mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-09 23:18:04 -05:00
actually merge to fold_divmod_general [pr] (#13363)
* actually merge to fold_divmod_general [pr]
* one more merge
* Revert "one more merge"
This reverts commit aa79f6781c.
* avoid that case for speed
* faster and simpler
This commit is contained in:
@@ -2,77 +2,86 @@ from tinygrad.uop.ops import PatternMatcher, UPat, Ops, UOp
|
||||
from tinygrad.dtype import dtypes
|
||||
from tinygrad.helpers import cdiv, cmod, CORRECT_DIVMOD_FOLDING, unwrap
|
||||
|
||||
def cancel_divmod(d: UOp, x: UOp, y: UOp) -> UOp|None:
|
||||
# simple cancel div/mod case when the range of the numerator lies within a single denominator interval
|
||||
def fold_divmod_general(d: UOp) -> UOp|None:
|
||||
x, y = d.src
|
||||
|
||||
# cancel_divmod: simple cancel div/mod case when the range of the numerator lies within a single denominator interval
|
||||
x_min, x_max, y_min, y_max = x.vmin, x.vmax, y.vmin, y.vmax
|
||||
assert isinstance(x_min, int) and isinstance(x_max, int) and isinstance(y_min, int) and isinstance(y_max, int)
|
||||
if y_min==y_max==0: raise ZeroDivisionError(f"{'Division' if d.op is Ops.IDIV else 'Mod'} by zero trying to rewrite {x.alu(d.op, y)}")
|
||||
if y_min*y_max > 0 and (q:=cdiv(x_min,y_min)) == cdiv(x_min,y_max) == cdiv(x_max,y_min) == cdiv(x_max,y_max):
|
||||
return x - q*y if d.op is Ops.MOD else d.const_like(q)
|
||||
return None
|
||||
|
||||
def fold_divmod_const(d: UOp, x: UOp, y: UOp) -> UOp|None:
|
||||
if ((c := y.arg) < 0): return None
|
||||
# split uops for the rest of the processing
|
||||
x_peeled, const = x.pop_const()
|
||||
uops = list(x_peeled.split_uop(Ops.ADD))
|
||||
uops_no_const = list(x_peeled.split_uop(Ops.ADD))
|
||||
|
||||
# remove_nested_mod: remove nested mod in case the inner mod is a multiple of the outer mod, example: (a%4 + b)%2 -> (a+b)%2
|
||||
if d.op is Ops.MOD and x.vmin >= 0:
|
||||
new_xs, changed = [], False
|
||||
for u in uops:
|
||||
if u.op is Ops.MOD and u.src[1].divides(c) is not None:
|
||||
new_xs.append(u.src[0])
|
||||
changed = True
|
||||
else: new_xs.append(u)
|
||||
if changed: return (UOp.sum(*new_xs) + const) % y
|
||||
# ** Constant Denominator Rules **
|
||||
# these rules strictly require y to be a scalar constant > 0
|
||||
if y.op is Ops.CONST and (c := y.arg) > 0:
|
||||
# remove_nested_mod: remove nested mod in case the inner mod is a multiple of the outer mod, example: (a%4 + b)%2 -> (a+b)%2
|
||||
if d.op is Ops.MOD and x.vmin >= 0:
|
||||
new_xs, changed = [], False
|
||||
for u in uops_no_const:
|
||||
if u.op is Ops.MOD and u.src[1].divides(c) is not None:
|
||||
new_xs.append(u.src[0])
|
||||
changed = True
|
||||
else: new_xs.append(u)
|
||||
if changed: return (UOp.sum(*new_xs) + const) % y
|
||||
|
||||
# Shared decomposition for folding rules
|
||||
decomp = [(u.divides(f:=u.const_factor()),f) for u in uops]
|
||||
terms, factors = zip(*decomp)
|
||||
# Shared decomposition for folding rules
|
||||
decomp = [(u.divides(f:=u.const_factor()),f) for u in uops_no_const]
|
||||
terms, factors = zip(*decomp)
|
||||
|
||||
# fold_binary_numerator: fold if expression has one non-constant term that takes on two values
|
||||
if len(terms)==1 and (v:=terms[0]).vmax-v.vmin == 1:
|
||||
y1 = cmod(factors[0]*v.vmin+const, c) if d.op is Ops.MOD else cdiv(factors[0]*v.vmin+const, c)
|
||||
y2 = cmod(factors[0]*v.vmax+const, c) if d.op is Ops.MOD else cdiv(factors[0]*v.vmax+const, c)
|
||||
return (y2-y1)*(v-v.vmin) + y1
|
||||
# fold_binary_numerator: fold if expression has one non-constant term that takes on two values
|
||||
if len(terms)==1 and (v:=terms[0]).vmax-v.vmin == 1:
|
||||
y1 = cmod(factors[0]*v.vmin+const, c) if d.op is Ops.MOD else cdiv(factors[0]*v.vmin+const, c)
|
||||
y2 = cmod(factors[0]*v.vmax+const, c) if d.op is Ops.MOD else cdiv(factors[0]*v.vmax+const, c)
|
||||
return (y2-y1)*(v-v.vmin) + y1
|
||||
|
||||
# fold_divmod_congruence: fold if a is congruent to an expression whose range is between 0 and c
|
||||
if not (x.vmin<0 and CORRECT_DIVMOD_FOLDING):
|
||||
rems = [min((r:=f%c), r-c, key=abs) for f in factors]
|
||||
if (rem:=sum(r*v for r,v in zip(rems,terms))+const%c).vmin//c==rem.vmax//c:
|
||||
if d.op is Ops.MOD: return rem - rem.vmin//c*c
|
||||
return sum((f-r)//c * v for f,r,v in zip(factors,rems,terms)) + (const-const%c+rem.vmin//c*c)//c
|
||||
# fold_divmod_congruence: fold if a is congruent to an expression whose range is between 0 and c
|
||||
if not (x.vmin<0 and CORRECT_DIVMOD_FOLDING):
|
||||
rems = [min((r:=f%c), r-c, key=abs) for f in factors]
|
||||
if (rem:=sum(r*v for r,v in zip(rems,terms))+const%c).vmin//c==rem.vmax//c:
|
||||
if d.op is Ops.MOD: return rem - rem.vmin//c*c
|
||||
return sum((f-r)//c * v for f,r,v in zip(factors,rems,terms)) + (const-const%c+rem.vmin//c*c)//c
|
||||
|
||||
# gcd_with_remainder: factor out common gcd from numerator
|
||||
if x.vmin >= 0:
|
||||
gcd = UOp.gcd(*uops, y).simplify()
|
||||
if gcd.op is Ops.CONST and gcd.arg > 1:
|
||||
new_x = unwrap(x_peeled.divide_exact(gcd)).simplify() + (const%c)//gcd.arg
|
||||
if new_x.vmin >= 0:
|
||||
ret = new_x.alu(d.op, x.ufix(c//gcd.arg))
|
||||
return ret*gcd + const%gcd.arg if d.op is Ops.MOD else ret+const//c
|
||||
return None
|
||||
# gcd_with_remainder: factor out common gcd from numerator
|
||||
# Note: this rule uses uops_no_const to exclude the additive constant from the GCD calculation
|
||||
if x.vmin >= 0:
|
||||
gcd = UOp.gcd(*uops_no_const, y).simplify()
|
||||
if gcd.op is Ops.CONST and gcd.arg > 1:
|
||||
new_x = unwrap(x_peeled.divide_exact(gcd)).simplify() + (const%c)//gcd.arg
|
||||
if new_x.vmin >= 0:
|
||||
ret = new_x.alu(d.op, x.ufix(c//gcd.arg))
|
||||
return ret*gcd + const%gcd.arg if d.op is Ops.MOD else ret+const//c
|
||||
|
||||
def fold_divmod_variable(d: UOp, x: UOp, y: UOp) -> UOp|None:
|
||||
uops = list(x.split_uop(Ops.ADD))
|
||||
# nest_div_by_smallest_factor: try and nest the div and see if it allows the numerator to be simplified
|
||||
if d.op is Ops.IDIV and x.vmin >= 0:
|
||||
div = min([c] + [abs(f) for u, f in zip(uops_no_const, factors) if u.op not in (Ops.CONST, Ops.VCONST) and abs(f) > 1 and (c%f)==0])
|
||||
# NOTE: this is recursive!
|
||||
if div < c and (newxs := fold_divmod_general(x//div)) is not None and newxs.vmin >= 0:
|
||||
return newxs // (c // div)
|
||||
|
||||
# 1. divide_by_gcd: x//y -> (x//gcd)//(y//gcd) or x%y -> gcd*(x//gcd)%(y//gcd)
|
||||
gcd = UOp.gcd(*uops, y).simplify()
|
||||
# ** Variable Denominator / Fallback Rules **
|
||||
# These rules apply to variables OR constants that failed the checks above.
|
||||
# Reconstruct all uops including const for these checks.
|
||||
all_uops = uops_no_const + ([x.const_like(const)] if const != 0 else [])
|
||||
|
||||
# divide_by_gcd: x//y -> (x//gcd)//(y//gcd)
|
||||
gcd = UOp.gcd(*all_uops, y).simplify()
|
||||
if not (gcd.op is Ops.CONST and gcd.arg==1):
|
||||
ret = unwrap(x.divide_exact(gcd)).alu(d.op, unwrap(y.divide_exact(gcd)))
|
||||
return ret*gcd if d.op is Ops.MOD else ret
|
||||
|
||||
# 2. factor_remainder: (d*x+y)//d -> x+y//d or (d*x+y)%d
|
||||
# for mod we go further and take the remainder of all factors to reduce their size
|
||||
# These only work for floordiv (and the corresponding remainder)! Thats why we check the sign of x,y and new_x
|
||||
# factor_remainder: (d*x+y)//d -> x+y//d
|
||||
if y.vmin<0 or x.vmin<0: return None
|
||||
quo, rem = [], []
|
||||
for u in uops:
|
||||
for u in all_uops:
|
||||
if (q:=u.divide_exact(y)) is not None: quo.append(q)
|
||||
# if this is mod and y is a const, we can make the remainder factor sm
|
||||
elif d.op is Ops.MOD and y.op is Ops.CONST and (c:=u.const_factor())%y.arg!=c:
|
||||
rem.append(u.divides(c)*(c%y.arg))
|
||||
quo.append(u.const_like(0)) # we append this so we can check if something changed
|
||||
quo.append(u.const_like(0))
|
||||
else: rem.append(u)
|
||||
|
||||
if not quo: return None
|
||||
@@ -80,16 +89,6 @@ def fold_divmod_variable(d: UOp, x: UOp, y: UOp) -> UOp|None:
|
||||
if new_x.vmin<0: return None
|
||||
return new_x%y if d.op is Ops.MOD else new_x//y+sum(quo)
|
||||
|
||||
def nest_div_by_smallest_factor(d: UOp, x: UOp, y: UOp) -> UOp|None:
|
||||
# we try and nest the div and see if it allows the numerator to be simplified
|
||||
if ((c := y.arg) < 0): return None
|
||||
factors = [u.const_factor() for u in x.split_uop(Ops.ADD) if u.op not in (Ops.CONST, Ops.VCONST)]
|
||||
div = min([y.arg]+[abs(f) for f in factors if abs(f) > 1 and (c%f)==0])
|
||||
newxs = fold_divmod_const(newx:=(x//div), x, y.const_like(div))
|
||||
if newxs is None: newxs = fold_divmod_variable(newx, x, y.const_like(div))
|
||||
if div==y.arg or newxs is None or x.vmin<0 or newx.vmin<0: return None
|
||||
return newxs//(c//div)
|
||||
|
||||
div_and_mod_symbolic = PatternMatcher([
|
||||
# ** 1. Fast Inline Rules **
|
||||
((UPat.var("x")//UPat.cvar("c") + UPat.cvar("a"))//UPat.cvar("d"), lambda x,c,a,d: (x+a*c)//(c*d)
|
||||
@@ -102,11 +101,7 @@ div_and_mod_symbolic = PatternMatcher([
|
||||
lambda x,c,n,d: (-(-(c.arg%d.arg + x - (d.arg-1))//d) + c.arg//d.arg) if x.vmax<=0 and n.vmin>=0 and d.arg>0 else None),
|
||||
|
||||
# ** 2. Slow Rules **
|
||||
# NOTE: if you move this one below `fold_divmod_const` you get more uops in test/external/external_benchmark_schedule.py
|
||||
(UPat((Ops.IDIV, Ops.MOD), dtypes.index, name="d", src=(UPat.var("x"), UPat.var("y"))), cancel_divmod),
|
||||
(UPat((Ops.IDIV, Ops.MOD), dtypes.index, name="d", src=(UPat.var("x"), UPat.cvar("y", vec=False))), fold_divmod_const),
|
||||
(UPat((Ops.IDIV, Ops.MOD), dtypes.index, name="d", src=(UPat.var("x"), UPat.var("y"))), fold_divmod_variable),
|
||||
(UPat(Ops.IDIV, dtypes.index, name="d", src=(UPat.var("x"), UPat.cvar("y", vec=False))), nest_div_by_smallest_factor),
|
||||
(UPat((Ops.IDIV, Ops.MOD), dtypes.index, name="d"), fold_divmod_general),
|
||||
|
||||
# NOTE: these have to go at the bottom or TestSymbolicOps.test_var loops
|
||||
(UPat.var("x", dtypes.index) % UPat.var("d"), lambda x,d: -((-x)%d) if x.vmax <= 0 else None),
|
||||
|
||||
Reference in New Issue
Block a user