kernel4 and 5 in uops (#11411)

* move simplify views to merge views

* add amd kernel 4

* Revert "move simplify views to merge views"

This reverts commit 1e07dff384.

* k4 in python

* kernel4 written in uops

* k5 support

* cleanups
This commit is contained in:
George Hotz
2025-07-28 19:35:48 -07:00
committed by GitHub
parent fddc645668
commit 735ad5f10d
7 changed files with 301 additions and 44 deletions

View File

@@ -19,6 +19,9 @@ if __name__ == "__main__":
elif getenv("ASM") == -1:
src = (pathlib.Path(__file__).parent / "amd_seb" / "kernel3_registers.cpp").read_text()
prgfast = replace(prg, name="kernel3_registers", src=src, global_size=[N//128, N//128, 1], local_size=[256, 1, 1])
elif getenv("ASM") == -2:
src = (pathlib.Path(__file__).parent / "amd_seb" / "kernel4_gmem_df.cpp").read_text()
prgfast = replace(prg, name="kernel4_gmem_db", src=src, global_size=[N//128, N//128, 1], local_size=[256, 1, 1])
else:
src = (pathlib.Path(__file__).parent / "amd_seb" / "kernel5_lds_optim.cpp").read_text()
prgfast = replace(prg, name="kernel5_lds_optim", src=src, global_size=[N//128, N//128, 1], local_size=[128, 1, 1])

View File

@@ -10,7 +10,8 @@ __attribute__((device)) inline void __syncthreads() {
}
#define BLOCK_SIZE 256
extern "C" __attribute__((global)) void kernel3_registers(float *a, float *b, float *c)
extern "C" __attribute__((global)) void __attribute__((amdgpu_flat_work_group_size(1, BLOCK_SIZE)))
kernel3_registers(float *a, float *b, float *c)
{
constexpr int N = 4096;
constexpr float alpha = 1.0;

View File

@@ -0,0 +1,172 @@
typedef long unsigned int size_t;
extern "C" __attribute__((device, const)) size_t __ockl_get_local_id(unsigned int);
extern "C" __attribute__((device, const)) size_t __ockl_get_group_id(unsigned int);
struct Dim3 { size_t x, y, z; };
#define __shared__ __attribute__((shared, aligned(16)))
__attribute__((device)) inline void __syncthreads() {
__builtin_amdgcn_fence(__ATOMIC_RELEASE, "workgroup");
__builtin_amdgcn_s_barrier();
__builtin_amdgcn_fence(__ATOMIC_ACQUIRE, "workgroup");
}
#define BLOCK_SIZE 256
extern "C" __attribute__((global)) void __attribute__((amdgpu_flat_work_group_size(1, BLOCK_SIZE)))
kernel4_gmem_db(float *a, float *b, float *c)
{
constexpr int N = 4096;
constexpr float alpha = 1.0;
constexpr float beta = 0.0;
const Dim3 blockIdx{ __ockl_get_group_id(0), __ockl_get_group_id(1), __ockl_get_group_id(2) };
const Dim3 threadIdx{ __ockl_get_local_id(0), __ockl_get_local_id(1), __ockl_get_local_id(2) };
// Block Tile size
constexpr int BN = 128;
constexpr int BM = 128;
// Number of Row or column we read per batch
constexpr int BK = 8;
// Thread Tile size
constexpr int TN = 4;
constexpr int TM = 4;
constexpr int nbWaves = BLOCK_SIZE / 32;
// Wave Tile size
constexpr int WN = 64;
constexpr int WM = BN * BM / nbWaves / WN;
// Number of wave on X & Y axis in the Block tile
constexpr int nbWaveX = BN / WN;
constexpr int nbWaveY = BM / WM;
const int waveIndex = threadIdx.x / 32;
const int waveIdx = waveIndex % nbWaveX;
const int waveIdy = waveIndex / nbWaveX;
const int indexInWave = threadIdx.x % 32;
// A wave is a block of 8x4 of the output matrix
constexpr int nbThreadXPerWave = 8;
constexpr int nbThreadYPerWave = 4;
// Thread coordinates in Wave
const int idxInWave = indexInWave % nbThreadXPerWave;
const int idyInWave = indexInWave / nbThreadXPerWave;
constexpr int nbIterWaveN = WN / (nbThreadXPerWave * TN);
constexpr int nbIterWaveM = WM / (nbThreadYPerWave * TM);
// Wave Sub-tile size
constexpr int SUBWN = WN / nbIterWaveN;
constexpr int SUBWM = WM / nbIterWaveM;
// Thread mapping to read BKxBN block from A
int rAIdx = threadIdx.x % BK;
int rAIdy = threadIdx.x / BK;
// Thread mapping to read BNxBK block from B
int rBIdx = threadIdx.x % BN;
int rBIdy = threadIdx.x / BN;
constexpr int strideReadB = BLOCK_SIZE / BN;
constexpr int strideReadA = BLOCK_SIZE / BK;
constexpr int nbReadsB = BN * BK / BLOCK_SIZE;
constexpr int nbReadsA = BM * BK / BLOCK_SIZE;
float A_col[nbIterWaveM * TM];
float B_row[nbIterWaveN * TN];
__shared__ float As[BK][BM];
__shared__ float Bs[BK][BN];
float c_regs[TM * nbIterWaveM * TN * nbIterWaveN] = {0.0f};
for (int i = 0; i < nbReadsB; i++) {
int index_x = BN * blockIdx.x + rBIdx;
int index_y = rBIdy + i * strideReadB;
Bs[index_y % BK][index_x % BN] = b[N * index_y + index_x];
}
for (int i = 0; i < nbReadsA; i++) {
int index_x = rAIdx;
int index_y = BM * blockIdx.y + rAIdy + i * strideReadA;
As[(index_x % BK)][(index_y % BM)] = a[N * index_y + index_x];
}
__syncthreads();
// Iteration over BK blocks.
for (int kId = 0; kId < N; kId += BK) {
float regA[nbReadsA];
float regB[nbReadsB];
if (kId < N - BK) {
// We populate the Shared Memory with Ks row and columns
for (int i = 0; i < nbReadsB; i++) {
int index_x = BN * blockIdx.x + rBIdx;
int index_y = rBIdy + i * strideReadB + kId + BK;
regB[i] = b[N * index_y + index_x];
}
for (int i = 0; i < nbReadsA; i++) {
int index_x = rAIdx + kId + BK;
int index_y = BM * blockIdx.y + rAIdy + i * strideReadA;
regA[i] = a[N * index_y + index_x];
}
}
for (int k = 0; k < BK; k++) {
// we cache A & B for the entire Wave tile
for (int iterWave = 0; iterWave < nbIterWaveN; iterWave++) {
for (int i = 0; i < TN; i++) {
int index = waveIdx * WN + iterWave * SUBWN + TN * idxInWave + i;
B_row[iterWave * TN + i] = Bs[k][index];
}
}
for (int iterWave = 0; iterWave < nbIterWaveM; iterWave++) {
for (int i = 0; i < TM; i++) {
int index = waveIdy * WM + iterWave * SUBWM + TM * idyInWave + i;
A_col[iterWave * TM + i] = As[k][index];
}
}
// we accumulate to C_regs
for (int iterWaveM = 0; iterWaveM < nbIterWaveM; iterWaveM++) {
for (int iterWaveN = 0; iterWaveN < nbIterWaveN; iterWaveN++) {
for (int yt = 0; yt < TM; yt++) {
for (int xt = 0; xt < TN; xt++) {
const int x = iterWaveN * TN + xt;
const int y = iterWaveM * TM + yt;
c_regs[y * TN * nbIterWaveN + x] += A_col[y] * B_row[x];
}
}
}
}
}
__syncthreads();
if (kId < N - BK) {
for (int i = 0; i < nbReadsB; i++) {
int index_x = BN * blockIdx.x + rBIdx;
int index_y = rBIdy + i * strideReadB + kId + BK;
Bs[index_y % BK][index_x % BN] = regB[i]; // row
}
for (int i = 0; i < nbReadsA; i++) {
int index_x = rAIdx + kId + BK;
int index_y = BM * blockIdx.y + rAIdy + i * strideReadA;
As[(index_x % BK)][(index_y % BM)] = regA[i];
}
__syncthreads();
}
}
for (int iterWaveM = 0; iterWaveM < nbIterWaveM; iterWaveM++) {
for (int iterWaveN = 0; iterWaveN < nbIterWaveN; iterWaveN++) {
int xOut = blockIdx.x * BN + waveIdx * WN + iterWaveN * SUBWN + TN * idxInWave;
int yOut = blockIdx.y * BM + waveIdy * WM + iterWaveM * SUBWM + TM * idyInWave;
for (int yt = 0; yt < TM; yt++) {
for (int xt = 0; xt < TN; xt++) {
int indexC = N * (yOut + yt) + xOut + xt;
c[indexC] = beta * c[indexC] + alpha * c_regs[TN * nbIterWaveN * (iterWaveM * TM + yt) + (iterWaveN * TN + xt)];
}
}
}
}
}

View File

@@ -26,7 +26,7 @@ kernel5_lds_optim(float *a, float *b, float *c)
// Number of Row or column we read per batch
constexpr int BK = 8;
// Thread Tile size . 4x4
// Thread Tile size
constexpr int TN = 4;
constexpr int TM = 4;

View File

@@ -91,11 +91,11 @@ def hl_spec_kernel3():
sink = graph_rewrite(sink, merge_views)
return sink
def hand_spec_kernel3():
BLOCK_SIZE = 256
def hand_spec_kernel3(kernel4=getenv("K4", 0), kernel5=getenv("K5", 0)):
BLOCK_SIZE = 128 if kernel5 else 256
nbWaves = BLOCK_SIZE // 32
WN = 64
WN = 128 if kernel5 else 64
WM = BN * BM // nbWaves // WN
nbWaveX = BN // WN
@@ -141,7 +141,8 @@ def hand_spec_kernel3():
A_col = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbIterWaveM * TM, AddrSpace.REG), arg=0)
B_row = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbIterWaveN * TN, AddrSpace.REG), arg=1)
As = UOp(Ops.DEFINE_LOCAL, dtypes.float.ptr(BK*BM, AddrSpace.LOCAL), arg=0)
BM_As_stride = (BM+4) if kernel5 else BM
As = UOp(Ops.DEFINE_LOCAL, dtypes.float.ptr(BK*BM_As_stride, AddrSpace.LOCAL), arg=0)
Bs = UOp(Ops.DEFINE_LOCAL, dtypes.float.ptr(BK*BN, AddrSpace.LOCAL), arg=1)
c_regs = UOp(Ops.DEFINE_REG, dtypes.float.ptr(TM * nbIterWaveM * TN * nbIterWaveN), arg=2)
@@ -149,51 +150,131 @@ def hand_spec_kernel3():
i = UOp.range(dtypes.int, c_regs.dtype.size, 16)
init_store = c_regs[i].store(UOp.const(dtypes.float, 0.0), i)
kId_range = UOp.range(dtypes.int, N//BK, 0)
kId = kId_range*BK
if kernel4:
regA = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbReadsA, AddrSpace.REG), arg=3)
regB = UOp(Ops.DEFINE_REG, dtypes.float.ptr(nbReadsB, AddrSpace.REG), arg=4)
# load from globals into locals
i = UOp.range(dtypes.int, nbReadsB, 1)
index_x = BN * blockIdx_x + rBIdx
index_y = rBIdy + i * strideReadB + kId
Bs_store = Bs[(index_y % BK) * BN + index_x % BN].store(b[N * index_y + index_x].load(), i)
# initial load from globals into locals (0)
kId = 0
i = UOp.range(dtypes.int, nbReadsA, 2)
index_x = rAIdx + kId
index_y = BM * blockIdx_y + rAIdy + i * strideReadA
As_store = As[(index_x % BK) * BM + index_y % BM].store(a[N * index_y + index_x].load(), i)
# load from globals into locals
i = UOp.range(dtypes.int, nbReadsB, 0)
index_x = BN * blockIdx_x + rBIdx
index_y = rBIdy + i * strideReadB + kId
Bs_store = Bs[(index_y % BK) * BN + index_x % BN].store(b[N * index_y + index_x].load(), i)
barrier = UOp(Ops.BARRIER, src=(As_store, Bs_store))
i = UOp.range(dtypes.int, nbReadsA, 1)
index_x = rAIdx + kId
index_y = BM * blockIdx_y + rAIdy + i * strideReadA
As_store = As[(index_x % BK) * BM_As_stride + index_y % BM].store(a[N * index_y + index_x].load(), i)
k = UOp.range(dtypes.int, BK, 3)
# iterate over the middle chunk
kId_range = UOp.range(dtypes.int, N//BK-1, 2)
kId = kId_range*BK
# load from locals into registers
iterWave = UOp.range(dtypes.int, nbIterWaveN, 4)
i = UOp.range(dtypes.int, TN, 5)
index = waveIdx * WN + iterWave * SUBWN + TN * idxInWave + i
B_row_store = B_row[iterWave*TN + i].store(Bs[k*BN + index].load(barrier), iterWave, i)
barrier = UOp.barrier(As_store, Bs_store)
iterWave = UOp.range(dtypes.int, nbIterWaveM, 6)
i = UOp.range(dtypes.int, TM, 7)
index = waveIdy * WM + iterWave * SUBWM + TM * idyInWave + i
A_col_store = A_col[iterWave*TM + i].store(As[k*BM + index].load(barrier), iterWave, i)
# load from globals into registers (next round)
i = UOp.range(dtypes.int, nbReadsB, 3)
index_x = BN * blockIdx_x + rBIdx
index_y = rBIdy + i * strideReadB + kId + BK
regB_store = regB[i].store(b[N * index_y + index_x].load(), i)
# do the GEMM math
iterWaveM = UOp.range(dtypes.int, nbIterWaveM, 8)
iterWaveN = UOp.range(dtypes.int, nbIterWaveN, 9)
yt = UOp.range(dtypes.int, TM, 10)
xt = UOp.range(dtypes.int, TN, 11)
x = iterWaveN * TN + xt
y = iterWaveM * TM + yt
c_regs_idx = c_regs[y * TN * nbIterWaveN + x]
sink = c_regs_idx.store(c_regs_idx.load(init_store) + A_col[y].load(A_col_store) * B_row[x].load(B_row_store),
iterWaveM, iterWaveN, yt, xt, k, kId_range)
i = UOp.range(dtypes.int, nbReadsA, 4)
index_x = rAIdx + kId + BK
index_y = BM * blockIdx_y + rAIdy + i * strideReadA
regA_store = regA[i].store(a[N * index_y + index_x].load(), i)
def inner_loop(first_range, inp_dep=()):
# inner unroll
k = UOp.range(dtypes.int, BK, first_range+0)
# load from locals into registers
iterWave = UOp.range(dtypes.int, nbIterWaveN, first_range+1)
i = UOp.range(dtypes.int, TN, first_range+2)
index = waveIdx * WN + iterWave * SUBWN + TN * idxInWave + i
B_row_store = B_row[iterWave*TN + i].store(Bs[k*BN + index].load(*inp_dep), iterWave, i)
iterWave = UOp.range(dtypes.int, nbIterWaveM, first_range+3)
i = UOp.range(dtypes.int, TM, first_range+4)
index = waveIdy * WM + iterWave * SUBWM + TM * idyInWave + i
A_col_store = A_col[iterWave*TM + i].store(As[k*BM_As_stride + index].load(*inp_dep), iterWave, i)
# do the GEMM math
iterWaveM = UOp.range(dtypes.int, nbIterWaveM, first_range+5)
yt = UOp.range(dtypes.int, TM, first_range+6)
iterWaveN = UOp.range(dtypes.int, nbIterWaveN, first_range+7)
xt = UOp.range(dtypes.int, TN, first_range+8)
x = iterWaveN * TN + xt
y = iterWaveM * TM + yt
c_regs_idx = c_regs[y * TN * nbIterWaveN + x]
# sketchy, this should end the kId_range but it doesn't
sink = c_regs_idx.store(c_regs_idx.load(init_store) + A_col[y].load(A_col_store) * B_row[x].load(B_row_store),
iterWaveM, iterWaveN, yt, xt, k)
return sink
# TODO: kId_range should endrange after a barrier
sink = inner_loop(5, (barrier, regB_store, regA_store)).barrier()
# load from registers into locals
i = UOp.range(dtypes.int, nbReadsB, 14)
index_x = BN * blockIdx_x + rBIdx
index_y = rBIdy + i * strideReadB + kId + BK
Bs_store = Bs[(index_y % BK) * BN + index_x % BN].store(regB[i].load(sink), i, kId_range)
i = UOp.range(dtypes.int, nbReadsA, 15)
index_x = rAIdx + kId + BK
index_y = BM * blockIdx_y + rAIdy + i * strideReadA
As_store = As[(index_x % BK) * BM_As_stride + index_y % BM].store(regA[i].load(sink), i, kId_range)
# final iteration without the copy
sink = inner_loop(16, (UOp.barrier(Bs_store, As_store),))
else:
kId_range = UOp.range(dtypes.int, N//BK, 0)
kId = kId_range*BK
# load from globals into locals
i = UOp.range(dtypes.int, nbReadsB, 1)
index_x = BN * blockIdx_x + rBIdx
index_y = rBIdy + i * strideReadB + kId
Bs_store = Bs[(index_y % BK) * BN + index_x % BN].store(b[N * index_y + index_x].load(), i)
i = UOp.range(dtypes.int, nbReadsA, 2)
index_x = rAIdx + kId
index_y = BM * blockIdx_y + rAIdy + i * strideReadA
As_store = As[(index_x % BK) * BM_As_stride + index_y % BM].store(a[N * index_y + index_x].load(), i)
barrier = UOp.barrier(As_store, Bs_store)
k = UOp.range(dtypes.int, BK, 3)
# load from locals into registers
iterWave = UOp.range(dtypes.int, nbIterWaveN, 4)
i = UOp.range(dtypes.int, TN, 5)
index = waveIdx * WN + iterWave * SUBWN + TN * idxInWave + i
B_row_store = B_row[iterWave*TN + i].store(Bs[k*BN + index].load(barrier), iterWave, i)
iterWave = UOp.range(dtypes.int, nbIterWaveM, 6)
i = UOp.range(dtypes.int, TM, 7)
index = waveIdy * WM + iterWave * SUBWM + TM * idyInWave + i
A_col_store = A_col[iterWave*TM + i].store(As[k*BM_As_stride + index].load(barrier), iterWave, i)
# do the GEMM math
iterWaveM = UOp.range(dtypes.int, nbIterWaveM, 8)
yt = UOp.range(dtypes.int, TM, 9)
iterWaveN = UOp.range(dtypes.int, nbIterWaveN, 10)
xt = UOp.range(dtypes.int, TN, 12)
x = iterWaveN * TN + xt
y = iterWaveM * TM + yt
c_regs_idx = c_regs[y * TN * nbIterWaveN + x]
sink = c_regs_idx.store(c_regs_idx.load(init_store) + A_col[y].load(A_col_store) * B_row[x].load(B_row_store),
iterWaveM, iterWaveN, yt, xt, k, kId_range)
# store c_regs into c
iterWaveM = UOp.range(dtypes.int, nbIterWaveM, 12)
iterWaveN = UOp.range(dtypes.int, nbIterWaveN, 13)
yt = UOp.range(dtypes.int, TM, 14)
xt = UOp.range(dtypes.int, TN, 15)
iterWaveM = UOp.range(dtypes.int, nbIterWaveM, 1000)
yt = UOp.range(dtypes.int, TM, 1001)
iterWaveN = UOp.range(dtypes.int, nbIterWaveN, 1002)
xt = UOp.range(dtypes.int, TN, 1003)
xOut = blockIdx_x * BN + waveIdx * WN + iterWaveN * SUBWN + TN * idxInWave
yOut = blockIdx_y * BM + waveIdy * WM + iterWaveM * SUBWM + TM * idyInWave
indexC = N * (yOut + yt) + xOut + xt

View File

@@ -97,7 +97,7 @@ class BlockContext:
# ***** make blocks *****
DONT_PLACE_IN_BLOCK = {Ops.DEFINE_GLOBAL, Ops.DEFINE_LOCAL, Ops.DEFINE_VAR, Ops.SPECIAL, Ops.CONST}
DONT_PLACE_IN_BLOCK = {Ops.DEFINE_GLOBAL, Ops.DEFINE_LOCAL, Ops.DEFINE_REG, Ops.DEFINE_VAR, Ops.SPECIAL, Ops.CONST}
def add_blockends(base_block:UOp, new_ctx:tuple[UOp, ...], current_ctx:tuple[UOp, ...], cnt:int=1) -> UOp:
ends_to_add = [z for z in new_ctx if z not in current_ctx]

View File

@@ -238,7 +238,7 @@ class UOp(MathTrait, metaclass=UOpMetaClass):
def load(self, *src:UOp, **kwargs): return UOp(Ops.LOAD, dtype=kwargs.pop("dtype", self.dtype.base), src=(self,)+src, **kwargs)
def store(self, *src:UOp, **kwargs): return UOp(Ops.STORE, dtypes.void, (self,)+src, **kwargs)
def assign(self, x:UOp): return UOp(Ops.ASSIGN, self.dtype, (self, x))
def barrier(self): return UOp(Ops.BARRIER, src=(self,))
def barrier(self, *src:UOp): return UOp(Ops.BARRIER, src=(self,)+src)
def alu(self, op, *src:UOp, **kwargs):
out_dtype = (self, *src)[-1].dtype
if op in {Ops.CMPLT, Ops.CMPNE}: out_dtype = dtypes.bool.vec(out_dtype.count) if out_dtype.count > 1 else dtypes.bool