mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-08 22:48:25 -05:00
@@ -39,9 +39,9 @@ print(y.grad) # dz/dy
|
||||
|
||||
### Neural networks?
|
||||
|
||||
It turns out, a decent autograd tensor library is 90% of what you need for neural networks. Add an optimizer (SGD and Adam implemented) from tinygrad.optim, write some boilerplate minibatching code, and you have all you need.
|
||||
It turns out, a decent autograd tensor library is 90% of what you need for neural networks. Add an optimizer (SGD, RMSprop and Adam implemented) from tinygrad.optim, write some boilerplate minibatching code, and you have all you need.
|
||||
|
||||
### Neural network example (from test/mnist.py)
|
||||
### Neural network example (from test/test_mnist.py)
|
||||
|
||||
```python
|
||||
from tinygrad.tensor import Tensor
|
||||
|
||||
@@ -4,7 +4,7 @@ import unittest
|
||||
import numpy as np
|
||||
from tinygrad.tensor import Tensor
|
||||
from tinygrad.utils import layer_init_uniform, fetch_mnist
|
||||
import tinygrad.optim as tinygrad_optim
|
||||
import tinygrad.optim as optim
|
||||
from tqdm import trange
|
||||
np.random.seed(1337)
|
||||
|
||||
@@ -39,54 +39,62 @@ class TinyConvNet:
|
||||
|
||||
class TestMNIST(unittest.TestCase):
|
||||
def test_mnist(self):
|
||||
if os.getenv("CONV") == "1":
|
||||
model = TinyConvNet()
|
||||
optim = tinygrad_optim.Adam([model.c1, model.l1, model.l2], lr=0.001)
|
||||
steps = 400
|
||||
else:
|
||||
model = TinyBobNet()
|
||||
optim = tinygrad_optim.SGD([model.l1, model.l2], lr=0.001)
|
||||
steps = 1000
|
||||
def train(model, optim, steps, BS=128):
|
||||
losses, accuracies = [], []
|
||||
for i in (t := trange(steps)):
|
||||
samp = np.random.randint(0, X_train.shape[0], size=(BS))
|
||||
|
||||
x = Tensor(X_train[samp].reshape((-1, 28*28)).astype(np.float32))
|
||||
Y = Y_train[samp]
|
||||
y = np.zeros((len(samp),10), np.float32)
|
||||
# correct loss for NLL, torch NLL loss returns one per row
|
||||
y[range(y.shape[0]),Y] = -10.0
|
||||
y = Tensor(y)
|
||||
|
||||
# network
|
||||
out = model.forward(x)
|
||||
|
||||
BS = 128
|
||||
losses, accuracies = [], []
|
||||
for i in (t := trange(steps)):
|
||||
samp = np.random.randint(0, X_train.shape[0], size=(BS))
|
||||
|
||||
x = Tensor(X_train[samp].reshape((-1, 28*28)).astype(np.float32))
|
||||
Y = Y_train[samp]
|
||||
y = np.zeros((len(samp),10), np.float32)
|
||||
# correct loss for NLL, torch NLL loss returns one per row
|
||||
y[range(y.shape[0]),Y] = -10.0
|
||||
y = Tensor(y)
|
||||
|
||||
# network
|
||||
out = model.forward(x)
|
||||
# NLL loss function
|
||||
loss = out.mul(y).mean()
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
cat = np.argmax(out.data, axis=1)
|
||||
accuracy = (cat == Y).mean()
|
||||
|
||||
# printing
|
||||
loss = loss.data
|
||||
losses.append(loss)
|
||||
accuracies.append(accuracy)
|
||||
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
|
||||
|
||||
# NLL loss function
|
||||
loss = out.mul(y).mean()
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
cat = np.argmax(out.data, axis=1)
|
||||
accuracy = (cat == Y).mean()
|
||||
|
||||
# printing
|
||||
loss = loss.data
|
||||
losses.append(loss)
|
||||
accuracies.append(accuracy)
|
||||
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
|
||||
def evaluate(model):
|
||||
def numpy_eval():
|
||||
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28)).astype(np.float32)))
|
||||
Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1)
|
||||
return (Y_test == Y_test_preds).mean()
|
||||
|
||||
# evaluate
|
||||
def numpy_eval():
|
||||
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28)).astype(np.float32)))
|
||||
Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1)
|
||||
return (Y_test == Y_test_preds).mean()
|
||||
|
||||
accuracy = numpy_eval()
|
||||
print("test set accuracy is %f" % accuracy)
|
||||
assert accuracy > 0.95
|
||||
accuracy = numpy_eval()
|
||||
print("test set accuracy is %f" % accuracy)
|
||||
assert accuracy > 0.95
|
||||
|
||||
# models
|
||||
model = TinyConvNet()
|
||||
optimizer = optim.Adam([model.c1, model.l1, model.l2], lr=0.001)
|
||||
steps = 400
|
||||
train(model, optimizer, steps)
|
||||
evaluate(model)
|
||||
|
||||
model = TinyBobNet()
|
||||
steps = 1000
|
||||
optimizer = optim.SGD([model.l1, model.l2], lr=0.001)
|
||||
train(model, optimizer, steps)
|
||||
evaluate(model)
|
||||
|
||||
model = TinyBobNet()
|
||||
optimizer = optim.RMSprop([model.l1, model.l2], lr=0.001)
|
||||
train(model, optimizer, steps)
|
||||
evaluate(model)
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
||||
@@ -35,3 +35,19 @@ class Adam(Optimizer):
|
||||
vhat = self.v[i] / (1. - self.b2**self.t)
|
||||
t.data -= self.lr * mhat / (np.sqrt(vhat) + self.eps)
|
||||
|
||||
# fill the 20% uncertainty of the above optim
|
||||
class RMSprop(Optimizer):
|
||||
def __init__(self, params, lr=0.001, decay=0.9, eps=1e-8):
|
||||
super(RMSprop, self).__init__(params)
|
||||
self.lr = lr
|
||||
self.decay = decay
|
||||
self.eps = eps
|
||||
self.t = 0
|
||||
|
||||
self.v = [np.zeros_like(t.data) for t in self.params]
|
||||
|
||||
def step(self):
|
||||
self.t += 1
|
||||
for i, t in enumerate(self.params):
|
||||
self.v[i] = self.decay * self.v[i] + (1 - self.decay) * np.square(t.grad)
|
||||
t.data -= (self.lr / np.sqrt(self.v[i] + self.eps)) * t.grad
|
||||
Reference in New Issue
Block a user