small fixups from schedule_cache (#13557)

This commit is contained in:
George Hotz
2025-12-03 15:41:16 -08:00
committed by GitHub
parent f5abd38132
commit 24ca8eeaa7
4 changed files with 10 additions and 141 deletions

View File

@@ -71,9 +71,7 @@ jobs:
- name: Test Docs Build
run: python -m mkdocs build --strict
- name: Test Docs
run: |
python docs/abstractions2.py
python docs/abstractions3.py
run: python docs/abstractions3.py
- name: Test README
run: awk '/```python/{flag=1;next}/```/{flag=0}flag' README.md > README.py && python README.py
- name: Test Quickstart

View File

@@ -1,135 +0,0 @@
# tinygrad is a tensor library, and as a tensor library it has multiple parts
# 1. a "runtime". this allows buffer management, compilation, and running programs
# 2. a "Device" that uses the runtime but specifies compute in an abstract way for all
# 3. a "UOp" that fuses the compute into kernels, using memory only when needed
# 4. a "Tensor" that provides an easy to use frontend with autograd ".backward()"
print("******** first, the runtime ***********")
from tinygrad.runtime.ops_cpu import ClangJITCompiler, CPUDevice, CPUProgram
cpu = CPUDevice()
# allocate some buffers
out = cpu.allocator.alloc(4)
a = cpu.allocator.alloc(4)
b = cpu.allocator.alloc(4)
# load in some values (little endian)
cpu.allocator._copyin(a, memoryview(bytearray([2,0,0,0])))
cpu.allocator._copyin(b, memoryview(bytearray([3,0,0,0])))
# compile a program to a binary
lib = ClangJITCompiler().compile("void add(int *out, int *a, int *b) { out[0] = a[0] + b[0]; }")
# create a runtime for the program
fxn = cpu.runtime("add", lib)
# run the program
fxn(out, a, b)
# check the data out
print(val := cpu.allocator._as_buffer(out).cast("I").tolist()[0])
assert val == 5
print("******** second, the Device ***********")
DEVICE = "CPU" # NOTE: you can change this!
import struct
from tinygrad.dtype import dtypes
from tinygrad.device import Buffer, Device
from tinygrad.uop.ops import UOp, Ops
# allocate some buffers + load in values
out = Buffer(DEVICE, 1, dtypes.int32).allocate()
a = Buffer(DEVICE, 1, dtypes.int32).allocate().copyin(memoryview(bytearray(struct.pack("I", 2))))
b = Buffer(DEVICE, 1, dtypes.int32).allocate().copyin(memoryview(bytearray(struct.pack("I", 3))))
# NOTE: a._buf is the same as the return from cpu.allocator.alloc
# describe the computation
idx = UOp.const(dtypes.index, 0)
buf_1 = UOp(Ops.DEFINE_GLOBAL, dtypes.int32.ptr(), (), 1)
buf_2 = UOp(Ops.DEFINE_GLOBAL, dtypes.int32.ptr(), (), 2)
alu = buf_1.index(idx) + buf_2.index(idx)
output_buf = UOp(Ops.DEFINE_GLOBAL, dtypes.int32.ptr(), (), 0)
st_0 = UOp(Ops.STORE, dtypes.void, (output_buf.index(idx), alu))
s = UOp(Ops.SINK, dtypes.void, (st_0,))
# convert the computation to a "linearized" format (print the format)
from tinygrad.engine.realize import get_program, CompiledRunner
program = get_program(s, Device[DEVICE].renderer)
# compile a program (and print the source)
fxn = CompiledRunner(program)
print(fxn.p.src)
# NOTE: fxn.clprg is the CPUProgram
# run the program
fxn.exec([out, a, b])
# check the data out
assert out.as_buffer().cast('I')[0] == 5
print("******** third, the UOp ***********")
from tinygrad.engine.realize import run_schedule
from tinygrad.engine.schedule import create_schedule_with_vars
from tinygrad.schedule.rangeify import get_rangeify_map
# allocate some values + load in values
a = UOp.new_buffer(DEVICE, 1, dtypes.int32)
b = UOp.new_buffer(DEVICE, 1, dtypes.int32)
a.buffer.allocate().copyin(memoryview(bytearray(struct.pack("I", 2))))
b.buffer.allocate().copyin(memoryview(bytearray(struct.pack("I", 3))))
# describe the computation
out = a + b
s = UOp(Ops.SINK, dtypes.void, (out,))
# group the computation into kernels
becomes_map = get_rangeify_map(s)
# the compute maps to an assign
assign = becomes_map[a+b].base
# the first source is the output buffer (data)
assert assign.src[0].op is Ops.BUFFER
# the second source is the kernel (compute)
assert assign.src[1].op is Ops.KERNEL
# schedule the kernel graph in a linear list
s = UOp(Ops.SINK, dtypes.void, (assign,))
sched, _ = create_schedule_with_vars(s)
assert len(sched) == 1
# DEBUGGING: print the compute ast
print(sched[-1].ast)
# NOTE: sched[-1].ast is the same as st_0 above
# the output will be stored in a new buffer
out = assign.buf_uop
assert out.op is Ops.BUFFER and not out.buffer.is_allocated()
print(out)
# run that schedule
run_schedule(sched)
# check the data out
assert out.is_realized and out.buffer.as_buffer().cast('I')[0] == 5
print("******** fourth, the Tensor ***********")
from tinygrad import Tensor
a = Tensor([2], dtype=dtypes.int32, device=DEVICE)
b = Tensor([3], dtype=dtypes.int32, device=DEVICE)
out = a + b
# check the data out
print(val:=out.item())
assert val == 5

View File

@@ -841,11 +841,13 @@ class TestTensorMetadata(unittest.TestCase):
self.assertTrue(y.grad.uop.metadata[0].backward)
si = Tensor.schedule(out, x.grad, y.grad)[-1]
#self.assertEqual(len(si.metadata), 3, f"failed with {si.metadata}")
self.assertSetEqual(set(m.name for m in si.metadata), {"sigmoid", "relu"})
# skip numpy, this is schedule cache
self.assertSetEqual(set(m.name for m in si.metadata if m.name != "numpy"), {"sigmoid", "relu"})
#bw = [m for m in si.metadata if m.backward]
#self.assertEqual(len(bw), 1)
#self.assertEqual(bw[0].name, "sigmoid")
@unittest.skip("metadata is no longer promised to be exact with schedulecache")
def test_tracemeta_0(self):
with Context(TRACEMETA=0):
x = Tensor.rand(3, requires_grad=True)

View File

@@ -663,7 +663,7 @@ class UOp(OpMixin, metaclass=UOpMetaClass):
assert all_same([x.size for x in ret.bufs]) and all_same([x.dtype for x in ret.bufs]), "multibuffers mismatch buffers"
return ret
assert self.op is Ops.BUFFER, f"must be BUFFER {self.op}"
assert self.src[0].op is Ops.UNIQUE, "buffer src[0] must be UNIQUE"
assert self.src[0].op is Ops.UNIQUE, f"buffer src[0] must be UNIQUE, not {self.src[0].op}"
if (cret:=buffers.get(self)) is not None: return cret
rdtype = self.dtype if isinstance(self.dtype, ImageDType) else self.dtype.base
if isinstance(self.device, tuple): ret = MultiBuffer(self.device, self.size, rdtype).ref(1)
@@ -672,8 +672,12 @@ class UOp(OpMixin, metaclass=UOpMetaClass):
return ret
@property
def realized(self) -> Buffer|MultiBuffer|None:
# only these can be realized
if self.op not in (Ops.BUFFER, Ops.MSTACK): return None
# LUNIQUEs are never realized
if self.op_in_backward_slice_with_self(Ops.LUNIQUE): return None
# NOTE: this is used by the JIT to determine which inputs we capture
return self.buffer if self.op in {Ops.BUFFER, Ops.MSTACK} and self.buffer.is_allocated() else None
return self.buffer if self.buffer.is_allocated() else None
@property
def is_realized(self) -> bool:
return all(x.base.realized is not None for x in self.base.src) if self.base.op is Ops.MULTI else self.base.realized is not None