mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-10 07:28:15 -05:00
move onnx_parser into onnx (#11530)
This commit is contained in:
3
.github/workflows/test.yml
vendored
3
.github/workflows/test.yml
vendored
@@ -329,7 +329,7 @@ jobs:
|
||||
run: |
|
||||
pip3 install --upgrade --force-reinstall ruff==0.11.0
|
||||
python3 -m ruff check .
|
||||
python3 -m ruff check extra/onnx.py extra/onnx_parser.py
|
||||
python3 -m ruff check extra/onnx.py
|
||||
python3 -m ruff check examples/mlperf/ --ignore E501
|
||||
- name: Lint tinygrad with pylint
|
||||
run: python -m pylint tinygrad/
|
||||
@@ -337,7 +337,6 @@ jobs:
|
||||
run: |
|
||||
python -m mypy --strict-equality --lineprecision-report .
|
||||
cat lineprecision.txt
|
||||
python -m mypy --strict-equality extra/onnx_parser.py
|
||||
python -m mypy --strict-equality extra/onnx.py
|
||||
|
||||
unittest:
|
||||
|
||||
205
extra/onnx.py
205
extra/onnx.py
@@ -1,12 +1,213 @@
|
||||
# mypy: disable-error-code="misc, list-item, assignment, operator, index, arg-type"
|
||||
from types import SimpleNamespace
|
||||
from io import BufferedReader
|
||||
from typing import Any, Sequence, cast, Literal, Callable, get_args, NamedTuple
|
||||
import dataclasses, functools, io, math, types, warnings, pathlib, sys, enum
|
||||
import dataclasses, functools, io, math, types, warnings, pathlib, sys, enum, os, struct
|
||||
from tinygrad.nn.state import TensorIO
|
||||
from tinygrad.tensor import Tensor, _broadcast_shape, ReductionStr
|
||||
from tinygrad.helpers import getenv, DEBUG, all_same, prod, flatten, make_tuple, argsort, is_numpy_ndarray, get_single_element
|
||||
from tinygrad.dtype import DType, ConstType, dtypes, _from_np_dtype
|
||||
from tinygrad.device import is_dtype_supported, Device
|
||||
from extra.onnx_parser import onnx_load
|
||||
|
||||
# Protobuf Wire Types
|
||||
WIRETYPE_VARINT = 0; WIRETYPE_FIXED64 = 1; WIRETYPE_LENGTH_DELIMITED = 2; WIRETYPE_START_GROUP = 3; WIRETYPE_END_GROUP = 4; WIRETYPE_FIXED32 = 5 # noqa: E702
|
||||
|
||||
# TensorProto.DataType
|
||||
class TensorDataType:
|
||||
UNDEFINED = 0; FLOAT = 1; UINT8 = 2; INT8 = 3; UINT16 = 4; INT16 = 5; INT32 = 6; INT64 = 7 # noqa: E702
|
||||
STRING = 8; BOOL = 9; FLOAT16 = 10; DOUBLE = 11; UINT32 = 12; UINT64 = 13; COMPLEX64 = 14; COMPLEX128 = 15; BFLOAT16 = 16 # noqa: E702
|
||||
|
||||
# AttributeProto.AttributeType
|
||||
class AttributeType:
|
||||
UNDEFINED = 0; FLOAT = 1; INT = 2; STRING = 3; TENSOR = 4; GRAPH = 5; SPARSE_TENSOR = 11; TYPE_PROTO = 13; FLOATS = 6; INTS = 7 # noqa: E702
|
||||
STRINGS = 8; TENSORS = 9; GRAPHS = 10; SPARSE_TENSORS = 12; TYPE_PROTOS = 14 # noqa: E702
|
||||
|
||||
class PBType: FLOAT = 1; INT = 2; STRING = 3; FLOATS = 4; INTS = 5; STRINGS = 6; BYTES = 7; SUB = 8 # noqa: E702
|
||||
|
||||
PB_INFOS: dict[str, dict] = {
|
||||
"OperatorSetIdProto": {1: ("domain", PBType.STRING), 2: ("version", PBType.INT)},
|
||||
"StringStringEntryProto": {1: ("key", PBType.STRING), 2: ("value", PBType.STRING)},
|
||||
"TensorProto": {1: ("dims", PBType.INT, True), 2: ("data_type", PBType.INT), 4: ("float_data", PBType.FLOATS),
|
||||
13: ("external_data", PBType.SUB, True, "StringStringEntryProto"), 14: ("data_location", PBType.INT),
|
||||
5: ("int32_data", PBType.INTS), 7: ("int64_data", PBType.INTS), 8: ("name", PBType.STRING), 9: ("raw_data", PBType.BYTES),
|
||||
10: ("double_data", PBType.FLOATS), 11: ("uint64_data", PBType.INTS)},
|
||||
"TensorShapeProtoDimension": {1: ("dim_value", PBType.INT), 2: ("dim_param", PBType.STRING)},
|
||||
"TensorShapeProto": {1: ("dim", PBType.SUB, True, "TensorShapeProtoDimension")},
|
||||
"ModelProto": {1: ("ir_version", PBType.INT), 5: ("model_version", PBType.INT),
|
||||
2: ("producer_name", PBType.STRING), 3: ("producer_version", PBType.STRING), 4: ("domain", PBType.STRING), 6: ("doc_string", PBType.STRING),
|
||||
7: ("graph", PBType.SUB, False, ("GraphProto", lambda: {"node": [], "initializer": [], "input": [], "output": [], "value_info": []})),
|
||||
8: ("opset_import",PBType.SUB, True, "OperatorSetIdProto")},
|
||||
"GraphProto": {2: ("name", PBType.STRING), 10: ("doc_string", PBType.STRING),
|
||||
1: ("node", PBType.SUB, True, ("NodeProto", lambda: {"input": [], "output": [], "attribute": [], "domain": None})),
|
||||
5: ("initializer", PBType.SUB, True, ("TensorProto", lambda: {"dims": [], "float_data": None, "int32_data": None, "string_data": None,
|
||||
"int64_data": None, "double_data": None, "uint64_data": None, "raw_data": None})),
|
||||
11: ("input", PBType.SUB, True, "ValueInfoProto"), 12: ("output", PBType.SUB, True, "ValueInfoProto")},
|
||||
"NodeProto": { 1: ("input", PBType.STRING, True), 2: ("output", PBType.STRING, True), 3: ("name", PBType.STRING),
|
||||
4: ("op_type", PBType.STRING), 6: ("doc_string", PBType.STRING), 7: ("domain", PBType.STRING),
|
||||
5: ("attribute", PBType.SUB, True, ("AttributeProto", lambda: {"floats": [], "ints": [], "strings": []}))},
|
||||
"AttributeProto": {1: ("name", PBType.STRING), 20: ("type", PBType.INT), 3: ("i", PBType.INT), 8: ("ints", PBType.INT, True),
|
||||
2: ("f", PBType.FLOAT), 7: ("floats", PBType.FLOAT, True), 4: ("s", PBType.BYTES), 9: ("strings", PBType.BYTES, True),
|
||||
5:("t", PBType.SUB, False, ("TensorProto", lambda: {"dims": [], "float_data": None, "int32_data": None, "string_data": None, "int64_data": None,
|
||||
"double_data": None, "uint64_data": None, "raw_data": None}))},
|
||||
"ValueInfoProto": {1: ("name", PBType.STRING), 2: ("type", PBType.SUB, False, "TypeProto"), 3: ("doc_string", PBType.STRING)},
|
||||
"TypeProto": {1: ("tensor_type", PBType.SUB, False, "TypeProtoTensor"), 4: ("sequence_type", PBType.SUB, False, "TypeProtoSequence"),
|
||||
9: ("optional_type", PBType.SUB, False, "TypeProtoOptional"), 6: ("denotation", PBType.STRING)},
|
||||
"TypeProtoSequence": {1: ("elem_type", PBType.SUB, False, "TypeProto")},
|
||||
"TypeProtoOptional": {1: ("elem_type", PBType.SUB, False, "TypeProto")},
|
||||
"TypeProtoTensor": {1: ("elem_type", PBType.INT), 2: ("shape", PBType.SUB, False, ("TensorShapeProto", lambda: {"dim": []}))},
|
||||
}
|
||||
|
||||
def onnx_load(fn: Tensor|str|pathlib.Path, load_external_data: bool=True):
|
||||
parser = OnnxParser(fn, load_external_data)
|
||||
onnx_model = parser.parse()
|
||||
model = dict_to_namespace(onnx_model)
|
||||
return model
|
||||
|
||||
def gen_result(obj: dict, key_name, val, repeated: bool):
|
||||
if repeated: obj.setdefault(key_name, []).append(val)
|
||||
else: obj[key_name] = val
|
||||
|
||||
def dict_to_namespace(d):
|
||||
if isinstance(d, dict): return SimpleNamespace(**{k: dict_to_namespace(v) for k, v in d.items()})
|
||||
elif isinstance(d, list): return [dict_to_namespace(i) for i in d]
|
||||
return d
|
||||
|
||||
class OnnxParser:
|
||||
def __init__(self, inp: Tensor|str|pathlib.Path, load_external_data: bool=True):
|
||||
self.file_path: pathlib.Path|None = None
|
||||
self.load_external_data = load_external_data
|
||||
if not isinstance(inp, Tensor):
|
||||
self.file_path = pathlib.Path(inp)
|
||||
self.tensor = Tensor(self.file_path)
|
||||
else: self.tensor = inp
|
||||
self.attr_func_dict = { PBType.BYTES: self._handle_bytes, PBType.SUB: self._handle_sub_message, PBType.FLOATS: self._handle_packed_floats,
|
||||
PBType.INT: self._handle_int64, PBType.INTS: self._handle_packed_int64s, PBType.STRING: self._handle_string, PBType.FLOAT: self._handle_float}
|
||||
self.registered_handles = {}
|
||||
for pb_name in PB_INFOS:
|
||||
res = {}
|
||||
for fid, config in PB_INFOS[pb_name].items():
|
||||
parser_fn, repeated = None, False
|
||||
if len(config) == 2: name, attr = config
|
||||
elif len(config) == 3: name, attr, repeated = config
|
||||
elif len(config) == 4: name, attr, repeated, parser_fn = config
|
||||
handler_fn = self.attr_func_dict[attr]
|
||||
def _wrapper_handler(obj, reader, wt, h=handler_fn, n=name, p=parser_fn, r=repeated): return h(obj, n, reader, wt, parser_func=p, repeated=r)
|
||||
res[fid] = _wrapper_handler
|
||||
self.registered_handles[pb_name] = res
|
||||
|
||||
def parse(self):
|
||||
reader = BufferedReader(TensorIO(self.tensor))
|
||||
return self._parse_message(reader, "ModelProto", lambda: {"opset_import": [], "domain": None, "graph": None})
|
||||
|
||||
def decode_varint(self, reader: BufferedReader) -> int:
|
||||
result = 0
|
||||
shift = 0
|
||||
while True:
|
||||
data = reader.read(1)
|
||||
if data == b"": raise EOFError("decode_varint EOF")
|
||||
result |= (data[0] & 0x7F) << shift
|
||||
if not (data[0] & 0x80): return result
|
||||
shift += 7
|
||||
if shift >= 70: raise ValueError("Varint too long")
|
||||
|
||||
def skip_field_value(self, reader: BufferedReader, wire_type):
|
||||
if wire_type == WIRETYPE_VARINT: self.decode_varint(reader)
|
||||
elif wire_type == WIRETYPE_FIXED64: reader.seek(8, os.SEEK_CUR)
|
||||
elif wire_type == WIRETYPE_FIXED32: reader.seek(4, os.SEEK_CUR)
|
||||
elif wire_type == WIRETYPE_LENGTH_DELIMITED: reader.seek(self.decode_varint(reader), os.SEEK_CUR)
|
||||
else: raise ValueError(f"Unknown wire type: {wire_type}")
|
||||
|
||||
def _parse_message(self, reader, message_field_handlers_name, initial_obj_factory=lambda: {}):
|
||||
message_field_handlers = self.registered_handles[message_field_handlers_name]
|
||||
obj = initial_obj_factory()
|
||||
while True:
|
||||
try:
|
||||
tag_val = self.decode_varint(reader)
|
||||
field_number = tag_val >> 3
|
||||
wire_type = tag_val & 0x07
|
||||
if handler := message_field_handlers.get(field_number):
|
||||
handler(obj, reader, wire_type)
|
||||
else: self.skip_field_value(reader, wire_type)
|
||||
except EOFError: break
|
||||
if message_field_handlers_name == "TensorProto" and self.load_external_data and obj.get("data_location", 0) == 1: self._parse_external_data(obj)
|
||||
return obj
|
||||
|
||||
def _handle_delimited(self, reader:BufferedReader, use_tensor=False) -> Tensor|bytes:
|
||||
str_len = self.decode_varint(reader)
|
||||
if not use_tensor: return reader.read(str_len)
|
||||
raw = reader.raw
|
||||
assert isinstance(raw, TensorIO)
|
||||
res = raw._tensor[reader.tell():(reader.tell()+str_len)]
|
||||
reader.seek(str_len, os.SEEK_CUR)
|
||||
return res
|
||||
|
||||
def _handle_string(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False):
|
||||
if wire_type != WIRETYPE_LENGTH_DELIMITED: raise ValueError(f"Expected length-delimited for string field '{key_name}'")
|
||||
value = self._handle_delimited(reader)
|
||||
assert isinstance(value, bytes)
|
||||
gen_result(obj, key_name, value.decode("utf-8"), repeated)
|
||||
|
||||
def _handle_bytes(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False):
|
||||
if wire_type != WIRETYPE_LENGTH_DELIMITED: raise ValueError(f"Expected length-delimited for bytes field '{key_name}'")
|
||||
value = self._handle_delimited(reader, use_tensor=True)
|
||||
gen_result(obj, key_name, value, repeated)
|
||||
|
||||
def _handle_int64(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False):
|
||||
if wire_type != WIRETYPE_VARINT: raise ValueError(f"Expected varint for int64 field '{key_name}'")
|
||||
val = self.decode_varint(reader)
|
||||
gen_result(obj, key_name, val - 2**64 if val & (1 << 63) else val, repeated)
|
||||
|
||||
def _handle_float(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False):
|
||||
if wire_type != WIRETYPE_FIXED32: raise ValueError(f"Expected fixed32 for float field '{key_name}'")
|
||||
val, = struct.unpack("<f", reader.read(4))
|
||||
gen_result(obj, key_name, val, repeated)
|
||||
|
||||
def _handle_packed_int64s(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False):
|
||||
if wire_type != WIRETYPE_LENGTH_DELIMITED: raise ValueError("Packed int64s expected length_delimited")
|
||||
total_bytes_len = self.decode_varint(reader)
|
||||
old_pos = reader.tell()
|
||||
values = []
|
||||
while reader.tell() < total_bytes_len + old_pos:
|
||||
val = self.decode_varint(reader) # need copy here because packed ints are varint
|
||||
values.append(val - 2**64 if val & (1 << 63) else val)
|
||||
obj[key_name] = values
|
||||
|
||||
def _handle_packed_floats(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False):
|
||||
if wire_type != WIRETYPE_LENGTH_DELIMITED: raise ValueError("Packed floats expected length_delimited")
|
||||
value = self._handle_delimited(reader, use_tensor=True)
|
||||
obj[key_name] = value
|
||||
|
||||
def _handle_sub_message(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False):
|
||||
if wire_type != WIRETYPE_LENGTH_DELIMITED: raise ValueError(f"Expected length-delimited for sub-message field '{key_name}'")
|
||||
value = self._handle_delimited(reader, use_tensor=True)
|
||||
assert isinstance(value, Tensor)
|
||||
if isinstance(parser_func, str): sub_obj = self._parse_message(BufferedReader(TensorIO(value)), parser_func)
|
||||
elif isinstance(parser_func, tuple): sub_obj = self._parse_message(BufferedReader(TensorIO(value)), parser_func[0], parser_func[1])
|
||||
else: sub_obj = parser_func(BufferedReader(TensorIO(value)))
|
||||
gen_result(obj, key_name, sub_obj, repeated)
|
||||
|
||||
def _parse_external_data(self, obj):
|
||||
if "external_data" not in obj: raise ValueError("no external_data")
|
||||
location = None
|
||||
length = None
|
||||
offset = 0
|
||||
for kv in obj["external_data"]:
|
||||
if kv["key"] == "location": location = kv["value"]
|
||||
if kv["key"] == "offset": offset = int(kv["value"])
|
||||
if kv["key"] == "length": length = int(kv["value"])
|
||||
if location is None: raise ValueError("no location in external_data")
|
||||
if self.file_path is None:
|
||||
# get onnx file path from Tensor
|
||||
if isinstance(self.tensor.device, str) and self.tensor.device.startswith("DISK:"):
|
||||
self.file_path = pathlib.Path(self.tensor.device[5:])
|
||||
if not (ext_path := self.file_path.parent.joinpath(location)).exists():
|
||||
raise Exception(f"external location not exists: {ext_path}, may caused by symbolic link, try passing onnx file path to onnx_load")
|
||||
else: raise Exception("onnx external_data need the origin file path, try passing onnx file path to onnx_load")
|
||||
ext_path = self.file_path.parent.joinpath(location)
|
||||
if not ext_path.exists(): raise Exception(f"external location not exists: {ext_path}")
|
||||
ext_tensor = Tensor(ext_path)
|
||||
obj["raw_data"] = ext_tensor[offset:offset+length] if length is not None else ext_tensor[offset:]
|
||||
obj["data_location"] = 0
|
||||
|
||||
# https://github.com/onnx/onnx/blob/rel-1.17.0/onnx/onnx.proto3#L500-L544
|
||||
data_types: dict[int, DType] = {
|
||||
|
||||
@@ -1,207 +0,0 @@
|
||||
# https://github.com/onnx/onnx/blob/main/onnx/onnx.proto3
|
||||
|
||||
import os, pathlib, struct
|
||||
from io import BufferedReader
|
||||
from types import SimpleNamespace
|
||||
from tinygrad.nn.state import TensorIO
|
||||
from tinygrad.tensor import Tensor
|
||||
|
||||
# Protobuf Wire Types
|
||||
WIRETYPE_VARINT = 0; WIRETYPE_FIXED64 = 1; WIRETYPE_LENGTH_DELIMITED = 2; WIRETYPE_START_GROUP = 3; WIRETYPE_END_GROUP = 4; WIRETYPE_FIXED32 = 5 # noqa: E702
|
||||
|
||||
# TensorProto.DataType
|
||||
class TensorDataType:
|
||||
UNDEFINED = 0; FLOAT = 1; UINT8 = 2; INT8 = 3; UINT16 = 4; INT16 = 5; INT32 = 6; INT64 = 7 # noqa: E702
|
||||
STRING = 8; BOOL = 9; FLOAT16 = 10; DOUBLE = 11; UINT32 = 12; UINT64 = 13; COMPLEX64 = 14; COMPLEX128 = 15; BFLOAT16 = 16 # noqa: E702
|
||||
|
||||
# AttributeProto.AttributeType
|
||||
class AttributeType:
|
||||
UNDEFINED = 0; FLOAT = 1; INT = 2; STRING = 3; TENSOR = 4; GRAPH = 5; SPARSE_TENSOR = 11; TYPE_PROTO = 13; FLOATS = 6; INTS = 7 # noqa: E702
|
||||
STRINGS = 8; TENSORS = 9; GRAPHS = 10; SPARSE_TENSORS = 12; TYPE_PROTOS = 14 # noqa: E702
|
||||
|
||||
class PBType: FLOAT = 1; INT = 2; STRING = 3; FLOATS = 4; INTS = 5; STRINGS = 6; BYTES = 7; SUB = 8 # noqa: E702
|
||||
|
||||
PB_INFOS: dict[str, dict] = {
|
||||
"OperatorSetIdProto": {1: ("domain", PBType.STRING), 2: ("version", PBType.INT)},
|
||||
"StringStringEntryProto": {1: ("key", PBType.STRING), 2: ("value", PBType.STRING)},
|
||||
"TensorProto": {1: ("dims", PBType.INT, True), 2: ("data_type", PBType.INT), 4: ("float_data", PBType.FLOATS),
|
||||
13: ("external_data", PBType.SUB, True, "StringStringEntryProto"), 14: ("data_location", PBType.INT),
|
||||
5: ("int32_data", PBType.INTS), 7: ("int64_data", PBType.INTS), 8: ("name", PBType.STRING), 9: ("raw_data", PBType.BYTES),
|
||||
10: ("double_data", PBType.FLOATS), 11: ("uint64_data", PBType.INTS)},
|
||||
"TensorShapeProtoDimension": {1: ("dim_value", PBType.INT), 2: ("dim_param", PBType.STRING)},
|
||||
"TensorShapeProto": {1: ("dim", PBType.SUB, True, "TensorShapeProtoDimension")},
|
||||
"ModelProto": {1: ("ir_version", PBType.INT), 5: ("model_version", PBType.INT),
|
||||
2: ("producer_name", PBType.STRING), 3: ("producer_version", PBType.STRING), 4: ("domain", PBType.STRING), 6: ("doc_string", PBType.STRING),
|
||||
7: ("graph", PBType.SUB, False, ("GraphProto", lambda: {"node": [], "initializer": [], "input": [], "output": [], "value_info": []})),
|
||||
8: ("opset_import",PBType.SUB, True, "OperatorSetIdProto")},
|
||||
"GraphProto": {2: ("name", PBType.STRING), 10: ("doc_string", PBType.STRING),
|
||||
1: ("node", PBType.SUB, True, ("NodeProto", lambda: {"input": [], "output": [], "attribute": [], "domain": None})),
|
||||
5: ("initializer", PBType.SUB, True, ("TensorProto", lambda: {"dims": [], "float_data": None, "int32_data": None, "string_data": None,
|
||||
"int64_data": None, "double_data": None, "uint64_data": None, "raw_data": None})),
|
||||
11: ("input", PBType.SUB, True, "ValueInfoProto"), 12: ("output", PBType.SUB, True, "ValueInfoProto")},
|
||||
"NodeProto": { 1: ("input", PBType.STRING, True), 2: ("output", PBType.STRING, True), 3: ("name", PBType.STRING),
|
||||
4: ("op_type", PBType.STRING), 6: ("doc_string", PBType.STRING), 7: ("domain", PBType.STRING),
|
||||
5: ("attribute", PBType.SUB, True, ("AttributeProto", lambda: {"floats": [], "ints": [], "strings": []}))},
|
||||
"AttributeProto": {1: ("name", PBType.STRING), 20: ("type", PBType.INT), 3: ("i", PBType.INT), 8: ("ints", PBType.INT, True),
|
||||
2: ("f", PBType.FLOAT), 7: ("floats", PBType.FLOAT, True), 4: ("s", PBType.BYTES), 9: ("strings", PBType.BYTES, True),
|
||||
5:("t", PBType.SUB, False, ("TensorProto", lambda: {"dims": [], "float_data": None, "int32_data": None, "string_data": None, "int64_data": None,
|
||||
"double_data": None, "uint64_data": None, "raw_data": None}))},
|
||||
"ValueInfoProto": {1: ("name", PBType.STRING), 2: ("type", PBType.SUB, False, "TypeProto"), 3: ("doc_string", PBType.STRING)},
|
||||
"TypeProto": {1: ("tensor_type", PBType.SUB, False, "TypeProtoTensor"), 4: ("sequence_type", PBType.SUB, False, "TypeProtoSequence"),
|
||||
9: ("optional_type", PBType.SUB, False, "TypeProtoOptional"), 6: ("denotation", PBType.STRING)},
|
||||
"TypeProtoSequence": {1: ("elem_type", PBType.SUB, False, "TypeProto")},
|
||||
"TypeProtoOptional": {1: ("elem_type", PBType.SUB, False, "TypeProto")},
|
||||
"TypeProtoTensor": {1: ("elem_type", PBType.INT), 2: ("shape", PBType.SUB, False, ("TensorShapeProto", lambda: {"dim": []}))},
|
||||
}
|
||||
|
||||
def onnx_load(fn: Tensor|str|pathlib.Path, load_external_data: bool=True):
|
||||
parser = OnnxParser(fn, load_external_data)
|
||||
onnx_model = parser.parse()
|
||||
model = dict_to_namespace(onnx_model)
|
||||
return model
|
||||
|
||||
def gen_result(obj: dict, key_name, val, repeated: bool):
|
||||
if repeated: obj.setdefault(key_name, []).append(val)
|
||||
else: obj[key_name] = val
|
||||
|
||||
def dict_to_namespace(d):
|
||||
if isinstance(d, dict): return SimpleNamespace(**{k: dict_to_namespace(v) for k, v in d.items()})
|
||||
elif isinstance(d, list): return [dict_to_namespace(i) for i in d]
|
||||
return d
|
||||
|
||||
class OnnxParser:
|
||||
def __init__(self, inp: Tensor|str|pathlib.Path, load_external_data: bool=True):
|
||||
self.file_path: pathlib.Path|None = None
|
||||
self.load_external_data = load_external_data
|
||||
if not isinstance(inp, Tensor):
|
||||
self.file_path = pathlib.Path(inp)
|
||||
self.tensor = Tensor(self.file_path)
|
||||
else: self.tensor = inp
|
||||
self.attr_func_dict = { PBType.BYTES: self._handle_bytes, PBType.SUB: self._handle_sub_message, PBType.FLOATS: self._handle_packed_floats,
|
||||
PBType.INT: self._handle_int64, PBType.INTS: self._handle_packed_int64s, PBType.STRING: self._handle_string, PBType.FLOAT: self._handle_float}
|
||||
self.registered_handles = {}
|
||||
for pb_name in PB_INFOS:
|
||||
res = {}
|
||||
for fid, config in PB_INFOS[pb_name].items():
|
||||
parser_fn, repeated = None, False
|
||||
if len(config) == 2: name, attr = config
|
||||
elif len(config) == 3: name, attr, repeated = config
|
||||
elif len(config) == 4: name, attr, repeated, parser_fn = config
|
||||
handler_fn = self.attr_func_dict[attr]
|
||||
def _wrapper_handler(obj, reader, wt, h=handler_fn, n=name, p=parser_fn, r=repeated): return h(obj, n, reader, wt, parser_func=p, repeated=r)
|
||||
res[fid] = _wrapper_handler
|
||||
self.registered_handles[pb_name] = res
|
||||
|
||||
def parse(self):
|
||||
reader = BufferedReader(TensorIO(self.tensor))
|
||||
return self._parse_message(reader, "ModelProto", lambda: {"opset_import": [], "domain": None, "graph": None})
|
||||
|
||||
def decode_varint(self, reader: BufferedReader) -> int:
|
||||
result = 0
|
||||
shift = 0
|
||||
while True:
|
||||
data = reader.read(1)
|
||||
if data == b"": raise EOFError("decode_varint EOF")
|
||||
result |= (data[0] & 0x7F) << shift
|
||||
if not (data[0] & 0x80): return result
|
||||
shift += 7
|
||||
if shift >= 70: raise ValueError("Varint too long")
|
||||
|
||||
def skip_field_value(self, reader: BufferedReader, wire_type):
|
||||
if wire_type == WIRETYPE_VARINT: self.decode_varint(reader)
|
||||
elif wire_type == WIRETYPE_FIXED64: reader.seek(8, os.SEEK_CUR)
|
||||
elif wire_type == WIRETYPE_FIXED32: reader.seek(4, os.SEEK_CUR)
|
||||
elif wire_type == WIRETYPE_LENGTH_DELIMITED: reader.seek(self.decode_varint(reader), os.SEEK_CUR)
|
||||
else: raise ValueError(f"Unknown wire type: {wire_type}")
|
||||
|
||||
def _parse_message(self, reader, message_field_handlers_name, initial_obj_factory=lambda: {}):
|
||||
message_field_handlers = self.registered_handles[message_field_handlers_name]
|
||||
obj = initial_obj_factory()
|
||||
while True:
|
||||
try:
|
||||
tag_val = self.decode_varint(reader)
|
||||
field_number = tag_val >> 3
|
||||
wire_type = tag_val & 0x07
|
||||
if handler := message_field_handlers.get(field_number):
|
||||
handler(obj, reader, wire_type)
|
||||
else: self.skip_field_value(reader, wire_type)
|
||||
except EOFError: break
|
||||
if message_field_handlers_name == "TensorProto" and self.load_external_data and obj.get("data_location", 0) == 1: self._parse_external_data(obj)
|
||||
return obj
|
||||
|
||||
def _handle_delimited(self, reader:BufferedReader, use_tensor=False) -> Tensor|bytes:
|
||||
str_len = self.decode_varint(reader)
|
||||
if not use_tensor: return reader.read(str_len)
|
||||
raw = reader.raw
|
||||
assert isinstance(raw, TensorIO)
|
||||
res = raw._tensor[reader.tell():(reader.tell()+str_len)]
|
||||
reader.seek(str_len, os.SEEK_CUR)
|
||||
return res
|
||||
|
||||
def _handle_string(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False):
|
||||
if wire_type != WIRETYPE_LENGTH_DELIMITED: raise ValueError(f"Expected length-delimited for string field '{key_name}'")
|
||||
value = self._handle_delimited(reader)
|
||||
assert isinstance(value, bytes)
|
||||
gen_result(obj, key_name, value.decode("utf-8"), repeated)
|
||||
|
||||
def _handle_bytes(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False):
|
||||
if wire_type != WIRETYPE_LENGTH_DELIMITED: raise ValueError(f"Expected length-delimited for bytes field '{key_name}'")
|
||||
value = self._handle_delimited(reader, use_tensor=True)
|
||||
gen_result(obj, key_name, value, repeated)
|
||||
|
||||
def _handle_int64(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False):
|
||||
if wire_type != WIRETYPE_VARINT: raise ValueError(f"Expected varint for int64 field '{key_name}'")
|
||||
val = self.decode_varint(reader)
|
||||
gen_result(obj, key_name, val - 2**64 if val & (1 << 63) else val, repeated)
|
||||
|
||||
def _handle_float(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False):
|
||||
if wire_type != WIRETYPE_FIXED32: raise ValueError(f"Expected fixed32 for float field '{key_name}'")
|
||||
val, = struct.unpack("<f", reader.read(4))
|
||||
gen_result(obj, key_name, val, repeated)
|
||||
|
||||
def _handle_packed_int64s(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False):
|
||||
if wire_type != WIRETYPE_LENGTH_DELIMITED: raise ValueError("Packed int64s expected length_delimited")
|
||||
total_bytes_len = self.decode_varint(reader)
|
||||
old_pos = reader.tell()
|
||||
values = []
|
||||
while reader.tell() < total_bytes_len + old_pos:
|
||||
val = self.decode_varint(reader) # need copy here because packed ints are varint
|
||||
values.append(val - 2**64 if val & (1 << 63) else val)
|
||||
obj[key_name] = values
|
||||
|
||||
def _handle_packed_floats(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False):
|
||||
if wire_type != WIRETYPE_LENGTH_DELIMITED: raise ValueError("Packed floats expected length_delimited")
|
||||
value = self._handle_delimited(reader, use_tensor=True)
|
||||
obj[key_name] = value
|
||||
|
||||
def _handle_sub_message(self, obj, key_name, reader, wire_type, parser_func=None, repeated=False):
|
||||
if wire_type != WIRETYPE_LENGTH_DELIMITED: raise ValueError(f"Expected length-delimited for sub-message field '{key_name}'")
|
||||
value = self._handle_delimited(reader, use_tensor=True)
|
||||
assert isinstance(value, Tensor)
|
||||
if isinstance(parser_func, str): sub_obj = self._parse_message(BufferedReader(TensorIO(value)), parser_func)
|
||||
elif isinstance(parser_func, tuple): sub_obj = self._parse_message(BufferedReader(TensorIO(value)), parser_func[0], parser_func[1])
|
||||
else: sub_obj = parser_func(BufferedReader(TensorIO(value)))
|
||||
gen_result(obj, key_name, sub_obj, repeated)
|
||||
|
||||
def _parse_external_data(self, obj):
|
||||
if "external_data" not in obj: raise ValueError("no external_data")
|
||||
location = None
|
||||
length = None
|
||||
offset = 0
|
||||
for kv in obj["external_data"]:
|
||||
if kv["key"] == "location": location = kv["value"]
|
||||
if kv["key"] == "offset": offset = int(kv["value"])
|
||||
if kv["key"] == "length": length = int(kv["value"])
|
||||
if location is None: raise ValueError("no location in external_data")
|
||||
if self.file_path is None:
|
||||
# get onnx file path from Tensor
|
||||
if isinstance(self.tensor.device, str) and self.tensor.device.startswith("DISK:"):
|
||||
self.file_path = pathlib.Path(self.tensor.device[5:])
|
||||
if not (ext_path := self.file_path.parent.joinpath(location)).exists():
|
||||
raise Exception(f"external location not exists: {ext_path}, may caused by symbolic link, try passing onnx file path to onnx_load")
|
||||
else: raise Exception("onnx external_data need the origin file path, try passing onnx file path to onnx_load")
|
||||
ext_path = self.file_path.parent.joinpath(location)
|
||||
if not ext_path.exists(): raise Exception(f"external location not exists: {ext_path}")
|
||||
ext_tensor = Tensor(ext_path)
|
||||
obj["raw_data"] = ext_tensor[offset:offset+length] if length is not None else ext_tensor[offset:]
|
||||
obj["data_location"] = 0
|
||||
Reference in New Issue
Block a user