mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-08 22:48:25 -05:00
IMAGE=1 creates "dynamic" images (#13769)
* remove image from BufferSpec
* cl tiny_gemm (64) works
* mypy
* padding
* openpilot CL
* reshape properly
* remove extra qcom checks
* pad output
* mypy
* update compile test
* move undo
* TestImageCopy valid images
* TestImageRealization valid images
* TestImageDType valid images
* cleanups
* test_renderer_failures
* ruff
* mypy
* simplify ops_qcom
* bump step time
* Revert "bump step time"
This reverts commit 75a037c7d0.
* "dynamic textures" are optional
* a start
* IMAGE=1 works, no FLOAT16
* fast but wrong
* mypy
* some fixes
* better
* works
* refactor
* oops
This commit is contained in:
committed by
GitHub
parent
61dc70f1a8
commit
9dc524536f
@@ -10,25 +10,25 @@ IMAGE_SUPPORTED_DEVICES = ("QCOM", "CL")
|
||||
|
||||
@unittest.skipUnless(REAL_DEV in IMAGE_SUPPORTED_DEVICES, "Images not supported")
|
||||
class TestImageCopy(unittest.TestCase):
|
||||
def test_image_copyout_1x1(self, img_type=dtypes.imagef):
|
||||
it = Tensor.arange(4).cast(img_type((1,1,4))).realize()
|
||||
def test_image_copyout_1x8(self, img_type=dtypes.imagef):
|
||||
it = Tensor.arange(32).cast(img_type((1,8,4))).realize()
|
||||
buf = it.uop.buffer
|
||||
out = buf.as_buffer()
|
||||
np.testing.assert_equal(out.cast(it.dtype.fmt).tolist(), np.arange(4))
|
||||
np.testing.assert_equal(out.cast(it.dtype.fmt).tolist(), np.arange(32))
|
||||
|
||||
@unittest.skipUnless(is_dtype_supported(dtypes.half, device="PYTHON"), "need half")
|
||||
def test_imageh_copyout_1x1(self): self.test_image_copyout_1x1(img_type=dtypes.imageh)
|
||||
def test_imageh_copyout_1x8(self): self.test_image_copyout_1x8(img_type=dtypes.imageh)
|
||||
|
||||
def test_image_numpy_1x1(self, img_type=dtypes.imagef):
|
||||
it = Tensor.arange(4).cast(img_type((1,1,4))).realize()
|
||||
np.testing.assert_equal(it.numpy(), np.arange(4))
|
||||
def test_imageh_numpy_1x1(self): self.test_image_numpy_1x1(img_type=dtypes.imageh)
|
||||
def test_image_numpy_1x8(self, img_type=dtypes.imagef):
|
||||
it = Tensor.arange(32).cast(img_type((1,8,4))).realize()
|
||||
np.testing.assert_equal(it.numpy(), np.arange(32))
|
||||
def test_imageh_numpy_1x8(self): self.test_image_numpy_1x8(img_type=dtypes.imageh)
|
||||
|
||||
def test_image_copyout_2x3(self):
|
||||
it = Tensor.arange(2*3*4).cast(dtypes.imagef((2,3,4))).realize()
|
||||
def test_image_copyout_2x4(self):
|
||||
it = Tensor.arange(2*4*4).cast(dtypes.imagef((2,4,4))).realize()
|
||||
buf = it.uop.buffer
|
||||
out = buf.as_buffer()
|
||||
np.testing.assert_equal(out.cast('f').tolist(), np.arange(2*3*4))
|
||||
np.testing.assert_equal(out.cast('f').tolist(), np.arange(2*4*4))
|
||||
|
||||
def test_image_roundtrip(self):
|
||||
sz = (4,2,4)
|
||||
@@ -105,9 +105,9 @@ class TestImageDType(unittest.TestCase):
|
||||
__validate(dtypes.imagef((1, 1)), 0x40)
|
||||
|
||||
def test_image_and_back(self):
|
||||
data = Tensor.randn(9*27*4).realize()
|
||||
data = Tensor.randn(9*32*4).realize()
|
||||
tst = data.numpy()
|
||||
it = data.cast(dtypes.imagef((9,27,4))).contiguous().realize()
|
||||
it = data.cast(dtypes.imagef((9,32,4))).contiguous().realize()
|
||||
assert isinstance(it.uop.base.realized.dtype, ImageDType)
|
||||
np.testing.assert_equal(tst, it.numpy())
|
||||
|
||||
@@ -127,13 +127,13 @@ class TestImageDType(unittest.TestCase):
|
||||
np.testing.assert_equal(tst, it.numpy())
|
||||
|
||||
def test_shrink_load_float(self):
|
||||
it = Tensor.randn(4).cast(dtypes.imagef((1,1,4))).realize()
|
||||
it = Tensor.randn(16).cast(dtypes.imagef((1,4,4))).realize()
|
||||
imgv = it.numpy()
|
||||
np.testing.assert_equal(imgv[0:2], it[0:2].numpy())
|
||||
|
||||
def test_mul_stays_image(self):
|
||||
# NOTE: contiguous is needed otherwise this folds
|
||||
it = Tensor.randn(4).cast(dtypes.imagef((1,1,4))).contiguous().realize()
|
||||
it = Tensor.randn(16).cast(dtypes.imagef((1,4,4))).contiguous().realize()
|
||||
out = (it*2).realize()
|
||||
assert isinstance(out.uop.base.realized.dtype, ImageDType)
|
||||
|
||||
@@ -143,7 +143,7 @@ class TestImageDType(unittest.TestCase):
|
||||
np.testing.assert_allclose(np.sum(itn), it.sum().numpy(), rtol=1e-6)
|
||||
|
||||
def test_shrink_max(self):
|
||||
it = Tensor.randn(8).cast(dtypes.imagef((1,2,4))).realize()
|
||||
it = Tensor.randn(16).cast(dtypes.imagef((1,4,4))).realize()
|
||||
imgv = it.numpy()
|
||||
np.testing.assert_equal(np.maximum(imgv[0:3], 0), it[0:3].relu().numpy())
|
||||
|
||||
@@ -162,19 +162,19 @@ class TestImageDType(unittest.TestCase):
|
||||
assert it.uop.base.realized._buf == b1
|
||||
|
||||
def test_no_lru_alloc(self):
|
||||
data = Tensor.randn(9*27*4).realize()
|
||||
it = data.cast(dtypes.imagef((9,27,4))).contiguous().realize()
|
||||
data = Tensor.randn(9*32*4).realize()
|
||||
it = data.cast(dtypes.imagef((9,32,4))).contiguous().realize()
|
||||
b1 = it.uop.base.realized._buf
|
||||
del it
|
||||
it = data.cast(dtypes.imagef((10,27,4))).contiguous().realize()
|
||||
it = data.reshape(9,32,4).pad_to(10, None, None).cast(dtypes.imagef((10,32,4))).contiguous().realize()
|
||||
assert it.uop.base.realized._buf != b1
|
||||
|
||||
def test_no_lru_alloc_dtype(self):
|
||||
data = Tensor.randn(9*27*4).realize()
|
||||
it = data.cast(dtypes.imagef((9,27,4))).contiguous().realize()
|
||||
data = Tensor.randn(9*32*4).realize()
|
||||
it = data.cast(dtypes.imagef((9,32,4))).contiguous().realize()
|
||||
b1 = it.uop.base.realized._buf
|
||||
del it
|
||||
it = data.cast(dtypes.imageh((9,27,4))).realize()
|
||||
it = data.cast(dtypes.imageh((9,32,4))).realize()
|
||||
assert it.uop.base.realized._buf != b1
|
||||
|
||||
# issue caused by: don't realize image to image casts. this is part of a larger problem
|
||||
@@ -202,36 +202,36 @@ class TestImageDType(unittest.TestCase):
|
||||
@unittest.skipUnless(REAL_DEV in IMAGE_SUPPORTED_DEVICES, "Images not supported")
|
||||
class TestImageRealization(unittest.TestCase):
|
||||
def test_image_dtype_expand(self):
|
||||
data = Tensor.randn(9*27*4).realize()
|
||||
it = data.cast(dtypes.imagef((9,27,4))).contiguous().realize()
|
||||
self.assertEqual(it.dtype, dtypes.imagef((9,27,4)))
|
||||
it_expanded = it.reshape((9,27,4,1)).expand((9,27,4,4)).contiguous().realize()
|
||||
data = Tensor.randn(9*32*4).realize()
|
||||
it = data.cast(dtypes.imagef((9,32,4))).contiguous().realize()
|
||||
self.assertEqual(it.dtype, dtypes.imagef((9,32,4)))
|
||||
it_expanded = it.reshape((9,32,4,1)).expand((9,32,4,4)).contiguous().realize()
|
||||
self.assertEqual(it_expanded.dtype, dtypes.float32)
|
||||
|
||||
def test_image_dtype_expand_and_back(self):
|
||||
data = Tensor.randn(9*27*4).realize()
|
||||
it = data.cast(dtypes.imagef((9,27,4))).contiguous().realize()
|
||||
self.assertEqual(it.dtype, dtypes.imagef((9,27,4)))
|
||||
it_expanded = it.reshape((9,27,4,1)).expand((9,27,4,4))
|
||||
data = Tensor.randn(9*32*4).realize()
|
||||
it = data.cast(dtypes.imagef((9,32,4))).contiguous().realize()
|
||||
self.assertEqual(it.dtype, dtypes.imagef((9,32,4)))
|
||||
it_expanded = it.reshape((9,32,4,1)).expand((9,32,4,4))
|
||||
it2 = it_expanded.sum(3).realize()
|
||||
self.assertEqual(it2.dtype, dtypes.imagef((9,27,4)))
|
||||
self.assertEqual(it2.dtype, dtypes.imagef((9,32,4)))
|
||||
|
||||
def test_image_alu_children(self):
|
||||
data = Tensor.randn(9*27*4).realize()
|
||||
it = data.cast(dtypes.imagef((9,27,4))).contiguous().realize()
|
||||
self.assertEqual(it.dtype, dtypes.imagef((9,27,4)))
|
||||
it_expanded = it.reshape((9,27,4,1)).expand((9,27,4,4)).contiguous()
|
||||
data = Tensor.randn(9*32*4).realize()
|
||||
it = data.cast(dtypes.imagef((9,32,4))).contiguous().realize()
|
||||
self.assertEqual(it.dtype, dtypes.imagef((9,32,4)))
|
||||
it_expanded = it.reshape((9,32,4,1)).expand((9,32,4,4)).contiguous()
|
||||
alu1 = it_expanded+1
|
||||
alu2 = it_expanded.sum(3)
|
||||
it_expanded.realize()
|
||||
# NOTE: the parent becomes float, but the alu child will stay image until its output cannot fit the image
|
||||
self.assertEqual(alu1.dtype, dtypes.imagef((9,27,4)))
|
||||
self.assertEqual(alu1.dtype, dtypes.imagef((9,32,4)))
|
||||
alu1.realize()
|
||||
self.assertEqual(alu1.dtype, dtypes.float32)
|
||||
# alu2 is back in image because it fits the dtype again
|
||||
self.assertEqual(alu2.dtype, dtypes.imagef((9,27,4)))
|
||||
self.assertEqual(alu2.dtype, dtypes.imagef((9,32,4)))
|
||||
alu2.realize()
|
||||
self.assertEqual(alu2.dtype, dtypes.imagef((9,27,4)))
|
||||
self.assertEqual(alu2.dtype, dtypes.imagef((9,32,4)))
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
||||
Reference in New Issue
Block a user