refactor and split test_linearizer (#12001)

* refactor and split test_linearizer

* forget that file

* imports

* remove from docs

* test gen float4
This commit is contained in:
George Hotz
2025-09-04 10:53:07 -07:00
committed by GitHub
parent fb71d1e5fd
commit 09106e4aae
12 changed files with 638 additions and 626 deletions

View File

@@ -22,12 +22,6 @@ Group UOps into kernels.
Transforms the ast into an optimized ast. This is where BEAM search and heuristics live.
::: tinygrad.codegen.opt.get_optimized_ast
options:
members: false
show_labels: false
show_source: false
---
## tinygrad/codegen

229
test/opt/test_gen_float4.py Normal file
View File

@@ -0,0 +1,229 @@
import unittest
from tinygrad import Device, Tensor, dtypes
from tinygrad.uop.ops import UOp, Ops
from tinygrad.codegen.opt import Opt, OptOps
from tinygrad.shape.shapetracker import ShapeTracker, View
from tinygrad.engine.realize import get_program
from tinygrad.helpers import AMX
@unittest.skipUnless(Device[Device.DEFAULT].renderer.supports_float4, "need backends that support float4")
class TestFloat4(unittest.TestCase):
@staticmethod
def count_float4(uops: list[UOp], n=4):
return (len([uop for uop in uops if uop.op is Ops.LOAD and uop.dtype == dtypes.float.vec(n)]),
len([uop for uop in uops if uop.op is Ops.STORE and uop.src[1].dtype == dtypes.float.vec(n)]))
@staticmethod
def count_half4(uops: list[UOp]):
return (len([uop for uop in uops if uop.op is Ops.LOAD and uop.dtype == dtypes.half.vec(4)]),
len([uop for uop in uops if uop.op is Ops.STORE and uop.src[1].dtype == dtypes.half.vec(4)]))
def test_float4_basic(self):
a = Tensor.empty(2, 8).realize()
b = Tensor.empty(2, 8).realize()
c = a + b
s = c.schedule()[0]
realized_ast = s.ast
opts_to_apply = [Opt(op=OptOps.UPCAST, axis=0, arg=4)]
program = get_program(realized_ast, Device[Device.DEFAULT].renderer, opts=opts_to_apply)
assert TestFloat4.count_float4(program.uops) == (2, 1)
@unittest.skipIf(Device.DEFAULT in {"CPU", "LLVM"} and AMX, "CPU with AMX upcasts float up to size 16")
def test_float4_multidim(self):
a = Tensor.empty(2, 8).realize()
b = Tensor.empty(2, 8).realize()
c = a + b
s = c.schedule()[0]
uops = get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4), Opt(op=OptOps.UPCAST, axis=0, arg=2)]).uops
assert TestFloat4.count_float4(uops) == (4, 2)
@unittest.skipUnless(Device.DEFAULT in {"CPU", "LLVM"} and AMX, "Only CPU with AMX upcasts float up to size 16")
def test_float4_multidim_amx(self):
def kernel_for_shape(size, shift):
a = Tensor.empty(2, size).realize()
b = Tensor.empty(2, size).realize()
c = a + b
s = c.schedule()[0]
return get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4), Opt(op=OptOps.UPCAST, axis=0, arg=shift)]).uops
sizes = [12, 8, 16]
shifts = [3, 2, 4]
expected_upcast_size = [4, 8, 16]
expected_output = [(6,3), (2,1), (2,1)]
for i in range(len(sizes)):
assert TestFloat4.count_float4(kernel_for_shape(sizes[i], shifts[i]), expected_upcast_size[i]) == expected_output[i]
def test_float4_unaligned_load(self):
a = Tensor.empty(9).realize().shrink(((1, 9),))
b = Tensor.empty(9).realize().shrink(((1, 9),))
c = a + b
s = c.schedule()[0]
realized_ast = s.ast
opts_to_apply = [Opt(op=OptOps.UPCAST, axis=0, arg=4)]
program = get_program(realized_ast, Device[Device.DEFAULT].renderer, opts=opts_to_apply)
assert TestFloat4.count_float4(program.uops) == (0, 1)
@unittest.skipIf(Device.DEFAULT in {"CPU", "LLVM"} and AMX, "CPU with AMX upcasts float up to size 16")
def test_float4_multidim_unaligned_load(self):
a = Tensor.empty(2, 9).realize().shrink(((0, 2), (1, 9),))
b = Tensor.empty(2, 9).realize().shrink(((0, 2), (1, 9),))
c = a + b
s = c.schedule()[0]
uops = get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.UPCAST, axis=1, arg=2)]).uops
assert TestFloat4.count_float4(uops) == (0, 2)
@unittest.skipUnless(Device.DEFAULT in {"CPU", "LLVM"} and AMX, "Only CPU with AMX upcasts float up to size 16")
def test_float4_multidim_unaligned_load_amx(self):
def kernel_for_shape(size, shift):
a = Tensor.empty(2, size).realize().shrink(((0, 2), (1, size),))
b = Tensor.empty(2, size).realize().shrink(((0, 2), (1, size),))
c = a + b
s = c.schedule()[0]
return get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.UPCAST, axis=1, arg=shift)]).uops
sizes = [13, 9, 17]
shifts = [3, 2, 4]
expected_upcast_size = [4, 8, 16]
expected_output = [(0,3), (0,1), (0,1)]
for i in range(len(sizes)):
assert TestFloat4.count_float4(kernel_for_shape(sizes[i], shifts[i]), expected_upcast_size[i]) == expected_output[i]
def test_float4_sometimes_unaligned(self):
a = Tensor.empty(1, 1, 8).realize()
b = Tensor.empty(1, 1, 5).realize().shrink(((0, 1), (0, 1), (1, 5)))
c = a.conv2d(b)
# only the first and last conv dot products are aligned in a, and b is never aligned, so no
# float4 should be emitted (the reduce axis of size 4 is the float4 axis here)
s = c.schedule()[0]
uops = get_program(s.ast, opts=[Opt(op=OptOps.UNROLL, axis=0, arg=4)]).uops
assert TestFloat4.count_float4(uops) == (0, 0)
def test_float4_multidim_sometimes_unaligned(self):
a = Tensor.empty(1, 1, 7).realize()
b = Tensor.empty(1, 1, 5).realize().shrink(((0, 1), (0, 1), (1, 5)))
c = a.conv2d(b)
# the first conv dot product is aligned in a. If we upcast the output and reduce
# dimension, then we could do float4 for only that one set of loads, but we currently
# don't.
# UPDATE: now we do this fusion
s = c.schedule()[0]
uops = get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=0), Opt(op=OptOps.UNROLL, axis=0, arg=0)]).uops
assert TestFloat4.count_float4(uops) in {(0,1), (1,1)}
def test_float4_expand(self):
a = Tensor.empty(9).realize().shrink(((1, 9),))
b = Tensor.empty(2).realize().reshape((2, 1)).expand((2,4)).reshape((8,))
c = a + b
# we will upcast the top axis of sz 4. they should not be coalesced into float4,
# since the top axis is not contiguous.
s = c.schedule()[0]
uops = get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4)]).uops
assert TestFloat4.count_float4(uops) == (0, 1)
def test_float4_heterogeneous(self):
a = Tensor.empty(8).realize()
b = Tensor.empty(9).realize().shrink(((1, 9),))
c = a + b
# should float4 b but not a
s = c.schedule()[0]
uops = get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4)]).uops
assert TestFloat4.count_float4(uops) == (1, 1)
def test_half4_load_unrolled(self):
# from llama 7B shard 4 gpus
ast = UOp(Ops.SINK, dtypes.void, arg=None, src=(
UOp(Ops.STORE, dtypes.void, arg=None, src=(
UOp(Ops.VIEW, dtypes.float.ptr(96000), arg=ShapeTracker(views=(View(shape=(1, 3, 32000, 1), strides=(0, 32000, 1, 0), offset=0, mask=None, contiguous=True),)), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(96000), arg=0, src=()),)),
UOp(Ops.REDUCE_AXIS, dtypes.float, arg=(Ops.ADD, (3,)), src=(
UOp(Ops.CAST, dtypes.float, arg=None, src=(
UOp(Ops.MUL, dtypes.half, arg=None, src=(
UOp(Ops.LOAD, dtypes.half, arg=None, src=(
UOp(Ops.VIEW, dtypes.half.ptr(9216), arg=ShapeTracker(views=(View(shape=(1, 3, 32000, 1024), strides=(0, 4096, 0, 1), offset=0, mask=None, contiguous=False),)), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.half.ptr(9216), arg=1, src=()),)),)),
UOp(Ops.LOAD, dtypes.half, arg=None, src=(
UOp(Ops.VIEW, dtypes.half.ptr(32768000), arg=ShapeTracker(views=(View(shape=(1, 3, 32000, 1024), strides=(0, 0, 1024, 1), offset=0, mask=None, contiguous=False),)), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.half.ptr(32768000), arg=2, src=()),)),)),)),)),)),)),))
# TODO: fix this, expected might change but should be positive
for expected, opts in [
((7, 0), [Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.UPCAST, axis=0, arg=3), Opt(op=OptOps.UNROLL, axis=0, arg=4)]),
((5, 0), [Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.UNROLL, axis=0, arg=4)]),
((2, 0), [Opt(op=OptOps.UNROLL, axis=0, arg=4)]),
]:
program = get_program(ast, Device[Device.DEFAULT].renderer, opts=opts)
count = TestFloat4.count_half4(program.uops)
assert count == expected, f"{count=}, {expected=}"
@unittest.skip("this doesn't happen anymore")
def test_float4_acc(self):
# from float32 stable diffusion red tinybox
ast = UOp(Ops.SINK, dtypes.void, arg=None, src=(
UOp(Ops.STORE, dtypes.void, arg=None, src=(
UOp(Ops.VIEW, dtypes.float.ptr(33554432), arg=ShapeTracker(views=(View(shape=(1, 1, 128, 512, 512, 1, 1, 1), strides=(0, 0, 262144, 512, 1, 0, 0, 0), offset=0, mask=None, contiguous=True),)), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(33554432), arg=0, src=()),)),
UOp(Ops.ADD, dtypes.float, arg=None, src=(
UOp(Ops.REDUCE_AXIS, dtypes.float, arg=(Ops.ADD, (5, 6, 7)), src=(
UOp(Ops.MUL, dtypes.float, arg=None, src=(
UOp(Ops.LOAD, dtypes.float, arg=None, src=(
UOp(Ops.VIEW, dtypes.float.ptr(67108864), arg=ShapeTracker(views=(View(shape=(1, 1, 1, 256, 4, 514, 4, 514), strides=(0, 0, 0, 262144, 0, 512, 0, 1), offset=-513, mask=((0, 1), (0, 1), (0, 1), (0, 256), (0, 4), (1, 513), (0, 4), (1, 513)), contiguous=False), View(shape=(1, 1, 128, 512, 512, 256, 3, 3), strides=(0, 0, 0, 2056, 1, 4227136, 1058840, 515), offset=0, mask=None, contiguous=False))), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(67108864), arg=1, src=()),)),)),
UOp(Ops.LOAD, dtypes.float, arg=None, src=(
UOp(Ops.VIEW, dtypes.float.ptr(294912), arg=ShapeTracker(views=(View(shape=(1, 1, 128, 512, 512, 256, 3, 3), strides=(0, 0, 2304, 0, 0, 9, 3, 1), offset=0, mask=None, contiguous=False),)), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(294912), arg=2, src=()),)),)),)),)),
UOp(Ops.LOAD, dtypes.float, arg=None, src=(
UOp(Ops.VIEW, dtypes.float.ptr(128), arg=ShapeTracker(views=(View(shape=(1, 1, 128, 512, 512, 1, 1, 1), strides=(0, 0, 1, 0, 0, 0, 0, 0), offset=0, mask=None, contiguous=False),)), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(128), arg=3, src=()),)),)),)),)),))
for expected, opts in [
(1, [Opt(op=OptOps.UPCAST, axis=2, arg=4)]),
(4, [Opt(op=OptOps.UPCAST, axis=2, arg=4), Opt(op=OptOps.UPCAST, axis=0, arg=4)]),
]:
program = get_program(ast, Device[Device.DEFAULT].renderer, opts=opts)
count = len([uop for uop in program.uops if uop.op is Ops.DEFINE_REG and uop.dtype == dtypes.float.vec(4)])
assert count == expected, f"{count=}, {expected=}"
@unittest.skip("this doesn't happen anymore")
def test_float2_acc(self):
# from resnet
ast = UOp(Ops.SINK, dtypes.void, arg=None, src=(
UOp(Ops.STORE, dtypes.void, arg=None, src=(
UOp(Ops.VIEW, dtypes.half.ptr(212926464), arg=ShapeTracker(views=(View(shape=(1, 256, 1, 64, 1, 114, 1, 114), strides=(0, 831744, 0, 12996, 0, 114, 0, 1), offset=0, mask=None, contiguous=True),)), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.half.ptr(212926464), arg=0, src=()),)),
UOp(Ops.CAST, dtypes.half, arg=None, src=(
UOp(Ops.REDUCE_AXIS, dtypes.float, arg=(Ops.ADD, (4, 6)), src=(
UOp(Ops.CAST, dtypes.float, arg=None, src=(
UOp(Ops.LOAD, dtypes.half, arg=None, src=(
UOp(Ops.VIEW, dtypes.half.ptr(462422016), arg=ShapeTracker(views=(View(shape=(256, 64, 3, 56, 2, 3, 56, 2), strides=(1806336, 28224, 3, 504, 0, 1, 9, 0), offset=0, mask=((0, 256), (0, 64), (0, 3), (0, 56), (0, 1), (0, 3), (0, 56), (0, 1)), contiguous=False), View(shape=(256, 64, 3, 115, 3, 115), strides=(7225344, 112896, 37632, 336, 112, 1), offset=0, mask=((0, 256), (0, 64), (0, 3), (0, 112), (0, 3), (0, 112)), contiguous=False), View(shape=(256, 64, 456, 456), strides=(7617600, 119025, 345, 1), offset=0, mask=((0, 256), (0, 64), (0, 345), (0, 345)), contiguous=False), View(shape=(1, 256, 1, 64, 4, 114, 4, 114), strides=(0, 13307904, 0, 207936, 51984, 456, 114, 1), offset=0, mask=None, contiguous=True))), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.half.ptr(462422016), arg=1, src=()),)),)),)),)),)),)),))
for expected, opts in [
(16, [Opt(op=OptOps.LOCAL, axis=1, arg=16), Opt(op=OptOps.UPCAST, axis=1, arg=0), Opt(op=OptOps.UPCAST, axis=2, arg=2), Opt(op=OptOps.LOCAL, axis=2, arg=3), Opt(op=OptOps.UPCAST, axis=3, arg=4)]), # noqa: E501
(4, [Opt(op=OptOps.LOCAL, axis=1, arg=16), Opt(op=OptOps.UPCAST, axis=1, arg=0), Opt(op=OptOps.UPCAST, axis=2, arg=2)]),
]:
program = get_program(ast, Device[Device.DEFAULT].renderer, opts=opts)
count = len([uop for uop in program.uops if uop.op is Ops.DEFINE_REG and uop.dtype == dtypes.float.vec(2)])
assert count == expected, f"{count=}, {expected=}"
if __name__ == '__main__':
unittest.main()

View File

@@ -0,0 +1,326 @@
import unittest
from tinygrad import Device, Tensor, dtypes
from tinygrad.helpers import CI
from tinygrad.codegen.opt import Opt, OptOps, KernelOptError
# TODO: write a clean version of this
from test.test_linearizer import helper_linearizer_opt
class TestKernelOpts(unittest.TestCase):
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_local, "test requires locals")
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_shared, "test requires shared")
def test_local_and_grouped_reduce(self):
N = 128
Tensor.manual_seed(1882)
a = Tensor.rand(4, 4, N, N)
b = Tensor.rand(4, 4, N)
r = (b.sqrt() + ((a+1).sum(axis=3).exp()))
helper_linearizer_opt(r, [
[Opt(OptOps.LOCAL, 0, 2)],
[Opt(OptOps.LOCAL, 0, 8)],
[Opt(OptOps.LOCAL, 0, 16)], # Checking how it works with locals
[Opt(OptOps.GROUPTOP, 0, 2)],
[Opt(OptOps.GROUPTOP, 0, 32)],
[Opt(OptOps.GROUPTOP, 0, 64)], # Checking how it works with grouped reduce
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.GROUPTOP, 0, 2)],
[Opt(OptOps.LOCAL, 0, 16), Opt(OptOps.GROUPTOP, 0, 16)],
[Opt(OptOps.LOCAL, 0, 32), Opt(OptOps.GROUPTOP, 0, 2)],
# Checking how it works with locals + grouped reduce
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.GROUPTOP, 0, 64)],
# Checking how it works with locals + grouped reduce + upcasts
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.GROUPTOP, 0, 2), Opt(OptOps.UPCAST, 0, 8), Opt(OptOps.UNROLL, 1, 4)],
# many local + many group
[Opt(OptOps.GROUP, 0, 2)] * 4,
[Opt(OptOps.LOCAL, 0, 2)] * 4,
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.GROUP, 0, 2)] * 4,
])
def test_upcasts(self):
N = 16
Tensor.manual_seed(1772)
a = Tensor.rand(N, N)
b = Tensor.rand(N, N)
r = (a+b).sqrt() * ((a+1).exp())
helper_linearizer_opt(r, [
[Opt(OptOps.UPCAST, 0, 2)],
[Opt(OptOps.UPCAST, 0, 4)],
[Opt(OptOps.UPCAST, 0, 8)], # Checking how it works with upcasts
])
def test_full_upcast(self):
Tensor.manual_seed(1772)
a = Tensor.rand(4)
b = Tensor.rand(4)
r = (a+b).sqrt() * ((a+1).exp())
helper_linearizer_opt(r, [
[Opt(OptOps.UPCAST, 0, 4)], # Checking how it works with upcasts
])
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_local, "test requires locals")
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_shared, "test requires shared")
def test_matmul(self):
N = 128
Tensor.manual_seed(1552)
a = Tensor.rand(N, N)
b = Tensor.rand(N, N)
r = a@b
helper_linearizer_opt(r, [
[Opt(OptOps.UPCAST, 0, 2)],
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 4)], # Checking how it works with upcasts
[Opt(OptOps.LOCAL, 0, 2)],
[Opt(OptOps.LOCAL, 1, 32)],
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 1, 4)],
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 1, 32)],
[Opt(OptOps.LOCAL, 0, 16), Opt(OptOps.LOCAL, 1, 8)], # Checking how it works with locals
[Opt(OptOps.GROUPTOP, 0, 2)],
[Opt(OptOps.GROUPTOP, 0, 32)],
[Opt(OptOps.GROUPTOP, 0, 32), Opt(OptOps.UNROLL, 0, 4)], # Checking how it works with grouped_reduce
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.LOCAL, 1, 2), Opt(OptOps.GROUPTOP, 0, 32)],
[Opt(OptOps.LOCAL, 0, 8), Opt(OptOps.GROUPTOP, 0, 32)],
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 0, 8), Opt(OptOps.GROUPTOP, 0, 4)], # Checking how it works with local+grouped_reduce
# Checking all together
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.GROUPTOP, 0, 8), Opt(OptOps.UNROLL, 0, 4), Opt(OptOps.UPCAST, 0, 4),
Opt(OptOps.UPCAST, 1, 2)],
# Full global upcast + local
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.GROUPTOP, 0, 8), Opt(OptOps.UNROLL, 0, 4), Opt(OptOps.UPCAST, 0, 8)],
])
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_local, "test requires locals")
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_shared, "test requires shared")
def test_double_reduce(self):
N = 128
Tensor.manual_seed(1552)
a = Tensor.rand(8, N, 8, N)
r = a.sum(axis=(1,3))
helper_linearizer_opt(r, [
# openCL / GPU=1 is 256 max threads
[Opt(OptOps.GROUPTOP, 0, 2)], [Opt(OptOps.GROUPTOP, 0, 32)],
[Opt(OptOps.GROUPTOP, 1, 2)], [Opt(OptOps.GROUPTOP, 1, 32)], # Checking how it works with 1 grouped_reduce.
[Opt(OptOps.GROUPTOP, 0, 2), Opt(OptOps.GROUPTOP, 1, 2)],
[Opt(OptOps.GROUPTOP, 0, 16), Opt(OptOps.GROUPTOP, 1, 2)],
[Opt(OptOps.GROUPTOP, 0, 4), Opt(OptOps.GROUPTOP, 1, 64)], # Checking how it works with 2 grouped_reduces.
[Opt(OptOps.GROUPTOP, 0, 16), Opt(OptOps.GROUPTOP, 1, 2), Opt(OptOps.UNROLL, 0, 4)],
[Opt(OptOps.GROUPTOP, 0, 2), Opt(OptOps.GROUPTOP, 1, 32), Opt(OptOps.UNROLL, 2, 4)], # Checking how it works with 2 grouped_reduces + upcasts.
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 1, 4), Opt(OptOps.GROUPTOP, 0, 4), Opt(OptOps.GROUPTOP, 1, 4)],
# Checking how it works with 2 grouped_reduces + upcasts + locals.
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 1, 4), Opt(OptOps.GROUPTOP, 0, 2), Opt(OptOps.GROUPTOP, 1, 32), Opt(OptOps.UNROLL, 1, 4)],
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.LOCAL, 1, 2), Opt(OptOps.GROUPTOP, 0, 8), Opt(OptOps.GROUPTOP, 1, 4), Opt(OptOps.UPCAST, 0, 2)],
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.LOCAL, 1, 2), Opt(OptOps.GROUPTOP, 0, 8), Opt(OptOps.GROUPTOP, 1, 4), Opt(OptOps.UPCAST, 0, 2),
Opt(OptOps.UNROLL, 0, 4), Opt(OptOps.UNROLL, 1, 4)], # Checking how it works with 2 grouped_reduces + upcasts + locals.
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 1, 4), Opt(OptOps.GROUPTOP, 0, 4), Opt(OptOps.GROUPTOP, 1, 4), Opt(OptOps.UPCAST, 0, 2),
Opt(OptOps.UPCAST, 0, 2)], # No globals
])
@unittest.skipUnless(Device[Device.DEFAULT].renderer.tensor_cores, "test requires tensor cores")
@unittest.skipUnless(any(tc.dtype_in == tc.dtype_out == dtypes.half for tc in Device[Device.DEFAULT].renderer.tensor_cores),
"test requires tensor cores with accumulation in half") # testing with half suffices.
def test_tensor_core_opts(self):
N = 128
Tensor.manual_seed(1552)
a, b = Tensor.rand(N, N, dtype=dtypes.half), Tensor.rand(N, N, dtype=dtypes.half)
r = a.matmul(b, dtype=dtypes.half)
atol, rtol = 0.25, 0.01
helper_linearizer_opt(r, [
[],
[Opt(OptOps.UPCAST, 0, 4)],
[Opt(OptOps.UPCAST, 1, 4)],
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 4)], # check upcasts
[Opt(OptOps.UNROLL, 0, 2)], # check unroll
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UNROLL, 0, 2)], # check combo of unroll and local
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 4), Opt(OptOps.UNROLL, 0, 2)],
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 4), Opt(OptOps.UNROLL, 0, 4)],
[Opt(OptOps.UPCAST, 1, 4), Opt(OptOps.UPCAST, 0, 4)], # check permutations
[Opt(OptOps.UNROLL, 0, 2), Opt(OptOps.UPCAST, 0, 4)],
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UNROLL, 0, 2), Opt(OptOps.UPCAST, 1, 4)],
[Opt(OptOps.UNROLL, 0, 2), Opt(OptOps.UPCAST, 1, 4), Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UNROLL, 0, 4)],
], apply_tc=True, atol=atol, rtol=rtol)
@unittest.skipUnless(Device[Device.DEFAULT].renderer.tensor_cores, "test requires tensor cores")
@unittest.skipUnless(any(tc.dtype_in == tc.dtype_out == dtypes.half for tc in Device[Device.DEFAULT].renderer.tensor_cores),
"test requires tensor cores with accumulation in half") # testing with half suffices.
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_local, "test requires locals")
def test_tensor_core_opts_locals(self):
N = 128
Tensor.manual_seed(1552)
a, b = Tensor.rand(N, N, dtype=dtypes.half), Tensor.rand(N, N, dtype=dtypes.half)
r = a.matmul(b, dtype=dtypes.half)
atol, rtol = 0.25, 0.01
helper_linearizer_opt(r, [
[Opt(OptOps.UNROLL, 0, 0)], # check full unroll of reduce with locals
[Opt(OptOps.LOCAL, 0, 4)], # check local
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 4), Opt(OptOps.UNROLL, 0, 4), Opt(OptOps.LOCAL, 0, 2)],
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.UPCAST, 1, 4), Opt(OptOps.UNROLL, 0, 2), Opt(OptOps.UPCAST, 0, 4)],
], apply_tc=True, atol=atol, rtol=rtol)
@unittest.skipUnless(Device[Device.DEFAULT].renderer.tensor_cores, "test requires tensor cores")
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_local, "test requires locals")
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_shared, "test requires shared memory")
@unittest.skipUnless(any(tc.dtype_in == tc.dtype_out == dtypes.half for tc in Device[Device.DEFAULT].renderer.tensor_cores),
"test requires tensor cores with accumulation in half") # testing with half suffices.
# NOTE: the METAL test is broken, likely due to a compiler bug. passes on CI with -O0 and with default opt level locally on M3
@unittest.skipIf(Device.DEFAULT == "METAL", "broken for METAL")
@unittest.skip("feature was removed")
def test_tensor_core_opts_group(self):
N = 128
Tensor.manual_seed(1552)
a, b = Tensor.rand(N, N, dtype=dtypes.half), Tensor.rand(N, N, dtype=dtypes.half)
r = a.matmul(b, dtype=dtypes.half)
atol, rtol = 0.25, 0.01
helper_linearizer_opt(r, [
[Opt(OptOps.GROUP, 0, 2)],
[Opt(OptOps.GROUPTOP, 0, 4)],
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.GROUP, 0, 2)],
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.GROUP, 0, 2)],
[Opt(OptOps.UNROLL, 0, 4), Opt(OptOps.GROUP, 0, 2)],
[Opt(OptOps.UPCAST, 0, 2), Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.GROUP, 0, 2)],
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.GROUPTOP, 0, 8), Opt(OptOps.UNROLL, 0, 2), Opt(OptOps.UPCAST, 1, 2)],
], apply_tc=True, atol=atol, rtol=rtol)
def test_padto_matmul(self):
if (CI and Device.DEFAULT in ["AMD", "NV", "CUDA"]):
self.skipTest("super slow on CUDA and AMD because of the big grid dims")
N = 17 * 17
Tensor.manual_seed(289)
a = Tensor.rand(N, N)
b = Tensor.rand(N, N)
helper_linearizer_opt(a@b, [
[Opt(OptOps.PADTO, 0, 32)],
[Opt(OptOps.PADTO, 1, 32)],
[Opt(OptOps.PADTO, 2, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.PADTO, 1, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.PADTO, 1, 32), Opt(OptOps.PADTO, 2, 32)],
# can optimize further post PADTO
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.PADTO, 1, 32), Opt(OptOps.UPCAST, 0, 2), Opt(OptOps.UPCAST, 1, 2),],
])
def test_padto_upcasted_not_ok(self):
N = 4
a = Tensor.rand(N, N)
b = Tensor.rand(N, N)
helper_linearizer_opt(a@b, [
[Opt(OptOps.UPCAST, 0, 0)],
[Opt(OptOps.UPCAST, 1, 0)],
[Opt(OptOps.UNROLL, 0, 0)],
[Opt(OptOps.PADTO, 0, 8)],
[Opt(OptOps.PADTO, 1, 8)],
[Opt(OptOps.PADTO, 2, 8)],
])
with self.assertRaises(KernelOptError):
helper_linearizer_opt(a@b, [[Opt(OptOps.UPCAST, 0, 0), Opt(OptOps.PADTO, 1, 8)]])
with self.assertRaises(KernelOptError):
helper_linearizer_opt(a@b, [[Opt(OptOps.UPCAST, 1, 0), Opt(OptOps.PADTO, 1, 8)]])
with self.assertRaises(KernelOptError):
helper_linearizer_opt(a@b, [[Opt(OptOps.UNROLL, 0, 0), Opt(OptOps.PADTO, 2, 8)]])
def test_padto_sum_ok(self):
N = 18 * 18
# NOTE: this setup prevents 17 * 17 contiguous merged into one dimension
a = Tensor.rand(N, N).realize().shrink(((0, 17), (0, 17))) * 100
b = (Tensor.rand(N, N) < 0.5).realize().shrink(((0, 17), (0, 17)))
helper_linearizer_opt(a.sum(0), [
[Opt(OptOps.PADTO, 0, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.UPCAST, 0, 8),],
])
helper_linearizer_opt(a.sum(1), [
[Opt(OptOps.PADTO, 0, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.UPCAST, 0, 8),],
])
# can pad sum reduce axis if there's no unsafe ops prior to sum
for axis in (0, 1):
helper_linearizer_opt(a.sum(), [[Opt(OptOps.PADTO, axis, 32)],])
helper_linearizer_opt(a.sum(0), [[Opt(OptOps.PADTO, axis, 32)],])
helper_linearizer_opt(b.sum(), [[Opt(OptOps.PADTO, axis, 32)],])
helper_linearizer_opt(b.sum(0), [[Opt(OptOps.PADTO, axis, 32)],])
helper_linearizer_opt(b.sum(dtype=dtypes.bool), [[Opt(OptOps.PADTO, axis, 32)],])
# TODO: why?
if Device.DEFAULT != "WEBGPU":
helper_linearizer_opt(b.sum(0, dtype=dtypes.bool), [[Opt(OptOps.PADTO, axis, 32)],])
helper_linearizer_opt(b.sum(1, dtype=dtypes.bool), [[Opt(OptOps.PADTO, axis, 32)],])
# having unsafe ops after sum is fine
helper_linearizer_opt(a.sum().exp(), [[Opt(OptOps.PADTO, 0, 32)],])
helper_linearizer_opt(a.sum(0).exp(), [[Opt(OptOps.PADTO, 1, 32)],])
def test_padto_sum_not_ok(self):
N = 18 * 18
# NOTE: this setup prevents 17 * 17 contiguous merged into one dimension
a = Tensor.rand(N, N).shrink(((0, 17), (0, 17))).exp()
# exp is not safe to pad
with self.assertRaises(KernelOptError):
helper_linearizer_opt(a.exp().sum(), [[Opt(OptOps.PADTO, 0, 32)],])
with self.assertRaises(KernelOptError):
helper_linearizer_opt(a.exp().sum(0), [[Opt(OptOps.PADTO, 1, 32)],])
b = a < 1
# lt is not safe to pad
with self.assertRaises(KernelOptError):
helper_linearizer_opt(b.sum(), [[Opt(OptOps.PADTO, 0, 32)],])
with self.assertRaises(KernelOptError):
helper_linearizer_opt(b.sum(0), [[Opt(OptOps.PADTO, 1, 32)],])
def test_padto_max(self):
N = 18 * 18
# NOTE: this setup prevents 17 * 17 contiguous merged into one axis
a = -Tensor.rand(N, N).shrink(((0, 17), (0, 17))) * 100
helper_linearizer_opt(a.max(0), [
[Opt(OptOps.PADTO, 0, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.UPCAST, 0, 8),],
])
helper_linearizer_opt(a.max(1), [
[Opt(OptOps.PADTO, 0, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.UPCAST, 0, 8),],
])
# cannot pad max kernel on reduce
with self.assertRaises(KernelOptError):
helper_linearizer_opt(a.max(), [[Opt(OptOps.PADTO, 0, 32)],])
with self.assertRaises(KernelOptError):
helper_linearizer_opt(a.max(0), [[Opt(OptOps.PADTO, 1, 32)],])
def test_padto_where(self):
Tensor.manual_seed(0)
N = 17 * 17
a = (Tensor.randn(N, N).realize().max(axis=0, keepdim=True) > 1).where(1, 0)
helper_linearizer_opt(a.max(0), [
[Opt(OptOps.PADTO, 0, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.UPCAST, 0, 8),],
])
def test_padto_where_multioutput(self):
Tensor.manual_seed(0)
N = 17 * 17
r = Tensor.randn(N, N).realize().max(axis=0, keepdim=True) > 1
a0 = r.where(1, 0)
a1 = r.where(2, 0)
helper_linearizer_opt([a0.max(0), a1.max(0)], [
[Opt(OptOps.PADTO, 0, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.UPCAST, 0, 8),],
])
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_local, "test requires locals")
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_shared, "test requires shared")
def test_color_shapes_with_local(self):
N = 32
Tensor.manual_seed(1552)
a = Tensor.rand(N, N)
b = Tensor.rand(N, N)
r = a@b
opts_shapes = [
([Opt(OptOps.LOCAL, 0, 2)], [("blue",16),("blue",32),("cyan",2),("red",32)]),
([Opt(OptOps.LOCAL, 0, 2),Opt(OptOps.GROUP, 0, 2)], [("blue",16),("blue",32),("cyan",2),("green",2),("red",16)]),
# check to ensure local_dims are stable for full UNROLL of the first reduce
([Opt(OptOps.LOCAL, 0, 2),Opt(OptOps.UNROLL, 0, 0)], [("blue",16),("blue",32),("cyan",2),("magenta",32)]),
([Opt(OptOps.UNROLL, 0, 0),Opt(OptOps.LOCAL, 0, 2)], [("blue",16),("blue",32),("cyan",2),("magenta",32)]),
# check behavior for full UNROLL on an existing GROUP
([Opt(OptOps.LOCAL, 0, 2),Opt(OptOps.GROUP, 0, 0),Opt(OptOps.UNROLL, 0, 2)], [("blue",16),("blue",32),("cyan",2),("green",16),("magenta",2)]),
([Opt(OptOps.LOCAL, 0, 2),Opt(OptOps.GROUP, 0, 0),Opt(OptOps.UNROLL, 0, 0)], [("blue",16),("blue",32),("cyan",2),("magenta",32)]),
([Opt(OptOps.GROUP, 0, 0),Opt(OptOps.LOCAL, 0, 2),Opt(OptOps.UNROLL, 0, 0)], [("blue",16),("blue",32),("cyan",2),("magenta",32)]),
([Opt(OptOps.GROUP, 0, 2),Opt(OptOps.UNROLL, 0, 0)], [("blue",32),("blue",32),("red",16),("magenta",2)]),
]
helper_linearizer_opt(r, [x[0] for x in opts_shapes], color_sizes=[x[1] for x in opts_shapes])
if __name__ == '__main__':
unittest.main()

View File

@@ -723,230 +723,6 @@ class TestLinearizer(unittest.TestCase):
out = [u for u in get_program(k.ast, k.opts, k.applied_opts).uops if u.op is Ops.STORE][0]
assert out.src[1].op is Ops.VECTORIZE and out.src[1].dtype.count != 1
@unittest.skipUnless(Device[Device.DEFAULT].renderer.supports_float4, "need backends that support float4")
class TestFloat4(unittest.TestCase):
@staticmethod
def count_float4(uops: list[UOp], n=4):
return (len([uop for uop in uops if uop.op is Ops.LOAD and uop.dtype == dtypes.float.vec(n)]),
len([uop for uop in uops if uop.op is Ops.STORE and uop.src[1].dtype == dtypes.float.vec(n)]))
@staticmethod
def count_half4(uops: list[UOp]):
return (len([uop for uop in uops if uop.op is Ops.LOAD and uop.dtype == dtypes.half.vec(4)]),
len([uop for uop in uops if uop.op is Ops.STORE and uop.src[1].dtype == dtypes.half.vec(4)]))
def test_float4_basic(self):
a = Tensor.empty(2, 8).realize()
b = Tensor.empty(2, 8).realize()
c = a + b
s = c.schedule()[0]
realized_ast = s.ast
opts_to_apply = [Opt(op=OptOps.UPCAST, axis=0, arg=4)]
realized_ast = realized_ast.replace(arg=KernelInfo(opts_to_apply=tuple(opts_to_apply)))
program = get_program(realized_ast, Device[Device.DEFAULT].renderer)
assert TestFloat4.count_float4(program.uops) == (2, 1)
@unittest.skipIf(Device.DEFAULT in {"CPU", "LLVM"} and AMX, "CPU with AMX upcasts float up to size 16")
def test_float4_multidim(self):
a = Tensor.empty(2, 8).realize()
b = Tensor.empty(2, 8).realize()
c = a + b
s = c.schedule()[0]
uops = get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4), Opt(op=OptOps.UPCAST, axis=0, arg=2)]).uops
assert TestFloat4.count_float4(uops) == (4, 2)
@unittest.skipUnless(Device.DEFAULT in {"CPU", "LLVM"} and AMX, "Only CPU with AMX upcasts float up to size 16")
def test_float4_multidim_amx(self):
def kernel_for_shape(size, shift):
a = Tensor.empty(2, size).realize()
b = Tensor.empty(2, size).realize()
c = a + b
s = c.schedule()[0]
return get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4), Opt(op=OptOps.UPCAST, axis=0, arg=shift)]).uops
sizes = [12, 8, 16]
shifts = [3, 2, 4]
expected_upcast_size = [4, 8, 16]
expected_output = [(6,3), (2,1), (2,1)]
for i in range(len(sizes)):
assert TestFloat4.count_float4(kernel_for_shape(sizes[i], shifts[i]), expected_upcast_size[i]) == expected_output[i]
def test_float4_unaligned_load(self):
a = Tensor.empty(9).realize().shrink(((1, 9),))
b = Tensor.empty(9).realize().shrink(((1, 9),))
c = a + b
s = c.schedule()[0]
realized_ast = s.ast
opts_to_apply = [Opt(op=OptOps.UPCAST, axis=0, arg=4)]
realized_ast = realized_ast.replace(arg=KernelInfo(opts_to_apply=tuple(opts_to_apply)))
program = get_program(realized_ast, Device[Device.DEFAULT].renderer)
assert TestFloat4.count_float4(program.uops) == (0, 1)
@unittest.skipIf(Device.DEFAULT in {"CPU", "LLVM"} and AMX, "CPU with AMX upcasts float up to size 16")
def test_float4_multidim_unaligned_load(self):
a = Tensor.empty(2, 9).realize().shrink(((0, 2), (1, 9),))
b = Tensor.empty(2, 9).realize().shrink(((0, 2), (1, 9),))
c = a + b
s = c.schedule()[0]
uops = get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.UPCAST, axis=1, arg=2)]).uops
assert TestFloat4.count_float4(uops) == (0, 2)
@unittest.skipUnless(Device.DEFAULT in {"CPU", "LLVM"} and AMX, "Only CPU with AMX upcasts float up to size 16")
def test_float4_multidim_unaligned_load_amx(self):
def kernel_for_shape(size, shift):
a = Tensor.empty(2, size).realize().shrink(((0, 2), (1, size),))
b = Tensor.empty(2, size).realize().shrink(((0, 2), (1, size),))
c = a + b
s = c.schedule()[0]
return get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.UPCAST, axis=1, arg=shift)]).uops
sizes = [13, 9, 17]
shifts = [3, 2, 4]
expected_upcast_size = [4, 8, 16]
expected_output = [(0,3), (0,1), (0,1)]
for i in range(len(sizes)):
assert TestFloat4.count_float4(kernel_for_shape(sizes[i], shifts[i]), expected_upcast_size[i]) == expected_output[i]
def test_float4_sometimes_unaligned(self):
a = Tensor.empty(1, 1, 8).realize()
b = Tensor.empty(1, 1, 5).realize().shrink(((0, 1), (0, 1), (1, 5)))
c = a.conv2d(b)
# only the first and last conv dot products are aligned in a, and b is never aligned, so no
# float4 should be emitted (the reduce axis of size 4 is the float4 axis here)
s = c.schedule()[0]
uops = get_program(s.ast, opts=[Opt(op=OptOps.UNROLL, axis=0, arg=4)]).uops
assert TestFloat4.count_float4(uops) == (0, 0)
def test_float4_multidim_sometimes_unaligned(self):
a = Tensor.empty(1, 1, 7).realize()
b = Tensor.empty(1, 1, 5).realize().shrink(((0, 1), (0, 1), (1, 5)))
c = a.conv2d(b)
# the first conv dot product is aligned in a. If we upcast the output and reduce
# dimension, then we could do float4 for only that one set of loads, but we currently
# don't.
# UPDATE: now we do this fusion
s = c.schedule()[0]
uops = get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=0), Opt(op=OptOps.UNROLL, axis=0, arg=0)]).uops
assert TestFloat4.count_float4(uops) in {(0,1), (1,1)}
def test_float4_expand(self):
a = Tensor.empty(9).realize().shrink(((1, 9),))
b = Tensor.empty(2).realize().reshape((2, 1)).expand((2,4)).reshape((8,))
c = a + b
# we will upcast the top axis of sz 4. they should not be coalesced into float4,
# since the top axis is not contiguous.
s = c.schedule()[0]
uops = get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4)]).uops
assert TestFloat4.count_float4(uops) == (0, 1)
def test_float4_heterogeneous(self):
a = Tensor.empty(8).realize()
b = Tensor.empty(9).realize().shrink(((1, 9),))
c = a + b
# should float4 b but not a
s = c.schedule()[0]
uops = get_program(s.ast, opts=[Opt(op=OptOps.UPCAST, axis=0, arg=4)]).uops
assert TestFloat4.count_float4(uops) == (1, 1)
def test_half4_load_unrolled(self):
# from llama 7B shard 4 gpus
ast = UOp(Ops.SINK, dtypes.void, arg=None, src=(
UOp(Ops.STORE, dtypes.void, arg=None, src=(
UOp(Ops.VIEW, dtypes.float.ptr(96000), arg=ShapeTracker(views=(View(shape=(1, 3, 32000, 1), strides=(0, 32000, 1, 0), offset=0, mask=None, contiguous=True),)), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(96000), arg=0, src=()),)),
UOp(Ops.REDUCE_AXIS, dtypes.float, arg=(Ops.ADD, (3,)), src=(
UOp(Ops.CAST, dtypes.float, arg=None, src=(
UOp(Ops.MUL, dtypes.half, arg=None, src=(
UOp(Ops.LOAD, dtypes.half, arg=None, src=(
UOp(Ops.VIEW, dtypes.half.ptr(9216), arg=ShapeTracker(views=(View(shape=(1, 3, 32000, 1024), strides=(0, 4096, 0, 1), offset=0, mask=None, contiguous=False),)), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.half.ptr(9216), arg=1, src=()),)),)),
UOp(Ops.LOAD, dtypes.half, arg=None, src=(
UOp(Ops.VIEW, dtypes.half.ptr(32768000), arg=ShapeTracker(views=(View(shape=(1, 3, 32000, 1024), strides=(0, 0, 1024, 1), offset=0, mask=None, contiguous=False),)), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.half.ptr(32768000), arg=2, src=()),)),)),)),)),)),)),))
# TODO: fix this, expected might change but should be positive
for expected, opts in [
((7, 0), [Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.UPCAST, axis=0, arg=3), Opt(op=OptOps.UNROLL, axis=0, arg=4)]),
((5, 0), [Opt(op=OptOps.UPCAST, axis=1, arg=4), Opt(op=OptOps.UNROLL, axis=0, arg=4)]),
((2, 0), [Opt(op=OptOps.UNROLL, axis=0, arg=4)]),
]:
ast = ast.replace(arg=KernelInfo(opts_to_apply=tuple(opts)))
program = get_program(ast, Device[Device.DEFAULT].renderer)
count = TestFloat4.count_half4(program.uops)
assert count == expected, f"{count=}, {expected=}"
@unittest.skip("this doesn't happen anymore")
def test_float4_acc(self):
# from float32 stable diffusion red tinybox
ast = UOp(Ops.SINK, dtypes.void, arg=None, src=(
UOp(Ops.STORE, dtypes.void, arg=None, src=(
UOp(Ops.VIEW, dtypes.float.ptr(33554432), arg=ShapeTracker(views=(View(shape=(1, 1, 128, 512, 512, 1, 1, 1), strides=(0, 0, 262144, 512, 1, 0, 0, 0), offset=0, mask=None, contiguous=True),)), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(33554432), arg=0, src=()),)),
UOp(Ops.ADD, dtypes.float, arg=None, src=(
UOp(Ops.REDUCE_AXIS, dtypes.float, arg=(Ops.ADD, (5, 6, 7)), src=(
UOp(Ops.MUL, dtypes.float, arg=None, src=(
UOp(Ops.LOAD, dtypes.float, arg=None, src=(
UOp(Ops.VIEW, dtypes.float.ptr(67108864), arg=ShapeTracker(views=(View(shape=(1, 1, 1, 256, 4, 514, 4, 514), strides=(0, 0, 0, 262144, 0, 512, 0, 1), offset=-513, mask=((0, 1), (0, 1), (0, 1), (0, 256), (0, 4), (1, 513), (0, 4), (1, 513)), contiguous=False), View(shape=(1, 1, 128, 512, 512, 256, 3, 3), strides=(0, 0, 0, 2056, 1, 4227136, 1058840, 515), offset=0, mask=None, contiguous=False))), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(67108864), arg=1, src=()),)),)),
UOp(Ops.LOAD, dtypes.float, arg=None, src=(
UOp(Ops.VIEW, dtypes.float.ptr(294912), arg=ShapeTracker(views=(View(shape=(1, 1, 128, 512, 512, 256, 3, 3), strides=(0, 0, 2304, 0, 0, 9, 3, 1), offset=0, mask=None, contiguous=False),)), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(294912), arg=2, src=()),)),)),)),)),
UOp(Ops.LOAD, dtypes.float, arg=None, src=(
UOp(Ops.VIEW, dtypes.float.ptr(128), arg=ShapeTracker(views=(View(shape=(1, 1, 128, 512, 512, 1, 1, 1), strides=(0, 0, 1, 0, 0, 0, 0, 0), offset=0, mask=None, contiguous=False),)), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.float.ptr(128), arg=3, src=()),)),)),)),)),))
for expected, opts in [
(1, [Opt(op=OptOps.UPCAST, axis=2, arg=4)]),
(4, [Opt(op=OptOps.UPCAST, axis=2, arg=4), Opt(op=OptOps.UPCAST, axis=0, arg=4)]),
]:
ast = ast.replace(arg=KernelInfo(opts_to_apply=tuple(opts)))
program = get_program(ast, Device[Device.DEFAULT].renderer)
count = len([uop for uop in program.uops if uop.op is Ops.DEFINE_REG and uop.dtype == dtypes.float.vec(4)])
assert count == expected, f"{count=}, {expected=}"
@unittest.skip("this doesn't happen anymore")
def test_float2_acc(self):
# from resnet
ast = UOp(Ops.SINK, dtypes.void, arg=None, src=(
UOp(Ops.STORE, dtypes.void, arg=None, src=(
UOp(Ops.VIEW, dtypes.half.ptr(212926464), arg=ShapeTracker(views=(View(shape=(1, 256, 1, 64, 1, 114, 1, 114), strides=(0, 831744, 0, 12996, 0, 114, 0, 1), offset=0, mask=None, contiguous=True),)), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.half.ptr(212926464), arg=0, src=()),)),
UOp(Ops.CAST, dtypes.half, arg=None, src=(
UOp(Ops.REDUCE_AXIS, dtypes.float, arg=(Ops.ADD, (4, 6)), src=(
UOp(Ops.CAST, dtypes.float, arg=None, src=(
UOp(Ops.LOAD, dtypes.half, arg=None, src=(
UOp(Ops.VIEW, dtypes.half.ptr(462422016), arg=ShapeTracker(views=(View(shape=(256, 64, 3, 56, 2, 3, 56, 2), strides=(1806336, 28224, 3, 504, 0, 1, 9, 0), offset=0, mask=((0, 256), (0, 64), (0, 3), (0, 56), (0, 1), (0, 3), (0, 56), (0, 1)), contiguous=False), View(shape=(256, 64, 3, 115, 3, 115), strides=(7225344, 112896, 37632, 336, 112, 1), offset=0, mask=((0, 256), (0, 64), (0, 3), (0, 112), (0, 3), (0, 112)), contiguous=False), View(shape=(256, 64, 456, 456), strides=(7617600, 119025, 345, 1), offset=0, mask=((0, 256), (0, 64), (0, 345), (0, 345)), contiguous=False), View(shape=(1, 256, 1, 64, 4, 114, 4, 114), strides=(0, 13307904, 0, 207936, 51984, 456, 114, 1), offset=0, mask=None, contiguous=True))), src=( # noqa: E501
UOp(Ops.DEFINE_GLOBAL, dtypes.half.ptr(462422016), arg=1, src=()),)),)),)),)),)),)),))
for expected, opts in [
(16, [Opt(op=OptOps.LOCAL, axis=1, arg=16), Opt(op=OptOps.UPCAST, axis=1, arg=0), Opt(op=OptOps.UPCAST, axis=2, arg=2), Opt(op=OptOps.LOCAL, axis=2, arg=3), Opt(op=OptOps.UPCAST, axis=3, arg=4)]), # noqa: E501
(4, [Opt(op=OptOps.LOCAL, axis=1, arg=16), Opt(op=OptOps.UPCAST, axis=1, arg=0), Opt(op=OptOps.UPCAST, axis=2, arg=2)]),
]:
ast = ast.replace(arg=KernelInfo(opts_to_apply=tuple(opts)))
program = get_program(ast, Device[Device.DEFAULT].renderer)
count = len([uop for uop in program.uops if uop.op is Ops.DEFINE_REG and uop.dtype == dtypes.float.vec(2)])
assert count == expected, f"{count=}, {expected=}"
class TestHandCodedOpts(unittest.TestCase):
def test_masked_upcast(self):
layer_1 = Tensor.cat(*[Tensor.empty(5) for _ in range(4)])
@@ -1088,321 +864,5 @@ def _helper_linearizer_opt_ast(realized_ast:UOp, real_bufs:list[Buffer], opts=[]
check_opt(x, lambda: Kernel(realized_ast), color_sizes[i] if i < len(color_sizes) else None)
return lins
class TestKernelOpts(unittest.TestCase):
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_local, "test requires locals")
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_shared, "test requires shared")
def test_local_and_grouped_reduce(self):
N = 128
Tensor.manual_seed(1882)
a = Tensor.rand(4, 4, N, N)
b = Tensor.rand(4, 4, N)
r = (b.sqrt() + ((a+1).sum(axis=3).exp()))
helper_linearizer_opt(r, [
[Opt(OptOps.LOCAL, 0, 2)],
[Opt(OptOps.LOCAL, 0, 8)],
[Opt(OptOps.LOCAL, 0, 16)], # Checking how it works with locals
[Opt(OptOps.GROUPTOP, 0, 2)],
[Opt(OptOps.GROUPTOP, 0, 32)],
[Opt(OptOps.GROUPTOP, 0, 64)], # Checking how it works with grouped reduce
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.GROUPTOP, 0, 2)],
[Opt(OptOps.LOCAL, 0, 16), Opt(OptOps.GROUPTOP, 0, 16)],
[Opt(OptOps.LOCAL, 0, 32), Opt(OptOps.GROUPTOP, 0, 2)],
# Checking how it works with locals + grouped reduce
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.GROUPTOP, 0, 64)],
# Checking how it works with locals + grouped reduce + upcasts
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.GROUPTOP, 0, 2), Opt(OptOps.UPCAST, 0, 8), Opt(OptOps.UNROLL, 1, 4)],
# many local + many group
[Opt(OptOps.GROUP, 0, 2)] * 4,
[Opt(OptOps.LOCAL, 0, 2)] * 4,
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.GROUP, 0, 2)] * 4,
])
def test_upcasts(self):
N = 16
Tensor.manual_seed(1772)
a = Tensor.rand(N, N)
b = Tensor.rand(N, N)
r = (a+b).sqrt() * ((a+1).exp())
helper_linearizer_opt(r, [
[Opt(OptOps.UPCAST, 0, 2)],
[Opt(OptOps.UPCAST, 0, 4)],
[Opt(OptOps.UPCAST, 0, 8)], # Checking how it works with upcasts
])
def test_full_upcast(self):
Tensor.manual_seed(1772)
a = Tensor.rand(4)
b = Tensor.rand(4)
r = (a+b).sqrt() * ((a+1).exp())
helper_linearizer_opt(r, [
[Opt(OptOps.UPCAST, 0, 4)], # Checking how it works with upcasts
])
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_local, "test requires locals")
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_shared, "test requires shared")
def test_matmul(self):
N = 128
Tensor.manual_seed(1552)
a = Tensor.rand(N, N)
b = Tensor.rand(N, N)
r = a@b
helper_linearizer_opt(r, [
[Opt(OptOps.UPCAST, 0, 2)],
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 4)], # Checking how it works with upcasts
[Opt(OptOps.LOCAL, 0, 2)],
[Opt(OptOps.LOCAL, 1, 32)],
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 1, 4)],
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 1, 32)],
[Opt(OptOps.LOCAL, 0, 16), Opt(OptOps.LOCAL, 1, 8)], # Checking how it works with locals
[Opt(OptOps.GROUPTOP, 0, 2)],
[Opt(OptOps.GROUPTOP, 0, 32)],
[Opt(OptOps.GROUPTOP, 0, 32), Opt(OptOps.UNROLL, 0, 4)], # Checking how it works with grouped_reduce
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.LOCAL, 1, 2), Opt(OptOps.GROUPTOP, 0, 32)],
[Opt(OptOps.LOCAL, 0, 8), Opt(OptOps.GROUPTOP, 0, 32)],
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 0, 8), Opt(OptOps.GROUPTOP, 0, 4)], # Checking how it works with local+grouped_reduce
# Checking all together
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.GROUPTOP, 0, 8), Opt(OptOps.UNROLL, 0, 4), Opt(OptOps.UPCAST, 0, 4),
Opt(OptOps.UPCAST, 1, 2)],
# Full global upcast + local
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.GROUPTOP, 0, 8), Opt(OptOps.UNROLL, 0, 4), Opt(OptOps.UPCAST, 0, 8)],
])
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_local, "test requires locals")
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_shared, "test requires shared")
def test_double_reduce(self):
N = 128
Tensor.manual_seed(1552)
a = Tensor.rand(8, N, 8, N)
r = a.sum(axis=(1,3))
helper_linearizer_opt(r, [
# openCL / GPU=1 is 256 max threads
[Opt(OptOps.GROUPTOP, 0, 2)], [Opt(OptOps.GROUPTOP, 0, 32)],
[Opt(OptOps.GROUPTOP, 1, 2)], [Opt(OptOps.GROUPTOP, 1, 32)], # Checking how it works with 1 grouped_reduce.
[Opt(OptOps.GROUPTOP, 0, 2), Opt(OptOps.GROUPTOP, 1, 2)],
[Opt(OptOps.GROUPTOP, 0, 16), Opt(OptOps.GROUPTOP, 1, 2)],
[Opt(OptOps.GROUPTOP, 0, 4), Opt(OptOps.GROUPTOP, 1, 64)], # Checking how it works with 2 grouped_reduces.
[Opt(OptOps.GROUPTOP, 0, 16), Opt(OptOps.GROUPTOP, 1, 2), Opt(OptOps.UNROLL, 0, 4)],
[Opt(OptOps.GROUPTOP, 0, 2), Opt(OptOps.GROUPTOP, 1, 32), Opt(OptOps.UNROLL, 2, 4)], # Checking how it works with 2 grouped_reduces + upcasts.
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 1, 4), Opt(OptOps.GROUPTOP, 0, 4), Opt(OptOps.GROUPTOP, 1, 4)],
# Checking how it works with 2 grouped_reduces + upcasts + locals.
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 1, 4), Opt(OptOps.GROUPTOP, 0, 2), Opt(OptOps.GROUPTOP, 1, 32), Opt(OptOps.UNROLL, 1, 4)],
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.LOCAL, 1, 2), Opt(OptOps.GROUPTOP, 0, 8), Opt(OptOps.GROUPTOP, 1, 4), Opt(OptOps.UPCAST, 0, 2)],
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.LOCAL, 1, 2), Opt(OptOps.GROUPTOP, 0, 8), Opt(OptOps.GROUPTOP, 1, 4), Opt(OptOps.UPCAST, 0, 2),
Opt(OptOps.UNROLL, 0, 4), Opt(OptOps.UNROLL, 1, 4)], # Checking how it works with 2 grouped_reduces + upcasts + locals.
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.LOCAL, 1, 4), Opt(OptOps.GROUPTOP, 0, 4), Opt(OptOps.GROUPTOP, 1, 4), Opt(OptOps.UPCAST, 0, 2),
Opt(OptOps.UPCAST, 0, 2)], # No globals
])
@unittest.skipUnless(Device[Device.DEFAULT].renderer.tensor_cores, "test requires tensor cores")
@unittest.skipUnless(any(tc.dtype_in == tc.dtype_out == dtypes.half for tc in Device[Device.DEFAULT].renderer.tensor_cores),
"test requires tensor cores with accumulation in half") # testing with half suffices.
def test_tensor_core_opts(self):
N = 128
Tensor.manual_seed(1552)
a, b = Tensor.rand(N, N, dtype=dtypes.half), Tensor.rand(N, N, dtype=dtypes.half)
r = a.matmul(b, dtype=dtypes.half)
atol, rtol = 0.25, 0.01
helper_linearizer_opt(r, [
[],
[Opt(OptOps.UPCAST, 0, 4)],
[Opt(OptOps.UPCAST, 1, 4)],
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 4)], # check upcasts
[Opt(OptOps.UNROLL, 0, 2)], # check unroll
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UNROLL, 0, 2)], # check combo of unroll and local
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 4), Opt(OptOps.UNROLL, 0, 2)],
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 4), Opt(OptOps.UNROLL, 0, 4)],
[Opt(OptOps.UPCAST, 1, 4), Opt(OptOps.UPCAST, 0, 4)], # check permutations
[Opt(OptOps.UNROLL, 0, 2), Opt(OptOps.UPCAST, 0, 4)],
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UNROLL, 0, 2), Opt(OptOps.UPCAST, 1, 4)],
[Opt(OptOps.UNROLL, 0, 2), Opt(OptOps.UPCAST, 1, 4), Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UNROLL, 0, 4)],
], apply_tc=True, atol=atol, rtol=rtol)
@unittest.skipUnless(Device[Device.DEFAULT].renderer.tensor_cores, "test requires tensor cores")
@unittest.skipUnless(any(tc.dtype_in == tc.dtype_out == dtypes.half for tc in Device[Device.DEFAULT].renderer.tensor_cores),
"test requires tensor cores with accumulation in half") # testing with half suffices.
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_local, "test requires locals")
def test_tensor_core_opts_locals(self):
N = 128
Tensor.manual_seed(1552)
a, b = Tensor.rand(N, N, dtype=dtypes.half), Tensor.rand(N, N, dtype=dtypes.half)
r = a.matmul(b, dtype=dtypes.half)
atol, rtol = 0.25, 0.01
helper_linearizer_opt(r, [
[Opt(OptOps.UNROLL, 0, 0)], # check full unroll of reduce with locals
[Opt(OptOps.LOCAL, 0, 4)], # check local
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.UPCAST, 1, 4), Opt(OptOps.UNROLL, 0, 4), Opt(OptOps.LOCAL, 0, 2)],
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.UPCAST, 1, 4), Opt(OptOps.UNROLL, 0, 2), Opt(OptOps.UPCAST, 0, 4)],
], apply_tc=True, atol=atol, rtol=rtol)
@unittest.skipUnless(Device[Device.DEFAULT].renderer.tensor_cores, "test requires tensor cores")
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_local, "test requires locals")
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_shared, "test requires shared memory")
@unittest.skipUnless(any(tc.dtype_in == tc.dtype_out == dtypes.half for tc in Device[Device.DEFAULT].renderer.tensor_cores),
"test requires tensor cores with accumulation in half") # testing with half suffices.
# NOTE: the METAL test is broken, likely due to a compiler bug. passes on CI with -O0 and with default opt level locally on M3
@unittest.skipIf(Device.DEFAULT == "METAL", "broken for METAL")
@unittest.skip("feature was removed")
def test_tensor_core_opts_group(self):
N = 128
Tensor.manual_seed(1552)
a, b = Tensor.rand(N, N, dtype=dtypes.half), Tensor.rand(N, N, dtype=dtypes.half)
r = a.matmul(b, dtype=dtypes.half)
atol, rtol = 0.25, 0.01
helper_linearizer_opt(r, [
[Opt(OptOps.GROUP, 0, 2)],
[Opt(OptOps.GROUPTOP, 0, 4)],
[Opt(OptOps.UPCAST, 0, 4), Opt(OptOps.GROUP, 0, 2)],
[Opt(OptOps.LOCAL, 0, 4), Opt(OptOps.GROUP, 0, 2)],
[Opt(OptOps.UNROLL, 0, 4), Opt(OptOps.GROUP, 0, 2)],
[Opt(OptOps.UPCAST, 0, 2), Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.GROUP, 0, 2)],
[Opt(OptOps.LOCAL, 0, 2), Opt(OptOps.GROUPTOP, 0, 8), Opt(OptOps.UNROLL, 0, 2), Opt(OptOps.UPCAST, 1, 2)],
], apply_tc=True, atol=atol, rtol=rtol)
def test_padto_matmul(self):
if (CI and Device.DEFAULT in ["AMD", "NV", "CUDA"]):
self.skipTest("super slow on CUDA and AMD because of the big grid dims")
N = 17 * 17
Tensor.manual_seed(289)
a = Tensor.rand(N, N)
b = Tensor.rand(N, N)
helper_linearizer_opt(a@b, [
[Opt(OptOps.PADTO, 0, 32)],
[Opt(OptOps.PADTO, 1, 32)],
[Opt(OptOps.PADTO, 2, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.PADTO, 1, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.PADTO, 1, 32), Opt(OptOps.PADTO, 2, 32)],
# can optimize further post PADTO
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.PADTO, 1, 32), Opt(OptOps.UPCAST, 0, 2), Opt(OptOps.UPCAST, 1, 2),],
])
def test_padto_upcasted_not_ok(self):
N = 4
a = Tensor.rand(N, N)
b = Tensor.rand(N, N)
helper_linearizer_opt(a@b, [
[Opt(OptOps.UPCAST, 0, 0)],
[Opt(OptOps.UPCAST, 1, 0)],
[Opt(OptOps.UNROLL, 0, 0)],
[Opt(OptOps.PADTO, 0, 8)],
[Opt(OptOps.PADTO, 1, 8)],
[Opt(OptOps.PADTO, 2, 8)],
])
with self.assertRaises(KernelOptError):
helper_linearizer_opt(a@b, [[Opt(OptOps.UPCAST, 0, 0), Opt(OptOps.PADTO, 1, 8)]])
with self.assertRaises(KernelOptError):
helper_linearizer_opt(a@b, [[Opt(OptOps.UPCAST, 1, 0), Opt(OptOps.PADTO, 1, 8)]])
with self.assertRaises(KernelOptError):
helper_linearizer_opt(a@b, [[Opt(OptOps.UNROLL, 0, 0), Opt(OptOps.PADTO, 2, 8)]])
def test_padto_sum_ok(self):
N = 18 * 18
# NOTE: this setup prevents 17 * 17 contiguous merged into one dimension
a = Tensor.rand(N, N).realize().shrink(((0, 17), (0, 17))) * 100
b = (Tensor.rand(N, N) < 0.5).realize().shrink(((0, 17), (0, 17)))
helper_linearizer_opt(a.sum(0), [
[Opt(OptOps.PADTO, 0, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.UPCAST, 0, 8),],
])
helper_linearizer_opt(a.sum(1), [
[Opt(OptOps.PADTO, 0, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.UPCAST, 0, 8),],
])
# can pad sum reduce axis if there's no unsafe ops prior to sum
for axis in (0, 1):
helper_linearizer_opt(a.sum(), [[Opt(OptOps.PADTO, axis, 32)],])
helper_linearizer_opt(a.sum(0), [[Opt(OptOps.PADTO, axis, 32)],])
helper_linearizer_opt(b.sum(), [[Opt(OptOps.PADTO, axis, 32)],])
helper_linearizer_opt(b.sum(0), [[Opt(OptOps.PADTO, axis, 32)],])
helper_linearizer_opt(b.sum(dtype=dtypes.bool), [[Opt(OptOps.PADTO, axis, 32)],])
# TODO: why?
if Device.DEFAULT != "WEBGPU":
helper_linearizer_opt(b.sum(0, dtype=dtypes.bool), [[Opt(OptOps.PADTO, axis, 32)],])
helper_linearizer_opt(b.sum(1, dtype=dtypes.bool), [[Opt(OptOps.PADTO, axis, 32)],])
# having unsafe ops after sum is fine
helper_linearizer_opt(a.sum().exp(), [[Opt(OptOps.PADTO, 0, 32)],])
helper_linearizer_opt(a.sum(0).exp(), [[Opt(OptOps.PADTO, 1, 32)],])
def test_padto_sum_not_ok(self):
N = 18 * 18
# NOTE: this setup prevents 17 * 17 contiguous merged into one dimension
a = Tensor.rand(N, N).shrink(((0, 17), (0, 17))).exp()
# exp is not safe to pad
with self.assertRaises(KernelOptError):
helper_linearizer_opt(a.exp().sum(), [[Opt(OptOps.PADTO, 0, 32)],])
with self.assertRaises(KernelOptError):
helper_linearizer_opt(a.exp().sum(0), [[Opt(OptOps.PADTO, 1, 32)],])
b = a < 1
# lt is not safe to pad
with self.assertRaises(KernelOptError):
helper_linearizer_opt(b.sum(), [[Opt(OptOps.PADTO, 0, 32)],])
with self.assertRaises(KernelOptError):
helper_linearizer_opt(b.sum(0), [[Opt(OptOps.PADTO, 1, 32)],])
def test_padto_max(self):
N = 18 * 18
# NOTE: this setup prevents 17 * 17 contiguous merged into one axis
a = -Tensor.rand(N, N).shrink(((0, 17), (0, 17))) * 100
helper_linearizer_opt(a.max(0), [
[Opt(OptOps.PADTO, 0, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.UPCAST, 0, 8),],
])
helper_linearizer_opt(a.max(1), [
[Opt(OptOps.PADTO, 0, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.UPCAST, 0, 8),],
])
# cannot pad max kernel on reduce
with self.assertRaises(KernelOptError):
helper_linearizer_opt(a.max(), [[Opt(OptOps.PADTO, 0, 32)],])
with self.assertRaises(KernelOptError):
helper_linearizer_opt(a.max(0), [[Opt(OptOps.PADTO, 1, 32)],])
def test_padto_where(self):
Tensor.manual_seed(0)
N = 17 * 17
a = (Tensor.randn(N, N).realize().max(axis=0, keepdim=True) > 1).where(1, 0)
helper_linearizer_opt(a.max(0), [
[Opt(OptOps.PADTO, 0, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.UPCAST, 0, 8),],
])
def test_padto_where_multioutput(self):
Tensor.manual_seed(0)
N = 17 * 17
r = Tensor.randn(N, N).realize().max(axis=0, keepdim=True) > 1
a0 = r.where(1, 0)
a1 = r.where(2, 0)
helper_linearizer_opt([a0.max(0), a1.max(0)], [
[Opt(OptOps.PADTO, 0, 32)],
[Opt(OptOps.PADTO, 0, 32), Opt(OptOps.UPCAST, 0, 8),],
])
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_local, "test requires locals")
@unittest.skipUnless(Device[Device.DEFAULT].renderer.has_shared, "test requires shared")
def test_color_shapes_with_local(self):
N = 32
Tensor.manual_seed(1552)
a = Tensor.rand(N, N)
b = Tensor.rand(N, N)
r = a@b
opts_shapes = [
([Opt(OptOps.LOCAL, 0, 2)], [("blue",16),("blue",32),("cyan",2),("red",32)]),
([Opt(OptOps.LOCAL, 0, 2),Opt(OptOps.GROUP, 0, 2)], [("blue",16),("blue",32),("cyan",2),("green",2),("red",16)]),
# check to ensure local_dims are stable for full UNROLL of the first reduce
([Opt(OptOps.LOCAL, 0, 2),Opt(OptOps.UNROLL, 0, 0)], [("blue",16),("blue",32),("cyan",2),("magenta",32)]),
([Opt(OptOps.UNROLL, 0, 0),Opt(OptOps.LOCAL, 0, 2)], [("blue",16),("blue",32),("cyan",2),("magenta",32)]),
# check behavior for full UNROLL on an existing GROUP
([Opt(OptOps.LOCAL, 0, 2),Opt(OptOps.GROUP, 0, 0),Opt(OptOps.UNROLL, 0, 2)], [("blue",16),("blue",32),("cyan",2),("green",16),("magenta",2)]),
([Opt(OptOps.LOCAL, 0, 2),Opt(OptOps.GROUP, 0, 0),Opt(OptOps.UNROLL, 0, 0)], [("blue",16),("blue",32),("cyan",2),("magenta",32)]),
([Opt(OptOps.GROUP, 0, 0),Opt(OptOps.LOCAL, 0, 2),Opt(OptOps.UNROLL, 0, 0)], [("blue",16),("blue",32),("cyan",2),("magenta",32)]),
([Opt(OptOps.GROUP, 0, 2),Opt(OptOps.UNROLL, 0, 0)], [("blue",32),("blue",32),("red",16),("magenta",2)]),
]
helper_linearizer_opt(r, [x[0] for x in opts_shapes], color_sizes=[x[1] for x in opts_shapes])
if __name__ == '__main__':
unittest.main()

View File

@@ -1,7 +1,7 @@
import unittest
from tinygrad import Tensor, Context, Device
from tinygrad.engine.realize import get_program
from tinygrad.codegen.opt.kernel import Opt, OptOps
from tinygrad.codegen.opt import Opt, OptOps
from tinygrad.uop.ops import KernelInfo
class TestLinearizerRewrite(unittest.TestCase):

View File

@@ -16,7 +16,7 @@ from tinygrad.codegen.late.expander import migrate_indexing, expander, pm_pre_ex
from tinygrad.codegen.late.devectorizer import load_store_folding, load_store_indexing, devectorize, pm_reduce, \
ReduceContext, correct_load_store, pm_render
from tinygrad.codegen.late.linearize import block_create, pm_blockend_merge, block_merge, pm_finalize, BlockContext
from tinygrad.codegen.opt import pm_get_optimization, pm_do_optimize
from tinygrad.codegen.opt.kernel import pm_get_optimization, pm_do_optimize
from tinygrad.codegen.opt.swizzler import view_left, view_right, fix_kernel_ops
from tinygrad.codegen.opt.postrange import pm_postrange_opt
from tinygrad.schedule.rangeify import pm_add_buffers_local, rangeify_codegen

View File

@@ -1,51 +1,26 @@
# opt opinionatedly transforms an ast into an optimized ast using either heuristics or beam search
from __future__ import annotations
from enum import Enum, auto
from dataclasses import dataclass
from tinygrad.uop.ops import AxisType
from tinygrad.codegen.opt.kernel import Kernel
from tinygrad.codegen.opt.heuristic import hand_coded_optimizations
from tinygrad.uop.ops import UOp, PatternMatcher, UPat, Ops, KernelInfo
from tinygrad.helpers import NOOPT, BEAM, getenv, POSTOPT
from tinygrad.renderer import Renderer
from tinygrad.uop.spec import type_verify
class OptOps(Enum):
TC = auto(); UPCAST = auto(); UNROLL = auto(); LOCAL = auto() # noqa: E702
GROUP = auto(); GROUPTOP = auto(); NOLOCALS = auto(); PADTO = auto(); SWAP = auto() # noqa: E702
def __lt__(self, x:OptOps): return self.value < x.value
def get_optimized_ast(ast:UOp, renderer:Renderer) -> UOp|None:
"""
Optimize an AST based on heuristics or BEAM search.
@dataclass(frozen=True, order=True)
class Opt:
op: OptOps
axis: int|None = None
arg: int|tuple|None = None
def __repr__(self): return f"Opt(op={self.op}, axis={self.axis}, arg={self.arg})"
Args:
ast: The Ops.SINK rooted AST
renderer: The renderer used to generate the code
axis_letters = {AxisType.GLOBAL: "g", AxisType.LOCAL: "l", AxisType.LOOP: "L", AxisType.UPCAST: "u",
AxisType.GROUP_REDUCE: "G", AxisType.REDUCE: "R", AxisType.UNROLL: "r"}
axis_colors = {AxisType.GLOBAL: "blue", AxisType.LOCAL: "cyan", AxisType.LOOP: "WHITE", AxisType.UPCAST: "yellow",
AxisType.GROUP_REDUCE: "green", AxisType.REDUCE: "red", AxisType.UNROLL: "magenta"}
Returns:
The Ops.SINK rooted AST transformed to apply the opts and with a KernelInfo in the arg.
"""
# no shape, no opt
if ast.src[0].st is None: return None
new_arg = ast.arg
if new_arg is None:
k = Kernel(ast, opts=renderer)
if not NOOPT:
k.apply_opts(hand_coded_optimizations(k))
if not POSTOPT and BEAM >= 1:
from tinygrad.codegen.opt.search import beam_search, bufs_from_lin
kb = Kernel(ast, opts=renderer)
rawbufs = bufs_from_lin(kb, allocate=False)
k = beam_search(kb, rawbufs, BEAM.value, bool(getenv("BEAM_ESTIMATE", 1)))
new_arg = KernelInfo(opts_to_apply=tuple(k.applied_opts))
elif len(new_arg.applied_opts): return None
return Kernel(ast.replace(arg=None), opts=renderer).get_optimized_ast().replace(arg=new_arg)
pm_get_optimization = PatternMatcher([
(UPat(Ops.SINK, name="ast"), lambda ctx,ast: get_optimized_ast(ast, ctx)),
])
def apply_opt(ast:UOp, renderer:Renderer):
k = Kernel(ast, opts=renderer)
k.apply_opts(ast.arg.opts_to_apply)
ret = k.get_optimized_ast()
if __debug__: type_verify(list(ret.toposort()))
return ret
pm_do_optimize = PatternMatcher([
(UPat(Ops.SINK, name="ast"), lambda ctx,ast: apply_opt(ast, ctx) if ast.arg is not None and ast.arg.opts_to_apply is not None else None),
])
class KernelOptError(Exception): pass
def check(cond:bool, msg:str=""):
if not cond: raise KernelOptError(msg)

View File

@@ -1,9 +1,12 @@
import itertools
from tinygrad.codegen.opt.kernel import Kernel, Opt, OptOps, KernelOptError, AxisType
from tinygrad.codegen.opt.postrange import Scheduler
from tinygrad.codegen.opt import Opt, OptOps, KernelOptError
from tinygrad.helpers import getenv, DEBUG, prod, NOLOCALS, TC_OPT, TC_SELECT, USE_TC, AMX
from tinygrad.dtype import ImageDType
from tinygrad.uop.ops import Ops, resolve
from tinygrad.uop.ops import Ops, resolve, AxisType
# both versions
from tinygrad.codegen.opt.kernel import Kernel
from tinygrad.codegen.opt.postrange import Scheduler
def hand_coded_optimizations(k:Kernel|Scheduler) -> list[Opt]:
# first try the tensor cores

View File

@@ -3,40 +3,18 @@ import itertools, functools, math
from dataclasses import dataclass
from collections import defaultdict
from typing import cast, Final, Callable, Sequence
from enum import Enum, auto
from tinygrad.uop.ops import GroupOp, KernelInfo, UOp, Ops, can_pad, resolve, Variable, sint, graph_rewrite, AxisType
from tinygrad.codegen.opt import OptOps, Opt, KernelOptError, check, axis_letters, axis_colors
from tinygrad.uop.ops import GroupOp, KernelInfo, UOp, Ops, can_pad, resolve, Variable, sint, graph_rewrite, AxisType, PatternMatcher, UPat
from tinygrad.uop.spec import type_verify, ast_spec
from tinygrad.device import Device
from tinygrad.codegen.opt.tc import TensorCore
from tinygrad.renderer import Renderer
from tinygrad.dtype import ImageDType
from tinygrad.helpers import all_same, colored, ansilen, dedup, prod, round_up, to_function_name, unwrap, argfix, DEBUG
from tinygrad.helpers import all_same, colored, ansilen, dedup, prod, round_up, to_function_name, unwrap, argfix, DEBUG, NOOPT, BEAM, getenv, POSTOPT
from tinygrad.shape.shapetracker import ShapeTracker
from tinygrad.shape.view import strides_for_shape, get_contraction
from tinygrad.codegen.opt.swizzler import view_left, view_left_through_load
class OptOps(Enum):
TC = auto(); UPCAST = auto(); UNROLL = auto(); LOCAL = auto() # noqa: E702
GROUP = auto(); GROUPTOP = auto(); NOLOCALS = auto(); PADTO = auto(); SWAP = auto() # noqa: E702
def __lt__(self, x:OptOps): return self.value < x.value
@dataclass(frozen=True, order=True)
class Opt:
op: OptOps
axis: int|None = None
arg: int|tuple|None = None
def __repr__(self): return f"Opt(op={self.op}, axis={self.axis}, arg={self.arg})"
axis_letters = {AxisType.GLOBAL: "g", AxisType.LOCAL: "l", AxisType.LOOP: "L", AxisType.UPCAST: "u",
AxisType.GROUP_REDUCE: "G", AxisType.REDUCE: "R", AxisType.UNROLL: "r"}
axis_colors = {AxisType.GLOBAL: "blue", AxisType.LOCAL: "cyan", AxisType.LOOP: "WHITE", AxisType.UPCAST: "yellow",
AxisType.GROUP_REDUCE: "green", AxisType.REDUCE: "red", AxisType.UNROLL: "magenta"}
class KernelOptError(Exception): pass
def check(cond:bool, msg:str=""):
if not cond: raise KernelOptError(msg)
@dataclass
class TensorCoreOptions:
axes: tuple[int, ...] # the location of the original N and M axes if still in the shape
@@ -455,3 +433,47 @@ class Kernel:
fixed_ast = fixup_ast(self.ast)
del fixup_ast
return graph_rewrite(fixed_ast, view_left+view_left_through_load, name="fixup optimized AST")
def get_optimized_ast(ast:UOp, renderer:Renderer) -> UOp|None:
"""
Optimize an AST based on heuristics or BEAM search.
Args:
ast: The Ops.SINK rooted AST
renderer: The renderer used to generate the code
Returns:
The Ops.SINK rooted AST transformed to apply the opts and with a KernelInfo in the arg.
"""
# no shape, no opt
if ast.src[0].st is None: return None
new_arg = ast.arg
if new_arg is None:
k = Kernel(ast, opts=renderer)
if not NOOPT:
from tinygrad.codegen.opt.heuristic import hand_coded_optimizations
k.apply_opts(hand_coded_optimizations(k))
if not POSTOPT and BEAM >= 1:
from tinygrad.codegen.opt.search import beam_search, bufs_from_lin
kb = Kernel(ast, opts=renderer)
rawbufs = bufs_from_lin(kb, allocate=False)
k = beam_search(kb, rawbufs, BEAM.value, bool(getenv("BEAM_ESTIMATE", 1)))
new_arg = KernelInfo(opts_to_apply=tuple(k.applied_opts))
elif len(new_arg.applied_opts): return None
return Kernel(ast.replace(arg=None), opts=renderer).get_optimized_ast().replace(arg=new_arg)
pm_get_optimization = PatternMatcher([
(UPat(Ops.SINK, name="ast"), lambda ctx,ast: get_optimized_ast(ast, ctx)),
])
def apply_opt(ast:UOp, renderer:Renderer):
k = Kernel(ast, opts=renderer)
k.apply_opts(ast.arg.opts_to_apply)
ret = k.get_optimized_ast()
if __debug__: type_verify(list(ret.toposort()))
return ret
pm_do_optimize = PatternMatcher([
(UPat(Ops.SINK, name="ast"), lambda ctx,ast: apply_opt(ast, ctx) if ast.arg is not None and ast.arg.opts_to_apply is not None else None),
])

View File

@@ -6,7 +6,7 @@ from tinygrad.uop.symbolic import symbolic
from tinygrad.device import Buffer
from tinygrad.dtype import AddrSpace, dtypes
from tinygrad.helpers import colored, BEAM, getenv, DEBUG, to_function_name, NOOPT, argsort, round_up
from tinygrad.codegen.opt.kernel import axis_colors, Opt, OptOps, KernelOptError, check, axis_letters
from tinygrad.codegen.opt import axis_colors, Opt, OptOps, KernelOptError, check, axis_letters
from tinygrad.renderer import Renderer
from tinygrad.schedule.rangeify import remove_tags

View File

@@ -7,12 +7,15 @@ from tinygrad.device import Device, Buffer, Compiler
from tinygrad.helpers import prod, flatten, DEBUG, CACHELEVEL, diskcache_get, diskcache_put, getenv, Context, colored, time_to_str
from tinygrad.helpers import IGNORE_BEAM_CACHE
from tinygrad.dtype import ImageDType, PtrDType
from tinygrad.codegen.opt.kernel import Kernel, Opt, OptOps, KernelOptError
from tinygrad.codegen.opt.postrange import Scheduler
from tinygrad.codegen.opt import Opt, OptOps, KernelOptError
from tinygrad.tensor import Tensor
from tinygrad.engine.realize import CompiledRunner, get_program
from tinygrad.renderer import ProgramSpec
# both versions
from tinygrad.codegen.opt.kernel import Kernel
from tinygrad.codegen.opt.postrange import Scheduler
actions = [Opt(op=OptOps.UPCAST, axis=axis, arg=amt) for amt in [0,2,3,4,5,7] for axis in range(8)]
actions += [Opt(op=OptOps.UNROLL, axis=axis, arg=amt) for amt in [0,4,7] for axis in range(5)]
actions += [Opt(op=OptOps.LOCAL, axis=axis, arg=amt) for amt in [2,3,4,8,13,16,29] for axis in range(6)]

View File

@@ -8,7 +8,7 @@ from tinygrad.dtype import ImageDType
from tinygrad.schedule.multi import multi_pm
from tinygrad.schedule.grouper import group_realizes, ALWAYS_CONTIGUOUS
from tinygrad.codegen.opt.swizzler import merge_views, apply_swizzle, swizzle_reduceop
from tinygrad.codegen.opt.kernel import Opt
from tinygrad.codegen.opt import Opt
# creation can recurse a lot
import sys