${GITHUB_ENV}"
@@ -258,13 +269,15 @@ jobs:
shell: bash
run: |
{
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}";
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}";
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}";
echo "CC=/usr/bin/gcc-${GCC_VERSION}";
echo "CXX=/usr/bin/g++-${GCC_VERSION}";
echo "CUDAHOSTCXX=/usr/bin/g++-${GCC_VERSION}";
} >> "${GITHUB_ENV}"
env:
GCC_VERSION: ${{ matrix.gcc }}
- name: Install rust
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -317,8 +330,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
slack-notify:
name: Slack Notification

View File

@@ -119,14 +119,17 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -167,8 +170,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
slack-notify:
name: Slack Notification

View File

@@ -120,14 +120,17 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -168,8 +171,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
slack-notify:
name: Slack Notification

View File

@@ -37,14 +37,17 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: dtolnay/rust-toolchain@a54c7afa936fefeb4456b2dd8068152669aa8203
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -76,7 +79,7 @@ jobs:
REF_NAME: ${{ github.ref_name }}
- name: Upload parsed results artifact
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02
with:
name: ${{ github.sha }}_integer_benchmarks
path: ${{ env.RESULTS_FILENAME }}
@@ -84,5 +87,8 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}

View File

@@ -79,12 +79,16 @@ jobs:
- name: Set operation flavor output
id: set_op_flavor
run: |
echo "op_flavor=${{ toJSON(env.OP_FLAVOR) }}" >> "${GITHUB_OUTPUT}"
echo "op_flavor=${OP_FLAVOR_OUTPUT}" >> "${GITHUB_OUTPUT}"
env:
OP_FLAVOR_OUTPUT: ${{ toJSON(env.OP_FLAVOR) }}
- name: Set benchmark types output
id: set_bench_type
run: |
echo "bench_type=${{ toJSON(env.BENCH_TYPE) }}" >> "${GITHUB_OUTPUT}"
echo "bench_type=${BENCH_TYPE_OUTPUT}" >> "${GITHUB_OUTPUT}"
env:
BENCH_TYPE_OUTPUT: ${{ toJSON(env.BENCH_TYPE) }}
setup-instance:
name: Setup instance (integer-benchmarks)
@@ -128,14 +132,17 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -193,8 +200,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -48,7 +48,9 @@ jobs:
- name: Set operation flavor output
id: set_op_flavor
run: |
echo "op_flavor=${{ toJSON(env.OP_FLAVOR) }}" >> "${GITHUB_OUTPUT}"
echo "op_flavor=${OP_FLAVOR_OUTPUT}" >> "${GITHUB_OUTPUT}"
env:
OP_FLAVOR_OUTPUT: ${{ toJSON(env.OP_FLAVOR) }}
setup-instance:
name: Setup instance (shortint-benchmarks)
@@ -89,14 +91,17 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -150,8 +155,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -79,12 +79,16 @@ jobs:
- name: Set operation flavor output
id: set_op_flavor
run: |
echo "op_flavor=${{ toJSON(env.OP_FLAVOR) }}" >> "${GITHUB_OUTPUT}"
echo "op_flavor=${OP_FLAVOR_OUTPUT}" >> "${GITHUB_OUTPUT}"
env:
OP_FLAVOR_OUTPUT: ${{ toJSON(env.OP_FLAVOR) }}
- name: Set benchmark types output
id: set_bench_type
run: |
echo "bench_type=${{ toJSON(env.BENCH_TYPE) }}" >> "${GITHUB_OUTPUT}"
echo "bench_type=${BENCH_TYPE_OUTPUT}" >> "${GITHUB_OUTPUT}"
env:
BENCH_TYPE_OUTPUT: ${{ toJSON(env.BENCH_TYPE) }}
setup-instance:
name: Setup instance (signed-integer-benchmarks)
@@ -128,14 +132,17 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -185,8 +192,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -61,11 +61,14 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
@@ -107,8 +110,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -61,11 +61,14 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: actions-rs/toolchain@16499b5e05bf2e26879000db0c1d13f7e13fa3af
@@ -107,8 +110,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -98,14 +98,17 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -155,8 +158,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -96,14 +96,17 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -136,12 +139,16 @@ jobs:
- name: Install web resources
run: |
make install_${{ matrix.browser }}_browser
make install_${{ matrix.browser }}_web_driver
make install_"${BROWSER}"_browser
make install_"${BROWSER}"_web_driver
env:
BROWSER: ${{ matrix.browser }}
- name: Run benchmarks
run: |
make bench_web_js_api_parallel_${{ matrix.browser }}_ci
make bench_web_js_api_parallel_"${BROWSER}"_ci
env:
BROWSER: ${{ matrix.browser }}
- name: Parse results
run: |
@@ -188,8 +195,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -93,7 +93,9 @@ jobs:
- name: Set benchmark types output
id: set_bench_type
run: |
echo "bench_type=${{ toJSON(env.BENCH_TYPE) }}" >> "${GITHUB_OUTPUT}"
echo "bench_type=${BENCH_TYPE_OUTPUT}" >> "${GITHUB_OUTPUT}"
env:
BENCH_TYPE_OUTPUT: ${{ toJSON(env.BENCH_TYPE) }}
setup-instance:
name: Setup instance (pke-zk-benchmarks)
@@ -140,14 +142,17 @@ jobs:
- name: Get benchmark details
run: |
COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict "${SHA}");
{
echo "BENCH_DATE=$(date --iso-8601=seconds)";
echo "COMMIT_DATE=$(git --no-pager show -s --format=%cd --date=iso8601-strict ${{ github.sha }})";
echo "COMMIT_DATE=${COMMIT_DATE}";
echo "COMMIT_HASH=$(git describe --tags --dirty)";
} >> "${GITHUB_ENV}"
env:
SHA: ${{ github.sha }}
- name: Install rust
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: nightly
@@ -205,8 +210,11 @@ jobs:
- name: Send data to Slab
shell: bash
run: |
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${{ secrets.JOB_SECRET }}" \
--slab-url "${{ secrets.SLAB_URL }}"
python3 slab/scripts/data_sender.py "${RESULTS_FILENAME}" "${JOB_SECRET}" \
--slab-url "${SLAB_URL}"
env:
JOB_SECRET: ${{ secrets.JOB_SECRET }}
SLAB_URL: ${{ secrets.SLAB_URL }}
- name: Slack Notification
if: ${{ failure() || (cancelled() && github.event_name != 'pull_request') }}

View File

@@ -35,7 +35,7 @@ jobs:
token: ${{ env.CHECKOUT_TOKEN }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable

View File

@@ -25,10 +25,10 @@ jobs:
- name: Get actionlint
run: |
wget "https://github.com/rhysd/actionlint/releases/download/v${{ env.ACTIONLINT_VERSION }}/actionlint_${{ env.ACTIONLINT_VERSION }}_linux_amd64.tar.gz"
echo "${{ env.ACTIONLINT_CHECKSUM }} actionlint_${{ env.ACTIONLINT_VERSION }}_linux_amd64.tar.gz" > checksum
wget "https://github.com/rhysd/actionlint/releases/download/v${ACTIONLINT_VERSION}/actionlint_${ACTIONLINT_VERSION}_linux_amd64.tar.gz"
echo "${ACTIONLINT_CHECKSUM} actionlint_${ACTIONLINT_VERSION}_linux_amd64.tar.gz" > checksum
sha256sum -c checksum
tar -xf actionlint_${{ env.ACTIONLINT_VERSION }}_linux_amd64.tar.gz actionlint
tar -xf actionlint_"${ACTIONLINT_VERSION}"_linux_amd64.tar.gz actionlint
ln -s "$(pwd)/actionlint" /usr/local/bin/
- name: Lint workflows
@@ -38,9 +38,11 @@ jobs:
- name: Check workflows security
run: |
make check_workflow_security
env:
GH_TOKEN: ${{ env.CHECKOUT_TOKEN }}
- name: Ensure SHA pinned actions
uses: zgosalvez/github-actions-ensure-sha-pinned-actions@4830be28ce81da52ec70d65c552a7403821d98d4 # v3.0.23
uses: zgosalvez/github-actions-ensure-sha-pinned-actions@fc87bb5b5a97953d987372e74478de634726b3e5 # v3.0.25
with:
allowlist: |
slsa-framework/slsa-github-generator

View File

@@ -54,7 +54,7 @@ jobs:
token: ${{ env.CHECKOUT_TOKEN }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -90,7 +90,7 @@ jobs:
make test_shortint_cov
- name: Upload tfhe coverage to Codecov
uses: codecov/codecov-action@ad3126e916f78f00edff4ed0317cf185271ccc2d
uses: codecov/codecov-action@18283e04ce6e62d37312384ff67231eb8fd56d24
if: steps.changed-files.outputs.tfhe_any_changed == 'true'
with:
token: ${{ secrets.CODECOV_TOKEN }}
@@ -104,7 +104,7 @@ jobs:
make test_integer_cov
- name: Upload tfhe coverage to Codecov
uses: codecov/codecov-action@ad3126e916f78f00edff4ed0317cf185271ccc2d
uses: codecov/codecov-action@18283e04ce6e62d37312384ff67231eb8fd56d24
if: steps.changed-files.outputs.tfhe_any_changed == 'true'
with:
token: ${{ secrets.CODECOV_TOKEN }}

View File

@@ -66,7 +66,7 @@ jobs:
token: ${{ env.CHECKOUT_TOKEN }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable

View File

@@ -59,7 +59,7 @@ jobs:
echo 'GH_API_RES<<EOF'
curl --fail-with-body --no-progress-meter -L -X POST \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.FHE_ACTIONS_TOKEN }}" \
-H "Authorization: Bearer ${TOKEN}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
"${COMMENTS_URL}" \
-d "${BODY}"
@@ -71,6 +71,7 @@ jobs:
REPO: ${{ github.repository }}
EVENT_NUMBER: ${{ github.event.number }}
COMMENTS_URL: ${{ fromJson(env.TARGET_REPO_PR).comments_url }}
TOKEN: ${{ secrets.FHE_ACTIONS_TOKEN }}
- name: Merge the Pull Request in the data repo
if: ${{ github.event.pull_request.merged }}
@@ -81,7 +82,7 @@ jobs:
echo 'GH_API_RES<<EOF'
curl --fail-with-body --no-progress-meter -L -X PUT \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.FHE_ACTIONS_TOKEN }}" \
-H "Authorization: Bearer ${TOKEN}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
"${TARGET_REPO_PR_URL}"/merge \
-d '{ "merge_method": "rebase" }'
@@ -91,6 +92,7 @@ jobs:
exit $RES
env:
TARGET_REPO_PR_URL: ${{ fromJson(env.TARGET_REPO_PR).url }}
TOKEN: ${{ secrets.FHE_ACTIONS_TOKEN }}
- name: Close the Pull Request in the data repo
if: ${{ !github.event.pull_request.merged }}
@@ -101,7 +103,7 @@ jobs:
echo 'GH_API_RES<<EOF'
curl --fail-with-body --no-progress-meter -L -X PATCH \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.FHE_ACTIONS_TOKEN }}" \
-H "Authorization: Bearer ${TOKEN}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
"${TARGET_REPO_PR_URL}" \
-d '{ "state": "closed" }'
@@ -111,6 +113,7 @@ jobs:
exit $RES
env:
TARGET_REPO_PR_URL: ${{ fromJson(env.TARGET_REPO_PR).url }}
TOKEN: ${{ secrets.FHE_ACTIONS_TOKEN }}
- name: Delete the associated branch in the data repo
run: |
@@ -120,13 +123,15 @@ jobs:
echo 'GH_API_RES<<EOF'
curl --fail-with-body --no-progress-meter -L -X DELETE \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.FHE_ACTIONS_TOKEN }}" \
-H "Authorization: Bearer ${TOKEN}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
"${TARGET_REPO_API_URL}"/git/refs/heads/"${PR_BRANCH}"
RES="$?"
echo EOF
} >> "${GITHUB_ENV}"
exit $RES
env:
TOKEN: ${{ secrets.FHE_ACTIONS_TOKEN }}
- name: Slack Notification
if: ${{ always() && job.status == 'failure' }}

View File

@@ -45,7 +45,7 @@ jobs:
token: ${{ env.CHECKOUT_TOKEN }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable

View File

@@ -140,7 +140,7 @@ jobs:
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -172,9 +172,10 @@ jobs:
- name: Set pull-request URL
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Send message
if: env.SECRETS_AVAILABLE == 'true'

View File

@@ -124,7 +124,7 @@ jobs:
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -156,9 +156,10 @@ jobs:
- name: Set pull-request URL
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Send message
if: env.SECRETS_AVAILABLE == 'true'

View File

@@ -79,7 +79,7 @@ jobs:
gcc-version: ${{ matrix.gcc }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable

View File

@@ -126,7 +126,7 @@ jobs:
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -149,7 +149,7 @@ jobs:
- name: Run High Level API Tests
run: |
BIG_TESTS_INSTANCE=FALSE make test_high_level_api_gpu
make test_high_level_api_gpu
slack-notify:
name: Slack Notification
@@ -161,9 +161,10 @@ jobs:
- name: Set pull-request URL
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Send message
if: env.SECRETS_AVAILABLE == 'true'

View File

@@ -72,7 +72,7 @@ jobs:
gcc-version: ${{ matrix.gcc }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable

View File

@@ -1,4 +1,4 @@
# Perfom tfhe-cuda-backend post-commit checks on an AWS instance
# Perform tfhe-cuda-backend post-commit checks on an AWS instance
name: Cuda - Post-commit Checks
env:
@@ -81,16 +81,20 @@ jobs:
if: env.SECRETS_AVAILABLE == 'false'
shell: bash
run: |
TOOLKIT_VERSION="$(echo ${{ matrix.cuda }} | sed 's/\(.*\)\.\(.*\)/\1-\2/')"
# Use Sed to extract a value from a string, this cannot be done with the ${variable//search/replace} pattern.
# shellcheck disable=SC2001
TOOLKIT_VERSION="$(echo "${CUDA_VERSION}" | sed 's/\(.*\)\.\(.*\)/\1-\2/')"
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/"${CUDA_KEYRING_PACKAGE}"
echo "${CUDA_KEYRING_SHA} ${CUDA_KEYRING_PACKAGE}" > checksum
sha256sum -c checksum
sudo dpkg -i "${CUDA_KEYRING_PACKAGE}"
sudo apt update
sudo apt -y install "cuda-toolkit-${TOOLKIT_VERSION}" cmake-format
env:
CUDA_VERSION: ${{ matrix.cuda }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -100,17 +104,21 @@ jobs:
echo "CUDA_PATH=$CUDA_PATH" >> "${GITHUB_ENV}"
echo "$CUDA_PATH/bin" >> "${GITHUB_PATH}"
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib:$LD_LIBRARY_PATH" >> "${GITHUB_ENV}"
echo "CUDACXX=/usr/local/cuda-${{ matrix.cuda }}/bin/nvcc" >> "${GITHUB_ENV}"
echo "CUDACXX=/usr/local/cuda-${CUDA_VERSION}/bin/nvcc" >> "${GITHUB_ENV}"
env:
CUDA_VERSION: ${{ matrix.cuda }}
# Specify the correct host compilers
- name: Export gcc and g++ variables
if: ${{ !cancelled() }}
run: |
{
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}";
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}";
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}";
echo "CC=/usr/bin/gcc-${GCC_VERSION}";
echo "CXX=/usr/bin/g++-${GCC_VERSION}";
echo "CUDAHOSTCXX=/usr/bin/g++-${GCC_VERSION}";
} >> "${GITHUB_ENV}"
env:
GCC_VERSION: ${{ matrix.gcc }}
- name: Run fmt checks
run: |
@@ -120,12 +128,17 @@ jobs:
run: |
make pcc_gpu
- name: Check build with hpu enabled
run: |
make clippy_gpu_hpu
- name: Set pull-request URL
if: ${{ failure() && github.event_name == 'pull_request' }}
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Slack Notification
if: ${{ failure() && env.SECRETS_AVAILABLE == 'true' }}

View File

@@ -126,7 +126,7 @@ jobs:
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -144,9 +144,10 @@ jobs:
- name: Set pull-request URL
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Send message
if: env.SECRETS_AVAILABLE == 'true'

View File

@@ -140,7 +140,7 @@ jobs:
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -158,9 +158,10 @@ jobs:
- name: Set pull-request URL
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Send message
if: env.SECRETS_AVAILABLE == 'true'

View File

@@ -130,7 +130,7 @@ jobs:
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -156,9 +156,10 @@ jobs:
- name: Set pull-request URL
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Send message
if: env.SECRETS_AVAILABLE == 'true'

View File

@@ -126,7 +126,7 @@ jobs:
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -144,9 +144,10 @@ jobs:
- name: Set pull-request URL
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Send message
if: env.SECRETS_AVAILABLE == 'true'

View File

@@ -140,7 +140,7 @@ jobs:
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -158,9 +158,10 @@ jobs:
- name: Set pull-request URL
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Send message
if: env.SECRETS_AVAILABLE == 'true'

View File

@@ -130,7 +130,7 @@ jobs:
github-instance: ${{ env.SECRETS_AVAILABLE == 'false' }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -156,9 +156,10 @@ jobs:
- name: Set pull-request URL
if: env.SECRETS_AVAILABLE == 'true' && github.event_name == 'pull_request'
run: |
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${{ github.event.pull_request.number }}), " >> "${GITHUB_ENV}"
echo "PULL_REQUEST_MD_LINK=[pull-request](${PR_BASE_URL}${PR_NUMBER}), " >> "${GITHUB_ENV}"
env:
PR_BASE_URL: ${{ vars.PR_BASE_URL }}
PR_NUMBER: ${{ github.event.pull_request.number }}
- name: Send message
if: env.SECRETS_AVAILABLE == 'true'

View File

@@ -70,4 +70,4 @@ jobs:
source setup_hpu.sh
just -f mockups/tfhe-hpu-mockup/Justfile BUILD_PROFILE=release mockup &
make HPU_CONFIG=sim test_high_level_api_hpu
make HPU_CONFIG=sim test_user_doc_hpu

View File

@@ -57,7 +57,7 @@ jobs:
token: ${{ secrets.REPO_CHECKOUT_TOKEN }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable

View File

@@ -46,7 +46,7 @@ jobs:
token: ${{ env.CHECKOUT_TOKEN }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable

View File

@@ -67,7 +67,7 @@ jobs:
token: ${{ secrets.REPO_CHECKOUT_TOKEN }}
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -78,17 +78,19 @@ jobs:
{
echo "CUDA_PATH=$CUDA_PATH";
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib:$LD_LIBRARY_PATH";
echo "CUDACXX=/usr/local/cuda-${{ matrix.cuda }}/bin/nvcc";
echo "CUDACXX=/usr/local/cuda-${CUDA_VERSION}/bin/nvcc";
} >> "${GITHUB_ENV}"
env:
CUDA_VERSION: ${{ matrix.cuda }}
# Specify the correct host compilers
- name: Export gcc and g++ variables
if: ${{ !cancelled() }}
run: |
{
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}";
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}";
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}";
echo "CC=/usr/bin/gcc-${GCC_VERSION}";
echo "CXX=/usr/bin/g++-${GCC_VERSION}";
echo "CUDAHOSTCXX=/usr/bin/g++-${GCC_VERSION}";
echo "HOME=/home/ubuntu";
} >> "${GITHUB_ENV}"
- name: Prepare package
@@ -129,7 +131,7 @@ jobs:
CUDA_PATH: /usr/local/cuda-${{ matrix.cuda }}
steps:
- name: Install latest stable
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1
uses: dtolnay/rust-toolchain@888c2e1ea69ab0d4330cbf0af1ecc7b68f368cc1 # zizmor: ignore[stale-action-refs] this action doesn't create releases
with:
toolchain: stable
@@ -140,19 +142,23 @@ jobs:
{
echo "CUDA_PATH=$CUDA_PATH";
echo "LD_LIBRARY_PATH=$CUDA_PATH/lib:$LD_LIBRARY_PATH";
echo "CUDACXX=/usr/local/cuda-${{ matrix.cuda }}/bin/nvcc";
echo "CUDACXX=/usr/local/cuda-${CUDA_VERSION}/bin/nvcc";
} >> "${GITHUB_ENV}"
env:
CUDA_VERSION: ${{ matrix.cuda }}
# Specify the correct host compilers
- name: Export gcc and g++ variables
if: ${{ !cancelled() }}
run: |
{
echo "CC=/usr/bin/gcc-${{ matrix.gcc }}";
echo "CXX=/usr/bin/g++-${{ matrix.gcc }}";
echo "CUDAHOSTCXX=/usr/bin/g++-${{ matrix.gcc }}";
echo "CC=/usr/bin/gcc-${GCC_VERSION}";
echo "CXX=/usr/bin/g++-${GCC_VERSION}";
echo "CUDAHOSTCXX=/usr/bin/g++-${GCC_VERSION}";
echo "HOME=/home/ubuntu";
} >> "${GITHUB_ENV}"
env:
GCC_VERSION: ${{ matrix.gcc }}
- name: Publish crate.io package
env:

View File

@@ -10,3 +10,9 @@
/tfhe/src/integer/gpu
/tfhe/src/high_level_api/ @tmontaigu
/Makefile @IceTDrinker @soonum
/.github/ @soonum
/CODEOWNERS @IceTDrinker

View File

@@ -170,9 +170,13 @@ install_typos_checker: install_rs_build_toolchain
.PHONY: install_zizmor # Install zizmor workflow security checker
install_zizmor: install_rs_build_toolchain
@zizmor --version > /dev/null 2>&1 || \
cargo $(CARGO_RS_BUILD_TOOLCHAIN) install zizmor || \
cargo $(CARGO_RS_BUILD_TOOLCHAIN) install zizmor --version ~1.9 || \
( echo "Unable to install zizmor, unknown error." && exit 1 )
.PHONY: install_cargo_cross # Install custom tfhe-rs lints
install_cargo_cross: install_rs_build_toolchain
cargo $(CARGO_RS_BUILD_TOOLCHAIN) install cross
.PHONY: setup_venv # Setup Python virtualenv for wasm tests
setup_venv:
python3 -m venv venv
@@ -294,7 +298,7 @@ check_typos: install_typos_checker
.PHONY: clippy_gpu # Run clippy lints on tfhe with "gpu" enabled
clippy_gpu: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
--features=boolean,shortint,integer,internal-keycache,gpu,pbs-stats,extended-types \
--features=boolean,shortint,integer,internal-keycache,gpu,pbs-stats,extended-types,zk-pok \
--all-targets \
-p $(TFHE_SPEC) -- --no-deps -D warnings
@@ -312,6 +316,13 @@ clippy_hpu: install_rs_check_toolchain
--all-targets \
-p $(TFHE_SPEC) -- --no-deps -D warnings
.PHONY: clippy_gpu_hpu # Run clippy lints on tfhe with "gpu" and "hpu" enabled
clippy_gpu_hpu: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo "$(CARGO_RS_CHECK_TOOLCHAIN)" clippy \
--features=boolean,shortint,integer,internal-keycache,gpu,hpu,pbs-stats,extended-types,zk-pok \
--all-targets \
-p $(TFHE_SPEC) -- --no-deps -D warnings
.PHONY: fix_newline # Fix newline at end of file issues to be UNIX compliant
fix_newline: check_linelint_installed
linelint -a .
@@ -892,7 +903,7 @@ test_high_level_api: install_rs_build_toolchain
test_high_level_api_gpu: install_rs_build_toolchain install_cargo_nextest
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) nextest run --cargo-profile $(CARGO_PROFILE) \
--features=integer,internal-keycache,gpu -p $(TFHE_SPEC) \
--test-threads=4 --features=integer,internal-keycache,gpu,zk-pok -p $(TFHE_SPEC) \
-E "test(/high_level_api::.*gpu.*/)"
test_high_level_api_hpu: install_rs_build_toolchain install_cargo_nextest
@@ -928,9 +939,21 @@ test_user_doc: install_rs_build_toolchain
.PHONY: test_user_doc_gpu # Run tests for GPU from the .md documentation
test_user_doc_gpu: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) --doc \
--features=boolean,shortint,integer,internal-keycache,gpu,zk-pok -p $(TFHE_SPEC) \
--features=internal-keycache,integer,zk-pok,gpu -p $(TFHE_SPEC) \
-- test_user_docs::
.PHONY: test_user_doc_hpu # Run tests for HPU from the .md documentation
test_user_doc_hpu: install_rs_build_toolchain
ifeq ($(HPU_CONFIG), v80)
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) --doc \
--features=internal-keycache,integer,hpu,hpu-v80 -p $(TFHE_SPEC) \
-- test_user_docs::
else
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) --doc \
--features=internal-keycache,integer,hpu -p $(TFHE_SPEC) \
-- test_user_docs::
endif
.PHONY: test_regex_engine # Run tests for regex_engine example
@@ -961,6 +984,12 @@ test_tfhe_csprng: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
-p tfhe-csprng
.PHONY: test_tfhe_csprng_big_endian # Run tfhe-csprng tests on an emulated big endian system
test_tfhe_csprng_big_endian: install_rs_build_toolchain install_cargo_cross
RUSTFLAGS="" cross $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
-p tfhe-csprng --target=powerpc64-unknown-linux-gnu
.PHONY: test_zk_pok # Run tfhe-zk-pok tests
test_zk_pok: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --profile $(CARGO_PROFILE) \
@@ -1066,7 +1095,7 @@ check_compile_tests: install_rs_build_toolchain
.PHONY: check_compile_tests_benches_gpu # Build tests in debug without running them
check_compile_tests_benches_gpu: install_rs_build_toolchain
RUSTFLAGS="$(RUSTFLAGS)" cargo $(CARGO_RS_BUILD_TOOLCHAIN) test --no-run \
--features=experimental,boolean,shortint,integer,internal-keycache,gpu \
--features=experimental,boolean,shortint,integer,internal-keycache,gpu,zk-pok \
-p $(TFHE_SPEC)
mkdir -p "$(TFHECUDA_BUILD)" && \
cd "$(TFHECUDA_BUILD)" && \
@@ -1214,7 +1243,7 @@ bench_integer_compression_gpu: install_rs_check_toolchain
cargo $(CARGO_RS_CHECK_TOOLCHAIN) bench \
--bench glwe_packing_compression-integer-bench \
--features=integer,internal-keycache,gpu,pbs-stats -p tfhe-benchmark --
.PHONY: bench_integer_zk_gpu
bench_integer_zk_gpu: install_rs_check_toolchain
RUSTFLAGS="$(RUSTFLAGS)" __TFHE_RS_BENCH_TYPE=$(BENCH_TYPE) \
@@ -1500,7 +1529,7 @@ pcc_gpu: check_rust_bindings_did_not_change clippy_rustdoc_gpu \
clippy_gpu clippy_cuda_backend clippy_bench_gpu check_compile_tests_benches_gpu
.PHONY: pcc_hpu # pcc stands for pre commit checks for HPU compilation
pcc_hpu: clippy_hpu clippy_hpu_backend test_integer_hpu_mockup_ci_fast
pcc_hpu: clippy_hpu clippy_hpu_backend test_integer_hpu_mockup_ci_fast
.PHONY: fpcc # pcc stands for pre commit checks, the f stands for fast
fpcc: no_tfhe_typo no_dbg_log check_parameter_export_ok check_fmt check_typos lint_doc \

View File

@@ -28,9 +28,10 @@ void cuda_modulus_switch_inplace_64(void *stream, uint32_t gpu_index,
void cuda_improve_noise_modulus_switch_64(
void *stream, uint32_t gpu_index, void *lwe_array_out,
void const *lwe_array_in, void const *encrypted_zeros, uint32_t lwe_size,
uint32_t num_lwes, uint32_t num_zeros, double input_variance,
double r_sigma, double bound, uint32_t log_modulus);
void const *lwe_array_in, void const *lwe_array_indexes,
void const *encrypted_zeros, uint32_t lwe_size, uint32_t num_lwes,
uint32_t num_zeros, double input_variance, double r_sigma, double bound,
uint32_t log_modulus);
void cuda_glwe_sample_extract_128(
void *stream, uint32_t gpu_index, void *lwe_array_out,

View File

@@ -8,7 +8,7 @@ extern std::mutex m;
extern bool p2p_enabled;
extern "C" {
int32_t cuda_setup_multi_gpu();
int32_t cuda_setup_multi_gpu(int device_0_id);
}
// Define a variant type that can be either a vector or a single pointer

View File

@@ -400,7 +400,8 @@ uint64_t scratch_cuda_integer_radix_partial_sum_ciphertexts_vec_kb_64(
void cuda_integer_radix_partial_sum_ciphertexts_vec_kb_64(
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
CudaRadixCiphertextFFI *radix_lwe_out,
CudaRadixCiphertextFFI *radix_lwe_vec, int8_t *mem_ptr, void *const *bsks,
CudaRadixCiphertextFFI *radix_lwe_vec, bool reduce_degrees_for_single_carry_propagation,
int8_t *mem_ptr, void *const *bsks,
void *const *ksks,
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key);
@@ -538,5 +539,13 @@ void cleanup_cuda_integer_is_at_least_one_comparisons_block_true(
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
int8_t **mem_ptr_void);
void extend_radix_with_trivial_zero_blocks_msb_64(
CudaRadixCiphertextFFI *output, CudaRadixCiphertextFFI const *input,
void *const *streams, uint32_t const *gpu_indexes);
void trim_radix_blocks_lsb_64(CudaRadixCiphertextFFI *output,
CudaRadixCiphertextFFI const *input,
void *const *streams,
uint32_t const *gpu_indexes);
} // extern C
#endif // CUDA_INTEGER_H

View File

@@ -1116,18 +1116,116 @@ template <typename Torus> struct int_overflowing_sub_memory {
};
template <typename Torus> struct int_sum_ciphertexts_vec_memory {
CudaRadixCiphertextFFI *new_blocks;
CudaRadixCiphertextFFI *new_blocks_copy;
CudaRadixCiphertextFFI *old_blocks;
CudaRadixCiphertextFFI *small_lwe_vector;
int_radix_params params;
int32_t *d_smart_copy_in;
int32_t *d_smart_copy_out;
bool mem_reuse = false;
size_t max_total_blocks_in_vec;
uint32_t num_blocks_in_radix;
uint32_t max_num_radix_in_vec;
uint64_t *size_tracker;
bool gpu_memory_allocated;
// temporary buffers
CudaRadixCiphertextFFI *current_blocks;
CudaRadixCiphertextFFI *small_lwe_vector;
uint32_t *d_columns_data;
uint32_t *d_columns_counter;
uint32_t **d_columns;
uint32_t *d_new_columns_data;
uint32_t *d_new_columns_counter;
uint32_t **d_new_columns;
uint64_t *d_degrees;
uint32_t *d_pbs_counters;
// lookup table for extracting message and carry
int_radix_lut<Torus> *luts_message_carry;
bool mem_reuse = false;
void setup_index_buffers(cudaStream_t const *streams,
uint32_t const *gpu_indexes) {
d_degrees = (uint64_t *)cuda_malloc_with_size_tracking_async(
max_total_blocks_in_vec * sizeof(uint64_t), streams[0], gpu_indexes[0],
size_tracker, gpu_memory_allocated);
d_pbs_counters = (uint32_t *)cuda_malloc_with_size_tracking_async(
3 * sizeof(uint32_t), streams[0], gpu_indexes[0], size_tracker,
gpu_memory_allocated);
auto num_blocks_in_radix = this->num_blocks_in_radix;
auto max_num_radix_in_vec = this->max_num_radix_in_vec;
auto setup_columns =
[num_blocks_in_radix, max_num_radix_in_vec, streams,
gpu_indexes](uint32_t **&columns, uint32_t *&columns_data,
uint32_t *&columns_counter, uint64_t *size_tracker,
bool gpu_memory_allocated) {
columns_data = (uint32_t *)cuda_malloc_with_size_tracking_async(
num_blocks_in_radix * max_num_radix_in_vec * sizeof(uint32_t),
streams[0], gpu_indexes[0], size_tracker, gpu_memory_allocated);
columns_counter = (uint32_t *)cuda_malloc_with_size_tracking_async(
num_blocks_in_radix * sizeof(uint32_t), streams[0],
gpu_indexes[0], size_tracker, gpu_memory_allocated);
cuda_memset_with_size_tracking_async(
columns_counter, 0, num_blocks_in_radix * sizeof(uint32_t),
streams[0], gpu_indexes[0], gpu_memory_allocated);
uint32_t **h_columns = new uint32_t *[num_blocks_in_radix];
for (int i = 0; i < num_blocks_in_radix; ++i) {
h_columns[i] = columns_data + i * max_num_radix_in_vec;
}
columns = (uint32_t **)cuda_malloc_with_size_tracking_async(
num_blocks_in_radix * sizeof(uint32_t *), streams[0],
gpu_indexes[0], size_tracker, gpu_memory_allocated);
cuda_memcpy_async_to_gpu(columns, h_columns,
num_blocks_in_radix * sizeof(uint32_t *),
streams[0], gpu_indexes[0]);
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
delete[] h_columns;
};
setup_columns(d_columns, d_columns_data, d_columns_counter, size_tracker,
gpu_memory_allocated);
setup_columns(d_new_columns, d_new_columns_data, d_new_columns_counter,
size_tracker, gpu_memory_allocated);
}
void setup_lookup_tables(cudaStream_t const *streams,
uint32_t const *gpu_indexes, uint32_t gpu_count) {
uint32_t message_modulus = params.message_modulus;
if (!mem_reuse) {
luts_message_carry = new int_radix_lut<Torus>(
streams, gpu_indexes, gpu_count, params, 2, max_total_blocks_in_vec,
gpu_memory_allocated, size_tracker);
}
auto message_acc = luts_message_carry->get_lut(0, 0);
auto carry_acc = luts_message_carry->get_lut(0, 1);
// define functions for each accumulator
auto lut_f_message = [message_modulus](Torus x) -> Torus {
return x % message_modulus;
};
auto lut_f_carry = [message_modulus](Torus x) -> Torus {
return x / message_modulus;
};
// generate accumulators
generate_device_accumulator<Torus>(
streams[0], gpu_indexes[0], message_acc,
luts_message_carry->get_degree(0),
luts_message_carry->get_max_degree(0), params.glwe_dimension,
params.polynomial_size, message_modulus, params.carry_modulus,
lut_f_message, gpu_memory_allocated);
generate_device_accumulator<Torus>(
streams[0], gpu_indexes[0], carry_acc,
luts_message_carry->get_degree(1),
luts_message_carry->get_max_degree(1), params.glwe_dimension,
params.polynomial_size, message_modulus, params.carry_modulus,
lut_f_carry, gpu_memory_allocated);
luts_message_carry->broadcast_lut(streams, gpu_indexes, 0);
}
int_sum_ciphertexts_vec_memory(cudaStream_t const *streams,
uint32_t const *gpu_indexes,
uint32_t gpu_count, int_radix_params params,
@@ -1136,103 +1234,84 @@ template <typename Torus> struct int_sum_ciphertexts_vec_memory {
bool allocate_gpu_memory,
uint64_t *size_tracker) {
this->params = params;
gpu_memory_allocated = allocate_gpu_memory;
this->mem_reuse = false;
this->max_total_blocks_in_vec = num_blocks_in_radix * max_num_radix_in_vec;
this->num_blocks_in_radix = num_blocks_in_radix;
this->max_num_radix_in_vec = max_num_radix_in_vec;
this->gpu_memory_allocated = allocate_gpu_memory;
this->size_tracker = size_tracker;
int max_pbs_count = num_blocks_in_radix * max_num_radix_in_vec;
setup_index_buffers(streams, gpu_indexes);
setup_lookup_tables(streams, gpu_indexes, gpu_count);
// allocate gpu memory for intermediate buffers
new_blocks = new CudaRadixCiphertextFFI;
// create and allocate intermediate buffers
current_blocks = new CudaRadixCiphertextFFI;
create_zero_radix_ciphertext_async<Torus>(
streams[0], gpu_indexes[0], new_blocks, max_pbs_count,
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
new_blocks_copy = new CudaRadixCiphertextFFI;
create_zero_radix_ciphertext_async<Torus>(
streams[0], gpu_indexes[0], new_blocks_copy, max_pbs_count,
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
old_blocks = new CudaRadixCiphertextFFI;
create_zero_radix_ciphertext_async<Torus>(
streams[0], gpu_indexes[0], old_blocks, max_pbs_count,
streams[0], gpu_indexes[0], current_blocks, max_total_blocks_in_vec,
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
small_lwe_vector = new CudaRadixCiphertextFFI;
create_zero_radix_ciphertext_async<Torus>(
streams[0], gpu_indexes[0], small_lwe_vector, max_pbs_count,
streams[0], gpu_indexes[0], small_lwe_vector, max_total_blocks_in_vec,
params.small_lwe_dimension, size_tracker, allocate_gpu_memory);
d_smart_copy_in = (int32_t *)cuda_malloc_with_size_tracking_async(
max_pbs_count * sizeof(int32_t), streams[0], gpu_indexes[0],
size_tracker, allocate_gpu_memory);
d_smart_copy_out = (int32_t *)cuda_malloc_with_size_tracking_async(
max_pbs_count * sizeof(int32_t), streams[0], gpu_indexes[0],
size_tracker, allocate_gpu_memory);
cuda_memset_with_size_tracking_async(
d_smart_copy_in, 0, max_pbs_count * sizeof(int32_t), streams[0],
gpu_indexes[0], allocate_gpu_memory);
cuda_memset_with_size_tracking_async(
d_smart_copy_out, 0, max_pbs_count * sizeof(int32_t), streams[0],
gpu_indexes[0], allocate_gpu_memory);
}
int_sum_ciphertexts_vec_memory(
cudaStream_t const *streams, uint32_t const *gpu_indexes,
uint32_t gpu_count, int_radix_params params, uint32_t num_blocks_in_radix,
uint32_t max_num_radix_in_vec, CudaRadixCiphertextFFI *new_blocks,
CudaRadixCiphertextFFI *old_blocks,
CudaRadixCiphertextFFI *small_lwe_vector, bool allocate_gpu_memory,
uint32_t max_num_radix_in_vec, CudaRadixCiphertextFFI *current_blocks,
CudaRadixCiphertextFFI *small_lwe_vector,
int_radix_lut<Torus> *reused_lut, bool allocate_gpu_memory,
uint64_t *size_tracker) {
mem_reuse = true;
gpu_memory_allocated = allocate_gpu_memory;
this->mem_reuse = true;
this->params = params;
this->max_total_blocks_in_vec = num_blocks_in_radix * max_num_radix_in_vec;
this->num_blocks_in_radix = num_blocks_in_radix;
this->max_num_radix_in_vec = max_num_radix_in_vec;
this->gpu_memory_allocated = allocate_gpu_memory;
this->size_tracker = size_tracker;
int max_pbs_count = num_blocks_in_radix * max_num_radix_in_vec;
// assign gpu memory for intermediate buffers
this->new_blocks = new_blocks;
this->old_blocks = old_blocks;
this->current_blocks = current_blocks;
this->small_lwe_vector = small_lwe_vector;
new_blocks_copy = new CudaRadixCiphertextFFI;
create_zero_radix_ciphertext_async<Torus>(
streams[0], gpu_indexes[0], new_blocks_copy, max_pbs_count,
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
d_smart_copy_in = (int32_t *)cuda_malloc_with_size_tracking_async(
max_pbs_count * sizeof(int32_t), streams[0], gpu_indexes[0],
size_tracker, allocate_gpu_memory);
d_smart_copy_out = (int32_t *)cuda_malloc_with_size_tracking_async(
max_pbs_count * sizeof(int32_t), streams[0], gpu_indexes[0],
size_tracker, allocate_gpu_memory);
cuda_memset_with_size_tracking_async(
d_smart_copy_in, 0, max_pbs_count * sizeof(int32_t), streams[0],
gpu_indexes[0], allocate_gpu_memory);
cuda_memset_with_size_tracking_async(
d_smart_copy_out, 0, max_pbs_count * sizeof(int32_t), streams[0],
gpu_indexes[0], allocate_gpu_memory);
this->luts_message_carry = reused_lut;
setup_index_buffers(streams, gpu_indexes);
}
void release(cudaStream_t const *streams, uint32_t const *gpu_indexes,
uint32_t gpu_count) {
cuda_drop_with_size_tracking_async(d_smart_copy_in, streams[0],
cuda_drop_with_size_tracking_async(d_degrees, streams[0], gpu_indexes[0],
gpu_memory_allocated);
cuda_drop_with_size_tracking_async(d_pbs_counters, streams[0],
gpu_indexes[0], gpu_memory_allocated);
cuda_drop_with_size_tracking_async(d_smart_copy_out, streams[0],
cuda_drop_with_size_tracking_async(d_columns_data, streams[0],
gpu_indexes[0], gpu_memory_allocated);
cuda_drop_with_size_tracking_async(d_columns_counter, streams[0],
gpu_indexes[0], gpu_memory_allocated);
cuda_drop_with_size_tracking_async(d_columns, streams[0], gpu_indexes[0],
gpu_memory_allocated);
cuda_drop_with_size_tracking_async(d_new_columns_data, streams[0],
gpu_indexes[0], gpu_memory_allocated);
cuda_drop_with_size_tracking_async(d_new_columns_counter, streams[0],
gpu_indexes[0], gpu_memory_allocated);
cuda_drop_with_size_tracking_async(d_new_columns, streams[0],
gpu_indexes[0], gpu_memory_allocated);
if (!mem_reuse) {
release_radix_ciphertext_async(streams[0], gpu_indexes[0], new_blocks,
gpu_memory_allocated);
release_radix_ciphertext_async(streams[0], gpu_indexes[0], old_blocks,
release_radix_ciphertext_async(streams[0], gpu_indexes[0], current_blocks,
gpu_memory_allocated);
release_radix_ciphertext_async(streams[0], gpu_indexes[0],
small_lwe_vector, gpu_memory_allocated);
luts_message_carry->release(streams, gpu_indexes, gpu_count);
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
delete new_blocks;
delete old_blocks;
delete current_blocks;
delete small_lwe_vector;
delete luts_message_carry;
}
release_radix_ciphertext_async(streams[0], gpu_indexes[0], new_blocks_copy,
gpu_memory_allocated);
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
delete new_blocks_copy;
}
};
// For sequential algorithm in group propagation
template <typename Torus> struct int_seq_group_prop_memory {
@@ -2549,7 +2628,7 @@ template <typename Torus> struct int_mul_memory {
// radix_lwe_left except the last blocks of each shift
int msb_vector_block_count = num_radix_blocks * (num_radix_blocks - 1) / 2;
int total_block_count = lsb_vector_block_count + msb_vector_block_count;
int total_block_count = num_radix_blocks * num_radix_blocks;
// allocate memory for intermediate buffers
vector_result_sb = new CudaRadixCiphertextFFI;
@@ -2562,13 +2641,13 @@ template <typename Torus> struct int_mul_memory {
params.big_lwe_dimension, size_tracker, allocate_gpu_memory);
small_lwe_vector = new CudaRadixCiphertextFFI;
create_zero_radix_ciphertext_async<Torus>(
streams[0], gpu_indexes[0], small_lwe_vector, total_block_count,
streams[0], gpu_indexes[0], small_lwe_vector, 2 * total_block_count,
params.small_lwe_dimension, size_tracker, allocate_gpu_memory);
// create int_radix_lut objects for lsb, msb, message, carry
// luts_array -> lut = {lsb_acc, msb_acc}
luts_array = new int_radix_lut<Torus>(streams, gpu_indexes, gpu_count,
params, 2, total_block_count,
params, 2, 2 * total_block_count,
allocate_gpu_memory, size_tracker);
auto lsb_acc = luts_array->get_lut(0, 0);
auto msb_acc = luts_array->get_lut(0, 1);
@@ -2602,9 +2681,10 @@ template <typename Torus> struct int_mul_memory {
luts_array->broadcast_lut(streams, gpu_indexes, 0);
// create memory object for sum ciphertexts
// create memory object for sum ciphertexts
sum_ciphertexts_mem = new int_sum_ciphertexts_vec_memory<Torus>(
streams, gpu_indexes, gpu_count, params, num_radix_blocks,
2 * num_radix_blocks, block_mul_res, vector_result_sb, small_lwe_vector,
2 * num_radix_blocks, vector_result_sb, small_lwe_vector, luts_array,
allocate_gpu_memory, size_tracker);
uint32_t uses_carry = 0;
uint32_t requested_flag = outputFlag::FLAG_NONE;
@@ -3918,7 +3998,8 @@ template <typename Torus> struct unsigned_int_div_rem_memory {
zero_out_if_overflow_did_not_happen[0]->get_degree(0),
zero_out_if_overflow_did_not_happen[0]->get_max_degree(0),
params.glwe_dimension, params.polynomial_size, params.message_modulus,
params.carry_modulus, cur_lut_f, 2, gpu_memory_allocated);
params.carry_modulus, cur_lut_f, params.message_modulus - 2,
gpu_memory_allocated);
zero_out_if_overflow_did_not_happen[0]->broadcast_lut(streams, gpu_indexes,
0);
generate_device_accumulator_bivariate_with_factor<Torus>(
@@ -3927,7 +4008,8 @@ template <typename Torus> struct unsigned_int_div_rem_memory {
zero_out_if_overflow_did_not_happen[1]->get_degree(0),
zero_out_if_overflow_did_not_happen[1]->get_max_degree(0),
params.glwe_dimension, params.polynomial_size, params.message_modulus,
params.carry_modulus, cur_lut_f, 3, gpu_memory_allocated);
params.carry_modulus, cur_lut_f, params.message_modulus - 1,
gpu_memory_allocated);
zero_out_if_overflow_did_not_happen[1]->broadcast_lut(streams, gpu_indexes,
0);
@@ -3954,7 +4036,8 @@ template <typename Torus> struct unsigned_int_div_rem_memory {
zero_out_if_overflow_happened[0]->get_degree(0),
zero_out_if_overflow_happened[0]->get_max_degree(0),
params.glwe_dimension, params.polynomial_size, params.message_modulus,
params.carry_modulus, overflow_happened_f, 2, gpu_memory_allocated);
params.carry_modulus, overflow_happened_f, params.message_modulus - 2,
gpu_memory_allocated);
zero_out_if_overflow_happened[0]->broadcast_lut(streams, gpu_indexes, 0);
generate_device_accumulator_bivariate_with_factor<Torus>(
streams[0], gpu_indexes[0],
@@ -3962,7 +4045,8 @@ template <typename Torus> struct unsigned_int_div_rem_memory {
zero_out_if_overflow_happened[1]->get_degree(0),
zero_out_if_overflow_happened[1]->get_max_degree(0),
params.glwe_dimension, params.polynomial_size, params.message_modulus,
params.carry_modulus, overflow_happened_f, 3, gpu_memory_allocated);
params.carry_modulus, overflow_happened_f, params.message_modulus - 1,
gpu_memory_allocated);
zero_out_if_overflow_happened[1]->broadcast_lut(streams, gpu_indexes, 0);
// merge_overflow_flags_luts

View File

@@ -248,6 +248,7 @@ template <> struct pbs_buffer_128<PBS_TYPE::CLASSICAL> {
__uint128_t *global_accumulator;
double *global_join_buffer;
__uint128_t *temp_lwe_array_in;
uint64_t *trivial_indexes;
PBS_VARIANT pbs_variant;
bool uses_noise_reduction;
@@ -263,11 +264,27 @@ template <> struct pbs_buffer_128<PBS_TYPE::CLASSICAL> {
cuda_set_device(gpu_index);
this->pbs_variant = pbs_variant;
this->uses_noise_reduction = allocate_ms_array;
this->temp_lwe_array_in =
(__uint128_t *)cuda_malloc_with_size_tracking_async(
(lwe_dimension + 1) * input_lwe_ciphertext_count *
sizeof(__uint128_t),
stream, gpu_index, size_tracker, allocate_ms_array);
if (allocate_ms_array) {
this->temp_lwe_array_in =
(__uint128_t *)cuda_malloc_with_size_tracking_async(
(lwe_dimension + 1) * input_lwe_ciphertext_count *
sizeof(__uint128_t),
stream, gpu_index, size_tracker, allocate_ms_array);
this->trivial_indexes = (uint64_t *)cuda_malloc_with_size_tracking_async(
input_lwe_ciphertext_count * sizeof(uint64_t), stream, gpu_index,
size_tracker, allocate_ms_array);
uint64_t *h_trivial_indexes = new uint64_t[input_lwe_ciphertext_count];
for (uint32_t i = 0; i < input_lwe_ciphertext_count; i++)
h_trivial_indexes[i] = i;
cuda_memcpy_with_size_tracking_async_to_gpu(
trivial_indexes, h_trivial_indexes,
input_lwe_ciphertext_count * sizeof(uint64_t), stream, gpu_index,
allocate_gpu_memory);
cuda_synchronize_stream(stream, gpu_index);
delete[] h_trivial_indexes;
}
auto max_shared_memory = cuda_get_max_shared_memory(gpu_index);
size_t global_join_buffer_size = (glwe_dimension + 1) * level_count *
input_lwe_ciphertext_count *
@@ -404,9 +421,12 @@ template <> struct pbs_buffer_128<PBS_TYPE::CLASSICAL> {
cuda_drop_with_size_tracking_async(global_accumulator, stream, gpu_index,
gpu_memory_allocated);
if (uses_noise_reduction)
if (uses_noise_reduction) {
cuda_drop_with_size_tracking_async(temp_lwe_array_in, stream, gpu_index,
gpu_memory_allocated);
cuda_drop_with_size_tracking_async(trivial_indexes, stream, gpu_index,
gpu_memory_allocated);
}
}
};
@@ -502,7 +522,8 @@ template <typename Torus>
bool has_support_to_cuda_programmable_bootstrap_tbc(uint32_t num_samples,
uint32_t glwe_dimension,
uint32_t polynomial_size,
uint32_t level_count);
uint32_t level_count,
uint32_t max_shared_memory);
#ifdef __CUDACC__
__device__ inline int get_start_ith_ggsw(int i, uint32_t polynomial_size,

View File

@@ -86,13 +86,15 @@ void cuda_modulus_switch_inplace_64(void *stream, uint32_t gpu_index,
void cuda_improve_noise_modulus_switch_64(
void *stream, uint32_t gpu_index, void *lwe_array_out,
void const *lwe_array_in, void const *encrypted_zeros, uint32_t lwe_size,
uint32_t num_lwes, uint32_t num_zeros, double input_variance,
double r_sigma, double bound, uint32_t log_modulus) {
void const *lwe_array_in, void const *lwe_array_indexes,
void const *encrypted_zeros, uint32_t lwe_size, uint32_t num_lwes,
uint32_t num_zeros, double input_variance, double r_sigma, double bound,
uint32_t log_modulus) {
host_improve_noise_modulus_switch<uint64_t>(
static_cast<cudaStream_t>(stream), gpu_index,
static_cast<uint64_t *>(lwe_array_out),
static_cast<uint64_t const *>(lwe_array_in),
static_cast<uint64_t const *>(lwe_array_indexes),
static_cast<const uint64_t *>(encrypted_zeros), lwe_size, num_lwes,
num_zeros, input_variance, r_sigma, bound, log_modulus);
}

View File

@@ -178,11 +178,10 @@ __device__ __forceinline__ double measure_modulus_switch_noise(
// Each thread processes two elements of the lwe array
template <typename Torus>
__global__ void
improve_noise_modulus_switch(Torus *array_out, const Torus *array_in,
const Torus *zeros, int lwe_size, int num_zeros,
double input_variance, double r_sigma,
double bound, uint32_t log_modulus) {
__global__ void improve_noise_modulus_switch(
Torus *array_out, const Torus *array_in, const uint64_t *indexes,
const Torus *zeros, int lwe_size, int num_zeros, double input_variance,
double r_sigma, double bound, uint32_t log_modulus) {
// First we will assume size is less than the number of threads per block
// I should switch this to dynamic shared memory
@@ -198,13 +197,13 @@ improve_noise_modulus_switch(Torus *array_out, const Torus *array_in,
// This probably are not needed cause we are setting the values
sum_mask_errors[threadIdx.x] = 0.f;
sum_squared_mask_errors[threadIdx.x] = 0.f;
auto this_block_lwe_in = array_in + indexes[blockIdx.x] * lwe_size;
auto this_block_lwe_out = array_out + indexes[blockIdx.x] * lwe_size;
Torus input_element1 = this_block_lwe_in[threadIdx.x];
Torus input_element1 = array_in[threadIdx.x + blockIdx.x * lwe_size];
Torus input_element2 =
threadIdx.x + blockDim.x < lwe_size
? array_in[threadIdx.x + blockDim.x + blockIdx.x * lwe_size]
: 0;
Torus input_element2 = threadIdx.x + blockDim.x < lwe_size
? this_block_lwe_in[threadIdx.x + blockDim.x]
: 0;
// Base noise is only handled by thread 0
double base_noise = measure_modulus_switch_noise<Torus>(
@@ -218,11 +217,10 @@ improve_noise_modulus_switch(Torus *array_out, const Torus *array_in,
__syncthreads();
if (found)
array_out[threadIdx.x + blockIdx.x * lwe_size] = input_element1;
this_block_lwe_out[threadIdx.x] = input_element1;
if (found && (threadIdx.x + blockDim.x) < lwe_size)
array_out[threadIdx.x + blockDim.x + blockIdx.x * lwe_size] =
input_element2;
this_block_lwe_out[threadIdx.x + blockDim.x] = input_element2;
__syncthreads();
// If we found a zero element we stop iterating (in avg 20 times are
@@ -253,11 +251,10 @@ improve_noise_modulus_switch(Torus *array_out, const Torus *array_in,
// Assumption we always have at least 512 elements
// If we find a useful zero encryption we replace the lwe by lwe + zero
if (found)
array_out[threadIdx.x + blockIdx.x * lwe_size] = zero_element1;
this_block_lwe_out[threadIdx.x] = zero_element1;
if (found && (threadIdx.x + blockDim.x) < lwe_size)
array_out[threadIdx.x + blockDim.x + blockIdx.x * lwe_size] =
zero_element2;
this_block_lwe_out[threadIdx.x + blockDim.x] = zero_element2;
__syncthreads();
// If we found a zero element we stop iterating (in avg 20 times are
@@ -270,9 +267,10 @@ improve_noise_modulus_switch(Torus *array_out, const Torus *array_in,
template <typename Torus>
__host__ void host_improve_noise_modulus_switch(
cudaStream_t stream, uint32_t gpu_index, Torus *array_out,
Torus const *array_in, const Torus *zeros, uint32_t lwe_size,
uint32_t num_lwes, const uint32_t num_zeros, const double input_variance,
const double r_sigma, const double bound, uint32_t log_modulus) {
Torus const *array_in, uint64_t const *indexes, const Torus *zeros,
uint32_t lwe_size, uint32_t num_lwes, const uint32_t num_zeros,
const double input_variance, const double r_sigma, const double bound,
uint32_t log_modulus) {
if (lwe_size < 512) {
PANIC("The lwe_size is less than 512, this is not supported\n");
@@ -289,8 +287,8 @@ __host__ void host_improve_noise_modulus_switch(
int num_threads = 512, num_blocks = num_lwes;
improve_noise_modulus_switch<Torus><<<num_blocks, num_threads, 0, stream>>>(
array_out, array_in, zeros, lwe_size, num_zeros, input_variance, r_sigma,
bound, log_modulus);
array_out, array_in, indexes, zeros, lwe_size, num_zeros, input_variance,
r_sigma, bound, log_modulus);
check_cuda_error(cudaGetLastError());
}

View File

@@ -492,6 +492,7 @@ __host__ void host_fourier_transform_forward_as_integer_f128(
batch_convert_u128_to_f128_as_integer<params>
<<<grid_size, block_size, 0, stream>>>(d_re0, d_re1, d_im0, d_im1,
d_standard);
check_cuda_error(cudaGetLastError());
// call negacyclic 128 bit forward fft.
if (full_sm) {
@@ -503,6 +504,7 @@ __host__ void host_fourier_transform_forward_as_integer_f128(
<<<grid_size, block_size, shared_memory_size, stream>>>(
d_re0, d_re1, d_im0, d_im1, d_re0, d_re1, d_im0, d_im1, buffer);
}
check_cuda_error(cudaGetLastError());
cuda_memcpy_async_to_cpu(re0, d_re0, N / 2 * sizeof(double), stream,
gpu_index);

View File

@@ -63,7 +63,7 @@ void update_degrees_after_bitor(uint64_t *output_degrees,
auto result = max;
for (uint j = 0; j < min + 1; j++) {
if (max | j > result) {
if ((max | j) > result) {
result = max | j;
}
}
@@ -82,7 +82,7 @@ void update_degrees_after_bitxor(uint64_t *output_degrees,
// Try every possibility to find the worst case
for (uint j = 0; j < min + 1; j++) {
if (max ^ j > result) {
if ((max ^ j) > result) {
result = max ^ j;
}
}

View File

@@ -36,7 +36,7 @@ __host__ void host_integer_radix_bitop_kb(
update_degrees_after_bitor(degrees, lwe_array_1->degrees,
lwe_array_2->degrees,
lwe_array_1->num_radix_blocks);
} else if (mem_ptr->op == BITXOR) {
} else if (mem_ptr->op == BITOP_TYPE::BITXOR) {
update_degrees_after_bitxor(degrees, lwe_array_1->degrees,
lwe_array_2->degrees,
lwe_array_1->num_radix_blocks);

View File

@@ -0,0 +1,17 @@
#include "cast.cuh"
void extend_radix_with_trivial_zero_blocks_msb_64(
CudaRadixCiphertextFFI *output, CudaRadixCiphertextFFI const *input,
void *const *streams, uint32_t const *gpu_indexes) {
host_extend_radix_with_trivial_zero_blocks_msb<uint64_t>(
output, input, (cudaStream_t *)streams, gpu_indexes);
}
void trim_radix_blocks_lsb_64(CudaRadixCiphertextFFI *output,
CudaRadixCiphertextFFI const *input,
void *const *streams,
uint32_t const *gpu_indexes) {
host_trim_radix_blocks_lsb<uint64_t>(output, input, (cudaStream_t *)streams,
gpu_indexes);
}

View File

@@ -0,0 +1,36 @@
#ifndef CAST_CUH
#define CAST_CUH
#include "device.h"
#include "integer.cuh"
#include "integer/integer_utilities.h"
template <typename Torus>
__host__ void host_extend_radix_with_trivial_zero_blocks_msb(
CudaRadixCiphertextFFI *output, CudaRadixCiphertextFFI const *input,
cudaStream_t const *streams, uint32_t const *gpu_indexes) {
copy_radix_ciphertext_slice_async<Torus>(streams[0], gpu_indexes[0], output,
0, input->num_radix_blocks, input, 0,
input->num_radix_blocks);
}
template <typename Torus>
__host__ void host_trim_radix_blocks_lsb(CudaRadixCiphertextFFI *output,
CudaRadixCiphertextFFI const *input,
cudaStream_t const *streams,
uint32_t const *gpu_indexes) {
const uint32_t input_start_lwe_index =
input->num_radix_blocks - output->num_radix_blocks;
if (input->num_radix_blocks <= output->num_radix_blocks) {
PANIC("Cuda error: input num blocks should be greater than output num "
"blocks");
}
copy_radix_ciphertext_slice_async<Torus>(
streams[0], gpu_indexes[0], output, 0, output->num_radix_blocks, input,
input_start_lwe_index, input->num_radix_blocks);
}
#endif

View File

@@ -456,7 +456,7 @@ __host__ void tree_sign_reduction(
auto inner_tree_leaf = tree_buffer->tree_inner_leaf_lut;
while (partial_block_count > 2) {
pack_blocks<Torus>(streams[0], gpu_indexes[0], y, x, partial_block_count,
4);
message_modulus);
integer_radix_apply_univariate_lookup_table_kb<Torus>(
streams, gpu_indexes, gpu_count, x, y, bsks, ksks,
@@ -477,16 +477,17 @@ __host__ void tree_sign_reduction(
auto last_lut = tree_buffer->tree_last_leaf_lut;
auto block_selector_f = tree_buffer->block_selector_f;
std::function<Torus(Torus)> f;
auto num_bits_in_message = log2_int(params.message_modulus);
if (partial_block_count == 2) {
pack_blocks<Torus>(streams[0], gpu_indexes[0], y, x, partial_block_count,
4);
message_modulus);
f = [block_selector_f, sign_handler_f](Torus x) -> Torus {
int msb = (x >> 2) & 3;
int lsb = x & 3;
f = [block_selector_f, sign_handler_f, num_bits_in_message,
message_modulus](Torus x) -> Torus {
Torus msb = (x >> num_bits_in_message) & (message_modulus - 1);
Torus lsb = x & (message_modulus - 1);
int final_sign = block_selector_f(msb, lsb);
Torus final_sign = block_selector_f(msb, lsb);
return sign_handler_f(final_sign);
};
} else {

View File

@@ -386,8 +386,9 @@ __host__ void host_unsigned_integer_div_rem_kb(
subtraction_overflowed,
at_least_one_upper_block_is_non_zero, 1);
int factor = (i) ? 3 : 2;
int factor_lut_id = factor - 2;
auto message_modulus = radix_params.message_modulus;
int factor = (i) ? message_modulus - 1 : message_modulus - 2;
int factor_lut_id = (i) ? 1 : 0;
for (size_t k = 0;
k < cleaned_merged_interesting_remainder->num_radix_blocks; k++) {
copy_radix_ciphertext_slice_async<Torus>(streams[0], gpu_indexes[0],

View File

@@ -520,8 +520,7 @@ __host__ void integer_radix_apply_univariate_lookup_table_kb(
if (num_radix_blocks > lut->num_blocks)
PANIC("Cuda error: num radix blocks on which lut is applied should be "
"smaller or equal to the number of lut radix blocks")
if (num_radix_blocks > lwe_array_out->num_radix_blocks ||
num_radix_blocks > lwe_array_in->num_radix_blocks)
if (num_radix_blocks > lwe_array_out->num_radix_blocks)
PANIC("Cuda error: num radix blocks on which lut is applied should be "
"smaller or equal to the number of input & output radix blocks")
@@ -1291,7 +1290,7 @@ void host_compute_prefix_sum_hillis_steele(
}
// This function is used to perform step 2 of Thomas' new propagation algorithm
// Consist three steps:
// Consists of three steps:
// - propagates the carry within each group with cheap LWE operations stored in
// simulators
// - calculates the propagation state of each group
@@ -1616,10 +1615,12 @@ __host__ void reduce_signs(
auto message_modulus = params.message_modulus;
auto carry_modulus = params.carry_modulus;
auto num_bits_in_message = log2_int(message_modulus);
std::function<Torus(Torus)> reduce_two_orderings_function =
[diff_buffer, sign_handler_f](Torus x) -> Torus {
int msb = (x >> 2) & 3;
int lsb = x & 3;
[diff_buffer, sign_handler_f, num_bits_in_message,
message_modulus](Torus x) -> Torus {
Torus msb = (x >> num_bits_in_message) & (message_modulus - 1);
Torus lsb = x & (message_modulus - 1);
return diff_buffer->tree_buffer->block_selector_f(msb, lsb);
};
@@ -1640,7 +1641,7 @@ __host__ void reduce_signs(
while (num_sign_blocks > 2) {
pack_blocks<Torus>(streams[0], gpu_indexes[0], signs_b, signs_a,
num_sign_blocks, 4);
num_sign_blocks, message_modulus);
integer_radix_apply_univariate_lookup_table_kb<Torus>(
streams, gpu_indexes, gpu_count, signs_a, signs_b, bsks, ksks,
ms_noise_reduction_key, lut, num_sign_blocks / 2);
@@ -1669,7 +1670,8 @@ __host__ void reduce_signs(
message_modulus, carry_modulus, final_lut_f, true);
lut->broadcast_lut(streams, gpu_indexes, 0);
pack_blocks<Torus>(streams[0], gpu_indexes[0], signs_b, signs_a, 2, 4);
pack_blocks<Torus>(streams[0], gpu_indexes[0], signs_b, signs_a,
num_sign_blocks, message_modulus);
integer_radix_apply_univariate_lookup_table_kb<Torus>(
streams, gpu_indexes, gpu_count, signs_array_out, signs_b, bsks, ksks,
ms_noise_reduction_key, lut, 1);
@@ -1677,8 +1679,8 @@ __host__ void reduce_signs(
} else {
std::function<Torus(Torus)> final_lut_f =
[mem_ptr, sign_handler_f](Torus x) -> Torus {
return sign_handler_f(x & 3);
[mem_ptr, sign_handler_f, message_modulus](Torus x) -> Torus {
return sign_handler_f(x & (message_modulus - 1));
};
auto lut = mem_ptr->diff_buffer->reduce_signs_lut;

View File

@@ -226,7 +226,8 @@ uint64_t scratch_cuda_integer_radix_partial_sum_ciphertexts_vec_kb_64(
void cuda_integer_radix_partial_sum_ciphertexts_vec_kb_64(
void *const *streams, uint32_t const *gpu_indexes, uint32_t gpu_count,
CudaRadixCiphertextFFI *radix_lwe_out,
CudaRadixCiphertextFFI *radix_lwe_vec, int8_t *mem_ptr, void *const *bsks,
CudaRadixCiphertextFFI *radix_lwe_vec, bool reduce_degrees_for_single_carry_propagation,
int8_t *mem_ptr, void *const *bsks,
void *const *ksks,
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key) {
@@ -234,64 +235,59 @@ void cuda_integer_radix_partial_sum_ciphertexts_vec_kb_64(
if (radix_lwe_vec->num_radix_blocks % radix_lwe_out->num_radix_blocks != 0)
PANIC("Cuda error: input vector length should be a multiple of the "
"output's number of radix blocks")
// FIXME: this should not be necessary, we should make sure sum_ctxt works in
// the general case
for (int i = 0; i < radix_lwe_vec->num_radix_blocks; i++) {
radix_lwe_vec->degrees[i] = mem->params.message_modulus - 1;
}
switch (mem->params.polynomial_size) {
case 512:
host_integer_partial_sum_ciphertexts_vec_kb<uint64_t, AmortizedDegree<512>>(
(cudaStream_t *)(streams), gpu_indexes, gpu_count, radix_lwe_out,
radix_lwe_vec, bsks, (uint64_t **)(ksks), ms_noise_reduction_key, mem,
radix_lwe_vec, reduce_degrees_for_single_carry_propagation, bsks, (uint64_t **)(ksks),
ms_noise_reduction_key, mem,
radix_lwe_out->num_radix_blocks,
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks,
nullptr);
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks);
break;
case 1024:
host_integer_partial_sum_ciphertexts_vec_kb<uint64_t,
AmortizedDegree<1024>>(
(cudaStream_t *)(streams), gpu_indexes, gpu_count, radix_lwe_out,
radix_lwe_vec, bsks, (uint64_t **)(ksks), ms_noise_reduction_key, mem,
radix_lwe_vec, reduce_degrees_for_single_carry_propagation, bsks, (uint64_t **)(ksks),
ms_noise_reduction_key, mem,
radix_lwe_out->num_radix_blocks,
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks,
nullptr);
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks);
break;
case 2048:
host_integer_partial_sum_ciphertexts_vec_kb<uint64_t,
AmortizedDegree<2048>>(
(cudaStream_t *)(streams), gpu_indexes, gpu_count, radix_lwe_out,
radix_lwe_vec, bsks, (uint64_t **)(ksks), ms_noise_reduction_key, mem,
radix_lwe_vec, reduce_degrees_for_single_carry_propagation, bsks, (uint64_t **)(ksks),
ms_noise_reduction_key, mem,
radix_lwe_out->num_radix_blocks,
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks,
nullptr);
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks);
break;
case 4096:
host_integer_partial_sum_ciphertexts_vec_kb<uint64_t,
AmortizedDegree<4096>>(
(cudaStream_t *)(streams), gpu_indexes, gpu_count, radix_lwe_out,
radix_lwe_vec, bsks, (uint64_t **)(ksks), ms_noise_reduction_key, mem,
radix_lwe_vec, reduce_degrees_for_single_carry_propagation, bsks, (uint64_t **)(ksks),
ms_noise_reduction_key, mem,
radix_lwe_out->num_radix_blocks,
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks,
nullptr);
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks);
break;
case 8192:
host_integer_partial_sum_ciphertexts_vec_kb<uint64_t,
AmortizedDegree<8192>>(
(cudaStream_t *)(streams), gpu_indexes, gpu_count, radix_lwe_out,
radix_lwe_vec, bsks, (uint64_t **)(ksks), ms_noise_reduction_key, mem,
radix_lwe_vec, reduce_degrees_for_single_carry_propagation, bsks, (uint64_t **)(ksks),
ms_noise_reduction_key, mem,
radix_lwe_out->num_radix_blocks,
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks,
nullptr);
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks);
break;
case 16384:
host_integer_partial_sum_ciphertexts_vec_kb<uint64_t,
AmortizedDegree<16384>>(
(cudaStream_t *)(streams), gpu_indexes, gpu_count, radix_lwe_out,
radix_lwe_vec, bsks, (uint64_t **)(ksks), ms_noise_reduction_key, mem,
radix_lwe_vec, reduce_degrees_for_single_carry_propagation, bsks, (uint64_t **)(ksks),
ms_noise_reduction_key, mem,
radix_lwe_out->num_radix_blocks,
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks,
nullptr);
radix_lwe_vec->num_radix_blocks / radix_lwe_out->num_radix_blocks);
break;
default:
PANIC("Cuda error (integer multiplication): unsupported polynomial size. "

View File

@@ -20,28 +20,11 @@
#include <fstream>
#include <iostream>
#include <omp.h>
#include <queue>
#include <sstream>
#include <string>
#include <vector>
template <typename Torus>
__global__ void smart_copy(Torus *dst, Torus *src, int32_t *id_out,
int32_t *id_in, size_t lwe_size) {
size_t tid = threadIdx.x;
size_t b_id = blockIdx.x;
size_t stride = blockDim.x;
auto input_id = id_in[b_id];
auto output_id = id_out[b_id];
auto cur_src = (input_id >= 0) ? &src[input_id * lwe_size] : nullptr;
auto cur_dst = &dst[output_id * lwe_size];
for (int i = tid; i < lwe_size; i += stride) {
cur_dst[i] = (input_id >= 0) ? cur_src[i] : 0;
}
}
template <typename Torus, class params>
__global__ void
all_shifted_lhs_rhs(Torus const *radix_lwe_left, Torus *lsb_ciphertext,
@@ -94,33 +77,173 @@ all_shifted_lhs_rhs(Torus const *radix_lwe_left, Torus *lsb_ciphertext,
}
}
template <typename Torus>
__global__ void tree_add_chunks(Torus *result_blocks, Torus *input_blocks,
uint32_t chunk_size, uint32_t block_size,
uint32_t num_blocks) {
__global__ inline void radix_vec_to_columns(uint32_t *const *const columns,
uint32_t *const columns_counter,
const uint64_t *const degrees,
const uint32_t num_radix_blocks,
const uint32_t num_radix_in_vec) {
size_t stride = blockDim.x;
size_t chunk_id = blockIdx.x;
size_t chunk_elem_size = chunk_size * num_blocks * block_size;
size_t radix_elem_size = num_blocks * block_size;
auto src_chunk = &input_blocks[chunk_id * chunk_elem_size];
auto dst_radix = &result_blocks[chunk_id * radix_elem_size];
size_t block_stride = blockIdx.y * block_size;
auto result = &dst_radix[block_stride];
// init shared mem with first radix of chunk
size_t tid = threadIdx.x;
for (int i = tid; i < block_size; i += stride) {
result[i] = src_chunk[block_stride + i];
}
// accumulate rest of the radixes
for (int r_id = 1; r_id < chunk_size; r_id++) {
auto cur_src_radix = &src_chunk[r_id * radix_elem_size];
for (int i = tid; i < block_size; i += stride) {
result[i] += cur_src_radix[block_stride + i];
const uint32_t idx = threadIdx.x;
size_t cnt = 0;
for (int i = 0; i < num_radix_in_vec; i++) {
size_t ct_id = i * num_radix_blocks + idx;
if (degrees[ct_id] != 0) {
columns[idx][cnt] = ct_id;
++cnt;
}
}
columns_counter[idx] = cnt;
}
template <typename Torus>
__global__ inline void prepare_new_columns_and_pbs_indexes(
uint32_t *const *const new_columns, uint32_t *const new_columns_counter,
Torus *const pbs_indexes_in, Torus *const pbs_indexes_out,
Torus *const lut_indexes, uint32_t *const pbs_counters,
const uint32_t *const *const columns, const uint32_t *const columns_counter,
const uint32_t chunk_size) {
__shared__ uint32_t counter, sharedOr;
if (threadIdx.x == 0) {
counter = 0;
sharedOr = 0;
}
__syncthreads();
const uint32_t base_id = threadIdx.x;
const uint32_t column_len = columns_counter[base_id];
uint32_t ct_count = 0;
for (uint32_t i = 0; i + chunk_size <= column_len; i += chunk_size) {
// those indexes are for message ciphertexts
// for message ciphertexts in and out index should be same
const uint32_t in_index = columns[base_id][i];
new_columns[base_id][ct_count] = in_index;
const uint32_t pbs_index = atomicAdd(&counter, 1);
pbs_indexes_in[pbs_index] = in_index;
pbs_indexes_out[pbs_index] = in_index;
lut_indexes[pbs_index] = 0;
++ct_count;
}
// ct1 ct2 ct3
// pbs_indexes: 0, 1, 2
// pbs_indexes: 2, 1, 0
__syncthreads();
uint32_t message_count = counter;
if (base_id > 0) {
const uint32_t prev_base_id = base_id - 1;
const uint32_t prev_column_len = columns_counter[prev_base_id];
for (uint32_t i = 0; i + chunk_size <= prev_column_len; i += chunk_size) {
// those indexes are for carry ciphertexts
// for carry ciphertexts input is same as for message
// output will be placed to next block in the column
const uint32_t in_index = columns[prev_base_id][i];
const uint32_t out_index = columns[prev_base_id][i + 1];
new_columns[base_id][ct_count] = out_index;
const uint32_t pbs_index = atomicAdd(&counter, 1);
pbs_indexes_in[pbs_index] = in_index;
pbs_indexes_out[pbs_index] = out_index;
lut_indexes[pbs_index] = 1;
++ct_count;
}
}
const uint32_t start_index = column_len - column_len % chunk_size;
for (uint32_t i = start_index; i < column_len; ++i) {
new_columns[base_id][ct_count] = columns[base_id][i];
++ct_count;
}
new_columns_counter[base_id] = ct_count;
if (ct_count > chunk_size) {
atomicOr(&sharedOr, 1);
}
__syncthreads();
if (threadIdx.x == 0) {
pbs_counters[0] = counter;
pbs_counters[1] = message_count;
pbs_counters[2] = sharedOr;
}
}
template <typename Torus>
__global__ inline void prepare_final_pbs_indexes(
Torus *const pbs_indexes_in, Torus *const pbs_indexes_out,
Torus *const lut_indexes, const uint32_t num_radix_blocks) {
int idx = threadIdx.x;
pbs_indexes_in[idx] = idx % num_radix_blocks;
pbs_indexes_out[idx] = idx + idx / num_radix_blocks;
lut_indexes[idx] = idx / num_radix_blocks;
}
template <typename Torus>
__global__ void calculate_chunks(Torus *const input_blocks,
const uint32_t *const *const columns,
const uint32_t *const columns_counter,
const uint32_t chunk_size,
const uint32_t block_size) {
const uint32_t part_size = blockDim.x;
const uint32_t base_id = blockIdx.x;
const uint32_t part_id = blockIdx.y;
const uint32_t coef_id = part_id * part_size + threadIdx.x;
if (coef_id >= block_size)
return;
const uint32_t column_len = columns_counter[base_id];
if (column_len >= chunk_size) {
const uint32_t num_chunks = column_len / chunk_size;
Torus result = 0;
for (uint32_t chunk_id = 0; chunk_id < num_chunks; ++chunk_id) {
const uint32_t first_ct_id = columns[base_id][chunk_id * chunk_size];
result = input_blocks[first_ct_id * block_size + coef_id];
for (uint32_t ct_id = 1; ct_id < chunk_size; ++ct_id) {
const uint32_t cur_ct_id =
columns[base_id][chunk_id * chunk_size + ct_id];
result += input_blocks[cur_ct_id * block_size + coef_id];
}
input_blocks[first_ct_id * block_size + coef_id] = result;
}
}
}
template <typename Torus>
__global__ void calculate_final_chunk_into_radix(
Torus *const out_radix, const Torus *const input_blocks,
const uint32_t *const *const columns, const uint32_t *const columns_counter,
const uint32_t chunk_size, const uint32_t block_size) {
const uint32_t part_size = blockDim.x;
const uint32_t base_id = blockIdx.x;
const uint32_t part_id = blockIdx.y;
const uint32_t coef_id = part_id * part_size + threadIdx.x;
if (coef_id >= block_size)
return;
const uint32_t column_len = columns_counter[base_id];
Torus result = 0;
if (column_len) {
const uint32_t first_ct_id = columns[base_id][0];
result = input_blocks[first_ct_id * block_size + coef_id];
for (uint32_t i = 1; i < column_len; ++i) {
const uint32_t cur_ct_it = columns[base_id][i];
result += input_blocks[cur_ct_it * block_size + coef_id];
}
}
out_radix[base_id * block_size + coef_id] = result;
}
template <typename Torus, class params>
@@ -167,6 +290,65 @@ __global__ void fill_radix_from_lsb_msb(Torus *result_blocks, Torus *lsb_blocks,
(process_msb) ? cur_msb_ct[params::degree] : 0;
}
}
inline bool at_least_one_column_needs_processing(
const uint64_t *const degrees, const uint32_t num_radix_blocks,
const uint32_t num_radix_in_vec, const uint32_t chunk_size) {
std::vector<uint32_t> columns_count(num_radix_blocks, 0);
for (size_t column = 0; column < num_radix_blocks; ++column) {
for (size_t block = 0; block < num_radix_in_vec; ++block) {
const size_t block_index = block * num_radix_blocks + column;
if (degrees[block_index]) {
columns_count[column]++;
if (columns_count[column] > chunk_size) {
return true;
}
}
}
}
return false;
}
inline void calculate_final_degrees(uint64_t *const out_degrees,
const uint64_t *const input_degrees,
size_t num_blocks, size_t num_radix_in_vec,
size_t chunk_size,
uint64_t message_modulus) {
auto get_degree = [message_modulus](uint64_t degree) -> uint64_t {
return std::min(message_modulus - 1, degree);
};
std::vector<std::queue<uint64_t>> columns(num_blocks);
for (size_t i = 0; i < num_radix_in_vec; ++i) {
for (size_t j = 0; j < num_blocks; ++j) {
if (input_degrees[i * num_blocks + j])
columns[j].push(input_degrees[i * num_blocks + j]);
}
}
for (size_t i = 0; i < num_blocks; ++i) {
auto &col = columns[i];
while (col.size() > 1) {
uint32_t cur_degree = 0;
size_t mn = std::min(chunk_size, col.size());
for (int j = 0; j < mn; ++j) {
cur_degree += col.front();
col.pop();
}
const uint64_t new_degree = get_degree(cur_degree);
col.push(new_degree);
if ((i + 1) < num_blocks) {
columns[i + 1].push(new_degree);
}
}
}
for (int i = 0; i < num_blocks; i++) {
out_degrees[i] = (columns[i].empty()) ? 0 : columns[i].front();
}
}
template <typename Torus>
__host__ uint64_t scratch_cuda_integer_partial_sum_ciphertexts_vec_kb(
cudaStream_t const *streams, uint32_t const *gpu_indexes,
@@ -181,15 +363,107 @@ __host__ uint64_t scratch_cuda_integer_partial_sum_ciphertexts_vec_kb(
return size_tracker;
}
__global__ inline void DEBUG_PRINT_COLUMNS(uint32_t *const *const columns,
uint32_t *const columns_counter,
const uint32_t num_radix_blocks) {
printf("cuda_columns_counter:\n");
for (int i = 0; i < num_radix_blocks; i++) {
printf("%d ", columns_counter[i]);
}
printf("\n");
printf("cuda_columns:\n");
for (int i = 0; i < num_radix_blocks; i++) {
printf("column[%d]: ", i);
for (int j = 0; j < columns_counter[i]; j++)
{
printf("%d ", columns[i][j]);
}
printf("\n");
}
printf("\n");
}
__global__ inline void DEBUG_PRINT_COLUMNS_DATA(uint32_t *const *const columns,
uint32_t *const columns_counter,
uint64_t* data,
const uint32_t num_radix_blocks, size_t lwe_size) {
uint64_t delta = 576460752303423488ULL;
__syncthreads();
printf("cuda_new_columns:\n");
__syncthreads();
for (int i = 0; i < num_radix_blocks; i++) {
__syncthreads();
printf("column[%d]: ", i);
__syncthreads();
for (int j = 0; j < columns_counter[i]; j++)
{
__syncthreads();
auto cur_data =data[ columns[i][j] * lwe_size + lwe_size - 1];
cur_data /= delta;
printf("%llu ", cur_data);
__syncthreads();
}
__syncthreads();
printf("\n");
__syncthreads();
}
__syncthreads();
printf("\n");
__syncthreads();
}
template<typename Torus, bool input, bool clear>
__global__ inline void DEBUG_PRINT_PBS_DATA(Torus * data, Torus* input_indexes, Torus*
output_indexes, Torus *lut_indexes, size_t lwe_size, int num) {
printf("input_output_indexes: \n");
for (int i = 0; i < num; i++) {
auto input_val = data[input_indexes[i] * lwe_size + lwe_size -1];
auto output_val = data[output_indexes[i] * lwe_size + lwe_size -1];
auto val = input ? input_val : output_val;
auto val_clear = clear ? val / 576460752303423488ULL : val;
printf("%d %lu %lu %lu %lu %lu\n", i, input_indexes[i], output_indexes[i], lut_indexes[i],
val_clear, val);
}
}
//template<typename Torus>
//__global__ inline void DEBUG_PRINT_RADIX(Torus * data, size_t num_blocks, size_t lwe_size) {
// for (int i = 0; i < num_blocks; i++) {
// auto val = data[i * lwe_size + lwe_size - 1];
// auto val_clear = val / 576460752303423488ULL;
// printf("cuda_partial_sum_result: %lu %lu\n", val, val_clear);
// }
//}
template <typename Torus, class params>
__host__ void host_integer_partial_sum_ciphertexts_vec_kb(
cudaStream_t const *streams, uint32_t const *gpu_indexes,
uint32_t gpu_count, CudaRadixCiphertextFFI *radix_lwe_out,
CudaRadixCiphertextFFI *terms, void *const *bsks, uint64_t *const *ksks,
CudaRadixCiphertextFFI *terms, bool reduce_degrees_for_single_carry_propagation, void *const
*bsks, uint64_t *const *ksks,
CudaModulusSwitchNoiseReductionKeyFFI const *ms_noise_reduction_key,
int_sum_ciphertexts_vec_memory<uint64_t> *mem_ptr,
uint32_t num_radix_blocks, uint32_t num_radix_in_vec,
int_radix_lut<Torus> *reused_lut) {
uint32_t num_radix_blocks, uint32_t num_radix_in_vec) {
// cudaDeviceSynchronize();
// print_body<Torus>("cuda_input_partial_sum", (Torus*)terms->ptr, num_radix_blocks * num_radix_in_vec,
// 2048,
// 576460752303423488ULL);
// for (int i = 0; i <num_radix_blocks * num_radix_in_vec; i++ ) {
// printf("cuda_input_degrees: %d\n", terms->degrees[i]);
// }
// cudaDeviceSynchronize();
auto big_lwe_dimension = mem_ptr->params.big_lwe_dimension;
auto big_lwe_size = big_lwe_dimension + 1;
if (terms->lwe_dimension != radix_lwe_out->lwe_dimension)
PANIC("Cuda error: output and input radix ciphertexts should have the same "
@@ -199,22 +473,28 @@ __host__ void host_integer_partial_sum_ciphertexts_vec_kb(
PANIC("Cuda error: input vector does not have enough blocks")
if (num_radix_blocks > radix_lwe_out->num_radix_blocks)
PANIC("Cuda error: output does not have enough blocks")
auto new_blocks = mem_ptr->new_blocks;
auto new_blocks_copy = mem_ptr->new_blocks_copy;
auto old_blocks = mem_ptr->old_blocks;
auto current_blocks = mem_ptr->current_blocks;
auto small_lwe_vector = mem_ptr->small_lwe_vector;
auto d_degrees = mem_ptr->d_degrees;
auto d_columns = mem_ptr->d_columns;
auto d_columns_counter = mem_ptr->d_columns_counter;
auto d_new_columns = mem_ptr->d_new_columns;
auto d_new_columns_counter = mem_ptr->d_new_columns_counter;
auto d_pbs_indexes_in = mem_ptr->luts_message_carry->lwe_indexes_in;
auto d_pbs_indexes_out = mem_ptr->luts_message_carry->lwe_indexes_out;
auto d_pbs_counters = mem_ptr->d_pbs_counters;
auto d_smart_copy_in = mem_ptr->d_smart_copy_in;
auto d_smart_copy_out = mem_ptr->d_smart_copy_out;
auto luts_message_carry = mem_ptr->luts_message_carry;
auto message_modulus = mem_ptr->params.message_modulus;
auto carry_modulus = mem_ptr->params.carry_modulus;
auto big_lwe_dimension = mem_ptr->params.big_lwe_dimension;
auto big_lwe_size = big_lwe_dimension + 1;
auto glwe_dimension = mem_ptr->params.glwe_dimension;
auto polynomial_size = mem_ptr->params.polynomial_size;
auto small_lwe_dimension = mem_ptr->params.small_lwe_dimension;
auto small_lwe_size = small_lwe_dimension + 1;
auto chunk_size =
(mem_ptr->params.message_modulus * mem_ptr->params.carry_modulus - 1) /
(mem_ptr->params.message_modulus - 1);
size_t total_blocks_in_vec = num_radix_blocks * num_radix_in_vec;
// In the case of extracting a single LWE this parameters are dummy
uint32_t num_many_lut = 1;
@@ -228,244 +508,202 @@ __host__ void host_integer_partial_sum_ciphertexts_vec_kb(
terms, 0, num_radix_blocks);
return;
}
if (old_blocks != terms) {
copy_radix_ciphertext_async<Torus>(streams[0], gpu_indexes[0], old_blocks,
terms);
}
if (num_radix_in_vec == 2) {
CudaRadixCiphertextFFI old_blocks_slice;
as_radix_ciphertext_slice<Torus>(&old_blocks_slice, old_blocks,
num_radix_blocks, 2 * num_radix_blocks);
host_addition<Torus>(streams[0], gpu_indexes[0], radix_lwe_out, old_blocks,
&old_blocks_slice, num_radix_blocks);
CudaRadixCiphertextFFI terms_slice;
as_radix_ciphertext_slice<Torus>(&terms_slice, terms, num_radix_blocks,
2 * num_radix_blocks);
host_addition<Torus>(streams[0], gpu_indexes[0], radix_lwe_out, terms,
&terms_slice, num_radix_blocks);
return;
}
size_t r = num_radix_in_vec;
size_t total_modulus = message_modulus * carry_modulus;
size_t message_max = message_modulus - 1;
size_t chunk_size = (total_modulus - 1) / message_max;
size_t h_lwe_idx_in[terms->num_radix_blocks];
size_t h_lwe_idx_out[terms->num_radix_blocks];
int32_t h_smart_copy_in[terms->num_radix_blocks];
int32_t h_smart_copy_out[terms->num_radix_blocks];
/// Here it is important to query the default max shared memory on device 0
/// instead of cuda_get_max_shared_memory,
/// to avoid bugs with tree_add_chunks trying to use too much shared memory
auto max_shared_memory = 0;
check_cuda_error(cudaDeviceGetAttribute(
&max_shared_memory, cudaDevAttrMaxSharedMemoryPerBlock, 0));
// create lut object for message and carry
// we allocate luts_message_carry in the host function (instead of scratch)
// to reduce average memory consumption
int_radix_lut<Torus> *luts_message_carry;
size_t ch_amount = r / chunk_size;
if (!ch_amount)
ch_amount++;
if (reused_lut == nullptr) {
luts_message_carry = new int_radix_lut<Torus>(
streams, gpu_indexes, gpu_count, mem_ptr->params, 2,
2 * ch_amount * num_radix_blocks, true, nullptr);
} else {
luts_message_carry = new int_radix_lut<Torus>(
streams, gpu_indexes, gpu_count, mem_ptr->params, 2,
2 * ch_amount * num_radix_blocks, reused_lut, true, nullptr);
if (current_blocks != terms) {
copy_radix_ciphertext_async<Torus>(streams[0], gpu_indexes[0],
current_blocks, terms);
}
auto message_acc = luts_message_carry->get_lut(0, 0);
auto carry_acc = luts_message_carry->get_lut(0, 1);
// define functions for each accumulator
auto lut_f_message = [message_modulus](Torus x) -> Torus {
return x % message_modulus;
};
auto lut_f_carry = [message_modulus](Torus x) -> Torus {
return x / message_modulus;
};
cuda_memcpy_async_to_gpu(d_degrees, current_blocks->degrees,
total_blocks_in_vec * sizeof(uint64_t), streams[0],
gpu_indexes[0]);
// generate accumulators
generate_device_accumulator<Torus>(
streams[0], gpu_indexes[0], message_acc,
luts_message_carry->get_degree(0), luts_message_carry->get_max_degree(0),
glwe_dimension, polynomial_size, message_modulus, carry_modulus,
lut_f_message, true);
generate_device_accumulator<Torus>(
streams[0], gpu_indexes[0], carry_acc, luts_message_carry->get_degree(1),
luts_message_carry->get_max_degree(1), glwe_dimension, polynomial_size,
message_modulus, carry_modulus, lut_f_carry, true);
luts_message_carry->broadcast_lut(streams, gpu_indexes, 0);
cuda_set_device(gpu_indexes[0]);
radix_vec_to_columns<<<1, num_radix_blocks, 0, streams[0]>>>(
d_columns, d_columns_counter, d_degrees, num_radix_blocks,
num_radix_in_vec);
while (r > 2) {
size_t cur_total_blocks = r * num_radix_blocks;
size_t ch_amount = r / chunk_size;
if (!ch_amount)
ch_amount++;
dim3 add_grid(ch_amount, num_radix_blocks, 1);
bool needs_processing = at_least_one_column_needs_processing(
current_blocks->degrees, num_radix_blocks, num_radix_in_vec, chunk_size);
cuda_set_device(gpu_indexes[0]);
tree_add_chunks<Torus><<<add_grid, 512, 0, streams[0]>>>(
(Torus *)new_blocks->ptr, (Torus *)old_blocks->ptr,
std::min(r, chunk_size), big_lwe_size, num_radix_blocks);
int number_of_threads = min(256, params::degree);
int part_count = (big_lwe_size + number_of_threads - 1) / number_of_threads;
const dim3 number_of_blocks_2d(num_radix_blocks, part_count, 1);
check_cuda_error(cudaGetLastError());
// h_pbs_counters[0] - total ciphertexts
// h_pbs_counters[1] - message ciphertexts
// h_pbs_counters[2] - at_least_one_column_needs_processing
uint32_t *h_pbs_counters;
cudaMallocHost((void **)&h_pbs_counters, 3 * sizeof(uint32_t));
if (mem_ptr->mem_reuse) {
mem_ptr->setup_lookup_tables(streams, gpu_indexes, gpu_count);
}
size_t total_count = 0;
size_t message_count = 0;
size_t carry_count = 0;
size_t sm_copy_count = 0;
generate_ids_update_degrees(
terms->degrees, h_lwe_idx_in, h_lwe_idx_out, h_smart_copy_in,
h_smart_copy_out, ch_amount, r, num_radix_blocks, chunk_size,
message_max, total_count, message_count, carry_count, sm_copy_count);
auto lwe_indexes_in = luts_message_carry->lwe_indexes_in;
auto lwe_indexes_out = luts_message_carry->lwe_indexes_out;
luts_message_carry->set_lwe_indexes(streams[0], gpu_indexes[0],
h_lwe_idx_in, h_lwe_idx_out);
while (needs_processing) {
// cudaDeviceSynchronize();
// DEBUG_PRINT_COLUMNS<<<1, 1, 0, streams[0]>>>(d_columns, d_columns_counter, num_radix_blocks);
// DEBUG_PRINT_COLUMNS_DATA<<<1, 1, 0, streams[0]>>>(d_columns, d_columns_counter, (uint64_t *)
// (current_blocks->ptr), num_radix_blocks, big_lwe_size);
calculate_chunks<Torus>
<<<number_of_blocks_2d, number_of_threads, 0, streams[0]>>>(
(Torus *)(current_blocks->ptr), d_columns, d_columns_counter,
chunk_size, big_lwe_size);
size_t copy_size = sm_copy_count * sizeof(int32_t);
cuda_memcpy_async_to_gpu(d_smart_copy_in, h_smart_copy_in, copy_size,
streams[0], gpu_indexes[0]);
cuda_memcpy_async_to_gpu(d_smart_copy_out, h_smart_copy_out, copy_size,
streams[0], gpu_indexes[0]);
prepare_new_columns_and_pbs_indexes<<<1, num_radix_blocks, 0, streams[0]>>>(
d_new_columns, d_new_columns_counter, d_pbs_indexes_in,
d_pbs_indexes_out, luts_message_carry->get_lut_indexes(0, 0),
d_pbs_counters, d_columns, d_columns_counter, chunk_size);
// inside d_smart_copy_in there are only -1 values
// it's fine to call smart_copy with same pointer
// as source and destination
copy_radix_ciphertext_slice_async<Torus>(
streams[0], gpu_indexes[0], new_blocks_copy, 0, r * num_radix_blocks,
new_blocks, 0, r * num_radix_blocks);
smart_copy<Torus><<<sm_copy_count, 1024, 0, streams[0]>>>(
(Torus *)new_blocks->ptr, (Torus *)new_blocks_copy->ptr,
d_smart_copy_out, d_smart_copy_in, big_lwe_size);
check_cuda_error(cudaGetLastError());
cuda_memcpy_async_to_cpu(h_pbs_counters, d_pbs_counters,
3 * sizeof(uint32_t), streams[0], gpu_indexes[0]);
if (carry_count > 0)
cuda_set_value_async<Torus>(
streams[0], gpu_indexes[0],
luts_message_carry->get_lut_indexes(0, message_count), 1,
carry_count);
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
luts_message_carry->broadcast_lut(streams, gpu_indexes, 0);
const uint32_t total_ciphertexts = h_pbs_counters[0];
const uint32_t total_messages = h_pbs_counters[1];
needs_processing = (h_pbs_counters[2] != 0);
auto active_gpu_count = get_active_gpu_count(total_ciphertexts, gpu_count);
// DEBUG_PRINT_PBS_DATA<Torus, true, true><<<1, 1, 0, streams[0]>>>(
// (Torus *)(current_blocks->ptr), d_pbs_indexes_in, d_pbs_indexes_out,
// luts_message_carry->get_lut_indexes(0, 0), big_lwe_size, total_ciphertexts
// );
/// For multi GPU execution we create vectors of pointers for inputs and
/// outputs
std::vector<Torus *> new_blocks_vec = luts_message_carry->lwe_array_in_vec;
std::vector<Torus *> small_lwe_vector_vec =
luts_message_carry->lwe_after_ks_vec;
std::vector<Torus *> lwe_after_pbs_vec =
luts_message_carry->lwe_after_pbs_vec;
std::vector<Torus *> lwe_trivial_indexes_vec =
luts_message_carry->lwe_trivial_indexes_vec;
auto active_gpu_count = get_active_gpu_count(total_count, gpu_count);
if (active_gpu_count == 1) {
/// Apply KS to go from a big LWE dimension to a small LWE dimension
/// After this keyswitch execution, we need to synchronize the streams
/// because the keyswitch and PBS do not operate on the same number of
/// inputs
execute_keyswitch_async<Torus>(
streams, gpu_indexes, 1, (Torus *)small_lwe_vector->ptr,
lwe_indexes_in, (Torus *)new_blocks->ptr, lwe_indexes_in, ksks,
polynomial_size * glwe_dimension, small_lwe_dimension,
mem_ptr->params.ks_base_log, mem_ptr->params.ks_level, message_count);
/// Apply PBS to apply a LUT, reduce the noise and go from a small LWE
/// dimension to a big LWE dimension
execute_pbs_async<Torus>(
streams, gpu_indexes, 1, (Torus *)new_blocks->ptr, lwe_indexes_out,
luts_message_carry->lut_vec, luts_message_carry->lut_indexes_vec,
(Torus *)small_lwe_vector->ptr, lwe_indexes_in, bsks,
ms_noise_reduction_key, luts_message_carry->buffer, glwe_dimension,
small_lwe_dimension, polynomial_size, mem_ptr->params.pbs_base_log,
mem_ptr->params.pbs_level, mem_ptr->params.grouping_factor,
total_count, mem_ptr->params.pbs_type, num_many_lut, lut_stride);
} else {
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
multi_gpu_scatter_lwe_async<Torus>(
streams, gpu_indexes, active_gpu_count, new_blocks_vec,
(Torus *)new_blocks->ptr, luts_message_carry->h_lwe_indexes_in,
luts_message_carry->using_trivial_lwe_indexes, message_count,
big_lwe_size);
/// Apply KS to go from a big LWE dimension to a small LWE dimension
/// After this keyswitch execution, we need to synchronize the streams
/// because the keyswitch and PBS do not operate on the same number of
/// inputs
execute_keyswitch_async<Torus>(
streams, gpu_indexes, active_gpu_count, small_lwe_vector_vec,
lwe_trivial_indexes_vec, new_blocks_vec, lwe_trivial_indexes_vec,
d_pbs_indexes_in, (Torus *)current_blocks->ptr, d_pbs_indexes_in,
ksks, big_lwe_dimension, small_lwe_dimension,
mem_ptr->params.ks_base_log, mem_ptr->params.ks_level, total_count);
mem_ptr->params.ks_base_log, mem_ptr->params.ks_level,
total_messages);
/// Copy data back to GPU 0, rebuild the lwe array, and scatter again on a
/// different configuration
multi_gpu_gather_lwe_async<Torus>(
streams, gpu_indexes, gpu_count, (Torus *)small_lwe_vector->ptr,
small_lwe_vector_vec, luts_message_carry->h_lwe_indexes_in,
luts_message_carry->using_trivial_lwe_indexes, message_count,
small_lwe_size);
/// Synchronize all GPUs
for (uint i = 0; i < active_gpu_count; i++) {
cuda_synchronize_stream(streams[i], gpu_indexes[i]);
}
multi_gpu_scatter_lwe_async<Torus>(
streams, gpu_indexes, gpu_count, small_lwe_vector_vec,
(Torus *)small_lwe_vector->ptr, luts_message_carry->h_lwe_indexes_in,
luts_message_carry->using_trivial_lwe_indexes, total_count,
small_lwe_size);
/// Apply PBS to apply a LUT, reduce the noise and go from a small LWE
/// dimension to a big LWE dimension
execute_pbs_async<Torus>(
streams, gpu_indexes, active_gpu_count, lwe_after_pbs_vec,
lwe_trivial_indexes_vec, luts_message_carry->lut_vec,
luts_message_carry->lut_indexes_vec, small_lwe_vector_vec,
lwe_trivial_indexes_vec, bsks, ms_noise_reduction_key,
streams, gpu_indexes, 1, (Torus *)current_blocks->ptr,
d_pbs_indexes_out, luts_message_carry->lut_vec,
luts_message_carry->lut_indexes_vec, (Torus *)small_lwe_vector->ptr,
d_pbs_indexes_in, bsks, ms_noise_reduction_key,
luts_message_carry->buffer, glwe_dimension, small_lwe_dimension,
polynomial_size, mem_ptr->params.pbs_base_log,
mem_ptr->params.pbs_level, mem_ptr->params.grouping_factor,
total_count, mem_ptr->params.pbs_type, num_many_lut, lut_stride);
total_ciphertexts, mem_ptr->params.pbs_type, num_many_lut,
lut_stride);
} else {
cuda_memcpy_async_to_cpu(luts_message_carry->h_lwe_indexes_in,
luts_message_carry->lwe_indexes_in,
total_ciphertexts * sizeof(Torus), streams[0],
gpu_indexes[0]);
cuda_memcpy_async_to_cpu(luts_message_carry->h_lwe_indexes_out,
luts_message_carry->lwe_indexes_out,
total_ciphertexts * sizeof(Torus), streams[0],
gpu_indexes[0]);
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
multi_gpu_gather_lwe_async<Torus>(
streams, gpu_indexes, active_gpu_count, (Torus *)new_blocks->ptr,
lwe_after_pbs_vec, luts_message_carry->h_lwe_indexes_out,
luts_message_carry->using_trivial_lwe_indexes, total_count,
big_lwe_size);
/// Synchronize all GPUs
for (uint i = 0; i < active_gpu_count; i++) {
cuda_synchronize_stream(streams[i], gpu_indexes[i]);
}
}
for (uint i = 0; i < total_count; i++) {
auto degrees_index = luts_message_carry->h_lut_indexes[i];
new_blocks->degrees[i] = luts_message_carry->degrees[degrees_index];
new_blocks->noise_levels[i] = NoiseLevel::NOMINAL;
luts_message_carry->using_trivial_lwe_indexes = false;
luts_message_carry->broadcast_lut(streams, gpu_indexes, 0);
integer_radix_apply_univariate_lookup_table_kb<Torus>(
streams, gpu_indexes, active_gpu_count, current_blocks,
current_blocks, bsks, ksks, ms_noise_reduction_key,
luts_message_carry, total_ciphertexts);
}
cuda_set_device(gpu_indexes[0]);
// DEBUG_PRINT_PBS_DATA<Torus, false, true><<<1, 1, 0, streams[0]>>>(
// (Torus *)(current_blocks->ptr), d_pbs_indexes_in, d_pbs_indexes_out,
// luts_message_carry->get_lut_indexes(0, 0), big_lwe_size, total_ciphertexts
// );
int rem_blocks = (r > chunk_size) ? r % chunk_size * num_radix_blocks : 0;
int new_blocks_created = 2 * ch_amount * num_radix_blocks;
if (rem_blocks > 0)
copy_radix_ciphertext_slice_async<Torus>(
streams[0], gpu_indexes[0], new_blocks, new_blocks_created,
new_blocks_created + rem_blocks, old_blocks,
cur_total_blocks - rem_blocks, cur_total_blocks);
std::swap(new_blocks, old_blocks);
r = (new_blocks_created + rem_blocks) / num_radix_blocks;
std::swap(d_columns, d_new_columns);
std::swap(d_columns_counter, d_new_columns_counter);
}
luts_message_carry->release(streams, gpu_indexes, gpu_count);
delete (luts_message_carry);
CudaRadixCiphertextFFI old_blocks_slice;
as_radix_ciphertext_slice<Torus>(&old_blocks_slice, old_blocks,
num_radix_blocks, 2 * num_radix_blocks);
host_addition<Torus>(streams[0], gpu_indexes[0], radix_lwe_out, old_blocks,
&old_blocks_slice, num_radix_blocks);
cudaFreeHost(h_pbs_counters);
calculate_final_chunk_into_radix<Torus>
<<<number_of_blocks_2d, number_of_threads, 0, streams[0]>>>(
(Torus *)(radix_lwe_out->ptr), (Torus *)(current_blocks->ptr),
d_columns, d_columns_counter, chunk_size, big_lwe_size);
if (reduce_degrees_for_single_carry_propagation) {
prepare_final_pbs_indexes<Torus><<<1, 2 * num_radix_blocks, 0, streams[0]>>>(
d_pbs_indexes_in, d_pbs_indexes_out,
luts_message_carry->get_lut_indexes(0, 0), num_radix_blocks);
cuda_memset_async(
(Torus *)(current_blocks->ptr) + big_lwe_size * num_radix_blocks, 0,
big_lwe_size * sizeof(Torus), streams[0], gpu_indexes[0]);
auto active_gpu_count = get_active_gpu_count(2 * num_radix_blocks, gpu_count);
if (active_gpu_count == 1) {
execute_keyswitch_async<Torus>(
streams, gpu_indexes, 1, (Torus *)small_lwe_vector->ptr,
d_pbs_indexes_in, (Torus *)radix_lwe_out->ptr, d_pbs_indexes_in, ksks,
big_lwe_dimension, small_lwe_dimension, mem_ptr->params.ks_base_log,
mem_ptr->params.ks_level, num_radix_blocks);
execute_pbs_async<Torus>(
streams, gpu_indexes, 1, (Torus *)current_blocks->ptr,
d_pbs_indexes_out, luts_message_carry->lut_vec,
luts_message_carry->lut_indexes_vec, (Torus *)small_lwe_vector->ptr,
d_pbs_indexes_in, bsks, ms_noise_reduction_key,
luts_message_carry->buffer, glwe_dimension, small_lwe_dimension,
polynomial_size, mem_ptr->params.pbs_base_log,
mem_ptr->params.pbs_level, mem_ptr->params.grouping_factor,
2 * num_radix_blocks, mem_ptr->params.pbs_type, num_many_lut,
lut_stride);
} else {
cuda_memcpy_async_to_cpu(luts_message_carry->h_lwe_indexes_in,
luts_message_carry->lwe_indexes_in,
2 * num_radix_blocks * sizeof(Torus), streams[0],
gpu_indexes[0]);
cuda_memcpy_async_to_cpu(luts_message_carry->h_lwe_indexes_out,
luts_message_carry->lwe_indexes_out,
2 * num_radix_blocks * sizeof(Torus), streams[0],
gpu_indexes[0]);
cuda_synchronize_stream(streams[0], gpu_indexes[0]);
luts_message_carry->broadcast_lut(streams, gpu_indexes, 0);
luts_message_carry->using_trivial_lwe_indexes = false;
integer_radix_apply_univariate_lookup_table_kb<Torus>(
streams, gpu_indexes, active_gpu_count, current_blocks, radix_lwe_out,
bsks, ksks, ms_noise_reduction_key, luts_message_carry,
2 * num_radix_blocks);
}
// cudaDeviceSynchronize();
// print_body<Torus>("cuda_before_add", (Torus*)radix_lwe_out->ptr, num_radix_blocks, 2048,
// 576460752303423488ULL);
// cudaDeviceSynchronize();
calculate_final_degrees(radix_lwe_out->degrees, terms->degrees,
num_radix_blocks, num_radix_in_vec, chunk_size,
mem_ptr->params.message_modulus);
cuda_set_device(gpu_indexes[0]);
CudaRadixCiphertextFFI current_blocks_slice;
as_radix_ciphertext_slice<Torus>(&current_blocks_slice, current_blocks,
num_radix_blocks, 2 * num_radix_blocks);
host_addition<Torus>(streams[0], gpu_indexes[0], radix_lwe_out,
current_blocks, &current_blocks_slice, num_radix_blocks);
// printf("add_happened\n");
}
// cudaDeviceSynchronize();
//
// print_body<Torus>("cuda_out_after_add", (Torus*)radix_lwe_out->ptr, num_radix_blocks, 2048,
// 576460752303423488ULL);
// cudaDeviceSynchronize();
}
template <typename Torus, class params>
@@ -599,14 +837,28 @@ __host__ void host_integer_mult_radix_kb(
size_t b_id = i % num_blocks;
terms_degree_msb[i] = (b_id > r_id) ? message_modulus - 2 : 0;
}
for (int i = 0; i < num_blocks * 2 * num_blocks; i++)
{
auto cur_ptr = (Torus*)vector_result_sb->ptr;
cur_ptr += i * 2049 + 2048;
print_debug<Torus>("", cur_ptr, 1);
}
for (int i = 0; i < num_blocks * 2 * num_blocks; i++) {
printf("%d\n", vector_result_sb->degrees[i]);
}
host_integer_partial_sum_ciphertexts_vec_kb<Torus, params>(
streams, gpu_indexes, gpu_count, radix_lwe_out, vector_result_sb, bsks,
streams, gpu_indexes, gpu_count, radix_lwe_out, vector_result_sb, true, bsks,
ksks, ms_noise_reduction_key, mem_ptr->sum_ciphertexts_mem, num_blocks,
2 * num_blocks, mem_ptr->luts_array);
2 * num_blocks);
auto scp_mem_ptr = mem_ptr->sc_prop_mem;
uint32_t requested_flag = outputFlag::FLAG_NONE;
uint32_t uses_carry = 0;
host_propagate_single_carry<Torus>(
streams, gpu_indexes, gpu_count, radix_lwe_out, nullptr, nullptr,
scp_mem_ptr, bsks, ksks, ms_noise_reduction_key, requested_flag,

View File

@@ -115,13 +115,10 @@ __host__ void host_integer_scalar_mul_radix(
set_zero_radix_ciphertext_slice_async<T>(streams[0], gpu_indexes[0],
lwe_array, 0, num_radix_blocks);
} else {
for (int i = 0; i < j * num_radix_blocks; i++) {
all_shifted_buffer->degrees[i] = message_modulus - 1;
}
host_integer_partial_sum_ciphertexts_vec_kb<T, params>(
streams, gpu_indexes, gpu_count, lwe_array, all_shifted_buffer, bsks,
streams, gpu_indexes, gpu_count, lwe_array, all_shifted_buffer, true, bsks,
ksks, ms_noise_reduction_key, mem->sum_ciphertexts_vec_mem,
num_radix_blocks, j, nullptr);
num_radix_blocks, j);
auto scp_mem_ptr = mem->sc_prop_mem;
uint32_t requested_flag = outputFlag::FLAG_NONE;

View File

@@ -261,6 +261,8 @@ void cuda_fourier_polynomial_mul(void *stream_v, uint32_t gpu_index,
default:
break;
}
check_cuda_error(cudaGetLastError());
cuda_drop_async(buffer, stream, gpu_index);
}

View File

@@ -279,6 +279,7 @@ void cuda_convert_lwe_programmable_bootstrap_key(cudaStream_t stream,
PANIC("Cuda error (convert KSK): unsupported polynomial size. Supported "
"N's are powers of two in the interval [256..16384].")
}
check_cuda_error(cudaGetLastError());
cuda_drop_async(d_bsk, stream, gpu_index);
cuda_drop_async(buffer, stream, gpu_index);
@@ -315,6 +316,7 @@ void convert_u128_to_f128_and_forward_fft_128(cudaStream_t stream,
// convert u128 into 4 x double
batch_convert_u128_to_f128_strided_as_torus<params>
<<<grid_size, block_size, 0, stream>>>(d_bsk, d_standard);
check_cuda_error(cudaGetLastError());
// call negacyclic 128 bit forward fft.
if (full_sm) {
@@ -326,6 +328,7 @@ void convert_u128_to_f128_and_forward_fft_128(cudaStream_t stream,
<<<grid_size, block_size, shared_memory_size, stream>>>(d_bsk, d_bsk,
buffer);
}
check_cuda_error(cudaGetLastError());
cuda_drop_async(buffer, stream, gpu_index);
}

View File

@@ -194,7 +194,8 @@ void execute_pbs_async(
lut_indexes_vec[i] + (ptrdiff_t)(gpu_offset);
void *zeros = nullptr;
if (ms_noise_reduction_key != nullptr)
if (ms_noise_reduction_key != nullptr &&
ms_noise_reduction_key->ptr != nullptr)
zeros = ms_noise_reduction_key->ptr[i];
cuda_programmable_bootstrap_lwe_ciphertext_vector_64(
streams[i], gpu_indexes[i], current_lwe_array_out,

View File

@@ -660,13 +660,15 @@ void cuda_programmable_bootstrap_lwe_ciphertext_vector_64(
(pbs_buffer<uint64_t, CLASSICAL> *)mem_ptr;
// If the parameters contain noise reduction key, then apply it
if (ms_noise_reduction_key != nullptr) {
if (ms_noise_reduction_key != nullptr &&
ms_noise_reduction_key->ptr != nullptr) {
if (ms_noise_reduction_key->num_zeros != 0) {
uint32_t log_modulus = log2(polynomial_size) + 1;
host_improve_noise_modulus_switch<uint64_t>(
static_cast<cudaStream_t>(stream), gpu_index,
buffer->temp_lwe_array_in,
static_cast<uint64_t const *>(lwe_array_in),
static_cast<uint64_t const *>(lwe_input_indexes),
static_cast<uint64_t *>(ms_noise_reduction_ptr), lwe_dimension + 1,
num_samples, ms_noise_reduction_key->num_zeros,
ms_noise_reduction_key->ms_input_variance,
@@ -846,4 +848,7 @@ template uint64_t scratch_cuda_programmable_bootstrap_tbc<uint64_t>(
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t level_count,
uint32_t input_lwe_ciphertext_count, bool allocate_gpu_memory,
bool allocate_ms_array);
template bool
supports_distributed_shared_memory_on_classic_programmable_bootstrap<
__uint128_t>(uint32_t polynomial_size, uint32_t max_shared_memory);
#endif

View File

@@ -256,6 +256,7 @@ void cuda_programmable_bootstrap_lwe_ciphertext_vector_128(
static_cast<cudaStream_t>(stream), gpu_index,
static_cast<__uint128_t *>(buffer->temp_lwe_array_in),
static_cast<__uint128_t const *>(lwe_array_in),
static_cast<uint64_t const *>(buffer->trivial_indexes),
static_cast<const __uint128_t *>(ms_noise_reduction_ptr),
lwe_dimension + 1, num_samples, ms_noise_reduction_key->num_zeros,
ms_noise_reduction_key->ms_input_variance,

View File

@@ -398,20 +398,32 @@ uint64_t scratch_cuda_multi_bit_programmable_bootstrap_64(
uint32_t polynomial_size, uint32_t level_count,
uint32_t input_lwe_ciphertext_count, bool allocate_gpu_memory) {
bool supports_cg =
supports_cooperative_groups_on_multibit_programmable_bootstrap<uint64_t>(
glwe_dimension, polynomial_size, level_count,
input_lwe_ciphertext_count, cuda_get_max_shared_memory(gpu_index));
#if (CUDA_ARCH >= 900)
if (has_support_to_cuda_programmable_bootstrap_tbc_multi_bit<uint64_t>(
// On H100s we should be using TBC until num_samples < num_sms / 2.
// After that we switch to CG until not supported anymore.
// At this point we return to TBC.
int num_sms = 0;
check_cuda_error(cudaDeviceGetAttribute(
&num_sms, cudaDevAttrMultiProcessorCount, gpu_index));
bool supports_tbc =
has_support_to_cuda_programmable_bootstrap_tbc_multi_bit<uint64_t>(
input_lwe_ciphertext_count, glwe_dimension, polynomial_size,
level_count, cuda_get_max_shared_memory(gpu_index)))
level_count, cuda_get_max_shared_memory(gpu_index));
if (supports_tbc &&
!(input_lwe_ciphertext_count > num_sms / 2 && supports_cg))
return scratch_cuda_tbc_multi_bit_programmable_bootstrap<uint64_t>(
stream, gpu_index, (pbs_buffer<uint64_t, MULTI_BIT> **)buffer,
glwe_dimension, polynomial_size, level_count,
input_lwe_ciphertext_count, allocate_gpu_memory);
else
#endif
if (supports_cooperative_groups_on_multibit_programmable_bootstrap<
uint64_t>(glwe_dimension, polynomial_size, level_count,
input_lwe_ciphertext_count,
cuda_get_max_shared_memory(gpu_index)))
if (supports_cg)
return scratch_cuda_cg_multi_bit_programmable_bootstrap<uint64_t>(
stream, gpu_index, (pbs_buffer<uint64_t, MULTI_BIT> **)buffer,
glwe_dimension, polynomial_size, level_count,

View File

@@ -37,18 +37,21 @@ template <typename T> void print_debug(const char *name, const T *src, int N) {
printf("\n");
}
template <typename T>
__global__ void print_body_kernel(T *src, int N, int lwe_dimension) {
__global__ void print_body_kernel(T *src, int N, int lwe_dimension, T delta) {
for (int i = 0; i < N; i++) {
printf("%lu, ", src[i * (lwe_dimension + 1) + lwe_dimension]);
T body = src[i * (lwe_dimension + 1) + lwe_dimension];
T clear = body / delta;
printf("(%lu, %lu), ", body, clear);
}
}
template <typename T>
void print_body(const char *name, T *src, int n, int lwe_dimension) {
void print_body(const char *name, T *src, int n, int lwe_dimension, T delta) {
printf("%s: ", name);
cudaDeviceSynchronize();
print_body_kernel<<<1, 1>>>(src, n, lwe_dimension);
print_body_kernel<<<1, 1>>>(src, n, lwe_dimension, delta);
cudaDeviceSynchronize();
printf("\n");
}

View File

@@ -6,7 +6,8 @@
std::mutex m;
bool p2p_enabled = false;
int32_t cuda_setup_multi_gpu() {
// Enable bidirectional p2p access between all available GPUs and device_0_id
int32_t cuda_setup_multi_gpu(int device_0_id) {
int num_gpus = cuda_get_number_of_gpus();
if (num_gpus == 0)
PANIC("GPU error: the number of GPUs should be > 0.")
@@ -18,11 +19,13 @@ int32_t cuda_setup_multi_gpu() {
omp_set_nested(1);
int has_peer_access_to_device_0;
for (int i = 1; i < num_gpus; i++) {
check_cuda_error(
cudaDeviceCanAccessPeer(&has_peer_access_to_device_0, i, 0));
check_cuda_error(cudaDeviceCanAccessPeer(&has_peer_access_to_device_0,
i, device_0_id));
if (has_peer_access_to_device_0) {
cuda_set_device(i);
check_cuda_error(cudaDeviceEnablePeerAccess(0, 0));
check_cuda_error(cudaDeviceEnablePeerAccess(device_0_id, 0));
cuda_set_device(device_0_id);
check_cuda_error(cudaDeviceEnablePeerAccess(i, 0));
}
num_used_gpus += 1;
}

View File

@@ -168,7 +168,7 @@ BENCHMARK_DEFINE_F(MultiBitBootstrap_u64, TbcMultiBit)
(benchmark::State &st) {
if (!has_support_to_cuda_programmable_bootstrap_tbc_multi_bit<uint64_t>(
input_lwe_ciphertext_count, glwe_dimension, polynomial_size,
pbs_level)) {
pbs_level, cuda_get_max_shared_memory(0))) {
st.SkipWithError("Configuration not supported for tbc operation");
return;
}
@@ -256,7 +256,7 @@ BENCHMARK_DEFINE_F(ClassicalBootstrap_u64, TbcPBC)
(benchmark::State &st) {
if (!has_support_to_cuda_programmable_bootstrap_tbc<uint64_t>(
input_lwe_ciphertext_count, glwe_dimension, polynomial_size,
pbs_level)) {
pbs_level, cuda_get_max_shared_memory(0))) {
st.SkipWithError("Configuration not supported for tbc operation");
return;
}

View File

@@ -65,7 +65,7 @@ public:
number_of_inputs = (int)GetParam().number_of_inputs;
// Enable Multi-GPU logic
gpu_count = cuda_setup_multi_gpu();
gpu_count = cuda_setup_multi_gpu(0);
active_gpu_count = std::min((uint)number_of_inputs, gpu_count);
for (uint gpu_i = 0; gpu_i < active_gpu_count; gpu_i++) {
streams.push_back(cuda_create_stream(gpu_i));

View File

@@ -50,6 +50,7 @@ unsafe extern "C" {
gpu_index: u32,
lwe_array_out: *mut ffi::c_void,
lwe_array_in: *const ffi::c_void,
lwe_array_indexes: *const ffi::c_void,
encrypted_zeros: *const ffi::c_void,
lwe_size: u32,
num_lwes: u32,
@@ -1017,6 +1018,7 @@ unsafe extern "C" {
gpu_count: u32,
radix_lwe_out: *mut CudaRadixCiphertextFFI,
radix_lwe_vec: *mut CudaRadixCiphertextFFI,
reduce_degrees_for_single_carry_propagation: bool,
mem_ptr: *mut i8,
bsks: *const *mut ffi::c_void,
ksks: *const *mut ffi::c_void,
@@ -1315,6 +1317,22 @@ unsafe extern "C" {
mem_ptr_void: *mut *mut i8,
);
}
unsafe extern "C" {
pub fn trim_radix_blocks_lsb_64(
output: *mut CudaRadixCiphertextFFI,
input: *const CudaRadixCiphertextFFI,
streams: *const *mut ffi::c_void,
gpu_indexes: *const u32,
);
}
unsafe extern "C" {
pub fn extend_radix_with_trivial_zero_blocks_msb_64(
output: *mut CudaRadixCiphertextFFI,
input: *const CudaRadixCiphertextFFI,
streams: *const *mut ffi::c_void,
gpu_indexes: *const u32,
);
}
pub const KS_TYPE_BIG_TO_SMALL: KS_TYPE = 0;
pub const KS_TYPE_SMALL_TO_BIG: KS_TYPE = 1;
pub type KS_TYPE = ffi::c_uint;

View File

@@ -101,6 +101,6 @@ extern "C" {
pub fn cuda_drop_async(ptr: *mut c_void, stream: *mut c_void, gpu_index: u32);
pub fn cuda_setup_multi_gpu() -> i32;
pub fn cuda_setup_multi_gpu(gpu_index: u32) -> i32;
} // extern "C"

View File

@@ -8,7 +8,7 @@ homepage = "https://www.zama.ai/"
documentation = "https://docs.zama.ai/tfhe-rs"
repository = "https://github.com/zama-ai/tfhe-rs"
readme = "README.md"
keywords = ["fully", "homomorphic", "encryption", "fhe", "cryptography", "hardware", "fpga"]
keywords = ["encryption", "fhe", "cryptography", "hardware", "fpga"]
[features]
hw-xrt = []
@@ -30,7 +30,7 @@ enum_dispatch = "0.3.13"
tracing = "0.1.40"
tracing-subscriber = { version = "0.3.18", features = ["env-filter"] }
serde = { version = "1", features = ["derive"] }
toml = { version = "0.8.*", features = [] }
toml = { version = "0.8", features = [] }
paste = "1.0.15"
thiserror = "1.0.61"
bytemuck = "1.16.0"
@@ -49,16 +49,16 @@ rayon = { workspace = true }
ipc-channel = "0.18.3"
# Dependencies used for debug feature
num-traits = { version = "*", optional = true }
num-traits = { version = "0.2", optional = true }
clap = { version = "4.4.4", features = ["derive"], optional = true }
clap-num = { version = "1.1.1", optional = true }
nix = { version = "0.29.0", features = ["ioctl", "uio"] }
# Dependencies used for rtl_graph features
dot2 = { version = "*", optional = true }
dot2 = { version = "1.0", optional = true }
bitvec = { version = "*", optional = true }
serde_json = { version = "*", optional = true }
bitvec = { version = "1.0", optional = true }
serde_json = { version = "1.0", optional = true }
# Binary for manual debugging
# Enable to access Hpu register and drive some custom sequence by hand

View File

@@ -258,4 +258,4 @@ make bench_integer_hpu
You are still waiting your FPGA board and are frustrated by lead time ?
Don't worry, you have backed-up. A dedicated simulation infrastructure with accurate performance estimation is available in tfhe-rs.
You can use it on any linux/MacOs to test HPU integration within tfhe-rs and optimized your application for HPU target.
Simply through an eye to [Hpu mockup](../../mockups/tfhe-hpu-mockup/Reaadme.md), and follow the instruction.
Simply through an eye to [Hpu mockup](../../mockups/tfhe-hpu-mockup/README.md), and follow the instruction.

View File

@@ -14,6 +14,8 @@ import sys
ONE_HOUR_IN_SECONDS = 3600
ONE_SECOND_IN_NANOSECONDS = 1e9
# These are directories where crypto parameters records can be stored.
BENCHMARK_DIRS = ["tfhe-benchmark", "tfhe-zk-pok"]
parser = argparse.ArgumentParser()
parser.add_argument(
@@ -348,8 +350,18 @@ def get_parameters(bench_id, directory):
:return: :class:`tuple` as ``(benchmark parameters, display name, operator type)``
"""
params_dir = pathlib.Path("tfhe-benchmark", "benchmarks_parameters", bench_id)
params = _parse_file_to_json(params_dir, "parameters.json")
for dirname in BENCHMARK_DIRS:
params_dir = pathlib.Path(dirname, "benchmarks_parameters", bench_id)
try:
params = _parse_file_to_json(params_dir, "parameters.json")
except FileNotFoundError:
continue
else:
break
else:
raise FileNotFoundError(
f"file not found: '[...]/benchmarks_parameters/{bench_id}/parameters.json'"
)
display_name = params.pop("display_name")
operator = params.pop("operator_type")

View File

@@ -140,8 +140,8 @@ if [[ "${backend}" == "gpu" ]]; then
test_threads=8
doctest_threads=8
else
test_threads=1
doctest_threads=1
test_threads=4
doctest_threads=4
fi
fi

View File

@@ -23,7 +23,7 @@ const FILES_TO_IGNORE: [&str; 8] = [
"tfhe-ntt/README.md",
"utils/tfhe-lints/README.md",
"CONTRIBUTING.md",
"backends/tfhe-hpu-backend/Readme.md",
"backends/tfhe-hpu-backend/README.md",
];
pub fn check_tfhe_docs_are_tested() -> Result<(), Error> {

View File

@@ -138,11 +138,13 @@ pub fn test_shortint_clientkey(
let key: ClientKey = load_and_unversionize(dir, test, format)?;
if test_params != key.parameters {
if test_params != key.parameters() {
Err(test.failure(
format!(
"Invalid {} parameters:\n Expected :\n{:?}\nGot:\n{:?}",
format, test_params, key.parameters
format,
test_params,
key.parameters()
),
format,
))

View File

@@ -136,7 +136,7 @@ required-features = ["shortint"]
name = "pbs128-bench"
path = "benches/core_crypto/pbs128_bench.rs"
harness = false
required-features = ["shortint"]
required-features = ["shortint", "internal-keycache"]
[[bin]]
name = "boolean_key_sizes"

View File

@@ -8,6 +8,7 @@ use benchmark::utilities::{
OperatorType,
};
use criterion::{black_box, Criterion, Throughput};
use itertools::Itertools;
use rayon::prelude::*;
use serde::Serialize;
use std::env;
@@ -325,6 +326,7 @@ mod cuda {
CudaLocalKeys, OperatorType,
};
use criterion::{black_box, Criterion, Throughput};
use itertools::Itertools;
use rayon::prelude::*;
use serde::Serialize;
use tfhe::core_crypto::gpu::glwe_ciphertext_list::CudaGlweCiphertextList;
@@ -750,8 +752,12 @@ mod cuda {
pub fn cuda_multi_bit_ks_group() {
let mut criterion: Criterion<_> =
(Criterion::default().sample_size(2000)).configure_from_args();
cuda_keyswitch(&mut criterion, &multi_bit_benchmark_parameters());
cuda_packing_keyswitch(&mut criterion, &multi_bit_benchmark_parameters());
let multi_bit_parameters = multi_bit_benchmark_parameters()
.into_iter()
.map(|(string, params, _)| (string, params))
.collect_vec();
cuda_keyswitch(&mut criterion, &multi_bit_parameters);
cuda_packing_keyswitch(&mut criterion, &multi_bit_parameters);
}
}
@@ -769,11 +775,16 @@ pub fn ks_group() {
}
pub fn multi_bit_ks_group() {
let multi_bit_parameters = multi_bit_benchmark_parameters()
.into_iter()
.map(|(string, params, _)| (string, params))
.collect_vec();
let mut criterion: Criterion<_> = (Criterion::default()
.sample_size(15)
.measurement_time(std::time::Duration::from_secs(60)))
.configure_from_args();
keyswitch(&mut criterion, &multi_bit_benchmark_parameters());
keyswitch(&mut criterion, &multi_bit_parameters);
}
pub fn packing_ks_group() {

File diff suppressed because it is too large Load Diff

View File

@@ -24,6 +24,13 @@ fn write_result(file: &mut File, name: &str, value: usize) {
file.write_all(line.as_bytes()).expect(&error_message);
}
fn zk_throughput_num_elements() -> u64 {
// Number of usable threads for a verification is limited to 32 in the lib.
let max_threads = 32;
// We add 1 to be sure we saturate the target machine.
(rayon::current_num_threads() as u64 / max_threads).max(1) + 1
}
fn pke_zk_proof(c: &mut Criterion) {
let bench_name = "zk::pke_zk_proof";
let mut bench_group = c.benchmark_group(bench_name);
@@ -333,26 +340,7 @@ fn cpu_pke_zk_verify(c: &mut Criterion, results_file: &Path) {
BenchmarkType::Throughput => {
// In throughput mode object sizes are not recorded.
// Execute the operation once to know its cost.
let input_msg = rng.gen::<u64>();
let messages = vec![input_msg; fhe_uint_count];
let ct1 = tfhe::integer::ProvenCompactCiphertextList::builder(&pk)
.extend(messages.iter().copied())
.build_with_proof_packed(&crs, &metadata, compute_load)
.unwrap();
reset_pbs_count();
let _ = ct1.verify_and_expand(
&crs,
&pk,
&metadata,
IntegerCompactCiphertextListExpansionMode::CastAndUnpackIfNecessary(
casting_key.as_view(),
),
);
let pbs_count = max(get_pbs_count(), 1); // Operation might not perform any PBS, so we take 1 as default
let elements = throughput_num_threads(num_block, pbs_count);
let elements = zk_throughput_num_elements();
bench_group.throughput(Throughput::Elements(elements));
bench_id_verify = format!(
@@ -430,11 +418,11 @@ fn cpu_pke_zk_verify(c: &mut Criterion, results_file: &Path) {
#[cfg(all(feature = "gpu", feature = "zk-pok"))]
mod cuda {
use super::*;
use benchmark::utilities::{cuda_local_keys, cuda_local_streams};
use benchmark::utilities::cuda_local_streams;
use criterion::BatchSize;
use itertools::Itertools;
use tfhe::core_crypto::gpu::{get_number_of_gpus, CudaStreams};
use tfhe::integer::gpu::key_switching_key::CudaKeySwitchingKey;
use tfhe::integer::gpu::key_switching_key::{CudaKeySwitchingKey, CudaKeySwitchingKeyMaterial};
use tfhe::integer::gpu::zk::CudaProvenCompactCiphertextList;
use tfhe::integer::gpu::CudaServerKey;
use tfhe::integer::CompressedServerKey;
@@ -463,14 +451,17 @@ mod cuda {
let param_name = param_name.as_str();
let cks = ClientKey::new(param_fhe);
let compressed_server_key = CompressedServerKey::new_radix_compressed_server_key(&cks);
let sk = compressed_server_key.decompress();
let gpu_sks = CudaServerKey::decompress_from_cpu(&compressed_server_key, &streams);
let compact_private_key = CompactPrivateKey::new(param_pke);
let pk = CompactPublicKey::new(&compact_private_key);
let d_ksk = CudaKeySwitchingKey::new(
(&compact_private_key, None),
(&cks, &gpu_sks),
param_ksk,
&streams,
let ksk = KeySwitchingKey::new((&compact_private_key, None), (&cks, &sk), param_ksk);
let d_ksk_material =
CudaKeySwitchingKeyMaterial::from_key_switching_key(&ksk, &streams);
let d_ksk = CudaKeySwitchingKey::from_cuda_key_switching_key_material(
&d_ksk_material,
&gpu_sks,
);
// We have a use case with 320 bits of metadata
@@ -621,27 +612,9 @@ mod cuda {
});
}
BenchmarkType::Throughput => {
let gpu_sks_vec = cuda_local_keys(&cks);
let gpu_count = get_number_of_gpus() as usize;
// Execute the operation once to know its cost.
let input_msg = rng.gen::<u64>();
let messages = vec![input_msg; fhe_uint_count];
let ct1 = tfhe::integer::ProvenCompactCiphertextList::builder(&pk)
.extend(messages.iter().copied())
.build_with_proof_packed(&crs, &metadata, compute_load)
.unwrap();
let gpu_ct1 =
CudaProvenCompactCiphertextList::from_proven_compact_ciphertext_list(
&ct1, &streams,
);
reset_pbs_count();
let _ =
gpu_ct1.verify_and_expand(&crs, &pk, &metadata, &d_ksk, &streams);
let pbs_count = max(get_pbs_count(), 1); // Operation might not perform any PBS, so we take 1 as default
let elements = throughput_num_threads(num_block, pbs_count);
let elements = zk_throughput_num_elements();
bench_group.throughput(Throughput::Elements(elements));
bench_id_verify = format!(
@@ -666,20 +639,17 @@ mod cuda {
.collect::<Vec<_>>();
let local_streams = cuda_local_streams(num_block, elements as usize);
let d_ksk_vec = gpu_sks_vec
let d_ksk_material_vec = local_streams
.par_iter()
.zip(local_streams.par_iter())
.map(|(gpu_sks, local_stream)| {
CudaKeySwitchingKey::new(
(&compact_private_key, None),
(&cks, gpu_sks),
param_ksk,
.map(|local_stream| {
CudaKeySwitchingKeyMaterial::from_key_switching_key(
&ksk,
local_stream,
)
})
.collect::<Vec<_>>();
assert_eq!(d_ksk_vec.len(), gpu_count);
assert_eq!(d_ksk_material_vec.len(), gpu_count);
bench_group.bench_function(&bench_id_verify, |b| {
b.iter(|| {
@@ -702,14 +672,16 @@ mod cuda {
(gpu_cts, local_streams)
};
b.iter_batched(setup_encrypted_values, |(gpu_cts, local_streams)| {
gpu_cts.par_iter()
.zip(local_streams.par_iter())
.enumerate()
.for_each(|(i, (gpu_ct, local_stream))| {
gpu_ct
.expand_without_verification(&d_ksk_vec[i % gpu_count], local_stream)
.unwrap();
b.iter_batched(setup_encrypted_values,
|(gpu_cts, local_streams)| {
gpu_cts.par_iter().zip(local_streams.par_iter()).enumerate().for_each
(|(i, (gpu_ct, local_stream))| {
let d_ksk =
CudaKeySwitchingKey::from_cuda_key_switching_key_material(&d_ksk_material_vec[i % gpu_count], &gpu_sks);
gpu_ct
.expand_without_verification(&d_ksk, local_stream)
.unwrap();
});
}, BatchSize::SmallInput);
});
@@ -727,16 +699,15 @@ mod cuda {
(gpu_cts, local_streams)
};
b.iter_batched(setup_encrypted_values, |(gpu_cts, local_streams)| {
gpu_cts
.par_iter()
.zip(local_streams.par_iter())
.for_each(|(gpu_ct, local_stream)| {
gpu_ct
.verify_and_expand(
&crs, &pk, &metadata, &d_ksk, local_stream
)
.unwrap();
b.iter_batched(setup_encrypted_values,
|(gpu_cts, local_streams)| {
gpu_cts.par_iter().zip(local_streams.par_iter()).for_each
(|(gpu_ct, local_stream)| {
gpu_ct
.verify_and_expand(
&crs, &pk, &metadata, &d_ksk, local_stream,
)
.unwrap();
});
}, BatchSize::SmallInput);
});

View File

@@ -27,7 +27,7 @@ fn bench_server_key_unary_function<F>(
let mut rng = rand::thread_rng();
let modulus = cks.parameters.message_modulus().0;
let modulus = cks.parameters().message_modulus().0;
let clear_text = rng.gen::<u64>() % modulus;
@@ -70,7 +70,7 @@ fn bench_server_key_binary_function<F>(
let mut rng = rand::thread_rng();
let modulus = cks.parameters.message_modulus().0;
let modulus = cks.parameters().message_modulus().0;
let clear_0 = rng.gen::<u64>() % modulus;
let clear_1 = rng.gen::<u64>() % modulus;
@@ -115,7 +115,7 @@ fn bench_server_key_binary_scalar_function<F>(
let mut rng = rand::thread_rng();
let modulus = cks.parameters.message_modulus().0;
let modulus = cks.parameters().message_modulus().0;
let clear_0 = rng.gen::<u64>() % modulus;
let clear_1 = rng.gen::<u64>() % modulus;
@@ -159,7 +159,7 @@ fn bench_server_key_binary_scalar_division_function<F>(
let mut rng = rand::thread_rng();
let modulus = cks.parameters.message_modulus().0;
let modulus = cks.parameters().message_modulus().0;
assert_ne!(modulus, 1);
let clear_0 = rng.gen::<u64>() % modulus;
@@ -200,7 +200,7 @@ fn carry_extract_bench(c: &mut Criterion) {
let mut rng = rand::thread_rng();
let modulus = cks.parameters.message_modulus().0;
let modulus = cks.parameters().message_modulus().0;
let clear_0 = rng.gen::<u64>() % modulus;
@@ -236,7 +236,7 @@ fn programmable_bootstrapping_bench(c: &mut Criterion) {
let mut rng = rand::thread_rng();
let modulus = cks.parameters.message_modulus().0;
let modulus = cks.parameters().message_modulus().0;
let acc = sks.generate_lookup_table(|x| x);

View File

@@ -26,12 +26,10 @@ pub use boolean_params::*;
#[cfg(feature = "shortint")]
pub mod shortint_params {
use crate::params_aliases::*;
use crate::utilities::CryptoParametersRecord;
use std::collections::HashMap;
use std::env;
use std::sync::OnceLock;
use tfhe::core_crypto::prelude::{DynamicDistribution, LweBskGroupingFactor};
use tfhe::keycache::NamedParam;
use tfhe::shortint::{
AtomicPatternParameters, CarryModulus, ClassicPBSParameters, MessageModulus,
MultiBitPBSParameters,
@@ -71,118 +69,143 @@ pub mod shortint_params {
BENCH_PARAM_MULTI_BIT_GROUP_3_MESSAGE_3_CARRY_3_KS_PBS_GAUSSIAN_2M128,
];
pub fn benchmark_parameters() -> Vec<(String, CryptoParametersRecord<u64>)> {
match get_parameters_set() {
ParametersSet::Default => SHORTINT_BENCH_PARAMS_TUNIFORM
.iter()
.chain(SHORTINT_BENCH_PARAMS_GAUSSIAN.iter())
.map(|params| {
(
params.name(),
<ClassicPBSParameters as Into<AtomicPatternParameters>>::into(*params)
.to_owned()
.into(),
#[cfg(feature = "internal-keycache")]
pub mod shortint_params_keycache {
use super::*;
use crate::utilities::CryptoParametersRecord;
use tfhe::keycache::NamedParam;
pub fn benchmark_parameters() -> Vec<(String, CryptoParametersRecord<u64>)> {
match get_parameters_set() {
ParametersSet::Default => SHORTINT_BENCH_PARAMS_TUNIFORM
.iter()
.chain(SHORTINT_BENCH_PARAMS_GAUSSIAN.iter())
.map(|params| {
(
params.name(),
<ClassicPBSParameters as Into<AtomicPatternParameters>>::into(*params)
.to_owned()
.into(),
)
})
.collect(),
ParametersSet::All => {
filter_parameters(
&BENCH_ALL_CLASSIC_PBS_PARAMETERS,
DesiredNoiseDistribution::Both,
DesiredBackend::Cpu, /* No parameters set are specific to GPU in this
* vector */
)
})
.collect(),
ParametersSet::All => {
filter_parameters(
&BENCH_ALL_CLASSIC_PBS_PARAMETERS,
DesiredNoiseDistribution::Both,
DesiredBackend::Cpu, // No parameters set are specific to GPU in this vector
.into_iter()
.map(|(params, name)| {
(
name.to_string(),
<ClassicPBSParameters as Into<AtomicPatternParameters>>::into(*params)
.to_owned()
.into(),
)
})
.collect()
}
}
}
pub fn benchmark_compression_parameters() -> Vec<(String, CryptoParametersRecord<u64>)> {
vec![(
BENCH_COMP_PARAM_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M128.name(),
(
BENCH_COMP_PARAM_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M128,
BENCH_PARAM_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M128,
)
.into_iter()
.map(|(params, name)| {
(
name.to_string(),
<ClassicPBSParameters as Into<AtomicPatternParameters>>::into(*params)
.to_owned()
.into(),
.into(),
)]
}
pub fn multi_bit_benchmark_parameters(
) -> Vec<(String, CryptoParametersRecord<u64>, LweBskGroupingFactor)> {
match get_parameters_set() {
ParametersSet::Default => SHORTINT_MULTI_BIT_BENCH_PARAMS
.iter()
.map(|params| {
(
params.name(),
<MultiBitPBSParameters as Into<AtomicPatternParameters>>::into(*params)
.to_owned()
.into(),
params.grouping_factor,
)
})
.collect(),
ParametersSet::All => {
let desired_backend = if cfg!(feature = "gpu") {
DesiredBackend::Gpu
} else {
DesiredBackend::Cpu
};
filter_parameters(
&BENCH_ALL_MULTI_BIT_PBS_PARAMETERS,
DesiredNoiseDistribution::Both,
desired_backend,
)
})
.collect()
.into_iter()
.map(|(params, name)| {
(
name.to_string(),
<MultiBitPBSParameters as Into<AtomicPatternParameters>>::into(*params)
.to_owned()
.into(),
params.grouping_factor,
)
})
.collect()
}
}
}
pub fn multi_bit_benchmark_parameters_with_grouping(
) -> Vec<(String, CryptoParametersRecord<u64>, LweBskGroupingFactor)> {
match get_parameters_set() {
ParametersSet::Default => SHORTINT_MULTI_BIT_BENCH_PARAMS
.iter()
.map(|params| {
(
params.name(),
<MultiBitPBSParameters as Into<AtomicPatternParameters>>::into(*params)
.to_owned()
.into(),
params.grouping_factor,
)
})
.collect(),
ParametersSet::All => {
let desired_backend = if cfg!(feature = "gpu") {
DesiredBackend::Gpu
} else {
DesiredBackend::Cpu
};
filter_parameters(
&BENCH_ALL_MULTI_BIT_PBS_PARAMETERS,
DesiredNoiseDistribution::Both,
desired_backend,
)
.into_iter()
.map(|(params, name)| {
(
name.to_string(),
<MultiBitPBSParameters as Into<AtomicPatternParameters>>::into(*params)
.to_owned()
.into(),
params.grouping_factor,
)
})
.collect()
}
}
}
}
pub fn multi_bit_benchmark_parameters() -> Vec<(String, CryptoParametersRecord<u64>)> {
match get_parameters_set() {
ParametersSet::Default => SHORTINT_MULTI_BIT_BENCH_PARAMS
.iter()
.map(|params| {
(
params.name(),
<MultiBitPBSParameters as Into<AtomicPatternParameters>>::into(*params)
.to_owned()
.into(),
)
})
.collect(),
ParametersSet::All => {
let desired_backend = if cfg!(feature = "gpu") {
DesiredBackend::Gpu
} else {
DesiredBackend::Cpu
};
filter_parameters(
&BENCH_ALL_MULTI_BIT_PBS_PARAMETERS,
DesiredNoiseDistribution::Both,
desired_backend,
)
.into_iter()
.map(|(params, name)| {
(
name.to_string(),
<MultiBitPBSParameters as Into<AtomicPatternParameters>>::into(*params)
.to_owned()
.into(),
)
})
.collect()
}
}
}
pub fn multi_bit_benchmark_parameters_with_grouping(
) -> Vec<(String, CryptoParametersRecord<u64>, LweBskGroupingFactor)> {
match get_parameters_set() {
ParametersSet::Default => SHORTINT_MULTI_BIT_BENCH_PARAMS
.iter()
.map(|params| {
(
params.name(),
<MultiBitPBSParameters as Into<AtomicPatternParameters>>::into(*params)
.to_owned()
.into(),
params.grouping_factor,
)
})
.collect(),
ParametersSet::All => {
let desired_backend = if cfg!(feature = "gpu") {
DesiredBackend::Gpu
} else {
DesiredBackend::Cpu
};
filter_parameters(
&BENCH_ALL_MULTI_BIT_PBS_PARAMETERS,
DesiredNoiseDistribution::Both,
desired_backend,
)
.into_iter()
.map(|(params, name)| {
(
name.to_string(),
<MultiBitPBSParameters as Into<AtomicPatternParameters>>::into(*params)
.to_owned()
.into(),
params.grouping_factor,
)
})
.collect()
}
}
}
#[cfg(feature = "internal-keycache")]
pub use shortint_params_keycache::*;
pub fn raw_benchmark_parameters() -> Vec<AtomicPatternParameters> {
let is_multi_bit = match env::var("__TFHE_RS_PARAM_TYPE") {
@@ -204,17 +227,6 @@ pub mod shortint_params {
}
}
pub fn benchmark_compression_parameters() -> Vec<(String, CryptoParametersRecord<u64>)> {
vec![(
BENCH_COMP_PARAM_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M128.name(),
(
BENCH_COMP_PARAM_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M128,
BENCH_PARAM_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M128,
)
.into(),
)]
}
// This array has been built according to performance benchmarks measuring latency over a
// matrix of 4 parameters set, 3 grouping factor and a wide range of threads values.
// The values available here as u64 are the optimal number of threads to use for a given triplet

View File

@@ -428,11 +428,10 @@ mod cuda_utils {
use tfhe::core_crypto::gpu::lwe_keyswitch_key::CudaLweKeyswitchKey;
use tfhe::core_crypto::gpu::lwe_multi_bit_bootstrap_key::CudaLweMultiBitBootstrapKey;
use tfhe::core_crypto::gpu::lwe_packing_keyswitch_key::CudaLwePackingKeyswitchKey;
use tfhe::core_crypto::gpu::vec::CudaVec;
use tfhe::core_crypto::gpu::vec::{CudaVec, GpuIndex};
use tfhe::core_crypto::gpu::{get_number_of_gpus, CudaStreams};
use tfhe::core_crypto::prelude::{Numeric, UnsignedInteger};
use tfhe::shortint::server_key::ModulusSwitchNoiseReductionKey;
use tfhe::{set_server_key, ClientKey, CompressedServerKey, GpuIndex};
pub const GPU_MAX_SUPPORTED_POLYNOMIAL_SIZE: usize = 16384;
@@ -600,7 +599,7 @@ mod cuda_utils {
use tfhe::core_crypto::gpu::{get_number_of_gpus, CudaStreams};
use tfhe::integer::gpu::CudaServerKey;
use tfhe::integer::ClientKey;
use tfhe::GpuIndex;
use tfhe::{set_server_key, CompressedServerKey, GpuIndex};
/// Get number of streams usable for CUDA throughput benchmarks
fn cuda_num_streams(num_block: usize) -> u64 {
@@ -643,15 +642,15 @@ mod cuda_utils {
}
gpu_sks_vec
}
pub fn configure_gpu(client_key: &tfhe::ClientKey) {
let compressed_sks = CompressedServerKey::new(client_key);
let sks = compressed_sks.decompress_to_gpu();
rayon::broadcast(|_| set_server_key(sks.clone()));
set_server_key(sks);
}
}
#[allow(dead_code)]
pub fn configure_gpu(client_key: &ClientKey) {
let compressed_sks = CompressedServerKey::new(client_key);
let sks = compressed_sks.decompress_to_gpu();
rayon::broadcast(|_| set_server_key(sks.clone()));
set_server_key(sks);
}
#[allow(unused_imports)]
#[cfg(feature = "integer")]
pub use cuda_integer_utils::*;

View File

@@ -13,7 +13,7 @@ rust-version = "1.72"
[dependencies]
aes = "0.8.2"
rayon = { workspace = true , optional = true }
rayon = { workspace = true, optional = true }
[target.'cfg(target_os = "macos")'.dependencies]
libc = "0.2.133"

View File

@@ -1,5 +1,4 @@
use crate::generators::aes_ctr::index::AesIndex;
use crate::generators::aes_ctr::BYTES_PER_BATCH;
use crate::generators::aes_ctr::{AES_CALLS_PER_BATCH, BYTES_PER_AES_CALL, BYTES_PER_BATCH};
/// Represents a key used in the AES block cipher.
#[derive(Clone, Copy)]
@@ -16,5 +15,7 @@ pub trait AesBlockCipher: Clone + Send + Sync {
/// Instantiate a new generator from a secret key.
fn new(key: AesKey) -> Self;
/// Generates the batch corresponding to the given index.
fn generate_batch(&mut self, index: AesIndex) -> [u8; BYTES_PER_BATCH];
fn generate_batch(&mut self, data: [u128; AES_CALLS_PER_BATCH]) -> [u8; BYTES_PER_BATCH];
/// Generate next bytes
fn generate_next(&mut self, data: u128) -> [u8; BYTES_PER_AES_CALL];
}

View File

@@ -3,6 +3,7 @@ use crate::generators::aes_ctr::index::TableIndex;
use crate::generators::aes_ctr::states::{BufferPointer, ShiftAction, State};
use crate::generators::aes_ctr::BYTES_PER_BATCH;
use crate::generators::{ByteCount, BytesPerChild, ChildrenCount, ForkError};
use crate::seeders::SeedKind;
// Usually, to work with iterators and parallel iterators, we would use opaque types such as
// `impl Iterator<..>`. Unfortunately, it is not yet possible to return existential types in
@@ -82,6 +83,26 @@ impl<BlockCipher: AesBlockCipher> AesCtrGenerator<BlockCipher> {
}
}
pub(crate) fn from_seed(seed: impl Into<SeedKind>) -> Self {
match seed.into() {
SeedKind::Ctr(seed) => Self::new(AesKey(seed.0), None, None),
SeedKind::Xof(seed) => {
let (key, init_index) = super::xof_init(seed);
let last_index = TableIndex::LAST.decremented();
let state = State::with_offset(TableIndex::SECOND, init_index);
let block_cipher = Box::new(BlockCipher::new(key));
let buffer = [0u8; BYTES_PER_BATCH];
Self {
block_cipher,
state,
last: last_index,
buffer,
}
}
}
}
/// Returns the table index related to the previous random byte.
pub fn table_index(&self) -> TableIndex {
self.state.table_index()
@@ -189,7 +210,9 @@ impl<BlockCipher: AesBlockCipher> Iterator for AesCtrGenerator<BlockCipher> {
match self.state.increment() {
ShiftAction::OutputByte(BufferPointer(ptr)) => Some(self.buffer[ptr]),
ShiftAction::RefreshBatchAndOutputByte(aes_index, BufferPointer(ptr)) => {
self.buffer = self.block_cipher.generate_batch(aes_index);
let aes_inputs =
core::array::from_fn(|i| aes_index.0.wrapping_add(i as u128).to_le());
self.buffer = self.block_cipher.generate_batch(aes_inputs);
Some(self.buffer[ptr])
}
}

View File

@@ -56,7 +56,7 @@ impl TableIndex {
let new_byte_index = self.byte_index.0 + shift_remainder;
let full_aes_shifts = full_aes_shifts + new_byte_index / BYTES_PER_AES_CALL;
// Store the reaminder in the byte index
// Store the remainder in the byte index
self.byte_index.0 = new_byte_index % BYTES_PER_AES_CALL;
self.aes_index.0 = self.aes_index.0.wrapping_add(full_aes_shifts as u128);

View File

@@ -202,6 +202,7 @@ pub const BYTES_PER_BATCH: usize = BYTES_PER_AES_CALL * AES_CALLS_PER_BATCH;
/// A module containing structures to manage table indices.
mod index;
pub use index::*;
/// A module containing structures to manage table indices and buffer pointers together properly.
@@ -218,5 +219,28 @@ pub use generic::*;
/// A module extending `generic` to the `rayon` paradigm.
#[cfg(feature = "parallel")]
mod parallel;
use crate::seeders::XofSeed;
#[cfg(feature = "parallel")]
pub use parallel::*;
pub(crate) fn xof_init(seed: XofSeed) -> (AesKey, AesIndex) {
let init_key = AesKey(0);
let mut aes = crate::generators::default::DefaultBlockCipher::new(init_key);
let blocks = seed
.iter_u128_blocks()
.chain(std::iter::once(seed.bit_len().to_le()));
let mut prev_c = 0;
let mut c = 0;
for mi in blocks {
prev_c = c;
c = u128::from_ne_bytes(aes.generate_next(prev_c ^ mi));
}
let init = AesIndex(prev_c.to_le());
let key = AesKey(c);
(key, init)
}

View File

@@ -10,6 +10,7 @@ pub struct BufferPointer(pub usize);
pub struct State {
table_index: TableIndex,
buffer_pointer: BufferPointer,
offset: AesIndex,
}
/// A structure representing the action to be taken by the generator after shifting its state.
@@ -25,24 +26,42 @@ pub enum ShiftAction {
impl State {
/// Creates a new state from the initial table index.
///
/// Note :
/// Note:
/// ------
///
/// The `table_index` input, is the __first__ table index that will be outputted on the next
/// The `table_index` input is the __first__ table index that will be outputted on the next
/// call to `increment`. Put differently, the current table index of the newly created state
/// is the predecessor of this one.
pub fn new(table_index: TableIndex) -> Self {
Self::with_offset(table_index, AesIndex(0))
}
/// Creates a new state from the initial table index and offset
///
/// The `offset` AesIndex will be applied to all AES encryption.
/// AES(Key, counter + offset).
/// This is to be used when one wants to start the AES
/// counter at a specific value but still output all the (2^128-1) values
///
/// Note:
/// ------
///
/// The `table_index` input is the __first__ table index that will be outputted on the next
/// call to `increment`. Put differently, the current table index of the newly created state
/// is the predecessor of this one.
pub fn with_offset(table_index: TableIndex, offset: AesIndex) -> Self {
// We ensure that the table index is not the first one, to prevent wrapping on `decrement`,
// and outputting `RefreshBatchAndOutputByte(AesIndex::MAX, ...)` on the first increment
// (which would lead to loading a non continuous batch).
// (which would lead to loading a non-continuous batch).
assert_ne!(table_index, TableIndex::FIRST);
State {
Self {
// To ensure that the first outputted table index is the proper one, we decrement the
// table index.
table_index: table_index.decremented(),
// To ensure that the first `ShiftAction` will be a `RefreshBatchAndOutputByte`, we set
// the buffer to the last allowed value.
buffer_pointer: BufferPointer(BYTES_PER_BATCH - 1),
offset,
}
}
@@ -52,7 +71,8 @@ impl State {
let total_batch_index = self.buffer_pointer.0 + shift;
if total_batch_index > BYTES_PER_BATCH - 1 {
self.buffer_pointer.0 = self.table_index.byte_index.0;
ShiftAction::RefreshBatchAndOutputByte(self.table_index.aes_index, self.buffer_pointer)
let index = AesIndex(self.table_index.aes_index.0.wrapping_add(self.offset.0));
ShiftAction::RefreshBatchAndOutputByte(index, self.buffer_pointer)
} else {
self.buffer_pointer.0 = total_batch_index;
ShiftAction::OutputByte(self.buffer_pointer)

Some files were not shown because too many files have changed in this diff Show More