mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-07 22:23:55 -05:00
fix README example (#5284)
* fixed README example * README test * changed py -> python markdown code flags in REAME
This commit is contained in:
2
.github/workflows/test.yml
vendored
2
.github/workflows/test.yml
vendored
@@ -135,6 +135,8 @@ jobs:
|
||||
python docs/abstractions2.py
|
||||
- name: Test Quickstart
|
||||
run: awk '/```python/{flag=1;next}/```/{flag=0}flag' docs/quickstart.md > quickstart.py && PYTHONPATH=. python quickstart.py
|
||||
- name: Test README
|
||||
run: awk '/```python/{flag=1;next}/```/{flag=0}flag' README.md > README.py && PYTHONPATH=. python README.py
|
||||
- name: Fuzz Test symbolic
|
||||
run: python test/external/fuzz_symbolic.py
|
||||
- name: Fuzz Test shapetracker
|
||||
|
||||
17
README.md
17
README.md
@@ -51,7 +51,7 @@ And we can change `DEBUG` to `4` to see the generated code.
|
||||
As it turns out, 90% of what you need for neural networks are a decent autograd/tensor library.
|
||||
Throw in an optimizer, a data loader, and some compute, and you have all you need.
|
||||
|
||||
```py
|
||||
```python
|
||||
from tinygrad import Tensor, nn
|
||||
|
||||
class LinearNet:
|
||||
@@ -66,11 +66,12 @@ optim = nn.optim.Adam([model.l1, model.l2], lr=0.001)
|
||||
|
||||
x, y = Tensor.rand(4, 1, 28, 28), Tensor([2,4,3,7]) # replace with real mnist dataloader
|
||||
|
||||
for i in range(10):
|
||||
optim.zero_grad()
|
||||
loss = model(x).sparse_categorical_crossentropy(y).backward()
|
||||
optim.step()
|
||||
print(i, loss.item())
|
||||
with Tensor.train():
|
||||
for i in range(10):
|
||||
optim.zero_grad()
|
||||
loss = model(x).sparse_categorical_crossentropy(y).backward()
|
||||
optim.step()
|
||||
print(i, loss.item())
|
||||
```
|
||||
|
||||
See [examples/beautiful_mnist.py](examples/beautiful_mnist.py) for the full version that gets 98% in ~5 seconds
|
||||
@@ -113,7 +114,7 @@ Documentation along with a quick start guide can be found on the [docs website](
|
||||
|
||||
### Quick example comparing to PyTorch
|
||||
|
||||
```py
|
||||
```python
|
||||
from tinygrad import Tensor
|
||||
|
||||
x = Tensor.eye(3, requires_grad=True)
|
||||
@@ -126,7 +127,7 @@ print(y.grad.numpy()) # dz/dy
|
||||
```
|
||||
|
||||
The same thing but in PyTorch:
|
||||
```py
|
||||
```python
|
||||
import torch
|
||||
|
||||
x = torch.eye(3, requires_grad=True)
|
||||
|
||||
Reference in New Issue
Block a user