mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-09 06:58:11 -05:00
JIT=2 for mac cifar benchmark (#4300)
also double BS for resnet training benchmark to match submission target
This commit is contained in:
8
.github/workflows/benchmark.yml
vendored
8
.github/workflows/benchmark.yml
vendored
@@ -61,9 +61,9 @@ jobs:
|
||||
- name: Train MNIST
|
||||
run: time PYTHONPATH=. TARGET_EVAL_ACC_PCT=97.3 python3 examples/beautiful_mnist.py | tee beautiful_mnist.txt
|
||||
- name: Run 10 CIFAR training steps
|
||||
run: STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar.txt
|
||||
run: JIT=2 STEPS=10 python3 examples/hlb_cifar10.py | tee train_cifar.txt
|
||||
- name: Run 10 CIFAR training steps w HALF
|
||||
run: STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_half.txt
|
||||
run: JIT=2 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_half.txt
|
||||
#- name: Run 10 CIFAR training steps w BF16
|
||||
# run: STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py | tee train_cifar_bf16.txt
|
||||
# TODO: this is flaky too
|
||||
@@ -292,9 +292,9 @@ jobs:
|
||||
- name: Run MLPerf resnet eval on training data
|
||||
run: time HSA=1 MODEL=resnet python3 examples/mlperf/model_eval.py
|
||||
- name: Run 10 MLPerf ResNet50 training steps (1 gpu)
|
||||
run: HSA=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=128 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet_one_gpu.txt
|
||||
run: HSA=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet_one_gpu.txt
|
||||
- name: Run 10 MLPerf ResNet50 training steps (6 gpu)
|
||||
run: HSA=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=768 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet.txt
|
||||
run: HSA=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=1536 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet.txt
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: Speed (AMD Training)
|
||||
|
||||
Reference in New Issue
Block a user