ops test speed

This commit is contained in:
George Hotz
2020-10-25 19:01:02 -07:00
parent b27bcbe4b4
commit 2eebbd32c6
2 changed files with 27 additions and 11 deletions

View File

@@ -75,7 +75,7 @@ class TestConvSpeed(unittest.TestCase):
for i in range(1+cnt):
et0 = time.time()
x = Tensor.randn(128, 1, 28, 28)
x = x.conv2d(c1).relu().max_pool2d()
x = x.conv2d(c1).relu().avg_pool2d()
x = x.conv2d(c2).relu().max_pool2d()
x = x.reshape(Tensor(np.array((x.shape[0], -1))))
out = x.dot(l1).logsoftmax()

View File

@@ -1,14 +1,17 @@
import torch
import numpy as np
import unittest
import timeit
import functools
from tinygrad.tensor import Tensor
def test_op(shps, f1, f2, atol=1e-7, grad_atol=1e-7):
def test_op(shps, torch_fxn, tinygrad_fxn, atol=1e-7, grad_atol=1e-7):
ts = [torch.rand(x, requires_grad=True) for x in shps]
tst = [Tensor(x.detach().numpy()) for x in ts]
out = f1(*ts)
ret = f2(*tst)
out = torch_fxn(*ts)
ret = tinygrad_fxn(*tst)
# TODO: why so inaccurate?
np.testing.assert_allclose(ret.data, out.detach().numpy(), atol=atol)
@@ -18,18 +21,31 @@ def test_op(shps, f1, f2, atol=1e-7, grad_atol=1e-7):
for t, tt in zip(ts, tst):
np.testing.assert_allclose(t.grad, tt.grad, atol=grad_atol)
# speed
torch_fp = timeit.Timer(functools.partial(torch_fxn, *ts)).timeit(5) * 1000/5
tinygrad_fp = timeit.Timer(functools.partial(tinygrad_fxn, *tst)).timeit(5) * 1000/5
torch_fbp = timeit.Timer(functools.partial(lambda f,x: f(*x).mean().backward(), torch_fxn, ts)).timeit(5) * 1000/5
tinygrad_fbp = timeit.Timer(functools.partial(lambda f,x: f(*x).mean().backward(), tinygrad_fxn, tst)).timeit(5) * 1000/5
print("testing %30r torch/tinygrad fp: %.2f / %.2f ms bp: %.2f / %.2f ms" % (shps, torch_fp, tinygrad_fp, torch_fbp-torch_fp, tinygrad_fbp-tinygrad_fp))
class TestOps(unittest.TestCase):
def test_conv2d(self):
for cin in [1,2,3]:
for H in [2,3,5]:
for W in [2,3,5]:
test_op([(5,cin,10,7), (4,cin,H,W)], torch.nn.functional.conv2d, Tensor.conv2d, atol=1e-5)
for bs in [1,128]:
for cin in [1,3]:
for H in [2,5]:
for W in [2,3,5]:
test_op([(bs,cin,11,28), (4,cin,H,W)],
lambda x,w: torch.nn.functional.conv2d(x,w).relu(),
lambda x,w: Tensor.conv2d(x,w).relu(), atol=2e-5, grad_atol=2e-6)
def test_maxpool2x2(self):
test_op([(5,2,11,8)], lambda x: torch.nn.functional.max_pool2d(x, (2,2)), Tensor.max_pool2d)
test_op([(32,2,110,28)], lambda x: torch.nn.functional.max_pool2d(x, (2,2)), Tensor.max_pool2d)
def test_avgpool2x2(self):
test_op([(5,2,11,8)], lambda x: torch.nn.functional.avg_pool2d(x, (2,2)), Tensor.avg_pool2d)
test_op([(32,2,111,28)], lambda x: torch.nn.functional.avg_pool2d(x, (2,2)), Tensor.avg_pool2d)
if __name__ == '__main__':
unittest.main()
unittest.main(verbosity=2)