tk: group cleanup (#13262)

This commit is contained in:
wozeparrot
2025-11-13 14:19:51 -08:00
committed by GitHub
parent 4ada51618f
commit 547304c471

View File

@@ -44,10 +44,7 @@ class Group:
copy_rid = 300
def copy(self, dst:UOp, src:UOp):
assert self.warps == 1
assert dst.shape == src.shape
assert cast(PtrDType, dst.dtype).addrspace == AddrSpace.REG
assert cast(PtrDType, src.dtype).addrspace == AddrSpace.REG
rngs_for_shape = tuple(UOp.range(dim, Group.copy_rid + i) for i, dim in enumerate(dst.shape))
Group.copy_rid += len(dst.shape)
@@ -57,27 +54,24 @@ class Group:
self.ker.push_store(dst_store, dst)
return dst.after(dst_store).reshape(dst.shape)
mma_rid = 600
def mma_AB(self, c:UOp, a:UOp, b:UOp, after=True):
assert self.warps == 1
mma_i_height = UOp.range(c.shape[-3], Group.mma_rid)
mma_i_width = UOp.range(c.shape[-2], Group.mma_rid+1)
mma_i_inner = UOp.range(a.shape[-2], Group.mma_rid+2, AxisType.REDUCE)
Group.mma_rid += 3
for height in self.ker.range(c.shape[-3], track=False):
for width in self.ker.range(c.shape[-2], track=False):
for inner in self.ker.range(a.shape[-2], AxisType.REDUCE, track=False):
wmma_arg = ("WMMA_8_16_16_bfloat16_float", (8, 16, 16), dtypes.bfloat16, dtypes.float, "CUDA", 32, (((4, 2), (3, 2), (8, 2)), ((4, 2), (3, 2)), ((4, 2), (3, 2))), ())
wmma_arg = ("WMMA_8_16_16_bfloat16_float", (8, 16, 16), dtypes.bfloat16, dtypes.float, "CUDA", 32, (((4, 2), (3, 2), (8, 2)), ((4, 2), (3, 2)), ((4, 2), (3, 2))), ())
a_in = UOp.vectorize(*[a[height, inner, i] for i in range(8)])
b_in1 = UOp.vectorize(*([b[inner, width, i] for i in range(2)] + [b[inner, width, 4+i] for i in range(2)]))
c_out1 = UOp.vectorize(*[c[height, width, i] for i in range(4)])
b_in2 = UOp.vectorize(*([b[inner, width, 2+i] for i in range(2)] + [b[inner, width, 6+i] for i in range(2)]))
c_out2 = UOp.vectorize(*[c[height, width, 4+i] for i in range(4)])
a_in = UOp.vectorize(*[a[mma_i_height, mma_i_inner, i] for i in range(8)])
b_in1 = UOp.vectorize(*([b[mma_i_inner, mma_i_width, i] for i in range(2)] + [b[mma_i_inner, mma_i_width, 4+i] for i in range(2)]))
c_out1 = UOp.vectorize(*[c[mma_i_height, mma_i_width, i] for i in range(4)])
b_in2 = UOp.vectorize(*([b[mma_i_inner, mma_i_width, 2+i] for i in range(2)] + [b[mma_i_inner, mma_i_width, 6+i] for i in range(2)]))
c_out2 = UOp.vectorize(*[c[mma_i_height, mma_i_width, 4+i] for i in range(4)])
out1 = UOp(Ops.WMMA, dtypes.float32.vec(4), (a_in, b_in1, c_out1), arg=wmma_arg)
out2 = UOp(Ops.WMMA, dtypes.float32.vec(4), (a_in, b_in2, c_out2), arg=wmma_arg)
c_i = [c[mma_i_height, mma_i_width, i].store(out1.gep(i)) for i in range(4)] + [c[mma_i_height, mma_i_width, 4+i].store(out2.gep(i)) for i in range(4)]
c_store = UOp.group(*c_i).end(mma_i_height, mma_i_width, mma_i_inner)
out1 = UOp(Ops.WMMA, dtypes.float32.vec(4), (a_in, b_in1, c_out1), arg=wmma_arg)
out2 = UOp(Ops.WMMA, dtypes.float32.vec(4), (a_in, b_in2, c_out2), arg=wmma_arg)
c_i = [c[height, width, i].store(out1.gep(i)) for i in range(4)] + [c[height, width, 4+i].store(out2.gep(i)) for i in range(4)]
c_store = UOp.group(*c_i).end(height, width, inner)
self.ker.push_store(c_store, c)
return c.after(c_store).reshape(c.shape) if after else c_store
@@ -85,23 +79,21 @@ class Group:
def mma_ABt(self, c:UOp, a:UOp, b:UOp, after=True):
assert self.warps == 1
mma_i_height = UOp.range(c.shape[-3], Group.mma_rid)
mma_i_width = UOp.range(c.shape[-2], Group.mma_rid+1)
mma_i_inner = UOp.range(a.shape[-2], Group.mma_rid+2, AxisType.REDUCE)
Group.mma_rid += 3
for height in self.ker.range(c.shape[-3], track=False):
for width in self.ker.range(c.shape[-2], track=False):
for inner in self.ker.range(a.shape[-2], AxisType.REDUCE, track=False):
wmma_arg = ("WMMA_8_16_16_bfloat16_float", (8, 16, 16), dtypes.bfloat16, dtypes.float, "CUDA", 32, (((4, 2), (3, 2), (8, 2)), ((4, 2), (3, 2)), ((4, 2), (3, 2))), ())
wmma_arg = ("WMMA_8_16_16_bfloat16_float", (8, 16, 16), dtypes.bfloat16, dtypes.float, "CUDA", 32, (((4, 2), (3, 2), (8, 2)), ((4, 2), (3, 2)), ((4, 2), (3, 2))), ())
a_in = UOp.vectorize(*[a[height, inner, i] for i in range(8)])
b_in1 = UOp.vectorize(*([b[width, inner, i] for i in range(2)] + [b[width, inner, 4+i] for i in range(2)]))
c_out1 = UOp.vectorize(*[c[height, width, i] for i in range(4)])
b_in2 = UOp.vectorize(*([b[width, inner, 2+i] for i in range(2)] + [b[width, inner, 6+i] for i in range(2)]))
c_out2 = UOp.vectorize(*[c[height, width, 4+i] for i in range(4)])
a_in = UOp.vectorize(*[a[mma_i_height, mma_i_inner, i] for i in range(8)])
b_in1 = UOp.vectorize(*([b[mma_i_width, mma_i_inner, i] for i in range(2)] + [b[mma_i_width, mma_i_inner, 4+i] for i in range(2)]))
c_out1 = UOp.vectorize(*[c[mma_i_height, mma_i_width, i] for i in range(4)])
b_in2 = UOp.vectorize(*([b[mma_i_width, mma_i_inner, 2+i] for i in range(2)] + [b[mma_i_width, mma_i_inner, 6+i] for i in range(2)]))
c_out2 = UOp.vectorize(*[c[mma_i_height, mma_i_width, 4+i] for i in range(4)])
out1 = UOp(Ops.WMMA, dtypes.float32.vec(4), (a_in, b_in1, c_out1), arg=wmma_arg)
out2 = UOp(Ops.WMMA, dtypes.float32.vec(4), (a_in, b_in2, c_out2), arg=wmma_arg)
c_i = [c[mma_i_height, mma_i_width, i].store(out1.gep(i)) for i in range(4)] + [c[mma_i_height, mma_i_width, 4+i].store(out2.gep(i)) for i in range(4)]
c_store = UOp.group(*c_i).end(mma_i_height, mma_i_width, mma_i_inner)
out1 = UOp(Ops.WMMA, dtypes.float32.vec(4), (a_in, b_in1, c_out1), arg=wmma_arg)
out2 = UOp(Ops.WMMA, dtypes.float32.vec(4), (a_in, b_in2, c_out2), arg=wmma_arg)
c_i = [c[height, width, i].store(out1.gep(i)) for i in range(4)] + [c[height, width, 4+i].store(out2.gep(i)) for i in range(4)]
c_store = UOp.group(*c_i).end(height, width, inner)
self.ker.push_store(c_store, c)
return c.after(c_store).reshape(c.shape) if after else c_store
@@ -136,28 +128,28 @@ class Group:
reg_store = red_reg.flatten()[i].store(0.).end(i)
red_reg = red_reg.after(reg_store).reshape(red_reg.shape)
for i_outer in self.ker.range(2, track=False):
for outer in self.ker.range(2, track=False):
for width in self.ker.range(src.shape[-2], AxisType.REDUCE, track=False):
for i_inner in self.ker.range(4, AxisType.REDUCE, track=False):
elem_index = i_inner + 2 * (i_inner // 2) + i_outer * 2
reg_store = red_reg[i_outer].store(op(red_reg[i_outer], src[height, width, elem_index])).end(i_inner, width, i_outer)
for inner in self.ker.range(4, AxisType.REDUCE, track=False):
elem_index = inner + 2 * (inner // 2) + outer * 2
reg_store = red_reg[outer].store(op(red_reg[outer], src[height, width, elem_index])).end(inner, width, outer)
red_reg = red_reg.after(reg_store).reshape(red_reg.shape)
# store to shared memory
for i_outer in self.ker.range(2, track=False):
red_local_store = red_local[self.laneid, i_outer].store(red_reg[i_outer]).end(i_outer)
for outer in self.ker.range(2, track=False):
red_local_store = red_local[self.laneid, outer].store(red_reg[outer]).end(outer)
red_local = red_local.after(red_local_store.barrier()).reshape(red_local.shape)
# reduce from shared memory
for i_outer in self.ker.range(2, track=False):
for i_inner in self.ker.range(3, AxisType.REDUCE, track=False):
offset = (self.laneid // 4) * 4 + ((self.laneid + i_inner + 1) % 4)
reg_store = red_reg[i_outer].store(op(red_reg[i_outer], red_local[offset, i_outer])).end(i_inner, i_outer)
for outer in self.ker.range(2, track=False):
for inner in self.ker.range(3, AxisType.REDUCE, track=False):
offset = (self.laneid // 4) * 4 + ((self.laneid + inner + 1) % 4)
reg_store = red_reg[outer].store(op(red_reg[outer], red_local[offset, outer])).end(inner, outer)
red_reg = red_reg.after(reg_store).reshape(red_reg.shape)
# reduce with vec
for i_outer in self.ker.range(2, track=False):
vec_store = vec[height, 0, i_outer].store(op(vec[height, 0, i_outer], red_reg[i_outer])).end(i_outer, height)
for outer in self.ker.range(2, track=False):
vec_store = vec[height, 0, outer].store(op(vec[height, 0, outer], red_reg[outer])).end(outer, height)
self.ker.push_store(vec_store, vec)
return vec.after(vec_store).reshape(vec.shape)
@@ -165,39 +157,36 @@ class Group:
# ops that can work across multiple warps
LOAD_INNER = 8
load_rid = 100
def load(self, dst:UOp, src:UOp, dst_idxs:tuple[UOp|int,...]=(), idxs:tuple[UOp|int,...]=(), axis:int=0, transpose:bool=False):
assert isinstance(dst.dtype, PtrDType) and isinstance(src.dtype, PtrDType)
dst_dtype, src_dtype = cast(PtrDType, dst.dtype), cast(PtrDType, src.dtype)
if dst_dtype.addrspace == AddrSpace.REG and src_dtype.addrspace == AddrSpace.LOCAL:
srcf = src.flatten(-2)
load_i_height = UOp.range(dst.shape[-3], Group.load_rid)
load_i_width = UOp.range(dst.shape[-2], Group.load_rid+1)
load_i_inner = UOp.range(RT.BASE_TILE_NEPT, Group.load_rid+2)
Group.load_rid += 3
if self.warps % 4 == 0: local_warpid = (self.warpid // 4) + (self.warpid % 4) * (self.warps // 4)
else: local_warpid = self.warpid
warp_laneid = self.threadIdx_x % WARP_THREADS
if not transpose:
row = (local_warpid * dst.shape[-3] + load_i_height) * RT.TILE_ROW_DIM + (warp_laneid // 4)
col = load_i_width * RT.TILE_COL_DIM + 2 * (warp_laneid % 4)
for height in self.ker.range(dst.shape[-3], track=False):
for width in self.ker.range(dst.shape[-2], track=False):
for inner in self.ker.range(RT.BASE_TILE_NEPT, track=False):
if not transpose:
row = (local_warpid * dst.shape[-3] + height) * RT.TILE_ROW_DIM + (warp_laneid // 4)
col = width * RT.TILE_COL_DIM + 2 * (warp_laneid % 4)
row_offset = ((load_i_inner % 4) // 2) * 8
col_offset = (load_i_inner % 2) + (load_i_inner // 4) * 8
else:
row = (local_warpid * dst.shape[-3] + load_i_height) * RT.TILE_ROW_DIM + 2 * (warp_laneid % 4)
col = load_i_width * RT.TILE_COL_DIM + (warp_laneid // 4)
row_offset = ((inner % 4) // 2) * 8
col_offset = (inner % 2) + (inner // 4) * 8
else:
row = (local_warpid * dst.shape[-3] + height) * RT.TILE_ROW_DIM + 2 * (warp_laneid % 4)
col = width * RT.TILE_COL_DIM + (warp_laneid // 4)
row_offset = (load_i_inner % 2) + (load_i_inner // 4) * 8
col_offset = ((load_i_inner % 4) // 2) * 8
row_offset = (inner % 2) + (inner // 4) * 8
col_offset = ((inner % 4) // 2) * 8
src_i_last = (row + row_offset) * src.shape[-1] + col + col_offset
src_i_last = (row + row_offset) * src.shape[-1] + col + col_offset
dst_store = dst[*dst_idxs, load_i_height, load_i_width, load_i_inner].store(srcf[*idxs[:-2], src_i_last])
dst_store = dst_store.end(load_i_height, load_i_width, load_i_inner)
dst_store = dst[*dst_idxs, height, width, inner].store(srcf[*idxs[:-2], src_i_last])
dst_store = dst_store.end(height, width, inner)
elif dst_dtype.addrspace == AddrSpace.LOCAL and src_dtype.addrspace == AddrSpace.GLOBAL:
dstf = dst.flatten(-2)
@@ -211,50 +200,45 @@ class Group:
memcpy_per_row = dst.shape[-1] // Group.LOAD_INNER
total_calls = prod(dst.shape[-2:]) // (self.group_threads * Group.LOAD_INNER)
load_i_outer = UOp.range(total_calls, Group.load_rid)
load_i_inner = UOp.range(Group.LOAD_INNER, Group.load_rid+1)
Group.load_rid += 2
for outer in self.ker.range(total_calls, track=False):
for inner in self.ker.range(Group.LOAD_INNER, track=False):
load_idx = outer * self.group_threads + self.laneid
row = load_idx // memcpy_per_row
col = (load_idx * Group.LOAD_INNER) % dst.shape[-1]
load_idx = load_i_outer * self.group_threads + self.laneid
row = load_idx // memcpy_per_row
col = (load_idx * Group.LOAD_INNER) % dst.shape[-1]
dst_i = row * dst.shape[-1] + col + inner
src_i += row * row_stride + col + inner
dst_i = row * dst.shape[-1] + col + load_i_inner
src_i += row * row_stride + col + load_i_inner
dst_store = dstf[*dst_idxs, dst_i].store(srcf[src_i]).end(load_i_outer, load_i_inner)
dst_store = dstf[*dst_idxs, dst_i].store(srcf[src_i]).end(outer, inner)
else:
raise NotImplementedError(f"load from {src_dtype.addrspace} to {dst_dtype.addrspace} not implemented")
return dst.after(dst_store.barrier()).reshape(dst.shape)
STORE_INNER = 8
store_rid = 200
def store(self, dst:UOp, src:UOp, idxs:tuple[UOp|int,...]=(), src_idxs:tuple[UOp|int,...]=(), axis=0, after=True):
assert isinstance(dst.dtype, PtrDType) and isinstance(src.dtype, PtrDType)
dst_dtype, src_dtype = cast(PtrDType, dst.dtype), cast(PtrDType, src.dtype)
if src_dtype.addrspace == AddrSpace.REG and dst_dtype.addrspace == AddrSpace.LOCAL:
dstf = dst.flatten(-2)
store_i_height = UOp.range(src.shape[-3], Group.store_rid)
store_i_width = UOp.range(src.shape[-2], Group.store_rid+1)
store_i_inner = UOp.range(RT.BASE_TILE_NEPT, Group.store_rid+2)
Group.store_rid += 3
if self.warps % 4 == 0: local_warpid = (self.warpid // 4) + (self.warpid % 4) * (self.warps // 4)
else: local_warpid = self.warpid
warp_laneid = self.threadIdx_x % WARP_THREADS
row = (local_warpid * src.shape[-3] + store_i_height) * RT.TILE_ROW_DIM + (warp_laneid // 4)
col = store_i_width * RT.TILE_COL_DIM + 2 * (warp_laneid % 4)
for height in self.ker.range(src.shape[-3], track=False):
for width in self.ker.range(src.shape[-2], track=False):
for inner in self.ker.range(RT.BASE_TILE_NEPT, track=False):
row = (local_warpid * src.shape[-3] + height) * RT.TILE_ROW_DIM + (warp_laneid // 4)
col = width * RT.TILE_COL_DIM + 2 * (warp_laneid % 4)
row_offset = ((store_i_inner % 4) // 2) * 8
col_offset = (store_i_inner % 2) + (store_i_inner // 4) * 8
row_offset = ((inner % 4) // 2) * 8
col_offset = (inner % 2) + (inner // 4) * 8
dst_i_last = (row + row_offset) * dst.shape[-1] + col + col_offset
dst_i_last = (row + row_offset) * dst.shape[-1] + col + col_offset
dst_store = dstf[*idxs[:-2], dst_i_last].store(src[*src_idxs, store_i_height, store_i_width, store_i_inner])
dst_store = dst_store.end(store_i_height, store_i_width, store_i_inner)
dst_store = dstf[*idxs[:-2], dst_i_last].store(src[*src_idxs, height, width, inner])
dst_store = dst_store.end(height, width, inner)
elif src_dtype.addrspace == AddrSpace.LOCAL and dst_dtype.addrspace == AddrSpace.GLOBAL:
dstf = dst.flatten()
row_stride = prod(dst.shape[axis+1:])
@@ -268,18 +252,16 @@ class Group:
memcpy_per_row = src.shape[-1] // Group.STORE_INNER
total_calls = prod(src.shape[-2:]) // (self.group_threads * Group.STORE_INNER)
store_i_outer = UOp.range(total_calls, Group.store_rid)
store_i_inner = UOp.range(Group.STORE_INNER, Group.store_rid+1)
Group.store_rid += 2
for outer in self.ker.range(total_calls, track=False):
for inner in self.ker.range(Group.STORE_INNER, track=False):
load_idx = outer * self.group_threads + self.laneid
row = load_idx // memcpy_per_row
col = (load_idx * Group.STORE_INNER) % src.shape[-1]
load_idx = store_i_outer * self.group_threads + self.laneid
row = load_idx // memcpy_per_row
col = (load_idx * Group.STORE_INNER) % src.shape[-1]
src_i = row * src.shape[-1] + col + inner
dst_i += row * row_stride + col + inner
src_i = row * src.shape[-1] + col + store_i_inner
dst_i += row * row_stride + col + store_i_inner
dst_store = dstf[dst_i].store(srcf[*src_idxs, src_i]).end(store_i_outer, store_i_inner)
dst_store = dstf[dst_i].store(srcf[*src_idxs, src_i]).end(outer, inner)
else:
raise NotImplementedError(f"store from {src_dtype.addrspace} to {dst_dtype.addrspace} not implemented")