add CLAUDE.md

This commit is contained in:
George Hotz
2025-12-12 16:50:11 -05:00
parent 8c87a0bf8d
commit 27845353a0

130
CLAUDE.md Normal file
View File

@@ -0,0 +1,130 @@
# Claude Code Guide for tinygrad
## Architecture Overview
tinygrad compiles tensor operations into optimized kernels. The pipeline:
1. **Tensor** (`tensor.py`) - User-facing API, creates UOp graph
2. **UOp** (`uop/ops.py`) - Unified IR for all operations (both tensor and kernel level)
3. **Schedule** (`engine/schedule.py`, `schedule/`) - Converts tensor UOps to kernel UOps
4. **Codegen** (`codegen/`) - Converts kernel UOps to device code
5. **Runtime** (`runtime/`) - Device-specific execution
## Key Concepts
### UOp (Universal Operation)
Everything is a UOp - tensors, operations, buffers, kernels. Key properties:
- `op`: The operation type (Ops enum)
- `dtype`: Data type
- `src`: Tuple of source UOps
- `arg`: Operation-specific argument
- `tag`: Optional tag for graph transformations
UOps are **immutable and cached** - creating the same UOp twice returns the same object (ucache).
### PatternMatcher
Used extensively for graph transformations:
```python
pm = PatternMatcher([
(UPat(Ops.ADD, src=(UPat.cvar("x"), UPat.cvar("x"))), lambda x: x * 2),
])
result = graph_rewrite(uop, pm)
```
### Schedule Cache
Schedules are cached by graph structure. BIND nodes (variables with bound values) are unbound before cache key computation so different values hit the same cache.
## Directory Structure
```
tinygrad/
├── tensor.py # Tensor class, user API
├── device.py # Buffer, device management
├── dtype.py # Data types
├── helpers.py # Utilities, environment vars
├── uop/
│ ├── ops.py # UOp class, Ops enum, PatternMatcher
│ ├── spec.py # UOp type verification
│ └── symbolic.py # Symbolic math simplification
├── engine/
│ ├── schedule.py # Schedule creation, caching
│ ├── realize.py # Tensor realization
│ ├── jit.py # JIT compilation
│ └── memory.py # Memory planning
├── schedule/
│ ├── rangeify.py # Convert movements to ranges
│ └── indexing.py # Index calculations
├── codegen/
│ ├── kernel.py # Kernel optimization
│ └── uopgraph.py # UOp graph transformations
├── renderer/ # Code generation (CUDA, Metal, etc.)
└── runtime/ # Device backends
```
## Testing
```bash
# Run specific test
python -m pytest test/unit/test_schedule_cache.py -xvs
# Run with timeout
python -m pytest test/test_symbolic_ops.py -x --timeout=60
# Debug with print
DEBUG=2 python -m pytest test/test_schedule.py::test_name -xvs
# Visualize UOp graphs
VIZ=1 python -c "from tinygrad import Tensor; Tensor.ones(10).sum().realize()"
```
## Common Environment Variables
- `DEBUG=1-4` - Increasing verbosity
- `VIZ=1` - Enable graph visualization
- `SPEC=1` - Enable UOp spec verification
- `NOOPT=1` - Disable optimizations
- `DEVICE=CPU/CUDA/AMD/METAL` - Set default device
## Debugging Tips
1. **Print UOp graphs**: `print(tensor.uop)` or `print(tensor.uop.sink())`
2. **Check schedule**: `tensor.schedule()` returns list of ScheduleItems
3. **Trace graph rewrites**: Use `VIZ=1` or add print in PatternMatcher callbacks
4. **Find UOps by type**: `[u for u in uop.toposort() if u.op is Ops.SOMETHING]`
## Style Notes
- 2-space indentation, 150 char line limit
- PatternMatchers should be defined at module level (slow to construct)
- Prefer `graph_rewrite` over manual graph traversal
- UOp methods like `.replace()` preserve tags unless explicitly changed
- Use `.rtag(value)` to add tags to UOps
## Common Patterns
### Graph Transformation
```python
def my_transform(ctx, x):
# Return new UOp or None to skip
return x.replace(arg=new_arg)
pm = PatternMatcher([
(UPat(Ops.SOMETHING, name="x"), my_transform),
])
result = graph_rewrite(input_uop, pm, ctx={})
```
### Finding Variables
```python
# Get all variables in a UOp graph
variables = uop.variables()
# Get bound variable values
var, val = bind_uop.unbind()
```
### Shape Handling
```python
# Shapes can be symbolic (contain UOps)
shape = tensor.shape # tuple[sint, ...] where sint = int | UOp
```