merge to fold_divmod_general [p] (#13359)

* merge to fold_divmod_general [p]

* merge more

* merge more

* merge more
This commit is contained in:
George Hotz
2025-11-19 11:37:45 -08:00
committed by GitHub
parent 6fdbd03104
commit 7711bbac7f
2 changed files with 62 additions and 77 deletions

View File

@@ -128,6 +128,7 @@ class TestProgressBar(unittest.TestCase):
self._compare_bars(tinytqdm_output, tqdm_output)
if n > 5: break
@unittest.skip("this is flaky")
@patch('sys.stderr', new_callable=StringIO)
@patch('shutil.get_terminal_size')
def test_set_description(self, mock_terminal_size, mock_stderr):

View File

@@ -11,92 +11,85 @@ def cancel_divmod(d: UOp, x: UOp, y: UOp) -> UOp|None:
return x - q*y if d.op is Ops.MOD else d.const_like(q)
return None
def fold_binary_numerator(d: UOp, x: UOp, y: UOp) -> UOp|None:
# we can fold if the expression has only one non-constant term and this term can only take on two values
def fold_divmod_const(d: UOp, x: UOp, y: UOp) -> UOp|None:
if ((c := y.arg) < 0): return None
x,const = x.pop_const()
terms, factors = zip(*[(u.divides(f:=u.const_factor()),f) for u in x.split_uop(Ops.ADD)])
x_peeled, const = x.pop_const()
uops = list(x_peeled.split_uop(Ops.ADD))
# remove_nested_mod: remove nested mod in case the inner mod is a multiple of the outer mod, example: (a%4 + b)%2 -> (a+b)%2
if d.op is Ops.MOD and x.vmin >= 0:
new_xs, changed = [], False
for u in uops:
if u.op is Ops.MOD and u.src[1].divides(c) is not None:
new_xs.append(u.src[0])
changed = True
else: new_xs.append(u)
if changed: return (UOp.sum(*new_xs) + const) % y
# Shared decomposition for folding rules
decomp = [(u.divides(f:=u.const_factor()),f) for u in uops]
terms, factors = zip(*decomp)
# fold_binary_numerator: fold if expression has one non-constant term that takes on two values
if len(terms)==1 and (v:=terms[0]).vmax-v.vmin == 1:
y1 = cmod(factors[0]*v.vmin+const, c) if d.op is Ops.MOD else cdiv(factors[0]*v.vmin+const, c)
y2 = cmod(factors[0]*v.vmax+const, c) if d.op is Ops.MOD else cdiv(factors[0]*v.vmax+const, c)
return (y2-y1)*(v-v.vmin) + y1
# fold_divmod_congruence: fold if a is congruent to an expression whose range is between 0 and c
if not (x.vmin<0 and CORRECT_DIVMOD_FOLDING):
rems = [min((r:=f%c), r-c, key=abs) for f in factors]
if (rem:=sum(r*v for r,v in zip(rems,terms))+const%c).vmin//c==rem.vmax//c:
if d.op is Ops.MOD: return rem - rem.vmin//c*c
return sum((f-r)//c * v for f,r,v in zip(factors,rems,terms)) + (const-const%c+rem.vmin//c*c)//c
# gcd_with_remainder: factor out common gcd from numerator
if x.vmin >= 0:
gcd = UOp.gcd(*uops, y).simplify()
if gcd.op is Ops.CONST and gcd.arg > 1:
new_x = unwrap(x_peeled.divide_exact(gcd)).simplify() + (const%c)//gcd.arg
if new_x.vmin >= 0:
ret = new_x.alu(d.op, x.ufix(c//gcd.arg))
return ret*gcd + const%gcd.arg if d.op is Ops.MOD else ret+const//c
return None
def fold_divmod_congruence(d: UOp, x: UOp, y: UOp) -> UOp|None:
# within a mod we can freely subtract multiples of c, we use this to see if a is congruent to an expression whose vmin/vmax are between 0 and c
if (x.vmin<0 and CORRECT_DIVMOD_FOLDING) or ((c := y.arg) < 0): return None
x,const = x.pop_const()
terms, factors = zip(*[(u.divides(f:=u.const_factor()),f) for u in x.split_uop(Ops.ADD)])
# a//c = (a-a%c)/c, if we can fold a%c, we can fold a//c
rems = [min((r:=f%c), r-c, key=abs) for f in factors]
if (rem:=sum(r*v for r,v in zip(rems,terms))+const%c).vmin//c!=rem.vmax//c: return None
if d.op is Ops.MOD: return rem - rem.vmin//c*c
return sum((f-r)//c * v for f,r,v in zip(factors,rems,terms)) + (const-const%c+rem.vmin//c*c)//c
def fold_divmod_variable(d: UOp, x: UOp, y: UOp) -> UOp|None:
uops = list(x.split_uop(Ops.ADD))
def divide_by_gcd(d: UOp, x: UOp, y: UOp) -> UOp|None:
# x//y -> (x//gcd)//(y//gcd) or x%y -> gcd*(x//gcd)%(y//gcd)
gcd = UOp.gcd(*x.split_uop(Ops.ADD), y).simplify()
if gcd.op is Ops.CONST and gcd.arg==1: return None
ret = unwrap(x.divide_exact(gcd)).alu(d.op, unwrap(y.divide_exact(gcd)))
return ret*gcd if d.op is Ops.MOD else ret
# 1. divide_by_gcd: x//y -> (x//gcd)//(y//gcd) or x%y -> gcd*(x//gcd)%(y//gcd)
gcd = UOp.gcd(*uops, y).simplify()
if not (gcd.op is Ops.CONST and gcd.arg==1):
ret = unwrap(x.divide_exact(gcd)).alu(d.op, unwrap(y.divide_exact(gcd)))
return ret*gcd if d.op is Ops.MOD else ret
def gcd_with_remainder(d: UOp, x: UOp, y: UOp):
# (gcd*x+r)//(gcd*d) -> (x+(r%d)//gcd)//d + r//(gcd*d)
# (gcd*x+r)%(gcd*d) -> gcd*(x+(r%d)//gcd)%d + r%gcd
# These only work for floordiv (and the corresponding remainder)! Thats why we check the sign of x,y and new_x
if ((c := y.arg) < 0) or x.vmin<0: return None
x_no_const, const = x.pop_const()
gcd = UOp.gcd(*x_no_const.split_uop(Ops.ADD), y).simplify()
assert gcd.op is Ops.CONST
if gcd.arg==1: return None
new_x = unwrap(x_no_const.divide_exact(gcd)).simplify() + (const%c)//gcd
if new_x.vmin<0: return None
ret = new_x.alu(d.op, x.ufix(c//gcd.arg))
return ret*gcd + const%gcd.arg if d.op is Ops.MOD else ret+const//c
def remove_nested_mod(m: UOp, x: UOp, y: UOp) -> UOp|None:
# remove nested mod in case the inner mod is a multiple of the outer mod
# example: (a%4 + b)%2 -> (a+b)%2
if ((c := y.arg) < 0) or x.vmin<0: return None
new_xs = []
something_changed = False
for u in x.split_uop(Ops.ADD):
if u.op is Ops.MOD:
if u.src[1].divides(c) is not None:
something_changed = True
u = u.src[0]
new_xs.append(u)
new_x: UOp = UOp.sum(*new_xs)
if something_changed and new_x.vmin>=0: return new_x % y
return None
def nest_div_by_smallest_factor(d: UOp, x: UOp, y: UOp) -> UOp|None:
# we try and nest the div and see if it allows the numerator to be simplified
if ((c := y.arg) < 0): return None
factors = [u.const_factor() for u in x.split_uop(Ops.ADD) if u.op not in (Ops.CONST, Ops.VCONST)]
div = min([y.arg]+[abs(f) for f in factors if abs(f) > 1 and (c%f)==0])
newxs = fold_divmod_congruence(newx:=(x//div), x, y.const_like(div))
if newxs is None: newxs = factor_remainder(newx, x, y.const_like(div))
if div==y.arg or newxs is None or x.vmin<0 or newx.vmin<0: return None
return newxs//(c//div)
def factor_remainder(d: UOp, x: UOp, y: UOp) -> UOp|None:
# (d*x+y)//d -> x+y//d or (d*x+y)%d
# 2. factor_remainder: (d*x+y)//d -> x+y//d or (d*x+y)%d
# for mod we go further and take the remainder of all factors to reduce their size
# These only work for floordiv (and the corresponding remainder)! Thats why we check the sign of x,y and new_x
if y.vmin<0 or x.vmin<0: return None
quo, rem = [], []
for u in x.split_uop(Ops.ADD):
for u in uops:
if (q:=u.divide_exact(y)) is not None: quo.append(q)
# if this is mod and y is a const, we can make the remainder factor sm
elif d.op is Ops.MOD and y.op is Ops.CONST and (c:=u.const_factor())%y.arg!=c:
rem.append(u.divides(c)*(c%y.arg))
quo.append(u.const_like(0)) # we append this so we can check if something changed
else: rem.append(u)
if not quo: return None
new_x = sum(rem)+x.const_like(0)
if len(quo)==0 or new_x.vmin<0: return None
if new_x.vmin<0: return None
return new_x%y if d.op is Ops.MOD else new_x//y+sum(quo)
def nest_div_by_smallest_factor(d: UOp, x: UOp, y: UOp) -> UOp|None:
# we try and nest the div and see if it allows the numerator to be simplified
if ((c := y.arg) < 0): return None
factors = [u.const_factor() for u in x.split_uop(Ops.ADD) if u.op not in (Ops.CONST, Ops.VCONST)]
div = min([y.arg]+[abs(f) for f in factors if abs(f) > 1 and (c%f)==0])
newxs = fold_divmod_const(newx:=(x//div), x, y.const_like(div))
if newxs is None: newxs = fold_divmod_variable(newx, x, y.const_like(div))
if div==y.arg or newxs is None or x.vmin<0 or newx.vmin<0: return None
return newxs//(c//div)
div_and_mod_symbolic = PatternMatcher([
# ** 1. Fast Inline Rules **
((UPat.var("x")//UPat.cvar("c") + UPat.cvar("a"))//UPat.cvar("d"), lambda x,c,a,d: (x+a*c)//(c*d)
@@ -108,22 +101,13 @@ div_and_mod_symbolic = PatternMatcher([
((UPat.var("x", dtypes.index)+UPat.cvar("c", vec=False)).named("n")//UPat.cvar("d", vec=False),
lambda x,c,n,d: (-(-(c.arg%d.arg + x - (d.arg-1))//d) + c.arg//d.arg) if x.vmax<=0 and n.vmin>=0 and d.arg>0 else None),
# NOTE: if you move this one down you get more uops in test/external/external_benchmark_schedule.py
# ** 2. Slow Rules **
# NOTE: if you move this one below `fold_divmod_const` you get more uops in test/external/external_benchmark_schedule.py
(UPat((Ops.IDIV, Ops.MOD), dtypes.index, name="d", src=(UPat.var("x"), UPat.var("y"))), cancel_divmod),
# ** 2. Slow Constant Denominator Rules (cvar) **
# Prioritize these because they are mathematically stronger for constants
(UPat((Ops.IDIV, Ops.MOD), dtypes.index, name="d", src=(UPat.var("x"), UPat.cvar("y", vec=False))), fold_binary_numerator),
(UPat((Ops.IDIV, Ops.MOD), dtypes.index, name="d", src=(UPat.var("x"), UPat.cvar("y", vec=False))), fold_divmod_congruence),
(UPat((Ops.IDIV, Ops.MOD), dtypes.index, name="d", src=(UPat.var("x"), UPat.cvar("y", vec=False))), gcd_with_remainder),
(UPat(Ops.MOD, dtypes.index, name="m", src=(UPat.var("x"), UPat.cvar("y", vec=False))), remove_nested_mod),
(UPat((Ops.IDIV, Ops.MOD), dtypes.index, name="d", src=(UPat.var("x"), UPat.cvar("y", vec=False))), fold_divmod_const),
(UPat((Ops.IDIV, Ops.MOD), dtypes.index, name="d", src=(UPat.var("x"), UPat.var("y"))), fold_divmod_variable),
(UPat(Ops.IDIV, dtypes.index, name="d", src=(UPat.var("x"), UPat.cvar("y", vec=False))), nest_div_by_smallest_factor),
# ** 3. Slow Variable Denominator Rules (var) **
# These catch cases like x//x or (a*b)//b
(UPat((Ops.IDIV, Ops.MOD), dtypes.index, name="d", src=(UPat.var("x"), UPat.var("y"))), divide_by_gcd),
(UPat((Ops.IDIV, Ops.MOD), dtypes.index, name="d", src=(UPat.var("x"), UPat.var("y"))), factor_remainder),
# NOTE: these have to go at the bottom or TestSymbolicOps.test_var loops
(UPat.var("x", dtypes.index) % UPat.var("d"), lambda x,d: -((-x)%d) if x.vmax <= 0 else None),
(UPat.var("x", dtypes.index) % UPat.var("d"), lambda x,d: (x%(-d)) if d.vmax < 0 else None),