update rmsprop and readme

This commit is contained in:
f0ti
2020-10-23 11:49:43 +02:00
parent 7e1eddb0c5
commit 6a38ccb6b0
2 changed files with 53 additions and 45 deletions

View File

@@ -41,11 +41,11 @@ print(y.grad) # dz/dy
It turns out, a decent autograd tensor library is 90% of what you need for neural networks. Add an optimizer (SGD and Adam implemented) from tinygrad.optim, write some boilerplate minibatching code, and you have all you need.
### Neural network example (from test/mnist.py)
### Neural network example (from test/test_mnist.py)
```python
from tinygrad.tensor import Tensor
import tinygrad.optim as optim
import tinygrad.optim as tinygrad_optim
from tinygrad.utils import layer_init_uniform
class TinyBobNet:
@@ -57,7 +57,8 @@ class TinyBobNet:
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
model = TinyBobNet()
optim = optim.SGD([model.l1, model.l2], lr=0.001)
optim = tinygrad_optim.SGD([model.l1, model.l2], lr=0.001) # or
optim = tinygrad_optim.RMSprop([model.l1, model.l2], lr=0.001)
# ... and complete like pytorch, with (x,y) data

View File

@@ -36,57 +36,64 @@ class TinyConvNet:
class TestMNIST(unittest.TestCase):
def test_mnist(self):
def train(model, optim, steps, BS=128):
losses, accuracies = [], []
for i in (t := trange(steps)):
samp = np.random.randint(0, X_train.shape[0], size=(BS))
x = Tensor(X_train[samp].reshape((-1, 28*28)).astype(np.float32))
Y = Y_train[samp]
y = np.zeros((len(samp),10), np.float32)
# correct loss for NLL, torch NLL loss returns one per row
y[range(y.shape[0]),Y] = -10.0
y = Tensor(y)
# network
out = model.forward(x)
# NLL loss function
loss = out.mul(y).mean()
loss.backward()
optim.step()
cat = np.argmax(out.data, axis=1)
accuracy = (cat == Y).mean()
# printing
loss = loss.data
losses.append(loss)
accuracies.append(accuracy)
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
def evaluate(model):
def numpy_eval():
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28)).astype(np.float32)))
Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1)
return (Y_test == Y_test_preds).mean()
accuracy = numpy_eval()
print("test set accuracy is %f" % accuracy)
assert accuracy > 0.95
# models
if os.getenv("CONV") == "1":
model = TinyConvNet()
optim = tinygrad_optim.Adam([model.c1, model.l1, model.l2], lr=0.001)
steps = 400
train(model, optim, steps)
evaluate(model)
else:
model = TinyBobNet()
# optim = tinygrad_optim.SGD([model.l1, model.l2], lr=0.001)
optim = tinygrad_optim.RMSprop([model.l1, model.l2], lr=0.001)
optim = tinygrad_optim.SGD([model.l1, model.l2], lr=0.001)
steps = 1000
BS = 128
losses, accuracies = [], []
for i in (t := trange(steps)):
samp = np.random.randint(0, X_train.shape[0], size=(BS))
train(model, optim, steps)
evaluate(model)
x = Tensor(X_train[samp].reshape((-1, 28*28)).astype(np.float32))
Y = Y_train[samp]
y = np.zeros((len(samp),10), np.float32)
# correct loss for NLL, torch NLL loss returns one per row
y[range(y.shape[0]),Y] = -10.0
y = Tensor(y)
# network
out = model.forward(x)
# NLL loss function
loss = out.mul(y).mean()
loss.backward()
optim.step()
cat = np.argmax(out.data, axis=1)
accuracy = (cat == Y).mean()
# printing
loss = loss.data
losses.append(loss)
accuracies.append(accuracy)
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
# evaluate
def numpy_eval():
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28)).astype(np.float32)))
Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1)
return (Y_test == Y_test_preds).mean()
accuracy = numpy_eval()
print("test set accuracy is %f" % accuracy)
assert accuracy > 0.95
# RMSprop
optim = tinygrad_optim.RMSprop([model.l1, model.l2], lr=0.001)
train(model, optim, steps)
evaluate(model)
if __name__ == '__main__':
unittest.main()