group conv: forward pass works (#34)

* forward pass works

* got the backward pass

* okay, it's now a coho
This commit is contained in:
George Hotz
2020-10-30 09:19:20 -07:00
committed by GitHub
parent 339a35b081
commit 2c7e75d733
3 changed files with 32 additions and 25 deletions

View File

@@ -119,8 +119,10 @@ if __name__ == "__main__":
# load cat image and preprocess
from PIL import Image
img = Image.open(io.BytesIO(fetch("https://c.files.bbci.co.uk/12A9B/production/_111434467_gettyimages-1143489763.jpg")))
img = img.resize((224, 224))
img = np.moveaxis(np.array(img), [2,0,1], [0,1,2])
img = img.resize((398, 224))
img = np.array(img)
img = img[:, 87:-87]
img = np.moveaxis(img, [2,0,1], [0,1,2])
img = img.astype(np.float32).reshape(1,3,224,224)
img /= 256
img -= np.array([0.485, 0.456, 0.406]).reshape((1,-1,1,1))

View File

@@ -48,11 +48,12 @@ class TestOps(unittest.TestCase):
def test_conv2d(self):
for bs in [1,8]:
for cin in [1,3]:
for H in [2,5]:
for W in [2,3,5]:
helper_test_op([(bs,cin,11,28), (4,cin,H,W)],
lambda x,w: torch.nn.functional.conv2d(x,w).relu(),
lambda x,w: Tensor.conv2d(x,w).relu(), atol=2e-5, grad_atol=2e-6)
for groups in [1,3] if cin == 3 else [1]:
for H in [2,5]:
for W in [2,3,5]:
helper_test_op([(bs,cin,11,28), (6,cin//groups,H,W)],
lambda x,w: torch.nn.functional.conv2d(x,w,groups=groups).relu(),
lambda x,w: Tensor.conv2d(x,w,groups=groups).relu(), atol=2e-5, grad_atol=2e-6)
def test_strided_conv2d(self):
bs = 4

View File

@@ -155,21 +155,23 @@ class Conv2D(Function):
def forward(ctx, x, w, stride=1, groups=1):
if type(ctx.stride) == int:
ctx.stride = (ctx.stride, ctx.stride)
cout,cin,H,W = w.shape
if groups > 1:
w = np.repeat(w, groups, axis=1) / groups
tw = w.reshape(cout, -1).T
ys,xs = ctx.stride
bs,oy,ox = x.shape[0], (x.shape[2]-(H-ys))//ys, (x.shape[3]-(W-xs))//xs
bs,cin_,oy,ox = x.shape[0], x.shape[1], (x.shape[2]-(H-ys))//ys, (x.shape[3]-(W-xs))//xs
assert cin*ctx.groups == cin_
assert cout % ctx.groups == 0
rcout = cout//ctx.groups
ctx.save_for_backward(x, w)
ret = np.zeros((bs, cout, oy, ox), dtype=w.dtype)
for Y in range(oy):
for X in range(ox):
iY,iX = Y*ys, X*xs
tx = x[:, :, iY:iY+H, iX:iX+W].reshape(bs, -1)
ret[:, :, Y, X] = tx.dot(tw)
for g in range(ctx.groups):
tw = w[g*rcout:(g*rcout+rcout)].reshape(rcout, -1).T
for Y in range(oy):
for X in range(ox):
iY,iX = Y*ys, X*xs
tx = x[:, g*cin:(g*cin+cin), iY:iY+H, iX:iX+W].reshape(bs, -1)
ret[:, g*rcout:(g*rcout+rcout), Y, X] += tx.dot(tw)
return ret
@staticmethod
@@ -177,17 +179,19 @@ class Conv2D(Function):
bs,_,oy,ox = grad_output.shape
x, w = ctx.saved_tensors
cout,cin,H,W = w.shape
tw = w.reshape(cout, -1)
ys,xs = ctx.stride
rcout = cout//ctx.groups
dx, dw = np.zeros_like(x), np.zeros_like(w)
for Y in range(grad_output.shape[2]):
for X in range(grad_output.shape[3]):
iY,iX = Y*ys, X*xs
gg = grad_output[:, :, Y, X]
tx = x[:, :, iY:iY+H, iX:iX+W].reshape(x.shape[0], -1)
dw += gg.T.dot(tx).reshape(dw.shape)
dx[:, :, iY:iY+H, iX:iX+W] += gg.dot(tw).reshape(dx.shape[0], dx.shape[1], H, W)
for g in range(ctx.groups):
tw = w[g*rcout:(g*rcout+rcout)].reshape(rcout, -1)
for Y in range(grad_output.shape[2]):
for X in range(grad_output.shape[3]):
iY,iX = Y*ys, X*xs
gg = grad_output[:, g*rcout:(g*rcout+rcout), Y, X]
tx = x[:, g*cin:(g*cin+cin), iY:iY+H, iX:iX+W].reshape(x.shape[0], -1)
dw[g*rcout:(g*rcout+rcout)] += gg.T.dot(tx).reshape((rcout,cin,H,W))
dx[:, g*cin:(g*cin+cin), iY:iY+H, iX:iX+W] += gg.dot(tw).reshape(dx.shape[0], cin, H, W)
return dx, dw
register('conv2d', Conv2D)