bert corealize multiple outputs (#9359)

1% faster step
This commit is contained in:
chenyu
2025-03-05 10:58:37 -05:00
committed by GitHub
parent d550583657
commit 2af129c078

View File

@@ -593,7 +593,8 @@ def train_step_bert(model, optimizer, scheduler, loss_scaler:float, input_ids:Te
optimizer.step()
scheduler.step()
# TODO: no to("CPU") here because it blocks and messes the python time
return loss.realize(), global_norm.realize(), optimizer.optimizers[0].lr.realize()
Tensor.realize(loss, global_norm, optimizer.optimizers[0].lr)
return loss, global_norm, optimizer.optimizers[0].lr
@TinyJit
def eval_step_bert(model, input_ids:Tensor, segment_ids:Tensor, attention_mask:Tensor, masked_positions:Tensor, masked_lm_ids:Tensor,
@@ -604,8 +605,10 @@ def eval_step_bert(model, input_ids:Tensor, segment_ids:Tensor, attention_mask:T
lm_logits, seq_relationship_logits = model(input_ids, attention_mask, masked_positions, segment_ids)
masked_lm_accuracy, seq_relationship_accuracy, masked_lm_loss, next_sentence_loss = \
model.accuracy(lm_logits, seq_relationship_logits, masked_lm_ids, masked_lm_weights, next_sentence_labels)
return masked_lm_accuracy.to("CPU").realize(), seq_relationship_accuracy.realize().to("CPU"), \
masked_lm_loss.to("CPU").realize(), next_sentence_loss.to("CPU").realize()
for t in [masked_lm_accuracy, seq_relationship_accuracy, masked_lm_loss, next_sentence_loss]:
t.to_("CPU")
Tensor.realize(masked_lm_accuracy, seq_relationship_accuracy, masked_lm_loss, next_sentence_loss)
return masked_lm_accuracy, seq_relationship_accuracy, masked_lm_loss, next_sentence_loss
def train_bert():
# NOTE: pip install tensorflow, wandb required