use CAPTURE_PROCESS_REPLAY=1 in CI [pr] (#8564)

This commit is contained in:
qazal
2025-01-11 06:03:48 -05:00
committed by GitHub
parent 61665a63c9
commit 60503c8621
7 changed files with 31 additions and 26 deletions

View File

@@ -2,7 +2,7 @@ name: Benchmarks
env:
# TODO: this rescheduling makes gpt2, mixtral and llama unjitted slower
# TODO: very slow for llama 70B and resnet training 6 GPU
RUN_PROCESS_REPLAY: "1"
CAPTURE_PROCESS_REPLAY: "1"
ASSERT_PROCESS_REPLAY: "0"
PYTHONPATH: .
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
@@ -163,9 +163,9 @@ jobs:
- name: reset process replay
run: test/external/process_replay/reset.py
- name: Run model inference benchmark
run: NV=1 RUN_PROCESS_REPLAY=0 NOCLANG=1 python3 test/external/external_model_benchmark.py
run: NV=1 CAPTURE_PROCESS_REPLAY=0 NOCLANG=1 python3 test/external/external_model_benchmark.py
- name: Test speed vs torch
run: NV=1 RUN_PROCESS_REPLAY=0 HALF=1 BIG=2 TORCHCUDA=1 python3 test/test_speed_v_torch.py | tee torch_speed.txt
run: NV=1 CAPTURE_PROCESS_REPLAY=0 HALF=1 BIG=2 TORCHCUDA=1 python3 test/test_speed_v_torch.py | tee torch_speed.txt
- name: Test speed vs theoretical
run: NV=1 IGNORE_BEAM_CACHE=1 BEAM_DEBUG=1 DEBUG=1 python -m pytest -rA test/external/speed_v_theoretical.py --durations=20
- name: Test benchmark allreduce
@@ -189,7 +189,7 @@ jobs:
- name: Run Stable Diffusion
run: NV=1 python3 examples/stable_diffusion.py --fp16 --seed 0 --noshow --timing | tee sd.txt
- name: Run SDXL
run: NV=1 RUN_PROCESS_REPLAY=0 python3 examples/sdxl.py --seed 0 --noshow --timing | tee sdxl.txt
run: NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/sdxl.py --seed 0 --noshow --timing | tee sdxl.txt
- name: Run LLaMA
run: |
NV=1 JIT=0 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_unjitted.txt
@@ -197,19 +197,19 @@ jobs:
- name: Run LLaMA with BEAM
run: NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_beam.txt
# - name: Run LLaMA 7B on 4 GPUs
# run: NV=1 RUN_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_four_gpu.txt
# run: NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_four_gpu.txt
# - name: Run LLaMA 7B on 6 GPUs
# run: NV=1 RUN_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_six_gpu.txt
# run: NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_six_gpu.txt
- name: Run LLaMA-3 8B BEAM
run: NV=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama3.py --size 8B --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_beam.txt
- name: Run LLaMA-3 8B on 4 GPUs
run: NV=1 RUN_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 4 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_four_gpu.txt
run: NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 4 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_four_gpu.txt
- name: Run LLaMA-3 8B on 6 GPUs
run: NV=1 RUN_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 6 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_six_gpu.txt
run: NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 6 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_six_gpu.txt
- name: Run LLaMA-2 70B
run: NV=1 RUN_PROCESS_REPLAY=0 MAX_CONTEXT=256 python3 examples/llama.py --gen 2 --size 70B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_2_70B.txt
run: NV=1 CAPTURE_PROCESS_REPLAY=0 MAX_CONTEXT=256 python3 examples/llama.py --gen 2 --size 70B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_2_70B.txt
- name: Run Mixtral 8x7B
run: time NV=1 RUN_PROCESS_REPLAY=0 python3 examples/mixtral.py --temperature 0 --count 10 --timing | tee mixtral.txt
run: time NV=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/mixtral.py --temperature 0 --count 10 --timing | tee mixtral.txt
- name: Run GPT2
run: |
NV=1 JIT=0 python3 examples/gpt2.py --prompt "Hello." --count 10 --temperature 0 --timing | tee gpt2_unjitted.txt
@@ -286,17 +286,17 @@ jobs:
- name: Run 10 CIFAR training steps w BF16
run: NV=1 STEPS=10 DEFAULT_FLOAT=BFLOAT16 python3 examples/hlb_cifar10.py | tee train_cifar_bf16.txt
- name: Run 10 CIFAR training steps w winograd
run: NV=1 RUN_PROCESS_REPLAY=0 WINO=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_wino.txt
run: NV=1 CAPTURE_PROCESS_REPLAY=0 WINO=1 STEPS=10 DEFAULT_FLOAT=HALF python3 examples/hlb_cifar10.py | tee train_cifar_wino.txt
- name: Run full CIFAR training w 1 GPU
run: time NV=1 DEFAULT_FLOAT=HALF LATEWINO=1 STEPS=1000 TARGET_EVAL_ACC_PCT=93.2 python3 examples/hlb_cifar10.py | tee train_cifar_one_gpu.txt
- name: Run full CIFAR training steps w 6 GPUS
run: time RUN_PROCESS_REPLAY=0 NV=1 DEFAULT_FLOAT=HALF STEPS=350 BS=1536 GPUS=6 TARGET_EVAL_ACC_PCT=93.2 python3 examples/hlb_cifar10.py | tee train_cifar_six_gpu.txt
run: time CAPTURE_PROCESS_REPLAY=0 NV=1 DEFAULT_FLOAT=HALF STEPS=350 BS=1536 GPUS=6 TARGET_EVAL_ACC_PCT=93.2 python3 examples/hlb_cifar10.py | tee train_cifar_six_gpu.txt
- name: Run MLPerf resnet eval on training data
run: time NV=1 MODEL=resnet python3 examples/mlperf/model_eval.py
- name: Run 10 MLPerf ResNet50 training steps (1 gpu)
run: NV=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet_one_gpu.txt
- name: Run 10 MLPerf ResNet50 training steps (6 gpu)
run: NV=1 RUN_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=1536 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet.txt
run: NV=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=1536 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet.txt
- uses: actions/upload-artifact@v4
with:
name: Speed (NVIDIA Training)
@@ -380,17 +380,17 @@ jobs:
- name: Run LLaMA 7B with BEAM
run: AMD=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama.py --gen 1 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_beam.txt
# - name: Run LLaMA 7B on 4 GPUs
# run: AMD=1 RUN_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_four_gpu.txt
# run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 4 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_four_gpu.txt
# - name: Run LLaMA 7B on 6 GPUs
# run: AMD=1 RUN_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_six_gpu.txt
# run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 1 --size 7B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_six_gpu.txt
- name: Run LLaMA-3 8B BEAM
run: AMD=1 JITBEAM=2 IGNORE_BEAM_CACHE=1 python3 examples/llama3.py --size 8B --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_beam.txt
- name: Run LLaMA-3 8B on 4 GPUs
run: AMD=1 RUN_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 4 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_four_gpu.txt
run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 4 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_four_gpu.txt
- name: Run LLaMA-3 8B on 6 GPUs
run: AMD=1 RUN_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 6 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_six_gpu.txt
run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama3.py --size 8B --shard 6 --model weights/LLaMA-3/8B-SF-DPO/ --benchmark --temperature 0 | tee llama3_six_gpu.txt
- name: Run LLaMA-2 70B
run: AMD=1 RUN_PROCESS_REPLAY=0 python3 examples/llama.py --gen 2 --size 70B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_2_70B.txt
run: AMD=1 CAPTURE_PROCESS_REPLAY=0 python3 examples/llama.py --gen 2 --size 70B --shard 6 --prompt "Hello." --count 10 --temperature 0 --timing | tee llama_2_70B.txt
- name: Run Mixtral 8x7B
run: time AMD=1 python3 examples/mixtral.py --temperature 0 --count 10 --timing | tee mixtral.txt
- name: Run GPT2
@@ -477,7 +477,7 @@ jobs:
- name: Run 10 MLPerf ResNet50 training steps (1 gpu)
run: AMD=1 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=256 GPUS=1 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet_one_gpu.txt
- name: Run 10 MLPerf ResNet50 training steps (6 gpu)
run: AMD=1 RUN_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=1536 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet.txt
run: AMD=1 CAPTURE_PROCESS_REPLAY=0 DEFAULT_FLOAT=HALF BENCHMARK=10 BS=1536 GPUS=6 MODEL=resnet python3 examples/mlperf/model_train.py | tee train_resnet.txt
- uses: actions/upload-artifact@v4
with:
name: Speed (AMD Training)

View File

@@ -2,7 +2,7 @@ name: Unit Tests
env:
# increment this when downloads substantially change to avoid the internet
DOWNLOAD_CACHE_VERSION: '8'
RUN_PROCESS_REPLAY: 1
CAPTURE_PROCESS_REPLAY: 1
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
PYTHONPATH: .

View File

@@ -2,7 +2,7 @@
export PAGE_SIZE=1
export PYTHONPATH=.
export LOGOPS=/tmp/ops
export RUN_PROCESS_REPLAY=1
export CAPTURE_PROCESS_REPLAY=1
rm $LOGOPS
test/external/process_replay/reset.py

View File

@@ -18,6 +18,7 @@ REF = os.getenv("GITHUB_REF_NAME", "")
MAX_DIFF_PCT = getenv("PROCESS_REPLAY_MAX_DIFF_PCT", 20)
TABLE_NAME = f"process_replay_{VERSION}"
os.environ["RUN_PROCESS_REPLAY"] = "0"
os.environ["CAPTURE_PROCESS_REPLAY"] = "0"
early_stop = multiprocessing.Event()
logging.basicConfig(level=logging.INFO, format="%(message)s")

View File

@@ -11,7 +11,7 @@ from tinygrad.device import Device
from tinygrad.renderer import Renderer, TensorCore, ProgramSpec
from tinygrad.dtype import ImageDType
from tinygrad.helpers import all_same, colored, ansilen, dedup, getenv, prod, round_up, all_int, to_function_name, diskcache_put
from tinygrad.helpers import DEBUG, TC_OPT, USE_TC, AMX
from tinygrad.helpers import DEBUG, TC_OPT, USE_TC, AMX, CAPTURE_PROCESS_REPLAY
from tinygrad.shape.shapetracker import ShapeTracker
from tinygrad.shape.view import strides_for_shape
from tinygrad.codegen.linearize import linearize_uop
@@ -670,7 +670,7 @@ class Kernel:
self.linearize()
src = self.opts.render(name:=to_function_name(ansiname:=(name_override if name_override is not None else self.name)), self.uops)
if getenv("RUN_PROCESS_REPLAY"):
if CAPTURE_PROCESS_REPLAY:
from test.external.process_replay.helpers import get_process_replay_ctx
diskcache_put("kernel_process_replay", str(id(self)), (self.ast, self.opts, self.applied_opts, name, *get_process_replay_ctx(), src))

View File

@@ -4,7 +4,7 @@ from dataclasses import dataclass, field
from tinygrad.ops import GroupOp, UOp, Ops, PatternMatcher, UPat, Variable, can_pad, graph_rewrite, resolve, track_rewrites, view_left, merge_views
from tinygrad.ops import identity_element, buffers, symbolic_simple, type_verify
from tinygrad.helpers import Context, Metadata, all_int, all_same, colored, diskcache_put, merge_dicts, prod, dedup, getenv, unwrap
from tinygrad.helpers import FUSE_CONV_BW, FUSE_ARANGE, DEBUG, ContextVar
from tinygrad.helpers import FUSE_CONV_BW, FUSE_ARANGE, DEBUG, CAPTURE_PROCESS_REPLAY, ContextVar
from tinygrad.dtype import DType, ImageDType, dtypes
from tinygrad.shape.shapetracker import ShapeTracker
from tinygrad.shape.view import View, strides_for_shape
@@ -250,13 +250,13 @@ def schedule_uop(pre:UOp, ctx:ScheduleContext) -> ScheduleItem:
raise RuntimeError("self operand of augmented assign must be contiguous.\nhelp: consider using .contiguous():\n"
+colored(" - a += a.T\n", "red")+colored(" + a += a.T.contiguous()", "green"))
# capture process replay
if getenv("RUN_PROCESS_REPLAY"):
if CAPTURE_PROCESS_REPLAY:
with Context(PICKLE_BUFFERS=0): PROCESS_REPLAY_CAPTURE[str(pre.key)] = pickle.dumps((pre, si_ctx.assigns, ContextVar._cache, sink))
return ScheduleItem(sink, tuple(u.buffer for u in si_ctx.bufs if u.size != 0), tuple(si_ctx.metadata),
tuple(ubuf for ubuf,ops in si_ctx.assign_adj.items() if any(x.op is Ops.PRELOAD for x in ops)))
PROCESS_REPLAY_CAPTURE: dict[str, bytes] = {}
if getenv("RUN_PROCESS_REPLAY"):
if CAPTURE_PROCESS_REPLAY:
@atexit.register
def save_process_replay() -> None:
for k,v in PROCESS_REPLAY_CAPTURE.items(): diskcache_put("schedule_process_replay", k, v, prepickled=True)

View File

@@ -218,6 +218,10 @@ def diskcache(func):
return diskcache_put(table, key, func(*args, **kwargs))
return wrapper
# *** process replay ***
CAPTURE_PROCESS_REPLAY = getenv("RUN_PROCESS_REPLAY") or getenv("CAPTURE_PROCESS_REPLAY")
# *** http support ***
def _ensure_downloads_dir() -> pathlib.Path: