mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-09 15:08:02 -05:00
tiny gradcheck
This commit is contained in:
@@ -2,6 +2,7 @@ import numpy as np
|
||||
import torch
|
||||
import unittest
|
||||
from tinygrad.tensor import Tensor, Conv2D
|
||||
from tinygrad.gradcheck import numerical_jacobian, gradcheck
|
||||
|
||||
x_init = np.random.randn(1,3).astype(np.float32)
|
||||
W_init = np.random.randn(3,3).astype(np.float32)
|
||||
@@ -32,6 +33,47 @@ class TestTinygrad(unittest.TestCase):
|
||||
for x,y in zip(test_tinygrad(), test_pytorch()):
|
||||
np.testing.assert_allclose(x, y, atol=1e-5)
|
||||
|
||||
def test_gradcheck(self):
|
||||
class TinyModel:
|
||||
def __init__(self, weights_init):
|
||||
self.l1 = Tensor(weights_init)
|
||||
def forward(self, x):
|
||||
return x.dot(self.l1).relu().logsoftmax()
|
||||
|
||||
class TorchModel(torch.nn.Module):
|
||||
def __init__(self, weights_init):
|
||||
super(TorchModel, self).__init__()
|
||||
self.l1 = torch.nn.Linear(*weights_init.shape, bias = False)
|
||||
self.l1.weight = torch.nn.Parameter(torch.tensor(weights_init.T, requires_grad = True))
|
||||
def forward(self, x):
|
||||
return torch.nn.functional.log_softmax(self.l1(x).relu(), dim=1)
|
||||
|
||||
layer_weights = np.random.RandomState(1337).random((10, 5))
|
||||
input_data = np.random.RandomState(7331).random((1, 10)) - 0.5
|
||||
|
||||
torch_input = torch.tensor(input_data, requires_grad = True)
|
||||
torch_model = TorchModel(layer_weights)
|
||||
torch_out = torch_model(torch_input)
|
||||
# autograd.grad computes the _sum_ of gradients of given tensors
|
||||
J_sum = torch.autograd.grad(list(torch_out[0]), torch_input)[0].squeeze().numpy()
|
||||
|
||||
tiny_model = TinyModel(layer_weights)
|
||||
tiny_input = Tensor(input_data)
|
||||
tiny_out = tiny_model.forward(tiny_input)
|
||||
NJ = numerical_jacobian(tiny_model, tiny_input)
|
||||
NJ_sum = NJ.sum(axis = -1)
|
||||
|
||||
# checking the numerical approx. of J is close to the one provided autograd
|
||||
np.testing.assert_allclose(J_sum, NJ_sum, atol = 1e-5)
|
||||
|
||||
# test gradcheck
|
||||
gradcheck_test, _, _ = gradcheck(tiny_model, tiny_input)
|
||||
self.assertTrue(gradcheck_test)
|
||||
|
||||
# coarse approx. since a "big" eps and the non-linearities of the model
|
||||
gradcheck_test, j, nj = gradcheck(tiny_model, tiny_input, eps = 0.1)
|
||||
self.assertFalse(gradcheck_test)
|
||||
|
||||
def test_conv2d(self):
|
||||
x = torch.randn((5,2,10,7), requires_grad=True)
|
||||
w = torch.randn((4,2,3,3), requires_grad=True)
|
||||
@@ -48,7 +90,7 @@ class TestTinygrad(unittest.TestCase):
|
||||
np.testing.assert_allclose(w.grad, wt.grad, atol=1e-5)
|
||||
np.testing.assert_allclose(x.grad, xt.grad, atol=1e-5)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user