test mnist on GPU

This commit is contained in:
George Hotz
2020-11-01 07:46:17 -08:00
parent 499604d69b
commit 1f544d6ece
3 changed files with 19 additions and 9 deletions

View File

@@ -88,7 +88,7 @@ python -m pytest
### TODO
* Train an EfficientNet
* Train an EfficientNet on ImageNet
* Make broadcasting work on the backward pass (simple please)
* EfficientNet backward pass
* Tensors on GPU (GPU support, must support Mac)

View File

@@ -2,7 +2,7 @@
import os
import unittest
import numpy as np
from tinygrad.tensor import Tensor
from tinygrad.tensor import Tensor, GPU
from tinygrad.utils import layer_init_uniform, fetch_mnist
import tinygrad.optim as optim
from tqdm import trange
@@ -43,17 +43,17 @@ class TinyConvNet:
x = x.reshape(shape=[x.shape[0], -1])
return x.dot(self.l1).logsoftmax()
def train(model, optim, steps, BS=128):
def train(model, optim, steps, BS=128, gpu=False):
losses, accuracies = [], []
for i in (t := trange(steps, disable=os.getenv('CI') is not None)):
samp = np.random.randint(0, X_train.shape[0], size=(BS))
x = Tensor(X_train[samp].reshape((-1, 28*28)).astype(np.float32))
x = Tensor(X_train[samp].reshape((-1, 28*28)).astype(np.float32), gpu=gpu)
Y = Y_train[samp]
y = np.zeros((len(samp),10), np.float32)
# correct loss for NLL, torch NLL loss returns one per row
y[range(y.shape[0]),Y] = -10.0
y = Tensor(y)
y = Tensor(y, gpu=gpu)
# network
out = model.forward(x)
@@ -63,18 +63,18 @@ def train(model, optim, steps, BS=128):
loss.backward()
optim.step()
cat = np.argmax(out.data, axis=1)
cat = np.argmax(out.cpu().data, axis=1)
accuracy = (cat == Y).mean()
# printing
loss = loss.data
loss = loss.cpu().data
losses.append(loss)
accuracies.append(accuracy)
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
def evaluate(model):
def evaluate(model, gpu=False):
def numpy_eval():
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28)).astype(np.float32)))
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28)).astype(np.float32), gpu=gpu)).cpu()
Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1)
return (Y_test == Y_test_preds).mean()
@@ -89,6 +89,15 @@ class TestMNIST(unittest.TestCase):
optimizer = optim.Adam(model.parameters(), lr=0.001)
train(model, optimizer, steps=200)
evaluate(model)
@unittest.skipUnless(GPU, "Requires GPU")
def test_sgd_gpu(self):
np.random.seed(1337)
model = TinyBobNet()
[x.cuda_() for x in model.parameters()]
optimizer = optim.SGD(model.parameters(), lr=0.001)
train(model, optimizer, steps=1000, gpu=True)
evaluate(model, gpu=True)
def test_sgd(self):
np.random.seed(1337)

View File

@@ -89,5 +89,6 @@ class Dot(Function):
@staticmethod
def backward(ctx, grad_output):
pass
register('dot', Dot, gpu=True)