efficient version of adam (#20)

* counteracted bias initialization

* test new adam

* add optimizer tests

* rename helper function names to fix the test

* remove redundant import
This commit is contained in:
Göktuğ Karakaşlı
2020-10-28 01:54:40 +03:00
committed by GitHub
parent 8d75c9e4c4
commit 4b163ee270
2 changed files with 76 additions and 3 deletions

72
test/test_optim.py Normal file
View File

@@ -0,0 +1,72 @@
import numpy as np
import torch
import unittest
from tinygrad.tensor import Tensor
from tinygrad.optim import Adam, SGD, RMSprop
x_init = np.random.randn(1,3).astype(np.float32)
W_init = np.random.randn(3,3).astype(np.float32)
m_init = np.random.randn(1,3).astype(np.float32)
def step_tinygrad(optim, kwargs={}):
net = TinyNet()
optim = optim([net.x, net.W], **kwargs)
out = net.forward()
out.backward()
optim.step()
return net.x.data, net.W.data
def step_pytorch(optim, kwargs={}):
net = TorchNet()
optim = optim([net.x, net.W], **kwargs)
out = net.forward()
out.backward()
optim.step()
return net.x.detach().numpy(), net.W.detach().numpy()
class TinyNet():
def __init__(self):
self.x = Tensor(x_init.copy())
self.W = Tensor(W_init.copy())
self.m = Tensor(m_init.copy())
def forward(self):
out = self.x.dot(self.W).relu()
out = out.logsoftmax()
out = out.mul(self.m).add(self.m).sum()
return out
class TorchNet():
def __init__(self):
self.x = torch.tensor(x_init.copy(), requires_grad=True)
self.W = torch.tensor(W_init.copy(), requires_grad=True)
self.m = torch.tensor(m_init.copy())
def forward(self):
out = self.x.matmul(self.W).relu()
out = torch.nn.functional.log_softmax(out, dim=1)
out = out.mul(self.m).add(self.m).sum()
return out
class TestOptim(unittest.TestCase):
def test_adam(self):
for x,y in zip(step_tinygrad(Adam),
step_pytorch(torch.optim.Adam)):
np.testing.assert_allclose(x, y, atol=1e-5)
def test_sgd(self):
for x,y in zip(step_tinygrad(SGD, kwargs={'lr': 0.001}),
step_pytorch(torch.optim.SGD, kwargs={'lr': 0.001})):
np.testing.assert_allclose(x, y, atol=1e-5)
def test_rmsprop(self):
for x,y in zip(step_tinygrad(RMSprop, kwargs={'lr': 0.001, 'decay': 0.99}),
step_pytorch(torch.optim.RMSprop,
kwargs={'lr': 0.001, 'alpha': 0.99})):
np.testing.assert_allclose(x, y, atol=1e-5)
if __name__ == '__main__':
unittest.main()

View File

@@ -43,10 +43,11 @@ class Adam(Optimizer):
def step(self):
self.t += 1
a = self.lr * (
np.sqrt(1 - np.power(self.b2, self.t)) /
(1 - np.power(self.b1, self.t)))
for i,t in enumerate(self.params):
self.m[i] = self.b1 * self.m[i] + (1 - self.b1) * t.grad
self.v[i] = self.b2 * self.v[i] + (1 - self.b2) * np.square(t.grad)
mhat = self.m[i] / (1. - self.b1**self.t)
vhat = self.v[i] / (1. - self.b2**self.t)
t.data -= self.lr * mhat / (np.sqrt(vhat) + self.eps)
t.data -= a * self.m[i] / (np.sqrt(self.v[i]) + self.eps)