Merge pull request #15 from f0ti/master

added RMSprop optim
This commit is contained in:
George Hotz
2020-10-23 06:08:20 -07:00
committed by GitHub
3 changed files with 71 additions and 47 deletions

View File

@@ -39,9 +39,9 @@ print(y.grad) # dz/dy
### Neural networks?
It turns out, a decent autograd tensor library is 90% of what you need for neural networks. Add an optimizer (SGD and Adam implemented) from tinygrad.optim, write some boilerplate minibatching code, and you have all you need.
It turns out, a decent autograd tensor library is 90% of what you need for neural networks. Add an optimizer (SGD, RMSprop and Adam implemented) from tinygrad.optim, write some boilerplate minibatching code, and you have all you need.
### Neural network example (from test/mnist.py)
### Neural network example (from test/test_mnist.py)
```python
from tinygrad.tensor import Tensor

View File

@@ -4,7 +4,7 @@ import unittest
import numpy as np
from tinygrad.tensor import Tensor
from tinygrad.utils import layer_init_uniform, fetch_mnist
import tinygrad.optim as tinygrad_optim
import tinygrad.optim as optim
from tqdm import trange
np.random.seed(1337)
@@ -39,54 +39,62 @@ class TinyConvNet:
class TestMNIST(unittest.TestCase):
def test_mnist(self):
if os.getenv("CONV") == "1":
model = TinyConvNet()
optim = tinygrad_optim.Adam([model.c1, model.l1, model.l2], lr=0.001)
steps = 400
else:
model = TinyBobNet()
optim = tinygrad_optim.SGD([model.l1, model.l2], lr=0.001)
steps = 1000
def train(model, optim, steps, BS=128):
losses, accuracies = [], []
for i in (t := trange(steps)):
samp = np.random.randint(0, X_train.shape[0], size=(BS))
x = Tensor(X_train[samp].reshape((-1, 28*28)).astype(np.float32))
Y = Y_train[samp]
y = np.zeros((len(samp),10), np.float32)
# correct loss for NLL, torch NLL loss returns one per row
y[range(y.shape[0]),Y] = -10.0
y = Tensor(y)
# network
out = model.forward(x)
BS = 128
losses, accuracies = [], []
for i in (t := trange(steps)):
samp = np.random.randint(0, X_train.shape[0], size=(BS))
x = Tensor(X_train[samp].reshape((-1, 28*28)).astype(np.float32))
Y = Y_train[samp]
y = np.zeros((len(samp),10), np.float32)
# correct loss for NLL, torch NLL loss returns one per row
y[range(y.shape[0]),Y] = -10.0
y = Tensor(y)
# network
out = model.forward(x)
# NLL loss function
loss = out.mul(y).mean()
loss.backward()
optim.step()
cat = np.argmax(out.data, axis=1)
accuracy = (cat == Y).mean()
# printing
loss = loss.data
losses.append(loss)
accuracies.append(accuracy)
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
# NLL loss function
loss = out.mul(y).mean()
loss.backward()
optim.step()
cat = np.argmax(out.data, axis=1)
accuracy = (cat == Y).mean()
# printing
loss = loss.data
losses.append(loss)
accuracies.append(accuracy)
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
def evaluate(model):
def numpy_eval():
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28)).astype(np.float32)))
Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1)
return (Y_test == Y_test_preds).mean()
# evaluate
def numpy_eval():
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28)).astype(np.float32)))
Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1)
return (Y_test == Y_test_preds).mean()
accuracy = numpy_eval()
print("test set accuracy is %f" % accuracy)
assert accuracy > 0.95
accuracy = numpy_eval()
print("test set accuracy is %f" % accuracy)
assert accuracy > 0.95
# models
model = TinyConvNet()
optimizer = optim.Adam([model.c1, model.l1, model.l2], lr=0.001)
steps = 400
train(model, optimizer, steps)
evaluate(model)
model = TinyBobNet()
steps = 1000
optimizer = optim.SGD([model.l1, model.l2], lr=0.001)
train(model, optimizer, steps)
evaluate(model)
model = TinyBobNet()
optimizer = optim.RMSprop([model.l1, model.l2], lr=0.001)
train(model, optimizer, steps)
evaluate(model)
if __name__ == '__main__':
unittest.main()

View File

@@ -35,3 +35,19 @@ class Adam(Optimizer):
vhat = self.v[i] / (1. - self.b2**self.t)
t.data -= self.lr * mhat / (np.sqrt(vhat) + self.eps)
# fill the 20% uncertainty of the above optim
class RMSprop(Optimizer):
def __init__(self, params, lr=0.001, decay=0.9, eps=1e-8):
super(RMSprop, self).__init__(params)
self.lr = lr
self.decay = decay
self.eps = eps
self.t = 0
self.v = [np.zeros_like(t.data) for t in self.params]
def step(self):
self.t += 1
for i, t in enumerate(self.params):
self.v[i] = self.decay * self.v[i] + (1 - self.decay) * np.square(t.grad)
t.data -= (self.lr / np.sqrt(self.v[i] + self.eps)) * t.grad