mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-08 14:43:57 -05:00
test mnist on GPU
This commit is contained in:
@@ -88,7 +88,7 @@ python -m pytest
|
||||
|
||||
### TODO
|
||||
|
||||
* Train an EfficientNet
|
||||
* Train an EfficientNet on ImageNet
|
||||
* Make broadcasting work on the backward pass (simple please)
|
||||
* EfficientNet backward pass
|
||||
* Tensors on GPU (GPU support, must support Mac)
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
import os
|
||||
import unittest
|
||||
import numpy as np
|
||||
from tinygrad.tensor import Tensor
|
||||
from tinygrad.tensor import Tensor, GPU
|
||||
from tinygrad.utils import layer_init_uniform, fetch_mnist
|
||||
import tinygrad.optim as optim
|
||||
from tqdm import trange
|
||||
@@ -43,17 +43,17 @@ class TinyConvNet:
|
||||
x = x.reshape(shape=[x.shape[0], -1])
|
||||
return x.dot(self.l1).logsoftmax()
|
||||
|
||||
def train(model, optim, steps, BS=128):
|
||||
def train(model, optim, steps, BS=128, gpu=False):
|
||||
losses, accuracies = [], []
|
||||
for i in (t := trange(steps, disable=os.getenv('CI') is not None)):
|
||||
samp = np.random.randint(0, X_train.shape[0], size=(BS))
|
||||
|
||||
x = Tensor(X_train[samp].reshape((-1, 28*28)).astype(np.float32))
|
||||
x = Tensor(X_train[samp].reshape((-1, 28*28)).astype(np.float32), gpu=gpu)
|
||||
Y = Y_train[samp]
|
||||
y = np.zeros((len(samp),10), np.float32)
|
||||
# correct loss for NLL, torch NLL loss returns one per row
|
||||
y[range(y.shape[0]),Y] = -10.0
|
||||
y = Tensor(y)
|
||||
y = Tensor(y, gpu=gpu)
|
||||
|
||||
# network
|
||||
out = model.forward(x)
|
||||
@@ -63,18 +63,18 @@ def train(model, optim, steps, BS=128):
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
cat = np.argmax(out.data, axis=1)
|
||||
cat = np.argmax(out.cpu().data, axis=1)
|
||||
accuracy = (cat == Y).mean()
|
||||
|
||||
# printing
|
||||
loss = loss.data
|
||||
loss = loss.cpu().data
|
||||
losses.append(loss)
|
||||
accuracies.append(accuracy)
|
||||
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
|
||||
|
||||
def evaluate(model):
|
||||
def evaluate(model, gpu=False):
|
||||
def numpy_eval():
|
||||
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28)).astype(np.float32)))
|
||||
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28)).astype(np.float32), gpu=gpu)).cpu()
|
||||
Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1)
|
||||
return (Y_test == Y_test_preds).mean()
|
||||
|
||||
@@ -89,6 +89,15 @@ class TestMNIST(unittest.TestCase):
|
||||
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
||||
train(model, optimizer, steps=200)
|
||||
evaluate(model)
|
||||
|
||||
@unittest.skipUnless(GPU, "Requires GPU")
|
||||
def test_sgd_gpu(self):
|
||||
np.random.seed(1337)
|
||||
model = TinyBobNet()
|
||||
[x.cuda_() for x in model.parameters()]
|
||||
optimizer = optim.SGD(model.parameters(), lr=0.001)
|
||||
train(model, optimizer, steps=1000, gpu=True)
|
||||
evaluate(model, gpu=True)
|
||||
|
||||
def test_sgd(self):
|
||||
np.random.seed(1337)
|
||||
|
||||
@@ -89,5 +89,6 @@ class Dot(Function):
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
pass
|
||||
register('dot', Dot, gpu=True)
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user