mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-08 22:48:25 -05:00
move reshape to MathTraits (#13054)
* move reshape to MathTraits * confirm it works in amd_uop_matmul
This commit is contained in:
@@ -88,15 +88,15 @@ def hand_spec_kernel3():
|
||||
# ---------------------------
|
||||
# GLOBAL -> LOCAL (As, Bs)
|
||||
# ---------------------------
|
||||
b = b.reshape((N // BLOCK_K, BLOCK_K,
|
||||
N // BLOCK_N, BLOCK_N))
|
||||
b = b.reshape(N // BLOCK_K, BLOCK_K,
|
||||
N // BLOCK_N, BLOCK_N)
|
||||
i = UOp.range(BLOCK_N * BLOCK_K // THREADS_PER_BLOCK, 1)
|
||||
index_x = tid % BLOCK_N
|
||||
index_y = (tid // BLOCK_N) + (THREADS_PER_BLOCK // BLOCK_N) * i
|
||||
Bs_store = Bs[index_y, index_x].store(b[k_tile_range, index_y, blockIdx_x, index_x]).end(i)
|
||||
|
||||
a = a.reshape((N // BLOCK_M, BLOCK_M,
|
||||
N // BLOCK_K, BLOCK_K))
|
||||
a = a.reshape(N // BLOCK_M, BLOCK_M,
|
||||
N // BLOCK_K, BLOCK_K)
|
||||
i = UOp.range(BLOCK_M * BLOCK_K // THREADS_PER_BLOCK, 2)
|
||||
index_x = tid % BLOCK_K
|
||||
index_y = (tid // BLOCK_K) + (THREADS_PER_BLOCK // BLOCK_K) * i
|
||||
@@ -113,12 +113,12 @@ def hand_spec_kernel3():
|
||||
# ---------------------------
|
||||
# LOCAL -> REG (per-wave tiles)
|
||||
# ---------------------------
|
||||
Bs_view = Bs.reshape((BLOCK_K, WAVES_IN_BLOCK_X, ITERS_PER_WAVE_N, LANES_PER_WAVE_X, TN))
|
||||
Bs_view = Bs.reshape(BLOCK_K, WAVES_IN_BLOCK_X, ITERS_PER_WAVE_N, LANES_PER_WAVE_X, TN)
|
||||
iterWaveN = UOp.range(ITERS_PER_WAVE_N, 4)
|
||||
i = UOp.range(TN, 5)
|
||||
B_row = B_row[iterWaveN, i].set(Bs_view[k, waveIdx, iterWaveN, idxInWave, i], end=(iterWaveN, i))
|
||||
|
||||
As_view = As.reshape((BLOCK_K, WAVES_IN_BLOCK_Y, ITERS_PER_WAVE_M, LANES_PER_WAVE_Y, TM))
|
||||
As_view = As.reshape(BLOCK_K, WAVES_IN_BLOCK_Y, ITERS_PER_WAVE_M, LANES_PER_WAVE_Y, TM)
|
||||
iterWaveM = UOp.range(ITERS_PER_WAVE_M, 6)
|
||||
i = UOp.range(TM, 7)
|
||||
A_col = A_col[iterWaveM, i].set(As_view[k, waveIdy, iterWaveM, idyInWave, i], end=(iterWaveM, i))
|
||||
@@ -139,8 +139,8 @@ def hand_spec_kernel3():
|
||||
# ---------------------------
|
||||
# REG -> GLOBAL (epilogue)
|
||||
# ---------------------------
|
||||
c = c.reshape((N//BLOCK_M, WAVES_IN_BLOCK_Y, ITERS_PER_WAVE_M, LANES_PER_WAVE_Y, TM,
|
||||
N//BLOCK_N, WAVES_IN_BLOCK_X, ITERS_PER_WAVE_N, LANES_PER_WAVE_X, TN))
|
||||
c = c.reshape(N//BLOCK_M, WAVES_IN_BLOCK_Y, ITERS_PER_WAVE_M, LANES_PER_WAVE_Y, TM,
|
||||
N//BLOCK_N, WAVES_IN_BLOCK_X, ITERS_PER_WAVE_N, LANES_PER_WAVE_X, TN)
|
||||
iterWaveM = UOp.range(ITERS_PER_WAVE_M, 1000)
|
||||
yt = UOp.range(TM, 1001)
|
||||
iterWaveN = UOp.range(ITERS_PER_WAVE_N, 1002)
|
||||
|
||||
@@ -10,7 +10,7 @@ from tinygrad.helpers import IMAGE, WINO, Metadata, TRACEMETA, ceildiv, fetch, p
|
||||
from tinygrad.helpers import suppress_finalizing
|
||||
from tinygrad.gradient import compute_gradient
|
||||
from tinygrad.uop.mathtraits import MathTrait
|
||||
from tinygrad.uop.ops import smax, smin, resolve, UOp, Ops, sint, identity_element, all_metadata, _index_to_concrete_int, sint_to_uop, srender
|
||||
from tinygrad.uop.ops import smax, smin, resolve, UOp, Ops, sint, identity_element, all_metadata, _index_to_concrete_int, sint_to_uop
|
||||
from tinygrad.uop.spec import type_verify, tensor_spec
|
||||
from tinygrad.device import Device, Buffer
|
||||
from tinygrad.engine.realize import run_schedule
|
||||
@@ -1038,28 +1038,7 @@ class Tensor(MathTrait):
|
||||
|
||||
# ***** movement low level ops *****
|
||||
|
||||
def view(self, shape:tuple[sint, ...], *args) -> Tensor:
|
||||
"""`.view` is an alias for `.reshape`."""
|
||||
return self.reshape(shape, *args)
|
||||
|
||||
def reshape(self, shape, *args) -> Tensor:
|
||||
"""
|
||||
Returns a tensor with the same data as the original tensor but with a different shape.
|
||||
`shape` can be passed as a tuple or as separate arguments.
|
||||
|
||||
```python exec="true" source="above" session="tensor" result="python"
|
||||
t = Tensor.arange(6)
|
||||
print(t.reshape(2, 3).numpy())
|
||||
```
|
||||
"""
|
||||
# resolve None and args
|
||||
new_shape = tuple([s if s is not None else self.shape[i] for i,s in enumerate(argfix(shape, *args))])
|
||||
# resolve -1
|
||||
if (c := new_shape.count(-1)) > 1: raise RuntimeError(f"only one dimension can be inferred using -1, getting {new_shape}")
|
||||
if c: new_shape = tuple([-prod(self.shape) // prod(new_shape) if s == -1 else s for s in new_shape])
|
||||
if resolve(prod(self.shape) != prod(new_shape), True):
|
||||
raise ValueError(f"size mismatch, can't reshape ({', '.join(srender(d) for d in self.shape)}) -> ({', '.join(srender(d) for d in new_shape)})")
|
||||
return self._apply_uop(UOp.reshape, arg=new_shape) if new_shape != self.shape else self
|
||||
def _mop(self, op:Ops, arg) -> Tensor: return self._apply_uop(UOp._mop, extra_args=(op,), arg=arg)
|
||||
|
||||
def expand(self, shape, *args) -> Tensor:
|
||||
"""
|
||||
|
||||
@@ -1,6 +1,10 @@
|
||||
from typing import TypeVar
|
||||
from typing import TypeVar, TypeAlias, TYPE_CHECKING
|
||||
from tinygrad.uop import Ops
|
||||
from tinygrad.dtype import dtypes, ConstType
|
||||
from tinygrad.helpers import prod, argfix
|
||||
if TYPE_CHECKING:
|
||||
from tinygrad.uop.ops import UOp
|
||||
sint:TypeAlias = UOp|int
|
||||
|
||||
TMT = TypeVar("TMT", bound="MathTrait")
|
||||
class MathTrait:
|
||||
@@ -171,3 +175,32 @@ class MathTrait:
|
||||
def exp2(self): return self.alu(Ops.EXP2)
|
||||
def pow(self:TMT, x:TMT|ConstType): return self.alu(Ops.POW, self.ufix(x))
|
||||
def __pow__(self:TMT, x:TMT|ConstType): return self.pow(x)
|
||||
|
||||
# **** movement ops ****
|
||||
|
||||
# required to implement
|
||||
def _mop(self:TMT, op:Ops, arg) -> TMT: raise NotImplementedError
|
||||
@property
|
||||
def shape(self) -> tuple["sint", ...]: raise NotImplementedError
|
||||
|
||||
def view(self:TMT, shape, *args) -> TMT:
|
||||
"""`.view` is an alias for `.reshape`."""
|
||||
return self.reshape(shape, *args)
|
||||
|
||||
def reshape(self:TMT, shape, *args) -> TMT:
|
||||
"""
|
||||
Returns a tensor with the same data as the original tensor but with a different shape.
|
||||
`shape` can be passed as a tuple or as separate arguments.
|
||||
|
||||
```python exec="true" source="above" session="tensor" result="python"
|
||||
t = Tensor.arange(6)
|
||||
print(t.reshape(2, 3).numpy())
|
||||
```
|
||||
"""
|
||||
# resolve None and args
|
||||
new_shape = tuple([s if s is not None else self.shape[i] for i,s in enumerate(argfix(shape, *args))])
|
||||
# resolve -1
|
||||
if (c := new_shape.count(-1)) > 1: raise RuntimeError(f"only one dimension can be inferred using -1, getting {new_shape}")
|
||||
if c: new_shape = tuple([-prod(self.shape) // prod(new_shape) if s == -1 else s for s in new_shape])
|
||||
if prod(self.shape) != prod(new_shape): raise ValueError(f"size mismatch, can't reshape ({self.shape}) -> ({new_shape})")
|
||||
return self._mop(Ops.RESHAPE, arg=new_shape) if new_shape != self.shape else self
|
||||
|
||||
@@ -533,7 +533,7 @@ class UOp(MathTrait, metaclass=UOpMetaClass):
|
||||
|
||||
# in these four, if the shape doesn't change we can return self
|
||||
def forced_reshape(self, arg:tuple[sint, ...]): return self._mop(Ops.RESHAPE, arg, same_shape_noop=False)
|
||||
def reshape(self, arg:tuple[sint, ...]): return self._mop(Ops.RESHAPE, arg, same_shape_noop=True)
|
||||
#def reshape(self, arg:tuple[sint, ...]): return self._mop(Ops.RESHAPE, arg, same_shape_noop=True)
|
||||
def expand(self, arg:tuple[sint, ...]): return self._mop(Ops.EXPAND, arg, same_shape_noop=True)
|
||||
def shrink(self, arg:tuple[tuple[sint, sint], ...]): return self._mop(Ops.SHRINK, arg, same_shape_noop=True)
|
||||
def pad(self, arg:tuple[tuple[sint, sint], ...]): return self._mop(Ops.PAD, arg, same_shape_noop=True)
|
||||
|
||||
Reference in New Issue
Block a user